
J. Fluid Mech. (2020), vol. 884, A4. c© Cambridge University Press 2019
doi:10.1017/jfm.2019.934

884 A4-1

Flow–acoustic resonance in a cavity covered by a
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To explain the large-scale hydrodynamic instability along a cavity-backed perforated
plate in a flow duct, a two-dimensional multimodal analysis of flow disturbances is
performed. First, a hole-by-hole description of the perforated plate shows a spatially
growing wave with a wavelength close to the plate length, but much larger than
the period of perforation. To better understand this problem and also cavity flow
oscillations, we then combine the travelling mode and global mode analyses of the
flow where the plate is represented by a homogeneous impedance. The spatially
growing wave is, from a homogeneous point of view, essentially a Kelvin–Helmholtz
instability wave, strongly distorted by evanescent acoustic waves near the cavity
downstream edge. The phase difference of the unstable hydrodynamic mode at the
two edges is found to be a bit larger than 2π, whereas the upstream-travelling
evanescent waves reduce the total phase change around the feedback loop, so that
the phase condition of the global mode can still be satisfied. This particular case
indicates the significant effects of those evanescent waves on both the amplitude and
phase of cavity flow disturbances. The criterion of the global instability is discussed:
the loop gain being larger or smaller than unity determines whether the global mode
is unstable or stable. A global mode in the stable regime, which has so far received
little attention, is explored by investigating the system response to external forcing. It
is shown that sound can be produced when a lightly damped flow–acoustic resonance
is excited by a vortical wave.
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1. Introduction

Liners are effective in mitigating noise emissions from flow ducts such as
aero-engine nacelles. A detailed description of sound absorption in a lined flow
duct (Tam et al. 2014; Zhang & Bodony 2016) and an accurate boundary condition
on the lined wall (Khamis & Brambley 2016, 2017; Aurégan 2018; Masson et al.
2018; Mathews et al. 2018) have been the subject of recent studies. On the other
hand, a liner with a grazing flow can also act as a sound amplifier (Brandes
& Ronneberger 1995; Ronneberger & Jüschke 2007; Aurégan & Leroux 2008;
Marx et al. 2010; Marx & Aurégan 2013; Dai & Aurégan 2018), or a ‘singer’
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(Tam et al. 2014). For those phenomena, a type of instability is usually involved in
the flow–acoustic coupling.

Shear flow passing over the holes of a perforated plate can give rise to small-scale
instability waves or vortices in the holes. A feedback loop consisting of a Kelvin–
Helmholtz (KH) instability wave and an upstream propagating pulse within each small
hole leads to a self-noise tone at a very high frequency (Tam et al. 2014). When
the flow instability in a hole couples with an acoustic resonant mode of a flow duct
or a cavity, strong pure-tone whistling occurs near the acoustic resonance frequency
(Rienstra & Hirschberg 2018). The coupling between the shear flow instability in an
opening and the acoustic resonance of a bounding volume also occurs and causes
self-sustained oscillations in a rectangular cavity (East 1966; Yamouni, Sipp & Jacquin
2013), a side-branch (Bruggeman et al. 1995; Ziada & Shine 1999), and a Helmholtz
resonator (Ma, Slaboch & Morris 2009; Dai, Jing & Sun 2015). In those cases, the
instability scales on the size of a hole or an opening.

Hydrodynamic instability with a wavelength much larger than the size of
perforations and the associated sound amplification near the resonance frequency of a
liner have been observed, where the liner has a low resistance and the flow velocity is
relatively high (Brandes & Ronneberger 1995; Ronneberger & Jüschke 2007; Aurégan
& Leroux 2008; Marx et al. 2010). This convective instability is due to the coupling
of a hydrodynamic mode in the shear flow with the cavity resonance, and such an
instability over the liner can still happen without the KH instability of the shear flow
over the small cavities or holes (Dai & Aurégan 2018). It has been found that this
kind of instability wave does not scale on any streamwise geometrical dimension
of the liner, that is, neither the size of the holes nor the total length of the lined
wall. Since this hydrodynamic instability occurs over a very narrow frequency range
and it is a necessary ingredient of global instability through a feedback mechanism
in the lined segment, self-sustained oscillations have not been observed in previous
experiments. Nevertheless, Pascal, Piot & Casalis (2017) and Coutant, Aurégan &
Pagneux (2019) showed the possibility of whistling as the length of a lined wall and
the flow Mach number were varied, with Zw= 10−2 and Zw=−i cot(ωb), respectively
(Zw is wall impedance, ω is frequency, b is the length of the mounted flush tubes
that make up a liner). The possible absolute instability in a lined flow duct has been
examined by Marx & Aurégan (2013). A second type of large-scale instability along
a perforated plate backed by a single cavity, where the instability wavelength is of the
order of the total plate length, has also been reported. It was observed in experiments
in water channels that self-sustained oscillations, characterized by large-scale vortical
structures along perforated or slotted plates with large open area ratios, would occur
without acoustic or gravity wave resonance (Celik & Rockwell 2002, 2004; Sever &
Rockwell 2005). The coupling of such long-wavelength instability with the acoustic
(Zoccola 2004) or gravity wave (Ekmekci & Rockwell 2007) resonance of a bounding
cavity was also found.

The large-scale hydrodynamic instability along a cavity-backed perforated plate is
considered in this article. The problem is sketched in figure 1(a), where the non-local
liner is attached to a duct containing a mean shear flow. The two-dimensional (2-D)
cavity is very small compared with the acoustic wavelength, which means that the
present flow oscillation is close to the purely hydrodynamic regime (Nakiboglu et al.
2011; Nakiboglu, Manders & Hirschberg 2012) and the acoustic resonant effect of
the cavity will be ruled out in the present study. The acoustic and hydrodynamic
disturbances about the steady mean flow are described by the linearized Euler
equations (LEEs) with a resistive layer at the entrance of each hole in the plate
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FIGURE 1. Sketches of (a) flow–acoustic coupling along a cavity-backed perforated plate
in a flow duct and (b) hole-by-hole calculation of wave scattering.

(Dai & Aurégan 2016, 2018). First, a complete description of the problem is presented,
where the linear flow–acoustic coupling near the perforated plate is modelled hole by
hole. The results of the hole-by-hole approach show that the present simple model
can describe the appearance of the large-scale instability along the plate. It is shown
that the growth of the large-scale spatially growing wave always happens in the small
holes, which means that the large-scale instability originates from the small-scale KH
instability of the shear flow over each of the holes.

However, it is difficult to explain the large-scale instability and, in particular, the
coincidence of its wavelength with the plate length, by only examining the instability
in the individual holes. We understand that this problem is essentially an oscillating
cavity flow modified by a perforated plate at the cavity opening. In addition, since
the wavelength of interest here is much larger than the size of the small holes, the
plate can be approximately represented by a homogeneous plate impedance. We then
perform a global mode analysis of a cavity flow (Yamouni, Sipp & Jacquin 2013)
modified by an impedance at the cavity opening. The global mode is constructed from
the already-solved travelling hydrodynamic and acoustic modes that lead to one of the
eigenvalues of the multimodal feedback-loop matrix in the cavity segment being unity
at a complex frequency.

For the following two reasons, we believe that the present global mode analysis
of a modified cavity flow would also lead to a better understanding of cavity flow
oscillations. First, since all information of the travelling waves is known, the global
mode analysis is combined with the travelling mode analysis and the underlying
flow physics of global modes is further studied, including the contributions of
hydrodynamic and acoustic disturbances, the phase relation and the condition of
global instability. Second, for flow–acoustic coupling, the importance of global modes
in the stable regime is highlighted, which has so far received little attention. The
linear system response to external forcing shows that, owing to the highly excited
hydrodynamic instability wave at a lightly damped flow–acoustic resonance, both
sound blocking and amplification could occur. Sound can also be produced when
such a resonance is excited by a vortical wave.

Computation models for modal scattering and global modes are described in § 2.
The results of the hole-by-hole approach are presented in § 3. The combined travelling
mode and global mode analyses of the impedance-modified cavity flow are detailed in
§ 4, where the underlying mechanism of global modes is discussed in § 4.1 while § 4.2
focuses on the response of a stable mode to external forcing.
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2. Numerical model
2.1. Hole-by-hole modal scattering calculation

Calculation of the modal scattering of a non-local liner attached to a flow duct
containing a mean shear flow is sketched in figure 1(b). To solve this problem of
linear propagation in a shear flow, the multimodal method is used (Kooijman et al.
2008; Kooijman, Hirschberg & Aurégan 2010), where the disturbances in the ducts
are expressed as a linear superposition of acoustic and hydrodynamic transverse
modes. For details of the modal scattering calculation in a duct–cavity system with a
shear flow, the reader is also referred to Dai & Aurégan (2018).

The calculation model starts from the LEEs:(
∂

∂t
+M0f

∂

∂x

)
u+M0

df
dy
v =−

∂p
∂x
, (2.1)(

∂

∂t
+M0f

∂

∂x

)
v =−

∂p
∂y
, (2.2)(

∂

∂t
+M0f

∂

∂x

)
p=−

(
∂u
∂x
+
∂v

∂y

)
, (2.3)

where u and v are the velocity disturbance in the x- and y-direction, respectively,
p is the pressure disturbance, M0 is the average Mach number in the duct with
the profile prescribed by the function f (y) = M(y)/M0, and all variables have been
appropriately normalized by the sound speed c∗0, density ρ∗0 and duct height H∗. The
stars in this article denote dimensional quantities, whereas quantities without star are
dimensionless.

The fluctuations are sought in the form

p= P(y) exp(−ikx) exp(iωt),
v = V(y) exp(−ikx) exp(iωt),

}
(2.4)

where i2
=−1, k is the wavenumber, and ω is the angular frequency. Inserting (2.4)

into the LEEs leads to

i(ω−M0fk)V =−
dP
dy
, (2.5)

(1−M2
0 f 2)k2P+ 2ωM0fkP−ω2P−

d2P
dy2
=−2iM0

df
dy

kV. (2.6)

As sketched in figure 1(b), the configuration is divided into zones of three types
denoted by I, II and III, which are filled with different background colours. The
ordinary differential equations (ODEs) (2.5) and (2.6) are discretized in the y-direction
by taking N1 equally spaced points in zone I, N2 equally spaced points in zone II
and N3 equally spaced points in zone III. The spacing between interior points in all
zones is 1h=H/N1= (H+ T +D)/N2=D/N3, and the first and last points are taken
1h/2 from the solid walls. The second-order centred finite difference method is used
to solve the problem. The governing equations (2.5) and (2.6), together with the wall
boundary conditions, determine the following generalized eigenvalue problem in each
of the zones:

k

I −M2
0f 2 2iM0f a 0

0 iM0f 0
0 0 I

Q
V
P

=
−2ωM0f 0 ω2I + D2

0 iωI D1

I 0 0

Q
V
P

 , (2.7)
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Flow–acoustic resonance in a cavity 884 A4-5

where Q= kP is assumed, I is the identity matrix, f , f 2 and f a are diagonal matrices
with on the diagonal the values of f , f 2 and df /dy at the discrete points in the ducts.
We use Q, V and P to denotes the column vectors giving the value of Q(y), V(y)
and P(y), respectively, at the discrete points. Here D1 and D2 are matrices for the
first- and second-order differential operators with respect to y. The boundary condition
dp/dy= 0 on the solid walls is taken into account in the differential operator matrices
by introducing ghost points outside the walls. Solving the eigenvalue problem (2.7)
(using the eig function of MATLAB) gives the eigenmodes and the corresponding
wavenumbers in each zone. In zone I, 3N1 modes are found, including N1 acoustic
modes propagating or decaying in the ±x directions and N1 hydrodynamic modes
travelling in the +x direction with the mean flow. In zone II, the mean flow velocity
and its derivative are zero at discrete points where y> 1. Thus, there are N2 acoustic
modes propagating or decaying in the ±x directions, and N1 hydrodynamic modes
travelling in the +x direction in zone II. Zone III does not have mean flow, so only
2N3 acoustic modes are solved, including N3 acoustic modes propagating or decaying
in the ±x directions.

A resistance R denoted by the horizontal dashed lines in figure 1(b) is introduced
at the entrance of each hole in the plate to mimic the resistance without flow due to
thermo-viscous effects. It leads to a pressure jump at y= 1 in zone II,

1py=1 = R vy=1. (2.8)

The nth eigenvectors of (2.7) in the zone j is t(Qj
n, Vj

n, Pj
n), where Qj

n, Vj
n and Pj

n
are the mode profiles of q (note q= i∂p/∂x), v and p, respectively. In each zone, the
column vectors giving the values of Q(y), P(y) and V(y), respectively, are obtained
by superposing the modes. Take P(y) for example:

Pj(x)=
N∑

n=1

Cj
nPj

n exp(−ikj
nx), (2.9)

where Cj
n is the coefficient of the nth mode in zone j and N = 3N1 in zone I, N =

2N2 +N1 zone II and N = 2N3 in zone III.
The transverse modes in each zone are then matched using the continuity of

pressure p, velocity v and ∂p/∂x at the interfaces between zones, and ∂p/∂x= 0 on
the vertical walls inside the small holes and the backing cavity. The continuity and
wall conditions can be put in the form of a large matrix that links incoming waves
to outgoing waves and to all the internal variables in the non-local liner. From this
large matrix, the scattering matrix of the liner is obtained:(

C+3
C−1

)
= S

(
C+1
C−3

)
, (2.10)

where vectors C±1 (respectively C±3 ) contain the transverse mode coefficients for x=0
(respectively x = L − Ls) for waves travelling downstream (respectively for waves
travelling upstream) and

S =

(
T+ R−

R+ T−

)
, (2.11)

where T+ (2N1 × 2N1), R+ (N1 × 2N1), T− (N1 × N1) and R− (2N1 × N1) are
transmission and reflection matrices with and against the mean flow.
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FIGURE 2. Sketches of calculations of (a) modal scattering and (b) global modes, based
on the plate impedance Zp denoted by the red dashed lines.

2.2. Modal scattering calculation based on the plate impedance
In a homogenized approach, the perforated plate is described by its acoustic
impedance Zp denoted by the red dashed lines in figure 2, which leads to a pressure
jump at y= 1 for 0< x< L. Since the mean flow velocity is zero at y= 1, both the
displacement and the velocity in the transverse direction are continuous across y= 1.
The impedance condition in zone II is formulated as

1py=1 = Zp vy=1. (2.12)

Transverse modes in zone I of figure 2 are the same as those in zone I of
figure 1(b). In zone II of figure 2, Nt fewer acoustic modes in the ±x directions are
solved compared with zone II of figure 1(b), since the points in the holes of the
perforated plate are removed here. Thus, there are N2p (N2p=N2−Nt) acoustic modes
propagating or decaying both in the +x direction and in the −x direction, and N1
hydrodynamic modes travelling in the +x direction in zone II.

The modal matching at the interfaces between the zones gives the scattering
relation, (

C+z3
C−z1

)
= Sz

(
C+z1
C−z3

)
, (2.13)

where vectors C+z1 and C+z3 (respectively C−z1 and C−z3) contain the transverse
mode coefficients in the upstream and the downstream ducts for waves travelling
downstream (respectively for waves travelling upstream), and the scattering matrix as
defined in (2.11),

Sz =

(
T+z R−z
R+z T−z

)
. (2.14)

2.3. Calculation of the global modes of the flow system
The global modes in such a confined flow system arise from wave reflection at the two
ends of the cavity segment, as sketched in figure 2(b). Each global mode is assembled
by the travelling modes that replicate themselves after a feedback loop in the cavity
segment (Landau & Lifshitz 1981). Such a criterion can also be found in the previous
studies of global modes or resonances in flow (Gallaire & Chomaz 2004; Alvarez,
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Flow–acoustic resonance in a cavity 884 A4-7

Kerschen & Tumin 2004; Tuerke et al. 2015; Jordan et al. 2018). For the present
problem, we define a multimodal feedback-loop matrix,

Mfl = RuPuRdPd, (2.15)

where Ru ((N2p +N1)×N2p) and Rd (N2p × (N2p +N1)) are reflection matrices at the
upstream and downstream ends of the cavity segment, respectively, Pu (a N2p × N2p
diagonal matrix with on the diagonal the values of exp(iknL), where kn is the
wavenumber of the nth upstream-travelling mode) and Pd (a (N2p + N1)× (N2p + N1)
diagonal matrix with on the diagonal the values of exp(−iknL), where kn is the
wavenumber of the nth downstream-travelling mode) are the propagation matrices
accounting for wave propagation inside the cavity segment in the ∓x directions,
respectively. The upstream-travelling waves are only acoustic waves, whereas the
downstream-travelling waves include acoustic and hydrodynamic waves. The criterion
means that one of the eigenvalues of Mfl is unity at the complex frequency of a
global mode,

MflCfl = kflCfl, with kfl = 1, (2.16)

where kfl and Cfl are the unity eigenvalue and the corresponding eigenvector. Note that
in some situations such a loop closure principle can be proved to be equivalent to the
global eigencondition (Gallaire & Chomaz 2004), which is det(S−1

z )= 0 in this case.
In the global mode calculation, a frequency ω0 is given to initiate the iteration

(using the fminsearch function of MATLAB) for the optimized frequency in the
complex plane ωG, at which one of the eigenvalues of Mfl equals unity. The initial
frequency ω0 is a real value chosen from the transmission and reflection coefficients
for a plane wave incidence, which show a peak or a minimum near a global mode.
The iteration stops when the error between the target eigenvalue and unity is less
than 10−12, which leads to a converged ωG. Re(ωG) is the frequency of the global
mode, whereas the sign of Im(ωG) denotes the global mode being temporally stable
or unstable. The corresponding eigenvector contains the coefficients of the transverse
modes that lead to the field distribution of the global mode, which is also an
eigenfunction of the global eigenvalue problem, as solved by Yamouni, Sipp &
Jacquin (2013) in an open-cavity case. Note that for global and travelling modes
analyses, Pascal, Piot & Casalis (2017) used a biorthogonal technique to decompose
the global modes into local eigenmodes in a flow duct with a finite-length lined wall.

It is also noted that the term global mode is used in the sense that ‘since this
instability is due to the properties of the system as a whole, it is called global
instability’ (Landau & Lifshitz 1981). The word global is also often used to
distinguish the analysis where both the base flow and the global eigenfunctions
explicitly depend on the x, the y, and even the z coordinates, from the classic local
linear stability theory where the base flow is only dependant on the y coordinate
(Sipp et al. 2010; Theofilis 2011).

3. Large-scale hydrodynamic instability along a perforated plate
Calculations in this section are carried out with the model presented in § 2.1. The

geometrical parameters are H∗ = 15 mm, T∗ = 1 mm, D∗ = 44 mm, L∗o = 1 mm and
L∗s = 0.2 mm. The perforated plate contains 10 holes, thus the length of the plate
and the backing cavity is L∗ = 12 mm. The previous experiment has shown that
the boundary layer thickness increases along a cavity-backed perforated plate (Celik
& Rockwell 2002). For a liner with porous material, a slight flow into the porous
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FIGURE 3. Iso-colour plots of (a) Re(p) and (b) Re(v) for a plane wave incidence at
the sound amplification frequency ω= 0.2329 (850 Hz) with an amplitude |P(y)| = 10−3.
(c,d) Amplitude and phase of v along the perforated plate at y positions (red thin lines:
slightly below the plate; black segmented lines: in the middle of the holes; blue thick
lines: slightly above the plate) denoted by the dashed lines in (b). Note that the fields
are plotted for part of the backing cavity, the same as in figures 4, 5, and 13. It should
also be noted that the preliminary result in this figure has been presented at the 25th
AIAA/CEAS Aeroacoustics Conference (Dai & Aurégan 2019).

material and a flow ejection near the downstream end of the liner have been found
(Alomar & Aurégan 2017). However, a parallel and streamwise-homogeneous mean
flow is assumed in the present study to render a neat separation of hydrodynamic
and acoustic disturbances. The Mach number averaged over the cross-section of the
flow duct is M0 = 0.1 and the velocity profile is prescribed by a simple polynomial
law with a unity average value, f = (1− ym)(m+ 1)/m, where the parameter m= 10
is used. The number of the discrete points in the flow duct is 300. At the entrance
of each hole a resistive sheet with R = 0.0175 has been added, which accounts for
the thermo-viscous effects. This value has been empirically chosen so that, in § 4,
both unstable and stable global modes can be obtained by slightly adjusting R. Such
a resistance can also mitigate the convergence problem of the calculations, which is
caused by the discontinuity of df /dy at y= 1 (Dai & Aurégan 2016, 2018).

It has been shown that sound can be amplified by this non-local liner at certain
frequencies (Dai & Aurégan 2019). The amplification frequencies are much lower
than the acoustic resonance frequencies of the cavity (the lowest acoustic resonance
frequency is around ω = 0.5), which means the present problem is different from
that in Dai & Aurégan (2018) and the acoustic resonance of the cavity is not the
mechanism here.

The fields of the pressure p and transverse velocity v are shown in figure 3(a,b)
at the peak sound amplification frequency. A spatially growing wave appears along
the perforated plate. The amplitude and phase of v approximately remain the same
across the plate, as shown in figure 3(c,d), which is in agreement with the previous
experiment where the phase variations on both sides of the perforated plate have
been measured (Celik & Rockwell 2004). It can also be found in figure 3(c) that the
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Flow–acoustic resonance in a cavity 884 A4-9

growth always happens in the small holes, suggesting that the large-scale spatially
growing wave is linked to the small-scale KH instability of the shear flow over the
holes. However, the hydrodynamic wavelength of interest is close to the length of
the perforated plate L (Sever & Rockwell 2005) rather than the holes Lo, as shown
by the fields and also by the phase in figure 3(d). This means that the backing
cavity plays an important role in this phenomenon and it is difficult to explain the
large-scale hydrodynamic wave and the related sound amplification by only examining
the instability in the individual holes. Moreover, the long wavelength, compared with
the period of perforation (for the present case λhy/(Lo + Ls) ≈ 10), suggests that a
homogenized description of the perforated plate can be used.

4. Global mode analysis
We perform a global mode analysis of the flow in the cavity segment and

consider an analogy with flow oscillations in an open cavity. The goals are two-fold:
(i) to explain the large-scale instability along the cavity-backed perforated plate;
(ii) to better understand cavity flow oscillations. Since the purpose is not to
describe every detail of the flow and acoustics, the classical and simple plate
impedance model of Guess (1975) is used to describe the perforated plate with
flow, Zp = (R + Rf )/σ + iω(T + δ)/σ , where for a low sound pressure level
Rf = 0.3(1 − σ 2)M0, δ = 0.85Lo(1 − 0.7

√
σ)(1 + 305M3

0)
−1 and σ is the open

area ratio of the perforated plate σ = Lo/(Lo + Ls). However, it should be noted that
such an impedance model can lead to inaccuracy in describing wave propagation
in a flow duct, especially when the flow velocity is high (Dai & Aurégan 2016;
Aurégan 2018). For this reason, only a qualitative comparison can be made between
the discrete and homogenized models, and a quantitative agreement requires a more
precise homogenization of a perforated plate with flow. To keep the gap small,
a rather low flow speed is considered in this article (M0 = 0.1). The flow and
geometrical parameters are the same as § 3. The parameter R, which represents the
system damping and in practice can be changed by covering the perforated plate with
additional wiremesh sheets, is varied in the global mode analysis.

4.1. Unstable and stable global modes
With an initial frequency, ω0, the optimization procedure described in § 2.3 leads to
the complex frequency of a global mode of the flow system, ωG. The corresponding
eigenvector of Mfl gives the coefficients of the transverse modes that assemble the
global mode. Iso-colour plots of the real part of p and v of the global mode are
presented in figure 4. As the damping parameter R is varied, this mode can be either
unstable as shown in figure 4(a,b) or stable as shown in figure 4(c,d). The spatial
distributions of the global mode at the two states are visually identical, so one cannot
distinguish unstable from stable regimes by seeing the disturbance fields.

In figure 5, the acoustic and hydrodynamic fields are separated. It is shown that
the spatially growing wave observed in the total field is essentially the unstable
hydrodynamic wave of the shear flow, although strong distortion occurs near the
cavity downstream edge caused by evanescent acoustic waves.

To more clearly see the structure of the global mode, the wavenumbers and
coefficients of the transverse modes are presented in figure 6. Note that to avoid the
complexity caused by a complex frequency, the neutral state shown in figure 5 is
used in the discussion in figures 6 and 7. It is shown in figure 6(a) that the transverse
modes in the cavity segment include acoustic modes propagating or decaying in the
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FIGURE 6. Wavenumbers (a) and mode coefficients (b,c) of the normalized transverse
modes in the cavity segment that assemble the neutral global mode in figure 5. Note that
in (a), some neutral modes are slightly out of the real axis. This numerical issue can be
mitigated by increasing the number of discrete points.

±x directions and hydrodynamic modes propagating, growing or decaying with the
mean shear flow. The neutral hydrodynamic modes, resulting from the singularities
of the Pridmore-Brown equation (Pridmore-Brown 1958), describe the transport of
vorticity in a shear flow and form a continuous spectrum on the real axis (Brambley
et al. 2012). The unstable hydrodynamic mode is different from the unstable surface
mode over a liner (Marx & Aurégan 2013). The unstable surface mode is due to the
coupling of a shear flow with a resonant lined wall and it only occurs over a very
narrow frequency range near the resonance frequency of the liner (Aurégan & Leroux
2008; Marx et al. 2010). The unstable hydrodynamic mode here merely arises from
shear in the partly non-uniform mean flow (Kooijman, Hirschberg & Aurégan 2010;
Dai & Aurégan 2018). It happens over a wide frequency range, and the variation of
its wavenumber with frequency is similar to that for a hyperbolic-tangent shear flow
(Michalke 1965; Schmid & Henningson 2000), as shown in figures 10(b) and 11(b).
Therefore, it is called a KH-type instability, even though the flow is not the same as
those for the well-known classical KH instability, that is, an infinitely thin shear layer
or a hyperbolic-tangent shear flow. We also note that the previous experiment has
suggested the analogous features between the instability along a slotted plate backed
by a cavity and the classical KH instability over a cavity in the absence of the plate
(Sever & Rockwell 2005). This unstable mode can be differentiated from the acoustic
modes decaying in the −x direction by the Briggs–Bers causality criterion (Briggs
1964; Bers 1983). Usually, the convectively unstable mode is accompanied with its
complex conjugated counterpart, which decays in propagation. In the present case,
the wavenumbers of the stable and unstable hydrodynamic modes are not complex
conjugates owing to the plate impedance Zp. The stable hydrodynamic mode can be
distinguished from the acoustic modes decaying in the +x direction by tracing it as
Zp is varied from zero to the value used in the calculation of figure 6(a), or by seeing
its modal profile of the transverse velocity which has a local peak around y= 1.

The modal profiles of the transverse modes have been normalized so that
|P(y)|max = 1 before calculating the modal coefficients at the two ends of the cavity
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global mode in figure 5. Symbols: at the point just below y= 1; lines: at the point just
above y = 1. Note that for each colour the symbols and the line overlap, since v is
continuous across y= 1 and 1h is small.

segment, as shown in figure 6(b,c). We can see that for the downstream-travelling
modes, the amplitudes of the unstable and stable hydrodynamic modes and some
less-attenuated acoustic modes are comparable at x = 0 (generated by the scattering
of the upstream-travelling acoustic modes). As they reach the downstream end, x= L,
the unstable hydrodynamic mode dominates the others owing to its exponential growth
in propagation. It scatters at the cavity downstream end, and acoustic modes travelling
in the −x direction are generated, of which some evanescent acoustic modes have
amplitudes much higher than that of the least-attenuated acoustic mode. Although
the least-attenuated acoustic mode has the highest amplitude at the destination x= 0,
meaning that it may be the most important upstream-travelling mode in closing the
feedback loop, we will see that those high-amplitude evanescent modes generated
at the downstream end are significant in affecting both the amplitude and phase of
cavity flow disturbances.

As shown in figure 5, the strongest hydrodynamic and acoustic disturbances are
both concentrated in the opening area of the cavity, that is, positions around y = 1.
Thus, another way to analyse the global mode is to see the change of the disturbances
along this line (y = 1, 0 6 x 6 L). The amplitude and phase of v along the opening
are plotted in figure 7(a,b), which denote the total effect of each group of transverse
modes. For the hydrodynamic disturbances, the exponential growth in amplitude and
the constant slope of the phase, except near the upstream end owing to the decaying
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Flow–acoustic resonance in a cavity 884 A4-13

hydrodynamic mode, reveal the dominant effect of the unstable hydrodynamic mode.
For the acoustics, the high amplitude and the steeper phase variation near the
downstream end indicate the considerable effect of the upstream-travelling evanescent
modes generated at the downstream edge. The above observations of the disturbances
along the cavity opening associated with different types of transverse modes agree
with the analysis of mode coefficients in figure 6.

It is also noted in figure 7(a) that, owing to evanescent modes, the amplitude of the
hydrodynamic part of v is significantly higher than the total v near the downstream
end of the cavity, which is qualitatively similar to the previous results of cavity
flow oscillation where the fluctuating velocity v associated with the KH instability
was compared with the total v calculated by the direct numerical simulation (DNS)
(Rowley, Colonius & Basu 2002).

Before examining the phase relation of the flow disturbances, we briefly review
the mechanisms of oscillating cavity flows. Three physical mechanisms for the
self-sustained oscillations in compressible cavity flows have been revealed. They are
the acoustic feedback or the so-called Rossiter mode (Rossiter 1964), the acoustic
resonance in cavities (East 1966; Tam 1976; Koch 2005) and the wake mode for
long cavities (Rowley, Colonius & Basu 2002). The interaction between the Rossiter
mode and the acoustic resonance mechanism has been recently studied by Yamouni,
Sipp & Jacquin (2013). Since the present global mode frequency is much lower than
the acoustic resonance frequencies of the cavity, the only relevant mechanism is the
acoustic feedback: the spatially growing KH instability wave scatters into acoustic
waves at the downstream edge, and the acoustic waves propagate upstream and excite
the new instability wave. The idea of acoustic feedback can be found as early as
of Lord Rayleigh (see Powell 1995), and has been successfully used to understand
edgetones (Powell 1961). It was applied by Rossiter to explain the self-sustained
cavity flow oscillations, and based on experimental data, a semi-empirical formula for
oscillation frequencies was proposed, which is still widely used today. The Rossiter
condition states that the travelling time of the instability wave and the feedback
acoustic waves approximately equals an integral multiple of the time period of
oscillation: L∗/U∗c + L∗/c∗0 + γ

∗/f ∗o = jR/f ∗o , where f ∗o is the oscillation frequency, U∗c
is the convection velocity of the instability wave, the integer jR is the index of the
Rossiter mode and γ ∗ is supposed to measure the time delay at the edges. However,
the a posteriori Rossiter formula does not always give good predictions of oscillation
frequencies when flow velocity or cavity geometry changes. To obtain a best fit to
measured data, numerous emendations have been proposed (see Gloerfelt (2009) for
a comprehensive dissection of those amended models).

Figure 7(c,d) presents v along the cavity opening, where the transverse modes
are grouped into upstream- and downstream-travelling modes. The general growth
and decay in amplitudes in the respective ±x directions are shown, and the growth
approximately equals the decay. This is expected because the criterion in the present
calculation of the global mode, that is, the associated eigenvalue of Mfl equals unity,
implies that the perturbations associated with the transverse modes travelling in the
+x (or −x) direction, after a feedback loop, still have the same amplitude. The
criterion also requires that, after a feedback loop, the total phase change should be
an integral multiple of 2π. Figure 7(d) shows that the total phase change between
the downstream- and upstream-propagating disturbances at x= 0 is less than but close
to 2π, the difference can be explained by the phase lag in the scattering processes
at the two ends. However, it is surprising to find that the phase change of the
downstream-propagating disturbances at the two edges of the cavity is larger than 2π.
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The downstream-propagating disturbances are mainly associated with the shear flow
instability wave, and figure 7(c) does show that the phase difference of the unstable
hydrodynamic mode at the two edges is larger than 2π, that is, the hydrodynamic
wavelength is smaller than the cavity length λhy < L. The convection velocity and
wavelength of the unstable hydrodynamic wave can also be quantitatively calculated
from its wavenumber shown in figure 6(a), k = 8.585 + 5.246i: Mc/M0 = 0.267
and λhy/L = 0.915. This observation contrasts with the Rossiter condition that λhy
is close to but slightly larger than L for the present case. Nevertheless, we note
in figure 7(d) that the phase of the upstream-travelling disturbances first has an
apparent increase in the range 0.4< x< 0.8 owing to the evanescent acoustic modes
and then shows a slight decrease related to the least-attenuated acoustic modes. In
this way, the upstream-travelling evanescent waves reduce the total phase change
around the feedback loop, so that the phase condition of the global mode can still be
satisfied. It has been found that, compared with the Rossiter formula, incorporating a
more complete description of acoustic waves inside the cavity (Tam & Block 1978;
Yamouni, Sipp & Jacquin 2013) or taking into account the secondary feedback loops
(Alvarez, Kerschen & Tumin 2004) leads to a more accurate prediction of oscillation
frequencies in certain situations, whereas the present case particularly emphasizes the
importance of those high-amplitude evanescent waves in the phase condition. The
effect of evanescent waves might be another possible reason for that a universal
empirical formula of oscillation frequencies has been found so difficult to obtain.

From figure 4, we know that as the system damping is varied, the same global mode
can be either stable or unstable. Thus, seeing the change of Mfl with the parameter
R may provide further insights into the global instability of the flow system. As R is
increased, Im(ωG) indicates the transition of the global mode from unstable to stable
regimes, as shown in figure 8(a). Note that Re(ωG) also slightly changes with R. In
figure 8(b), the eigenvalues of Mfl are shown where R is changing but the frequency
remains on the real axis, that is, the corresponding Re(ωG) is used as the frequency
input in the calculations. In each case, the eigenvalues of Mfl distribute in the
following manner: one is located around 1, one around 0.15–0.11i, and all the others
are nearly 0 because Mfl is close to singular. It is observed that as R deviates from
the value for the temporally neutral state whereas the frequency remains on the real
axis, the eigenvalue in the shaded area deviates from unity. We adopt the loop gain
concept (Powell 1961; Rowley et al. 2006; Illingworth, Morgans & Rowley 2012)
and define the amplitude of this eigenvalue as the feedback-loop gain. It is shown in
figure 8(c) that such a gain, being larger or smaller than 1, is the criterion for the
global mode being unstable or stable. Figure 8(d) shows that increasing the parameter
R leads to a stabilization effect, that is, a reduction in the spatial growth rate of the
unstable hydrodynamic mode. This might explain, from a homogeneous point of
view, that in the previous investigations where the self-sustained oscillations occurred
the cavity-backed perforated or slotted plates all had large open area ratios (around
65 %–90 %) (Celik & Rockwell 2002, 2004; Zoccola 2004; Sever & Rockwell 2005;
Ekmekci & Rockwell 2007). Reducing the open area ratio leads to an increase of the
equivalent resistance of the perforated plate, and consequently stabilizes the flow. In
some previous cases, the first global mode (λhy ≈ L) has been found stable whereas
some high-order global modes ( jλhy≈ L, where the mode index j= 2, 3, . . . , jmax) are
unstable (Nakiboglu, Manders & Hirschberg 2012; Yamouni, Sipp & Jacquin 2013).
These and the present results indicate that the convective hydrodynamic instability
is a necessary but not a sufficient condition for such global instability, for that is
decided by whether the loop gain is larger than unity. Note that in other flows such
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of the transverse modes in the cavity segment, respectively, as R is increased whereas the
corresponding Re(ωG) is used as the frequency input in the calculations.

as wakes and hot jets (Martini, Cavalieri & Jordan 2019), the mechanism of global
instability can be provided by absolute instability (Huerre & Monkewitz 1985).

We end this subsection with a note on the difference between acoustic resonance
and flow–acoustic resonance. Without flow, trapped modes in acoustics with real
resonance frequencies that decay towards infinity and quasi-trapped modes with
complex resonance frequencies owing to energy leak or damping, which makes the
quasi-trapped modes temporally decaying, have been studied by Evans, Levitin &
Vassiliev (1994), Koch (2005), Linton & McIver (2007), Duan et al. (2007), Hein,
Koch & Nannen (2010), Pagneux (2013), Lyapina et al. (2015), Xiong, Bi & Aurégan
(2016) and others. The flow–acoustic resonance (or global mode) in the present study
has both acoustic and hydrodynamic contributions. Determined by the balance of the
energy transferred from the mean flow to the perturbations and the energy damped
and radiated, the complex resonance frequency can have a negative, zero or positive
imaginary part denoting a temporally unstable, neutral or stable mode, respectively.

4.2. Linear system response to external forcing
The unstable global modes and the consequent self-sustained oscillations of cavity
flows have been the focus of much research, as reviewed by Rockwell & Naudascher
(1978), Rowley & Williams (2006) and Gloerfelt (2009), whereas the temporally
decaying flow–acoustic resonances have received little attention. In this subsection,
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FIGURE 9. Reflection and transmission coefficients of a plane acoustic wave incident on
the cavity segment from the upstream duct, calculated from (2.14). The six thick lines
denote R decreasing from 0.019 to 0.018 with decrements of 0.0002, the five thin lines
denotes R from 0.0179 to 0.0175 with decrements of 0.0001. In the enlarged view of the
sound blocking, four more lines are inserted between the lines of R= 0.018 and 0.0179.
Note that the global mode is stable for all these values of R.

we explore the stable global mode by seeing the system response to external forcing,
such as acoustic and vortical waves. Small perturbations in an unstable system
grow in time until nonlinear saturation, which limits the amplitudes of self-sustained
oscillations. For a stable system, however, it is believed that a linear model can
predict the system response if the forcing amplitude is sufficiently small (Rowley
et al. 2006; Illingworth, Morgans & Rowley 2012).

Reflection and transmission coefficients of a plane wave incident on the cavity
segment from the upstream duct are presented in figure 9. The parameter R is
varied over a range so that the complex frequency of the stable global mode, ωG,
progressively approaches the real axis but does not reach it (Im(ωG) > 0). As Im(ωG)

reduces, resulting from the decreasing R, it is shown that at first the global mode
behaves in the manner of quasi-trapped modes in acoustics without flow: |R+|
increases and approaches unity, whereas |T+| decreases and approaches zero (Xiong,
Bi & Aurégan 2016). The enlarged view shows that |T+| has a minimum around
0.014, and this value can be further reduced by adjusting R. As Im(ωG) continues to
reduce, however, |R+| can be larger than 1, which is the limit in no-flow cases, and
sound blocking turns into sound amplification. It should be noted that when Im(ωG)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

93
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.934


Flow–acoustic resonance in a cavity 884 A4-17

(a) (b)

(c) (d)

0
0

0
0

0.5

1.0

1.5

0.26
0.24

0.22
0.20

0.26
0.24 0.22

0.20

N2p
N2p + N1

N2p
N2p + N1

0.26
0.24

0.22
0.20

N2p

N2p + N1

4

8

12
Acoustic

Acoustic

Unstable
hydrodynamic

Hydro-
dynamic

Unstable
hydrodynamic

Sound
amplification

150

100
|Pd| 50

0
0

10-1

100

101

nth mode ø

ø

ø

ø

nth mode

nth mode

|T1|

|T2| |T+|

0.220 0.225 0.230 0.235 0.240
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In the calculation, R = 0.0175, which leads to ωG = 2.288 × 10−1

+ 1.1038 × 10−4i
(835.12 + 0.40287i Hz). (a) Transmission coefficients at x = 0, (b) propagation of the
downstream-travelling modes in the cavity segment, (c) transmission coefficients at x= L.
In (a–c), the downstream-travelling modes in the cavity segment are sorted as follows:
the first to the N2pth modes are acoustic modes sorted according to their wavenumbers;
the N2p + 1th to the N2p + N1th modes are hydrodynamic modes, of which the N2p + 1th
mode is unstable and the N2p + 2th mode is stable. (d) Transmission coefficients: squares
denote the result from (2.14), crosses denote the result from (4.1), the triangles and
inverted triangles represent hydrodynamic and acoustic contributions in (4.1), respectively.
The vertical dashed line in (d) denotes the real part of ωG.

is very close to zero, the shear layer thickening owing to high-amplitude oscillations
might lead to a saturation effect (Boujo, Bauerheim & Noiray 2018).

The transmission process between the plane waves in the upstream and downstream
ducts can be divided into three steps. First, the plane wave from the upstream duct
excites the downstream-travelling modes in the cavity segment, denoted by a row
vector T1 with N2p + N1 elements being the coefficients of the excited modes at the
upstream end. The second step is the propagation of those modes from the upstream
to the downstream ends of the cavity segment, denoted by a (N2p +N1)× (N2p +N1)

diagonal matrix Pd with on the diagonal the values of exp(−iknL), where kn is the
wavenumber of the nth downstream-travelling mode. The third step accounts for the
scattering at the downstream end, denoted by a column vector T2 with N2p + N1

elements being the transmission coefficients of the downstream-travelling modes in
the cavity segment to the plane wave in the downstream duct. T2 can be obtained
from matching the modes at the downstream end of the cavity segment, since the
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FIGURE 11. Decomposition of the plane-wave transmission from the upstream to the
downstream ducts. All parameters for calculation are the same as in figure 11, except
R= 0.0179, which leads to ωG = 2.2808× 10−1

+ 9.6396× 10−4i (832.49+ 3.5184i Hz).
The real part of ωG is denoted by the vertical dashed line in (d). For the descriptions of
the subfigures, see figure 10.

downstream-travelling modes in the cavity segment are the only incoming waves to
this interface. T1 should be extracted from the scattering matrix of the whole cavity
segment. Then, the plane-wave transmission from the upstream to the downstream
ducts is formulated as,

T+ = T1PdT2. (4.1)

Comparison between the results from (4.1) and (2.14) is shown in figure 10(d), and
the transmission decomposition is verified. The separate contributions to |T+| from the
downstream-travelling hydrodynamic and acoustic modes in the cavity segment are
also presented. It is shown that the peak of total |T+| is lower than that related to the
hydrodynamic modes, which can be understood as the result of the phase difference
between the plane waves in the downstream duct scattered by the hydrodynamic
and acoustic waves in the cavity segment. For each frequency, the amplitudes of
the elements of T1, Pd and T2 are plotted in figure 10(a–c), respectively. From Pd
(elements on the diagonal of Pd) in figure 10(b), we can see that the only amplified
mode is the unstable hydrodynamic mode. The amplitude of Pd for this mode first
increases then decreases with the increasing frequency, with a peak at ω = 0.2115.
Such a trend reflects the variation of the spatial growth rate with frequency, which
is similar to that obtained from a hyperbolic-tangent shear flow (Michalke 1965;
Tam & Block 1978). However, the frequency of the peak spatial growth rate is not
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FIGURE 12. Effect of Im(ωG) on |T+| contributed from the hydrodynamic and acoustic
modes in the cavity segment, calculated from (4.1). The arrow denotes the decreasing R
(0.02, 0.019, 0.0185, 0.0179 and 0.0175), which leads to a positive and decreasing Im(ωG).
The vertical lines denote the corresponding Re(ωG).

the peak frequency of sound amplification, which means the resonance frequency is
not determined by the spatial growth rate of the unstable hydrodynamic wave. In
figure 10(c), it is shown that the scattering from the unstable hydrodynamic mode
in the cavity segment into the plane acoustic wave in the downstream duct is rather
inefficient and no clear dependence on frequency can be observed. Note that for the
least-attenuated acoustic mode, |T2| ≈ 1.3, which is mainly decided by the cross-area
ratio between the segments. Finally, we find the frequency selection in figure 10(a)
where the unstable hydrodynamic mode and some acoustic modes are highly excited
at the global mode frequency. The decomposition of the plane-wave transmission
demonstrates the excitation of the global mode or flow–acoustic resonance, and also
the link between the transmission peak and the resonance.

In figure 11, with R = 0.0179, the same analysis is carried out again as done
in figure 10. For this case, figure 9 shows a sound blocking at the flow–acoustic
resonance frequency. First, figure 11(b,c) is not much different from figure 10, except
that the spatial growth rate of the unstable hydrodynamic mode is slightly reduced
by the increase of R. In figure 11(a), the excited flow–acoustic resonance is still
observed. Compared with figure 10(a), the quality factor of the resonance is lower,
corresponding to a larger Im(ωG). It is shown in figure 11(d) that, near the resonance
frequency, |T+| contributed from the downstream-travelling hydrodynamic and acoustic
modes in the cavity segment are both larger than unity and the two lines cross. Thus,
the sound blocking can be understood as the plane waves in the downstream duct,
scattered by these two types of modes in the cavity segment, are nearly the same
in amplitude but opposite in phase. Strictly speaking, the sound blocking results
from the destructive interaction between the hydrodynamic and acoustic modes in the
scattering at the downstream end.

Figure 12 shows that, at resonance, |T+| associated with the hydrodynamic modes
(|T+hy|) increases as the positive Im(ωG) decreases. The variation of the spatial growth
rate of the unstable hydrodynamic mode, owing to the changes of R and Re(ωG),
contributes a small part to the increase of |T+hy|, whereas the more effective excitation
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FIGURE 13. Excitation of the stable global mode by a vortical wave: (a,b) incident
vortical wave; (c,d) response of the flow system. In the calculation, R = 0.0175 and
ω = 0.2288 (835.12 Hz), which is the real part of ωG. The vortical wave is introduced
by giving an amplitude to the neutral hydrodynamic mode associated with the flow shear
at y= 0.9683 in the upstream duct so that |P(y)|max = 10−3.

of such mode at a less-damped resonance is the main cause of |T+hy| increasing, which
can be observed from figures 10(a) and 11(a). Thus, the highly excited hydrodynamic
instability wave at a lightly damped flow–acoustic resonance, that is, a small and
positive Im(ωG), renders the incident sound wave blocked or amplified.

The excitation of the stable global mode by a vortical wave is demonstrated in
figure 13. This suggests that, in practice, a stable cavity flow, excited by turbulent
boundary-layer fluctuations, could produce sound that can be measured in the
upstream and downstream ducts. Thus, it is possible that some of the previously
observed cavity oscillations and sound emissions were produced by this mechanism,
as discussed by Rowley et al. (2006), rather than self-sustained oscillations. There
are two senses of amplification associated with the global mode. One is the sound
amplification, that is, the transmitted sound wave compared with the incident sound
wave, which is an issue of noise control. The other is the ratio of the amplitudes
of local fluctuations (near the cavity downstream edge in this case) to that of the
incident acoustic or vortical disturbance. It is shown in figure 13 that the second
amplification can be extremely large, which can potentially cause structural fatigue
damage.

5. Conclusion
Flow–acoustic resonance in a cavity covered by a same-length perforated plate in

a flow duct has been studied by a 2-D linear multimodal analysis. The mean shear

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

93
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.934


Flow–acoustic resonance in a cavity 884 A4-21

flow in the duct was assumed unchanged in the streamwise direction and the acoustic
and hydrodynamic disturbances were described by the LEEs with a resistive layer at
the entrance of each hole in the plate. First, a hole-by-hole description of the flow–
acoustic coupling shows a spatially growing wave along the perforated plate, with a
wavelength close to the plate length but much larger than the period of perforation,
which suggests that a homogenized approach can be used.

We then performed the travelling mode and global mode analyses of the flow
where the perforated plate was represented by a homogeneous impedance. The global
mode was constructed from the travelling hydrodynamic and acoustic waves by the
feedback-loop closure principle. For the global mode, the agreement between the
analyses of the travelling mode coefficients and the local fluctuations along the cavity
opening has been shown. The spatially growing wave along the perforated plate
is, from a homogeneous point of view, essentially a KH-type instability wave of
shear flow, strongly distorted by evanescent acoustic waves near the downstream
edge. The phase difference of the unstable hydrodynamic mode at the two edges has
been found to be a bit larger than 2π in this case, whereas the upstream-travelling
evanescent waves reduce the total phase change around the feedback loop, so that
the phase condition of the global mode can still be satisfied. These results indicate
the significant effects of the high-amplitude evanescent waves near the downstream
edge on both the amplitude and phase of cavity flow disturbances. Determined by
the balance of the energy transferred from the mean flow to the perturbations and the
energy damped and radiated, the complex resonance frequency can have a negative,
zero or positive imaginary part, denoting a temporally unstable, neutral or stable
mode, respectively. All three regimes of the global mode have been observed as the
system damping is varied. The criterion of the global instability is discussed: the
feedback-loop gain being larger or smaller than unity determines the global mode
being unstable or stable.

The stable global mode is further studied by seeing the linear system response to
external forcing. Owing to the highly excited hydrodynamic instability wave, both
sound blocking and sound amplification at a lightly damped resonance are observed.
It has also been shown that a stable cavity flow can produce sound when the flow–
acoustic resonance is excited by a vortical wave.

Acknowledgements
This work has been supported by the National Natural Science Foundation of

China no. 51876120. I am grateful to Y. Aurégan and V. Pagneux for the three-hour
discussion in Le Mans in October 2018 and email communications that helped
improve this article.

REFERENCES

ALOMAR, A. & AURÉGAN, Y. 2017 Particle image velocimetry measurement of an instability wave
over a porous wall in a duct with flow. J. Sound Vib. 386, 208–224.

ALVAREZ, J., KERSCHEN, E. & TUMIN, A. 2004 A theoretical model for cavity acoustic resonances
in subsonic flow. AIAA Paper 2004-2845.

AURÉGAN, Y. 2018 On the use of a stress–impedance model to describe sound propagation in a
lined duct with grazing flow. J. Acoust. Soc. Am. 143, 2975–2979.

AURÉGAN, Y. & LEROUX, M. 2008 Experimental evidence of an instability along an impedance
wall with flow. J. Sound Vib. 317, 432–439.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

93
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.934


884 A4-22 X. Dai

BERS, A. 1983 Space–time evolution of plasma instabilities – absolute and convective. In Basic
Plasma Physics, Handbook of Plasma Physics (ed. A. A. Galeev & R. N. Sudan), vol. 1, pp.
451–517. North-Holland.

BOUJO, E., BAUERHEIM, M. & NOIRAY, N. 2018 Saturation of a turbulent mixing layer over a
cavity: response to harmonic forcing around mean flows. J. Fluid Mech. 853, 386–418.

BRAMBLEY, E. J., DARAU, M. & RIENSTRA, S. W. 2012 The critical layer in linear-shear boundary
layers over acoustic linings. J. Fluid Mech. 710, 545–568.

BRANDES, M. & RONNEBERGER, D. 1995 Sound amplification in flow ducts lined with a periodic
sequence of resonators. AIAA Paper 95-126, pp. 893–901.

BRIGGS, R. J. 1964 Electron–Stream Interaction with Plasmas. MIT.
BRUGGEMAN, J. C., HIRSCHBERG, A., VAN DONGEN, M. E. H. & WIJNANDS, A. P. J. 1991

Self-sustained aero-acoustic pulsations in gas transport systems: experimental study of the
influence of closed side branches. J. Sound Vib. 151, 371–393.

CELIK, E. & ROCKWELL, D. 2002 Shear layer oscillation along a perforated surface: a self-excited
large-scale instability. Phys. Fluids 14, 4444–4447.

CELIK, E. & ROCKWELL, D. 2004 Coupled oscillations of flow along a perforated plate. Phys. Fluids
16, 1714–1724.

COUTANT, A., AURÉGAN, Y. & PAGNEUX, V. 2019 Slow sound laser in lined flow ducts. J. Acoust.
Soc. Am. 146, 2632–2644.

DAI, X. & AURÉGAN, Y. 2016 Acoustic of a perforated liner with grazing flow: Floquet–Bloch
periodical approach versus impedance continuous approach. J. Acoust. Soc. Am. 140,
2047–2055.

DAI, X. & AURÉGAN, Y. 2018 A cavity-by-cavity description of the aeroacoustic instability over a
liner with a grazing flow. J. Fluid Mech. 825, 126–145.

DAI, X. & AURÉGAN, Y. 2019 Hydrodynamic instability and sound amplification over a perforated
plate backed by a cavity. AIAA Paper 2019-2703.

DAI, X., JING, X. & SUN, X. 2015 Flow-excited acoustic resonance of a Helmholtz resonator: discrete
vortex model compared to experiments. Phys. Fluids 27, 057102.

DUAN, Y., KOCH, W., LINTON, C. M. & MCIVER, M. 2007 Complex resonances and trapped modes
in ducted domains. J. Fluid Mech. 571, 119–147.

EAST, L. F. 1966 Aerodynamically induced resonance in rectangular cavities. J. Sound Vib. 3,
277–287.

EKMEKCI, A. & ROCKWELL, D. 2007 Oscillation of shallow flow past a cavity: resonant coupling
with a gravity wave. J. Fluid. Struct. 23, 809–838.

EVANS, D. V., LEVITIN, M. & VASSILIEV, D. 1994 Existence theorems for trapped modes. J. Fluid
Mech. 261, 21–31.

GALLAIRE, F. & CHOMAZ, J.-M. 2004 The role of boundary conditions in a simple model of
incipient vortex breakdown. Phys. Fluids 16, 274–286.

GLOERFELT, X. 2009 Cavity Noise, von Kármán Lecture Notes on Aerodynamic Noise from Wall-
bounded Flows. von Karman Institute for Fluid Dynamics.

GUESS, A. W. 1975 Calculation of perforated plate liner parameters from specified acoustic resistance
and reactance. J. Sound Vib. 40, 119–137.

HEIN, S., KOCH, W. & NANNEN, L. 2010 Fano resonances in acoustics. J. Fluid Mech. 664, 238–264.
HUERRE, P. & MONKEWITZ, P. A. 1985 Absolute and convective instabilities in free shear layers.

J. Fluid Mech. 179, 151–168.
ILLINGWORTH, S. J., MORGANS, A. S. & ROWLEY, C. W. 2012 Feedback control of cavity flow

oscillations using simple linear models. J. Fluid Mech. 709, 223–248.
JORDAN, P., JAUNET, V., TOWNE, A., CAVALIERI, A. V. G., COLONIUS, T., SCHMIDT, O. &

AGARWAL, A. 2018 Jet–flap interaction tones. J. Fluid Mech. 853, 333–358.
KHAMIS, D. & BRAMBLEY, E. J. 2016 Acoustic boundary conditions at an impedance lining in

inviscid shear flow. J. Fluid Mech. 796, 386–416.
KHAMIS, D. & BRAMBLEY, E. J. 2017 Viscous effects on the acoustics and stability of a shear

layer over an impedance wall. J. Fluid Mech. 810, 489–534.
KOCH, W. 2005 Acoustic resonances in rectangular open cavities. AIAA J. 43, 2342–2349.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

93
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.934


Flow–acoustic resonance in a cavity 884 A4-23

KOOIJMAN, G., HIRSCHBERG, A. & AURÉGAN, Y. 2010 Influence of mean flow profile and
geometrical ratios on scattering of sound at a sudden area expansion in a duct. J. Sound Vib.
329, 607–626.

KOOIJMAN, G., TESTUD, P., AURÉGAN, Y. & HIRSCHBERG, A. 2008 Multimodal method for
scattering of sound at a sudden area expansion in a duct with subsonic flow. J. Sound
Vib. 310, 902–922.

LANDAU, L. D. & LIFSHITZ, E. M. 1981 Physical Kinetics. pp. 281–283. Pergamon Press.
LINTON, M. C. & MCIVER, P. 2007 Embedded trapped modes in water waves and acoustics. Wave

Motion 45, 16–29.
LYAPINA, A. A., MAKSIMOV, D. N., PILIPCHUK, A. S. & SADREEV, A. F. 2015 Bound states in

the continuum in open acoustic resonators. J. Fluid Mech. 780, 370–387.
MA, R., SLABOCH, P. E. & MORRIS, S. C. 2009 Fluid mechanics of the flow-excited Helmholtz

resonator. J. Fluid Mech. 623, 1–26.
MARTINI, E., CAVALIERI, A. V. G. & JORDAN, P. 2019 Acoustic modes in jet and wake stability.

J. Fluid Mech. 867, 804–834.
MARX, D. & AURÉGAN, Y. 2013 Effect of turbulent eddy viscosity on the unstable surface mode

above an acoustic liner. J. Sound Vib. 332, 3803–3820.
MARX, D., AURÉGAN, Y., BAILLIET, H. & VALIÈRE, J.-C. 2010 PIV and LDV evidence of

hydrodynamic instability over a liner in a duct with flow. J. Sound Vib. 329, 3798–3812.
MASSON, V., MATHEWS, J. R., MOREAU, S., POSSON, H. & BRAMBLEY, E. J. 2018 The impedance

boundary condition for acoustics in swirling ducted flow. J. Fluid Mech. 848, 645–675.
MATHEWS, J. R., MASSON, V., MOREAU, S. & POSSON, H. 2018 The modified Myers boundary

condition for swirling flow. J. Fluid Mech. 847, 868–906.
MICHALKE, A. 1965 On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech.

23, 521–544.
NAKIBOGLU, G., BELFROID, S. P. C., GOLLIARD, J. & HIRSCHBERG, A. 2011 On the whistling

corrugated pipes: effect of pipe length and flow profile. J. Fluid Mech. 672, 78–108.
NAKIBOGLU, G., MANDERS, H. B. M. & HIRSCHBERG, A. 2012 Aeroacoustic power generated by

a compact axisymmetric cavity: prediction of self-sustained oscillation and influence of the
depth. J. Fluid Mech. 703, 163–191.

PAGNEUX, V. 2013 Trapped modes and edge resonances in acoustics and elasticity. CISM Int. Cent.
Mech. Sci 547, 181–223.

PASCAL, L., PIOT, E. & CASALIS, G. 2017 Global linear stability analysis of flow in a lined duct.
J. Sound Vib. 410, 19–34.

POWELL, A. 1961 On the edgetone. J. Acoust. Soc. Am. 33, 395–409.
POWELL, A. 1995 Lord Rayleigh’s foundations of aeroacoustics. J. Acoust. Soc. Am. 98, 1839–1844.
PRIDMORE-BROWN, D. C. 1958 Sound propagation in a fluid flowing through an attenuating duct.

J. Fluid Mech. 4, 393–406.
RIENSTRA, S. W. & HIRSCHBERG, A. 2018 An Introduction to Acoustics. Eindhoven University of

Technology.
ROCKWELL, D. & NAUDASCHER, E. 1978 Review self-sustaining oscillations of flow past cavities.

J. Fluids Engng 100, 152.
RONNEBERGER, D. & JÜSCHKE, M. 2007 Sound absorption, sound amplification, and flow control in

ducts with compliant walls. In Oscillations, Waves and Interactions (ed. T. Kurz, U. Parlitz &
U. Kaatze), pp. 73–106. Universitätsverlag Göttingen.

ROSSITER, J. E. 1964 Wind-tunnel experiments on the flow over rectangular cavities at subsonic
and transonic speeds. Aero. Res. Counc. R&M, No. 3438.

ROWLEY, C. W., COLONIUS, T. & BASU, A. J. 2002 On self-sustained oscillations in two-dimensional
compressible flow over rectangular cavities. J. Fluid Mech. 455, 315–346.

ROWLEY, C. W. & WILLIAMS, D. R. 2006 Dynamics and control of high-Reynolds-number flow
over open cavities. Annu. Rev. Fluid Mech. 38, 251–276.

ROWLEY, C. W., WILLIAMS, D. R., COLONIUS, T., MURRAY, R. M. & MACMYNOWSKI, D. G.
2006 Linear models for control of cavity flow oscillations. J. Fluid Mech. 547, 317–330.

SCHMID, P. J. & HENNINGSON, D. S. 2000 Stability and Transition in Shear Flows. Springer.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

93
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.934


884 A4-24 X. Dai

SEVER, C. & ROCKWELL, D. 2005 Oscillations of shear flow along a slotted plate: small- and
large-scale structures. J. Fluid Mech. 530, 213–222.

SIPP, D., MARQUET, O., MELIGA, P. & BARBAGALLO, A. 2010 Dynamics and control of global
instabilities in open-flows: a linearized approach. Appl. Mech. Rev. 63, 030801.

TAM, C. K. W. 1976 The acoustic modes of a two-dimensional rectangular cavity. J. Sound Vib.
49, 353–364.

TAM, C. K. W. & BLOCK, P. J. W. 1978 On the tones and pressure oscillations induced by flow
over rectangular cavities. J. Fluid Mech. 89, 373–399.

TAM, C. K. W., PASTOUCHENKO, N. N., JONES, M. G. & WATSON, W. R. 2014 Experimental
validation of numerical simulations for an acoustic liner in grazing flow: self-noise and added
drag. J. Sound Vib. 333, 2831–2854.

THEOFILIS, V. 2011 Global linear instability. Annu. Rev. Fluid Mech. 43, 319–352.
TUERKE, F., SCIAMARELLA, D., PASTUR, L. R., LUSSEYRAN, F. & ARTANA, G. 2015 Frequency-

selection mechanism in incompressible open-cavity flows via reflected instability waves. Phys.
Rev. E 91, 013005.

XIONG, L., BI, W. & AURÉGAN, Y. 2016 Fano resonance scatterings in waveguides with impedance
boundary conditions. J. Acoust. Soc. Am. 139, 764–772.

YAMOUNI, S., SIPP, D. & JACQUIN, L. 2013 Interaction between feedback aeroacoustic and acoustic
resonance mechanisms in a cavity flow: a global stability analysis. J. Fluid Mech. 717,
134–165.

ZHANG, Q. & BODONY, D. J. 2016 Numerical investigation of a honeycomb liner grazed by laminar
and turbulent boundary layers. J. Fluid Mech. 792, 936–980.

ZIADA, S. & SHINE, S. 1999 Strouhal numbers of flow-excited acoustic resonance of closed side
branches. J. Fluids Struct. 13, 127–142.

ZOCCOLA, P. J. 2004 Effect of opening obstructions on the flow-excited response of a Helmholtz
resonator. J. Fluids Struct. 19, 1005–1025.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

93
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.934

	Flow–acoustic resonance in a cavity covered by a perforated plate
	Introduction
	Numerical model
	Hole-by-hole modal scattering calculation
	Modal scattering calculation based on the plate impedance
	Calculation of the global modes of the flow system

	Large-scale hydrodynamic instability along a perforated plate
	Global mode analysis
	Unstable and stable global modes
	Linear system response to external forcing

	Conclusion
	Acknowledgements
	References


