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In most decision models dealing with unobservable stochastic congested environ-
ments, one looks for a (Nash) equilibrium behavior among customers. This is a
strategy that, if adopted by all, then under the resulting steady-state conditions; the best
response for an individual is to adopt this strategy too. The purpose of this article
is to look for a simple decision problem but where the assumption of steady-state
conditions is removed. Specifically, we consider an M/M/N/N loss model in which
one pays for trying to get service but is rewarded only if one finds an available server.
The initial conditions at time 0 are common knowledge and each customer possesses
his arrival time as his private information. The equilibrium profile tells each arrival
whether to try (randomization allowed) given his time of arrival. We show that all
join up to some point of time. At this point, there is a quantum drop in the joining
probability from one to some fraction. From then on, their joining probability contin-
uously converges to the equilibrium joining probability under the model that assumes
steady state.

1. INTRODUCTION

By now there is a large literature on customers’behavior in queuing models. See [1] for
a review. In these models, selfish customers are decision makers trying to maximize
their utility. Typically, there is an infinite number of customers who are generated in
accordance with a Poisson process. As customers’ whereabouts usually interact, the
solution concept adopted is (Nash) equilibrium. Next, we exemplify such a decision
problem and state what is the traditional approach for defining equilibrium that is
based on the concept of steady state. Then we give a possible different definition for
an equilibrium behavior where the assumption of steady state is removed.
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The following model originated in [2] and is dealt with also in [1, pp. 60–61]. This
is an M/M/1/1 model with trial costs and service rewards. Specifically, to a single
server station there is a potential demand of λ per unit of time. This potential demand
is generated by a Poisson process. Service times follow an exponential distribution
with parameter μ. No waiting room exists and a customer who finds a busy server
upon trial leaves for good. Customers value receiving service by R. However, a trial
costs C. To avoid trivialities, assume that C < R. Customers have to decide whether to
try (randomization allowed) while seeking to maximize their individual expected net
gain. Note that they do not know the status of the server upon generation (as otherwise
this would have been a trivial decision problem). Thus, in case one tries, one’s utility
is R times the probability that the server is idle minus C. Not trying comes with a
zero utility.1

The analysis given in [1, pp. 60–61] is typical for such decision making in queuing
systems. The approach is as follows: For any symmetric strategy profile (i.e., the
same strategy is selected by all), which here is being characterized by the trying
probability of p, look for the corresponding steady-state conditions. These conditions
are reflected by the probabilities of an idle and of a busy server. They are μ/(pλ + μ)

and pλ/(pλ + μ), respectively. Under these conditions, one’s utility in case that one
selects strategy p′ is p′(Rμ/(pλ + μ) − C). An equilibrium strategy profile is then a
strategy that is also one’s best response under steady-state conditions resulting when
all select this strategy too. In our case, 0 ≤ p ≤ 1 defines an equilibrium profile if

p ∈ arg max
0≤p′≤1

p′(Rμ/(pλ + μ) − C). (1)

We denote this (unique) probability by pe. It is clear that if C ≤ Rμ/(pλ + μ), for
all 0 ≤ p ≤ 1 (which, of course, holds if and only if C ≤ Rμ/(λ + μ)), then pe = 1.2

Otherwise, pe, 0 < pe < 1, is such that Rμ/(peλ + μ) − C = 0; namely,

pe = μ

λ

R − C

C
. (2)

Indeed, if all try with probability pe, then also for an individual customer, under the
resulting steady-state conditions, trying with probability pe is a best response.3 This is
the case, as one is indifferent between the two pure options of trying or not and, hence,
one might randomize as well. In summary, trying with a probability of pe defines a
Nash equilibrium strategy.4 The issue that this definition of Nash equilibrium avoids
is how steady-state conditions have been reached. Put differently, a question that still
exists here is what makes nonasymptotic customers behave in accordance with pe.5

The purpose of this article, apparently for the first time, is to remove the assump-
tion that steady-state conditions under some strategy (in fact, the equilibrium strategy)
have been reached. Instead, we assume that customers possess some private infor-
mation regarding their time of generation (Section 2) or their serial number of
generation (Section 3).

As opposed to decision models, which concentrate on steady-state analysis, for
the above-mentioned nonstationary type of private information, the description of the

https://doi.org/10.1017/S0269964809990118 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809990118


EQUILIBRIUM STRATEGIES IN QUEUES 15

models calls for assuming some initial conditions that, of course, will be part of the
customers’ common knowledge. In the M/M/1/1 model dealt with here, it is natural
to assume that at time 0, the server is idle. Yet, some other initial condition can be
assumed without much effect on the qualitative results we report later.

Our main findings for the decision models under consideration are as follows.
In Section 2 we deal with the case in which at time t = 0, the system is empty and
the time of generation is known to the customer involved and only to him (i.e., this
is his private information). In Section 2.1 we show that in the M/M/1/1 model, the
equilibrium strategy is characterized by two values—time te and trial probability p′

e:
Up to time te, all try with probability 1, and from time te on, they try with probability
p′

e. As it turns out, the equilibrium p′
e equals pe (see (3)), the latter being the trial

probability under the model that assumes steady state. In Section 2.2 we look at
the same question but now for the M/M/2/2 model. Here, our findings are even
more surprising: The equilibrium profile is such that all who are generated from time
0 to some time te try with probability 1. Then, as in the M/M/1/1 model, there is a gap
in the trial probability. Specifically, denote by pe(t) the equilibrium trial probability
at time t. Then, although pe(te) = 1, pe(te+) < 1. Additionally, limt→∞ pe(t) = pe,
where pe is the corresponding steady-state equilibrium trial probability. Finally, all
of our numerical runs indicate that for t > te, pe(t) is strictly monotone decreasing.
Section 2.3 generalizes these findings to the general M/M/N/N model, N ≥ 1.

In Section 3 we deal with the case in which the serial number of one’s generation
is one’s private information (while the same initial conditions are assumed). We con-
sider only the relatively simple case of M/M/1/1. We show that for this model, the
equilibrium strategy is periodical and is characterized by an integer me ≥ 1. Specif-
ically, the first arrival tries, the next me − 1 customers do not try, customer me + 1
tries, then the next me − 1 do not, and so forth. We also compare this decision model
with that for which the time of generation is private information. In particular, we
show that no general order between pe and 1/me exists.

2. TIME-DEPENDENT STRATEGIES

This section contains three subsections. They deal, in this order, with the M/M/1/1,
M/M/2/2, and M/M/N/N (where N ≥ 3) models.

2.1. The M/M/1/1 Case

This subsection is devoted to the M/M/1/1 case, in which the time of their own gen-
eration is the customers’ private information. Section 2.1.1 deals with the equilibrium
profile and Section 2.1.2 looks at a different criterion—that of maximizing social gain.

2.1.1. Equilibrium strategies. As stated earlier, assume the initial condition
that at time 0, the server is idle. Suppose a customer who is generated at time t tries
with probability p(t), t ≥ 0, independent of anything else. The latter implies that the
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resulting trial process is a nonhomogeneous Poisson process with rate λp(t), t ≥ 0.
Denote this behavior with P. Additionally, let IP(t) be the probability that the server
is idle at time t when all behave in accordance with the strategy profile P. We define
a Nash equilibrium as a strategy profile P such that for any t, t ≥ 0,

p(t) ∈ arg max
0≤p≤1

p(IP(t)R − C), 0 ≤ t < ∞.

We denote such a profile (which below is shown to be unique) by Pe and the
corresponding trial probability at time t by pe(t).

Theorem 2.1: If C < Rμ/(μ + λ); then Pe is with pe(t) = 1 for all t ≥ 0.6 Otherwise,
the unique Pe is such that for some te < ∞, pe(t) = 1 for t ≤ te and pe(t) = pe for
some pe, 0 < pe < 1 when t > te. Moreover,

pe = μ

λ

R − C

C
(3)

and

te = − 1

λ + μ
loge

(
1 − pe

λ + μpe

)
. (4)

In particular, when t > te, the equilibrium behavior coincides with that of the model,
which assumes steady state.

Proof: It is well known (see, e.g., [4, p. 150]), that if at time 0, the server is idle and
if all try during the time interval [0, t], then the probability that the server is idle at
time t equals

μ

λ + μ
+ λ

λ + μ
e−(λ+μ)t , t ≥ 0.

Note that this probability is monotone decreasing with t. Denote it by I1(t) and
note that

lim
t→∞ I1(t) = μ/(μ + λ). (5)

If C < R[μ/(λ + μ)], then even if all try, C < RI1(t) for any t and one would better
try oneself at any time. Thus, pe(t) = 1 for all t ≥ 0.

We first observe that IP(t) ≥ I1(t), t ≥ 0. To see this, we can couple two queuing
processes: the first where all try and the second with strategy P based on two inde-
pendent Poisson processes, the one with rate λ (potential arrivals) and the other with
rate μ (potential departures) and an independent sequence {Un| n ≥ 1} of independent
uniform (on (0, 1)) random variables as follows. At an instant τn of the nth potential
arrival, the first process jumps up by 1 if it is at zero. The second jumps up by 1 if it
is at zero and Un ≤ p(τn), otherwise it remains at zero. Both processes remain at 1
if they are at 1 at a time of a potential arrival. At an instant of a potential departure,
both processes jump down by 1 if their value at this instant is 1 and remain at zero if
it is zero. It is clear that, with this coupling, the first process (all try) is always greater

https://doi.org/10.1017/S0269964809990118 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809990118


EQUILIBRIUM STRATEGIES IN QUEUES 17

than or equal to the second process (strategy P) for any t ≥ 0, which, in turn, implies
that IP(t) ≥ I1(t).7

Thus, the individual’s best response against any policy P is to try up to time te.
In the case where C > Rμ/(μ + λ), it is easy to see that pe (as defined in (3)) is with
0 < pe < 1. Additionally, I1(te) is such that RI1(te) = C (where te is as defined in
(4)). It is also easy to see that I1(te) = μ/(λpe + μ). Extending (5) to any constant
joining probability, it is possible to see the following stationarity point: If at some
point in time the probability of idleness is μ/(μ + λpe) and from then on all try with
probability p(t) = pe, then μ/(μ + λpe) is the idleness probability from that point
in time. Hence, if all try in the case of generation prior to time te and afterward try
with probability pe, then all those who arrive after te are indifferent between trying or
not. In particular, one might as well try with probability pe. In other words, this is an
equilibrium behavior. �

Remark 2.1: It is interesting to observe that the equilibrium trying probability is a step
function with (at most) one drop. It is no surprise that pe(t) = 1 for all 0 ≤ t ≤ te for
some te, that pe(t) < 1 otherwise, and that limt→ pe(t) = pe. What we find somewhat
not intuitive is that pe(t) does not decrease to pe gradually but rather in a single
jump at te.

Remark 2.2: As was pointed out in Section 1, pe has a steady-state meaning. Specif-
ically, in case that all use this trying probability (regardless of time of generation and
under any initial conditions), then an asymptotic arrival is indifferent between trying
or not and, hence, trying with this probability is also a best response for him. Likewise,
if at time 0, the server is idle with probability μ/(λpe + μ) (which is the steady-state
idleness probability when all join with probability pe), then joining with probability
pe for any time t is an equilibrium profile.

Remark 2.3: A possible question here is how the equilibrium strategy varies with the
initial conditions. Specifically, let π be the probability that at time 0, the server is idle.
It is evident, with a similar approach as in the proof of Theorem 2.1, that if 1 ≥ π ≥ pe

(0 ≤ π ≤ pe, respectively), then all will try (not try, respectively) from time 0 until
some time t(π), and from then on, all will try with probability pe. Moreover, t(π) is
monotone decreasing (increasing, respectively) in π .

Remark 2.4: It is possible to think of different information structures leading to equi-
libria that are easy to characterize. For example, suppose one knows upon one’s
generation when all previous customer generations took place. Inductively, it is pos-
sible to learn which among them tried (given that all did their best for themselves).
Hence, one can deduce when the last trial took place. Suppose it was s unit of times
before his own arrival. Of course, it is immaterial if this trial was successful or not.
Then one should try if and only if C < R(1 − e−λs).
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2.1.2. The social optimal strategy. The following is taken from [1, pp. 60–
61], and is repeated here for completeness and comparison. See also [3] for a related
problem for which the decision maker possesses more information (how much time
elapsed from the last trial). Suppose now that the cost of all trials and service rewards
are being borne and gained, respectively, by a single entity—call it society. Social
optimization behavior and selfish (i.e., equilibrium) behavior disagree since under
the latter case, externalities imposed by one who tries (in the guise of increasing
the probability that the next to try finds a busy server) are ignored. Under social
optimization, they are being taken into consideration, leading to a reduced trial rate.

If all try with probability p, the net gain per unit of time (during an infinitely long
horizon) is

λp

(
R

μ

μ + pλ
− C

)
. (6)

Note that this gain is maintained regardless of any initial conditions and, likewise,
if during some finite time, some other strategy is used. Hence, we look for p, 0 ≤
p ≤ 1, which maximizes (6). Denote the maximizer p by p∗. It is an easy exercise to
check that p∗ = min{1, μ(

√
R/C − 1)/λ}.Additionally, pe = p∗ if and only if p∗ = 1.

Otherwise, pe > p∗, as expected: Left to themselves customers intend to overcrowd
the system more than it is socially desired. This is the case since selfish customers do
not mind the effect of their moves on others. In this example, one’s trial reduces the
utility of another. As is many other related decision models, it is possible to find T (for
toll or tax) such that when looking for pe when R is replaced with R − T , the resulting
value coincides with p∗ (under R). Note that this toll regulates customers behavior so
that their resulting equilibrium behavior coincides with the social optimal one.

In the following subsections we deal with a multiserver model. As from the social
optimization point of view, there is nothing conceptually new in comparison with the
single-server model, we do not return to this issue again.

2.2. The M/M/2/2 Case

First, we find the equilibrium trial probability for the steady-state case, pe. This value
is either 1 or the unique positive solution to the equation in p:

1
2 (λp/μ)2

1 + (λp/μ) + 1
2 (λp/μ)2

= 1 − C

R
. (7)

This is the case since the left-hand side is the steady-state probability that the two
servers are busy when all try with probability p. The only positive root of this quadratic
equation is

μ

λ

R − C + √
R2 − C2

C
.
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Therefore,

pe = min

{
1,

μ

λ

R − C + √
R2 − C2

C

}
. (8)

In other words, if the positive root is smaller than 1, the equilibrium profile prescribes
mixing. Otherwise, it is pure and prescribes always trying. In this latter case, trying
is also a dominant strategy.

We now look at the time-dependent case. Suppose the system is empty at time 0
and that customers possess the private information of their time of generation.Assume
that all arrivals between time 0 and time t try with probability 1 and denote by Pi(t)
the probability of having i customers in the system at time t (which depends on the
adopted strategy). If all try up to some time te, then for all 0 ≤ t ≤ te, the following
(Kolmogorov’s forward) differential equations hold:

P′
0(t) = −λP0(t) + μP1(t),

P′
1(t) = λP0(t) − (λ + μ)P1(t) + 2μP2(t),

P′
2(t) = λP1(t) − 2μP2(t),

with the initial conditions being P0(0) = 1 and P1(0) = P2(0) = 0.8 The solution to
this set of differential equations leads in fact to the probability that a customer who
tries does not find any idle server:

P2(t) = π2

(
1 − e−c1t

c1
− 1 − e−c2t

c2

) (
1

c1
− 1

c2

)−1

= λ2

θ

∫ t

0

∫ c2

c1

ve−uv du dv, (9)

where θ = √
μ(4λ + μ), c1 = (2λ + 3μ − θ)/2, c2 = (2λ + 3μ + θ)/2 (noting that

0 < c1 < c2), and

π2 = (λ/μ)2/2

1 + (λ/μ) + (λ/μ)2/2
,

which is the stationary probability of two busy servers when all join for all t. Clearly,
the right-hand side of (9) is increasing in t so that it is dominant to try with probability
1 until the first instant te for which

R(1 − P2(te)) = C. (10)

Note that P2(te) = 1 − R/C is neither a function of λ nor of μ. This, of course, is
not the case regarding te itself. For the case where t > te, the following differential
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equations hold:

P′
0(t) = −λe(t)P0(t) + μP1(t),

P′
1(t) = λe(t)P0(t) − (λe(t) + μ)P1(t) + 2μP2(t),

0 = P′
2(t) = λe(t)P1(t) − 2μP2(t) = λe(t)P1(t) − 2μ

(
1 − C

R

)
,

where λe(t) = λpe(t), which is the arrival rate under equilibrium. Note that the zero on
the left-hand side of the last equation is due to the equilibrium condition. The same can
be said on replacing P2(t) with 1 − C/R on the right-hand side there. One of the initial
conditions for the latter set is that P2(te) = 1 − C/R, whereas at least one of the two
initial values P0(te) or P1(te) needs to be derived from the solution of the former
set (the other one can be found by using the identity �2

i=0Pi(t) = 1). The resulting
differential equations are not linear, as, for example, both λe(t) (or pe(t)) and P1(t) are
to be determined and their product appears in the last equation. This implies that one
needs to consider numerical techniques in order to solve these differential equations.

Below we have our main findings regarding the M/M/2/2 model.

Theorem 2.2: Assuming pe, the equilibrium joining probability in the steady-state
case (see (8)) is strictly smaller than (1), then pe(t), t ≥ 0, the equilibrium joining
probability, possesses the following properties:

1. pe(t) = 1, for t ∈ [0, te] where te solves P2(t) = 1 − C/R for t.9

2. pe(t) has a discontinuity in t = te; that is, pe(te) = 1, but pe(te+) < 1.

3. pe(t) is not nonincreasing.

4. limt→∞ pe(t) = pe.

Proof: The first item was already established in our discussion preceding the theorem.
We will now prove the second item. As can be observed from (9), P2(t) is increasing
in t. Applying this fact into the last equation among the first set, we get that λP1(t) >

2μP2(t) for all t ≤ te. On the other hand, as P1(t) is continuous, the second set of
differential equations implies that for all t > te, λP1(t) > 2μP2(t) = 2μ(1 − C/R).
This concludes the proof of the second item. Once the first set of differential equations
is solved, the value for te can be determined. However, the solution cannot be presented
analytically since it is of the type

Ae xt + Be yt + C

for some A, B, x, and y. The second set of differential equations yields, after some
manipulations, the following differential equation:

p′
e(t) = p2

e

2
pe(t)[pe − pe(t)][μpe + (μ + λpe)pe(t)] . (11)

We note that at any point t for which pe(t) > (<)pe then p′
e(t) < (>)0 so that pe(·) is

strictly decreasing (increasing). Therefore, pe(·) never crosses pe (otherwise it would
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have to either increase or decrease on the “wrong” side of pe). Hence, pe(·) is monotone
and bounded and, thus, has a limit. Therefore, so does the right-hand side of (11)
and hence p′

e(t) as well. Since either pe(t) ≥ pe for all t > te or pe(t) ≤ pe for all
t > te and pe(·) is strictly increasing when pe(t) < pe, it follows that the limit of pe(t)
is not zero. Moreover, this also implies that

∫ ∞
t0

p′
e(t) dt converges, with p′

e(t) being
either nonnegative or nonpositive for all t > te. Thus, p′

e(t) converges to zero (as
otherwise this integral would diverge). Hence, the right-hand side of (11) converges
to zero as t → ∞. Since the limit of pe(t) is strictly positive, this implies that it is
necessarily pe. �

2.3. Generalizations for the M/M/N/N Case

In this subsection, we generalize some of the previous results to a loss system with
N ≥ 3 servers.

Theorem 2.3: Let πN (p) be the limit probability that all servers are busy, given that
all try with probability p and note that πN (p) is increasing with p. Assume that the
system is empty at time t = 0. Then, we have the following:

1. If πN (1) ≥ 1 − C/R, then trying is a dominant strategy for any t.

2. If πN (1) < 1 − C/R, then there exists te > 0 such that the following hold:
• pe(t) = 1 is a dominant strategy for all t < te,

• pe(t) < 1, t > te,

• pe < 1,
where pe is the root of RπN (p) = R − C.

Proof: The theorem is established by the following two lemmas.

Lemma 2.1: PN (t) is strictly increasing with t.

To prove this lemma, we need the following result.

Lemma 2.2: Let X(t) be the number of customers in the system at time t. For any t,
t ≥ 0, the random variables X(t)|X(0) = k are stochastically (strictly) increasing in
k. In particular, P[X(t) = N |X(0) = k] is strictly increasing in k.

Proof of Lemma 2.2: The proof follows a coupling argument. Let M1, . . . , MN be N
independent Poisson processes, each with rate μ (potential service completions for
each of the servers), and M0 be a Poisson process with rate λ (potential arrivals). Let
Xk(t) start with 0 ≤ k ≤ N customers in the system. If k ≥ 1 and the first event is due
to an arrival from one of M1, . . . , Mk , then it is an actual service, and at this epoch,
Xk is reduced by 1. If k ≤ N − 1 and the first event is due to an arrival of one of
Mk+1, . . . , MN , then Xk remains unchanged. If the first event is due to an arrival of M0,
then if k ≤ N − 1, it is an actual arrival and Xk increases by 1, and if k = N , then Xk
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remains unchanged. After the first event, one continues in the same manner but with
either k − 1, k, or k + 1, depending on which event occurred, and so on. Due to the
memoryless property, the resulting process is the number of customers in the system
in an M/M/N/N queue starting from k customers at time 0. One may perform this
for any initial state k and, in particular, for k + 1 whenever k ≤ N − 1. It is clear that
with this construction, there is some tk ≤ ∞ such that Xk+1(t) = Xk(t) + 1 for every
t < tk and Xk+1(t) = Xk(t) for t ≥ tk (if tk < ∞). In particular, tk is the first event
for which either Xk is increased by 1 but Xk+1 does not or that Xk+1 is decreased by
1 and Xk does not. Until this instant, both processes increase and decrease by 1 at
the same instants. This implies that Xk(t) ≤ Xk+1(t) for all t and since Xk(t) has the
conditional distribution of X(t)|X(0) = k, the lemma is proved upon noting that since
P[tk > t] > 0 for every 0 ≤ t < ∞ then the stochastic monotonicity is strict. �

Now, for all s < t,

P{X(t) = N |X(0) = 0} =
N∑

k=0

P{X(t − s) = k|X(0) = 0}P{X(s) = N |X(0) = k}

>

(
N∑

k=0

P{X(t − s) = k|X(0) = 0}
)

P{X(s) = N |X(0) = 0}

= P{X(s) = N |X(0) = 0},

which proves Lemma 2.1 �

Lemma 2.1 implies that if πN < 1 − C/R, then PN (t) < 1 − C/R for all t ≥ 0
and, hence, it is dominant to try for all t. Otherwise, there exist te < ∞ such that
PN (te) = 1 − C/R.

We look now at the forward equations that fit this model. The last equation is
P′

N (t) = λPN−1(t) − NμPN (t) and Lemma 2.1 implies that the left-hand side and,
hence, the right-hand side are strictly positive. As was done for the cases where N = 1
and N = 2, PN (t) = 1 − C/R for t > te. Hence, we obtain that 0 = λ(t)PN−1(t) −
Nμ(1 − C/R). Therefore, as anything else is continuous, λe(te+) < λ(te−) = λ. �

3. INDEX-DEPENDENT EQUILIBRIUM STRATEGIES

3.1. Equilibrium Strategy

Suppose now that the arrivals know their order of arrival; that is, the ith to arrive
customer knows that he is indeed the ith arrival. Again, it is assumed that at time 0, the
server is idle and this is part of the common knowledge.10 Based on this, each of the
arrivals has to decide if to try or not. Thus, a strategy here is to assign for any index
i, an action, to try or not to try (randomization allowed). Denote by p(i) the trying
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probability of the ith customer and by p(i)
e his equilibrium trying probability (which

below, in Theorem 3.1, will be shown to be unique).
Before stating our main result, we introduce the following notation. For an integer

m ≥ 1, let I(m) be the probability that an arrival finds an idle server given that the last
trial took place by the customer whose index is smaller by m than his. It is clear that
as long as the customer’s index is larger than or equal to m, the actual index of this
customer is immaterial. Likewise, it does not matter if the trial was successful or not.
Of course,

I(m) = 1 −
(

λ

λ + μ

)m

, (12)

which is monotone increasing with m. Moreover, limm→∞ I(m) = 1.

Theorem 3.1: If C < RI(1), then p(i)
e = 1 for all i ≥ 1. In fact, it is a dominant

strategy. Otherwise, let the integer me be defined by

me = arg min
m≥2

{C ≤ RI(m)}.11

Then p(i)
e , i ≥ 1, is uniquely given by p(i)

e = 1 if i = 1 (mod me) and p(i)
e = 0

otherwise.12

Proof: First, if C < RI(1), then even under the least favorable conditions [viz. when
all previous arrivals tried13 and hence the probability that the server is idle when one
arrives (regardless of whether the last trial was successful, as in both cases the server is
busy at this point in time)] is I(1) = μ/(λ + μ); hence, one should try, independently
of his index. Second, if C > R(1), customer 2 would better not to try (as the first one
of course tried) and I(1) is the probability that customer 2 finds an idle server. Given
that customer 2 did not try, customer 3 finds an idle server with probability I(2). In
the case where me > 2, he should not try. Otherwise, he should try. In case one tries,
all start from this index and so on as if it was the first arrival. In case he does not try,
the probability that customer 4 finds an idle server is I(3), and so on. �

An interesting question here is how pe and 1/me are related. In particular, does
there exist an order between the two values? The answer is that the order is parameter
dependent. Consider the following example. Let λ = μ = R = 1. Therefore, for all
0.5 < C ≤ 0.75, me = 2, whereas pe = (1 − C)/C. For all 1

2 < C < 2
3 , pe > 1

2 =
1/me, and for all 2

3 < C < 3
4 , pe < 1

2 = 1/me.

3.2. The Socially Optimal Strategy

Suppose that all costs and rewards are being paid from a single pocket, as in Section
2.1.2. Note that here we assume that the same information (or, in fact lack of) is
available to the customers; in particular, the states of the server are not revealed to
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them upon arrival.The objective here is to find a trial strategy p(i), i ≥ 1, that maximizes
the long-run social gain, say strategy p(i)

so , i ≥ 1, which maximizes

lim
N→∞

1

N

N∑
i=1

p(i)(RPi − C),

where Pi is the probability that the server is idle at the point of arrival of the ith cus-
tomer, given that all customers 1, . . . , i − 1 followed the considered strategy. Usually,
the socially optimal and the equilibrium strategy do not coincide. The reason behind
that, as was already pointed out in Section 2.1.2, is that selfish customers ignore,
in their decision-making process, the externalities that their acts inflict on others. In
this model, a trial by an individual increases the probability of a failed trial by future
customers. In other words, trying here comes with negative externalities. Thus, the
socially optimal strategy would prescribe trials less often that the equilibrium strategy
does. For more on this concept, see [1].

It is clear that here, too, there exists a socially optimal strategy that has the same
shape as the equilibrium strategy; that is, it is based on a cycle of some length, say
m∗ ≥ 1, such that customer i should try if and only if i = 1 (mod m∗).14

Theorem 3.2: The social optimal strategy is that customer i tries if and only if i = 1
(mod m∗), where

m∗ ∈ arg max
m≥1

RI(m) − C

m
. (13)

Remark: It is possible to argue that the objective function in (13) is unimodal15 and,
hence, m∗ is the index where the marginal increment of the objective becomes negative
for the first time. Additionally, m∗ ≥ me because me was determined by the first m
such RI(m) ≥ C and the determination of m∗ in (13) can in fact be stated as

m∗ ∈ arg max
m|RI(m)>C

RI(m) − C

m
. (14)

Remark: Since the set of strategies is discrete, m∗ is not necessarily unique.
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Notes

1. The value of zero is without loss of generality and it reflects the opportunities elsewhere.
2. In fact, it is a dominant strategy; that is, no matter what others do, under steady-state conditions, it

is best for an individual to try.
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3. In fact, any probability is a best response against pe.
4. Note that if p > pe (p < pe, resp.), one’s best response is not to try (to try, resp.), making this an avoid

the crowd case, as one’s optimal response (defined by the trying probability) is monotone nonincreasing
by the common trying probabilities of the others. Also, it is possible to see that pe is an evolutionarily
stable equilibrium. By that we mean that for any p 
= pe, which is a best response against pe, pe is a better
response for an individual against all playing p. For further details, see [1].

5. This does not make the traditional analysis incorrect. In particular, a strategy profile is defined
as a distribution over the trial probabilities that indicates the percentage of customers trying with the
corresponding probabilities. For any strategy profile used by all, there is a well-defined objective function for
an individual customer (based on the resulting steady-state probabilities), as exemplified in (1). Moreover,
for any such profile, there exists a uniquely defined return for any action one might take. Finally, one looks
for a strategy that is the best response against itself, which, in particular, implies that the strategy profile is
with the same prescription for all; that is, it is a symmetric strategy.

6. In fact, it is a dominant strategy.
7. It is interesting to note that this coupling approach also implies that if p1(t) ≤ p2(t) for all t ≥ 0,

then IP1 (t) ≥ IP2 (t) for all t ≥ 0, since {Un ≤ p1(τn)} ⊆ {Un ≤ p2(τn)}.
8. Note that �3

i=1Pi(t) = 1 or �3
i=1P′

i(t) = 0 can replace one of the above three differential equations.
9. See (9) for an expression for 1 − P2(t).
10. As it will be easy to see, we in fact also solve the case where the initial conditions are such that at

time 0, the server is busy. However, other initial conditions (i.e., conditions under which the server at time
0 is busy with a probability strictly between 0 and 1) are harder to analyze.

11. Alternatively, let

me =
⌈

log C − log R

log λ − log(μ − λ)

⌉
.

12. Note that this strategy defines a cycle of a length of me arrivals. In the first period, one tries,
whereas in the consecutive me − 1 periods, nobody tries. This is then repeated. Note also that the case
where me = 1 was considered separately just because the equilibrium profile is also a dominant profile.

13. What matters, of course, is only if the previous arrival tried.
14. Since the behavior during any finite time horizon is irrelevant from the social optimality, the

optimal strategy is not unique. Suppose that one decides on a cycle of length m, the expected net gain
during this cycle is RI(m) − C. The following result is now immediate.

15. It is easy to show that f (x) := (α − βx)/x is concave and has maximum under the constrains on
the model’s parameters.
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