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Previous direct numerical simulations (DNS) of mass transfer across the air–water
interface have been limited to low-intensity turbulent flow with turbulent Reynolds
numbers of RT 6 500. This paper presents the first DNS of low-diffusivity interfacial
mass transfer across a clean surface driven by high-intensity (1440 6 RT 6 1856)
isotropic turbulent flow diffusing from below. The detailed results, presented here
for Schmidt numbers Sc = 20 and 500, support the validity of theoretical scaling
laws and existing experimental data obtained at high RT . In the DNS, to properly
resolve the turbulent flow and the scalar transport at Sc = 20, up to 524 × 106

grid points were needed, while 65.5 × 109 grid points were required to resolve the
scalar transport at Sc = 500, which is typical for oxygen in water. Compared to the
low-RT simulations, where turbulent mass flux is dominated by large eddies, in the
present high-RT simulation the contribution of small eddies to the turbulent mass flux
was confirmed to increase significantly. Consequently, the normalised mass transfer
velocity was found to agree with the R−1/4

T scaling, as opposed to the R−1/2
T scaling

that is typical for low-RT simulations. At constant RT , the present results show that
the mass transfer velocity KL scales with Sc−1/2, which is identical to the scaling
found in the large-eddy regime for RT 6 500. As previously found for a no-slip
interface, also for a shear-free interface the critical RT separating the large- from the
small-eddy regime was confirmed to be approximately RT = 500.

Key words: air/sea interactions, isotropic turbulence, turbulent mixing

1. Introduction

This paper considers the transport of low-solubility atmospheric gases, such as
oxygen, across the air–water interface promoted by high-intensity isotropic turbulence
diffusing from below. Because of the very low mass diffusivity of such gases
in water, in combination with the high-intensity turbulence, the corresponding
concentration boundary layer thickness at the surface is significantly smaller than
the Kolmogorov length scale of the turbulent flow (e.g. Brumley & Jirka 1988;

† Email address for correspondence: herlina.herlina@kit.edu
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Jähne & Haussecker 1998). Hence, an exceedingly fine resolution is needed to fully
resolve the scalar transport dynamics. The latter is extremely challenging when
performing both numerical simulations (see e.g. Rodi 2017) as well as laboratory
experiments. Consequently, previously performed direct numerical simulations
(DNS) and large-eddy simulations (LES) were limited to low turbulence intensities.
The DNS were usually confined to relatively low Schmidt numbers, Sc = ν/D,
where ν is the kinematic viscosity and D is the mass diffusivity (e.g. Handler
et al. 1999; Schwertfirm & Manhart 2007; Khakpour, Shen & Yue 2011; Yang
& Shen 2017). High-Schmidt-number DNS were performed for buoyancy-induced
mass transfer by Fredriksson et al. (2016) and Wissink & Herlina (2016) with
surface heat fluxes of 100 W m−2 and up to ∼1600 W m−2, respectively, and
for isotropic-turbulence-induced mass transfer by Herlina & Wissink (2014, 2016).
High-Schmidt-number LES was performed, for example, by Magnaudet & Calmet
(2006) for open-channel flow, while Hasegawa & Kasagi (2008) carried out a hybrid
DNS–LES of surface-shear-driven mass transfer. Similarly, present experimental
techniques still face difficulty in properly resolving the instantaneous scalar and
flow properties within the concentration boundary layer (Chu & Jirka 1992; Atmane
& George 2002; Variano & Cowen 2013). Hence, only in a limited number of
experiments (e.g. Herlina & Jirka 2008; Janzen et al. 2010) were sufficiently detailed
simultaneous measurements within the concentration boundary layer for varying
grid-stirred turbulent intensities reported.

The present DNS was motivated by the need for highly accurate unbiased data
in the high-RT regime to further investigate the dynamics of mass transfer across a
shear-free surface dominated by small-scale energy-dissipating turbulent motions
(cf. Theofanous, Houze & Brumfield 1976; Theofanous 1984) that need to be
fully resolved by the numerical mesh. These new results complement our previous
DNS results obtained for low to moderate RT , where mass transfer was driven
by larger-scale energy-containing turbulent motions. Hence, both the large- and
small-eddy-dominated regimes for isotropic-turbulence-driven mass transfer across
a shear-free surface are covered. Note that for severely contaminated interfaces –
modelled using a no-slip surface boundary condition – both regimes were already
explored in Herlina & Wissink (2016, hereafter HW16).

The rate of mass transfer across the air–water interface is measured by the global
transfer velocity

KL =
| j|

cs − cb
, (1.1)

where j is the interfacial mass flux, and cs and cb are the average gas concentrations
at the surface and in the bulk (well-mixed region), respectively. All conceptual models
assume that the mass transfer is determined by no more than one length scale and
one time scale (Brumley & Jirka 1988). Many empirical relations between KL and
measurable flow quantities have been suggested in the past, ranging from the film
model of Lewis & Whitman (1924) to the surface renewal model of Danckwerts
(1951). Lewis & Whitman assumed the presence of stagnant films on both sides
of the interface where molecular diffusion controls mass transfer, giving KL = D/δ∗,
where δ∗ is the film thickness. The surface renewal model reads

KL ≈
√

Dr, (1.2)

where r is the surface renewal rate. The main problem for this model is the
specification of the applicable renewal rate, which requires either direct determination
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or modelling. Fortescue & Pearson (1967) suggested that r is determined by the time
scale associated with the largest turbulent eddies, while Banerjee, Scott & Rhodes
(1968) and Lamont & Scott (1970) used the time scale of the small eddies.

In the large-eddy model, r is usually determined using characteristic turbulent
velocity (u∞) and length (Λ) scales, resulting in

KL ≈
√

Du∞/Λ. (1.3)

On the other hand, in the small-eddy model, r =
√
ε/ν is calculated using the

Kolmogorov scales, where ε is the turbulent dissipation rate, giving

KL ≈
√

D(ε/ν)1/4. (1.4)

Theofanous et al. (1976) performed a dimensional analysis and subsequently proposed
to combine the large- and small-eddy models after concluding that the large eddies
are most important for the smaller turbulent Reynolds numbers RT – defined in (4.4)
below – while the small eddies become important for large RT . The critical turbulent
Reynolds number dividing the two regimes was found to be RT ≈ 500.

As mentioned above, because of limited computational resources, previous
numerical work on interfacial gas transfer has been limited to relatively low
turbulent Reynolds numbers and/or low Schmidt numbers. In this paper, we present
the results of a DNS performed for a range of high turbulent Reynolds numbers
(1440 6 RT 6 1856) and Schmidt numbers of Sc = 20 and 500, where the latter is
characteristic for the transport of atmospheric gases dissolved in water. The present
RT is significantly larger than the critical RT such that the Kolmogorov time scale
will determine the interfacial mass transfer dynamics. The new high-RT results will
be compared to our previous low- to moderate-RT results from Herlina & Wissink
(2014, hereafter HW14).

2. Numerical method
The fluid motion is determined by solving the non-dimensional incompressible

Navier–Stokes equations, where the continuity equation reads

∂uj

∂xj
= 0, (2.1)

and the momentum equations are given by

∂ui

∂t
+
∂uiuj

∂xj
=−

∂p
∂xi
+

1
Re

(
∂2ui

∂xj∂xj

)
for i= 1, 2, 3, (2.2)

where j= 1, 2, 3, x1 = x, x2 = y are the horizontal directions and x3 = z is the vertical
direction, u1 = u, u2 = v and u3 = w are the velocities in the x, y and z directions,
p is the pressure and t denotes time. The Reynolds number is Re= UL/ν, where U
and L are reference velocity and length scales, respectively. Note that, in the absence
of mean shear, to characterise the turbulent flow, it would be more appropriate to
use a turbulent Reynolds number RT (see (4.4)). However, the characteristic turbulent
velocity and length scales used to calculate RT can only be determined after the
computation and are basically time-dependent owing to the short simulation time.
Hence, U and L are used as place holders for the non-dimensionalisation. In our
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case, where Re = 1200 (cf. § 3), a convenient choice would be U = 12 cm s−1,
L= 1 cm and ν = 10−6 m2 s−1, which is relevant for the grid-stirred experiments of
Herlina & Jirka (2008), for example. In the subsequent analysis, most of the results
are renormalised using the characteristic turbulent velocity and length scales.

The non-dimensional convection–diffusion equation that governs the transport of the
dimensionless passive scalar c∗ = c∗(x, y, z, t) reads

∂c∗

∂t
+
∂ujc∗

∂xj
=

1
Re Sc

(
∂2c∗

∂xj∂xj

)
, (2.3)

where

c∗ =
c− cb,0

cs − cb,0
, (2.4)

in which cb,0 is the initial concentration in the bulk and cs is the concentration
at the surface, which is assumed to be fully saturated at all times. Hereafter the
dimensionless concentration c∗ will be denoted by c. Note that the above implies that
initially c= 1 at the surface and c= 0 in the bulk.

The present DNS was performed using our solver that was specifically developed
to accurately resolve low-diffusivity interfacial mass transfer. In the past, the code
was extensively verified (e.g. Kubrak et al. 2013; Herlina & Wissink 2014) and
was used to solve interfacial mass transfer problems driven by low to moderate
levels of isotropic turbulence (Herlina & Wissink 2014, 2016; Wissink et al. 2017)
and by buoyant convection (Wissink & Herlina 2016). The three-dimensional
incompressible Navier–Stokes equations were solved using a fourth-order-accurate
kinetic-energy-conserving discretisation of the convective terms (Wissink 2004)
combined with a fourth-order central discretisation of the diffusive terms. The
pressure Poisson equation was solved using the conjugate gradient method with a
simple diagonal preconditioning. The second-order-accurate Adams–Bashforth method
was used for time integration.

Together with the flow, convection–diffusion equations for two scalars were
solved simultaneously. The fifth-order-accurate weighted essentially non-oscillatory
(WENO) scheme of Liu, Osher & Chan (1994) and the fourth-order-accurate central
discretisation were used to discretise scalar convection and diffusion, respectively. A
third-order Runge–Kutta method was used for the time integration. Because the scalar
diffusivity can be more than two orders of magnitude smaller than the momentum
diffusivity, a dual-meshing strategy was employed using a refined mesh for the scalar
transport equations. The code was parallelised by dividing the mesh into a number
of blocks of equal size. Communication between blocks was performed using the
standard message passing interface (MPI) protocol. A more detailed description of
the numerical method can be found in Kubrak et al. (2013).

3. Computational set-up

A schematic of the computational domain is shown in figure 1. The interfacial mass
transfer was calculated using a DNS. The size of the DNS domain (upper box in
figure 1) was 20L× 20L× 5L in the x, y, z directions, respectively (L is the reference
length scale, cf. § 2). To properly resolve the flow field and the scalar with Sc= 20, a
1024× 1024× 500 base mesh was used. For the scalar with Sc= 500, a refined mesh
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FIGURE 1. (Colour online) Schematic illustration of the computational domain.

with 5120× 5120× 2500 was employed. In the x and y directions, a uniform mesh
was used, while in the z direction the mesh was stretched according to

z(k)= z(0)+
[

tanh(zφ)
tanh(z1)

]
(z(nz)− z(0)), (3.1)

for k= 1, . . . , nz− 1, with z1= θ/2 and zφ = kz1/nz, where nz is the number of nodes
in the z direction. The stretching is controlled by the parameter θ , which is set to
θ = 4.7. The grid resolution near the interface is such that (i) the local vertical grid
size 1z is approximately 12 % LB and (ii) the geometric mean of the grid cells is
less than πLB, where LB is the Batchelor scale. The two conditions indicate that the
Grötzbach criterion is fulfilled and the scalar distribution is well resolved (Grötzbach
1983).

As in our previous simulations, the isotropic turbulence introduced at the bottom of
the computational domain was generated in a separate LES that ran concurrently with
the DNS. To achieve a high turbulent Reynolds number RT , a large 20L× 20L× 20L
LES domain was combined with a relatively high Reynolds number of Re= 1200 and
a turbulent kinetic energy level of k = 0.09375U2 (see also § 2). The LES box was
discretised using a 256 × 256 × 256 uniform mesh distributed over 512 processing
cores. Periodic boundary conditions were employed for the velocities in all three
directions. The subgrid-scale turbulence was modelled using the standard Smagorinsky
method with constant CSmag = 0.22. At every time step the three components of the
velocity field were rescaled so that the isotropy and the turbulence intensity were
maintained.

In the DNS, the surface was assumed to remain flat at all times. For the velocity
field, free-slip boundary conditions were employed at the surface, while periodic
boundary conditions were used in the horizontal directions. At the surface, the
scalar concentration was assumed to be at saturation (c = 1) at all times, while the
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FIGURE 2. The mean energy spectrum normalised by the Kolmogorov velocity uη and
length η scales. The dashed line indicates the −5/3 slope.

concentration was initialised by

c= erfc

(
ζ

√
Sc Re

4t′

)
, (3.2)

where ζ is the distance to the surface, t′ = 120L/U and Sc = 20 and 500. In the
horizontal directions, periodic boundary conditions were employed; and at the bottom,
symmetry boundary conditions (∂c/∂z= 0) were used.

The interfacial mass transfer simulation was carried out on the SuperMUC cluster
at LRZ in Munich using ≈ 18× 106 CPU h and employing 20 992 cores.

4. Results
4.1. Characteristics of flow field

The interfacial mass transfer simulation was started using a fully developed turbulent
flow field. This initial turbulent flow field was generated by running the simulation
without calculating mass transfer. After a period of approximately 50L/U, the
turbulence in the DNS domain (upper box in figure 1) was found to be fully
developed, as verified by the statistically steady behaviour of the turbulent energy
spectrum shown in figure 2. The mean energy spectrum, which was obtained
by averaging the instantaneous energy spectrum at z = 2.75L over the interval
50L/U 6 t 6 100L/U, clearly showed the existence of an inertial subrange with
a κ−5/3 behaviour, similar to Flores, Riley & Horner-Devine (2017), as well as a
broad dissipative range where κ > η. The same features were found in all spectra
extracted at various other z locations, indicating that the turbulent flow is very well
resolved. Note that in the above κ is the wavenumber and η is the Kolmogorov length
scale. Subsequently, at t= 100L/U the full simulation was started by activating mass
transfer.

The flow statistics shown in figure 3 were obtained by ensemble averaging the
flow properties over the interval 50L/U 6 t 6 153L/U. By combining time averaging
with averaging in the large homogeneous horizontal directions, the size of this
relatively short interval was deemed to be sufficient to obtain good-quality statistics.
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FIGURE 3. Flow statistics, ensemble averaged over 103L/U: (a) turbulent integral length
scale L11; (b) root-mean-square (r.m.s.) of horizontal u and vertical w velocity fluctuations;
and (c) turbulent Reynolds number. The dotted lines in (a) and (c) correspond to
L11(z/L)± σL and RT(z/L)± σR, where σL and σR are the standard deviations of L11 and
RT , respectively.

Figure 3(a) shows the variation in z of the time-averaged longitudinal integral length
scale L11 (where · denotes averaging over a period in time), with

L11(z)=
∫ Lx/2

0
R11(r, z) dr, (4.1)

where the longitudinal two-point correlation R11 of the horizontal velocity u is defined
by

R11(r, z)=

∫ Lx/2

x=0

∫ Ly

y=0
u(x, y, z)u(x+ r, y, z) dy dx∫ Lx/2

x=0

∫ Ly

y=0
u2(x, y, z) dy dx

, (4.2)

in which Lx×Ly is the size of the horizontal plane. As in the grid-stirred experiments
of, for example, Hopfinger & Toly (1976) and Herlina & Jirka (2008), the integral
length scale in most of the lower part of the computational domain was found to
increase linearly with increasing distance from the turbulent source. Furthermore, it
can be seen that the characteristic integral length scale L∞, defined by

L∞ = L11(z∞), (4.3)

in which z∞ is the location where L11 is maximum, is approximately 5.67L. The
characteristic integral length scale L∞ identifies the size of the largest eddies in the
turbulent flow, which can only exist undisturbed at distances larger than 1L∞ from
the interface. Closer to the interface, inside the so-called surface-influenced layer, the
turbulence starts to lose its isotropy (cf. e.g. Hunt & Graham 1978; Perot & Moin
1995). Even though the depth of our DNS domain is somewhat smaller than 5.67L, a
reasonable isotropy (|1− wrms/urms|< 0.1) in most of the lower region (z/L< 2.5) is
obtained (cf. figure 3b). In agreement with Perot & Moin (1995) and Walker, Leighton
& Garza-Rios (1996), for example, figure 3(b) also shows an initial gradual decay
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in both horizontal and vertical fluctuations as the turbulence diffuses upwards. Close
to the surface, a significant increase in decay rate of the vertical fluctuations wrms is
observed, which in turn induces an increase in the horizontal fluctuations urms due to
the redistribution of the turbulent kinetic energy. More detailed discussions on this
for free-slip and/or no-slip boundary conditions can be found elsewhere (e.g. Perot
& Moin 1995; Walker et al. 1996; Magnaudet 2003; Bodart, Cazalbou & Joly 2010;
McCorquodale & Munro 2017).

Typically, the turbulent Reynolds number for grid-stirred turbulence is defined by

RT =
u∞Λ
ν
, (4.4)

where Λ= 2L∞ (e.g. Hopfinger & Toly 1976; Brumley & Jirka 1987). This definition
is also adopted here, where we used u∞= urms(z∞) for the characteristic velocity scale.
The time average of the corresponding local turbulent Reynolds number

RT(z)= urms2L11/ν, (4.5)

shown in figure 3(c), was found to be approximately constant (RT(z)≈ 1856) in most
of the lower DNS domain. In general, the turbulent flow statistics were similar to the
far-field statistics in the experiments of Brumley & Jirka (1987) and Herlina & Jirka
(2008) and also to the statistics obtained at low to moderate RT in HW14, where a
more extended comparison with literature was presented.

4.2. Statistics of turbulent scalar transport
As mentioned above, the scalar mass transfer calculations for Sc= 20 and 500 were
activated at t= 100L/U using the initial conditions given in (3.2). Owing to the high
RT , the transfer of saturated fluid from the surface to the bulk was relatively fast.
This, together with the large horizontal extent of the computational domain, resulted
in a speedy convergence of the normalised horizontally averaged turbulent mass flux
statistics. At t = 126L/U time units, the total mass flux near the interface (0 6 ζ 6
10δ) was found to be independent of z. Scalar transport statistics were subsequently
gathered in this quasi-steady regime from t= 126L/U until 153L/U.

As illustrated by the dotted lines in figure 3(a), the integral length scale of
the turbulence L11 varied significantly in time. Hence, it is expected that L∞ (and
consequently RT) – when calculated using a moving average over a relatively small
time window – will also become time-dependent. Using this we obtained a significant
range of turbulent Reynolds numbers for the verification of the small-eddy model
(cf. § 4.4). Note that for the smaller time windows L∞ is the local maximum of L11
nearest to the location where L∞ was obtained for the entire interval. The dependence
of L∞ and RT on the size of the time interval can also be seen in table 1, where,
when averaging over the entire interval 50L/U–153L/U, one has L∞ = 5.67L and
RT = 1856. On the other hand, by averaging over the smaller interval, values for L∞
and RT of 4.54L and 1440, respectively, were obtained.

The resulting scalar statistics can be seen in figure 4. The vertical axes show
the distance to the surface ζ normalised by the mean concentration boundary layer
thickness δ. The latter is defined by the distance to the surface where

crms =

√
〈c2〉 − 〈c〉2 (4.6)
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FIGURE 4. Scalar statistics: (a) normalised mean concentration profiles, (b) normalised
r.m.s. profiles, and (c) normalised diffusive and turbulent scalar fluxes.

1t U/L L∞/L u∞/U RT

50–153 5.67 0.1364 1856
126–153 4.54 0.1322 1440

TABLE 1. Mean flow parameters and the interval 1t over which they are determined.
Scalar statistics were only gathered over the smaller of the two intervals.

is maximum. Note that 〈 · 〉 denotes averaging in the homogeneous (horizontal)
directions. Similarly to the lower-RT cases in HW14, the horizontally averaged
boundary layer thickness δ was found to scale with Sc−1/2 as illustrated for t=140L/U
in figure 5 (cf. further discussion in § 4.4).

Figure 4(a) shows the mean concentration profiles near the surface, normalised by
calculating (〈c〉 − 〈cb〉)/(cs− 〈cb〉). Immediately underneath the surface all profiles are
approximately linear, which is a clear indication that molecular diffusion dominates
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FIGURE 5. Influence of Sc on the horizontally averaged boundary layer thickness at
t= 140L/U.

gas transfer. It can also be seen that in that region the normalised profiles all collapse.
For similar Sc, deeper down in the bulk – due to the more effective vertical mixing –
a slightly increased concentration at higher RT is observed. This is in agreement with
the trend found for lower RT in HW14 and the experiments of Herlina & Jirka (2008).

The normalised concentration fluctuations crms/(cs − 〈cb〉), shown in figure 4(b),
can be seen to grow rapidly from zero at the surface to a local maximum, where
approximately the horizontal turbulent exchange of saturated and unsaturated fluid is
most intensive, before declining again to zero in the well-mixed region of the bulk.
The peaks observed in the normalised crms (figure 4b) were found to be approximately
0.3 in all cases, which is typical for numerical simulations with free-slip surface
boundary conditions (e.g. Magnaudet & Calmet 2006) and is also found in some
experiments (e.g. Atmane & George 2002). Some other experiments, however, show
crms peaks as low as 0.1–0.2 (e.g. Chu & Jirka 1992; Herlina & Jirka 2008). These
relatively low peaks could be a consequence of a significant surface contamination
as shown in the DNS studies of, for example, Khakpour et al. (2011) and Wissink
et al. (2017).

Figure 4(c) shows the mean diffusive 〈−D∂c/∂z〉 and turbulent fluxes 〈c′w′〉
normalised by the mean diffusive mass flux 〈 j〉 at the interface, where

j= −D
∂c
∂z

∣∣∣∣
i

. (4.7)

The present results for RT ≈ 1440 with Sc = 20 and 500 are shown together with
the GS500 results from HW14 with RT = 507 and Sc = 32. In agreement with the
theory, the diffusive fluxes are maximum at the surface and rapidly decrease to zero
in the bulk, while simultaneously the turbulent fluxes increase from zero at the surface
such that the sum of the mean diffusive and turbulent fluxes remains constant at all z
locations. The latter indicates that the simulation has run sufficiently long to achieve
a quasi-steady state. For all cases, the depth at which the normalised fluxes are in
equilibrium is approximately the same (ζ ≈ 0.65δ).
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Note that, even though the Schmidt numbers in the simulation differ significantly,
all normalised scalar statistics shown in figure 4(b,c) nearly collapse. When applying
the present normalisation to the lower-RT cases in HW14, a similar data collapse is
observed. This is illustrated by including the RT = 507 results (which are typical for
846RT 6 507) in figure 4. Based on this, we can conclude that the normalised results
are almost invariant with respect to both Sc and RT .

4.3. Role of large and small scales
4.3.1. Surface divergence

Figure 6 depicts a comparison between the surface divergence (β = −∂w/∂z) and
the instantaneous mass transfer velocity for Sc = 20 at an arbitrarily chosen time
t = 140L/U. The β contours (figure 6a) clearly show the presence of convection
cells corresponding to large structures of size ∼ L∞ with positive surface divergence
(upwelling of unsaturated fluid) separated by narrow regions of negative surface
divergence (downwelling of saturated fluid). Compared to the surface divergence plot,
the footprints of fine-scale turbulent structures can be more clearly identified in the
corresponding instantaneous KL contour plot (for a more detailed comparison see
figure 11). An important reason for this discrepancy is the much higher diffusivity
of the fluid (affecting β) compared to the scalar (affecting KL). An increase in RT
leads to an increase in fine-scale turbulent structures at the surface. Because of the
aforementioned difference in diffusivities, these structures will remain clearly visible
for much longer in the KL contours than in the β contours. This has a negative effect
on the resulting time-averaged spatial correlation ρ(KL, β) at high RT , as can be seen
in figure 7, where in the present high-RT simulation the value of ρ(KL, β) = 0.78
was lower than the values ρ(KL, β) = 0.89, 0.81 and 0.81 obtained from HW14 for
RT = 84, 195 and 507, respectively. This reduction of ρ(KL, β) with RT also impacts
the applicability of the surface divergence model at high RT . This is in agreement
with the findings of Turney & Banerjee (2013), who observed a breakdown of the
surface divergence model in the presence of small time scales. This will be further
investigated below.

4.3.2. Vortical structures
In figure 8, vortical structures in part of the computational domains are identified

using the λ2 criterion of Jeong & Hussain (1995). To allow a direct comparison of
the structures obtained in the present DNS and GS500 (HW14), the λ2 eigenvalues
were normalised using the relevant characteristic turbulent length (L∞) and velocity
(u∞) scales. Figure 8(a,b) shows that, because of the larger RT , significantly more
vortical structures are found in the present simulation than in the GS500 simulation,
while the thickness of the structures – which depends on the Kolmogorov length
scale – is smaller. The lack of vortical structures, as observed in large areas of
the GS500 simulation, indicates that the instantaneous turbulence is not uniformly
distributed. Consequently, it is to be expected that the instantaneous mass transfer
velocity will also not be uniformly distributed but will be elevated in regions with
increased turbulence.

To further explore what actually happens close to the surface, in figure 8(c,d)
the vortical structures in the region 0 6 ζ/L∞ 6 0.04 are visualised using λ2 = −5.
Again, the number and size of the vortical structures in the present simulation differ
significantly from the ones in GS500. As explained below, because of the free-slip
boundary condition at the top, the axes of the structures close to the surface are
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FIGURE 6. (Colour online) Snapshots at t = 140L/U of (a) surface divergence β and
(b) KL for Sc= 20.
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FIGURE 7. Time-averaged spatial correlation of the transfer velocity KL with the surface
divergence β for various RT .

either parallel or orthogonal to the interface. Figure 9 shows the Kolmogorov length
scale η for the present simulation as a function of the distance to the surface.
Between ζ/L∞ ≈ 1 (near the bottom) and ζ/L∞ ≈ 0.05, η was found to increase as
the turbulence diffusing from below dissipates. As seen in figures 8(a,c) and 3(b),
when further approaching the surface, the flow rapidly becomes more and more
two-dimensional. In upwelling regions, the increase in horizontal velocities towards
the surface stretches initially ‘randomly’ oriented vortical structures and aligns them
horizontally. Because of the large size of these upwelling regions (compared to the
downwelling regions), this horizontal alignment is very common and causes vortical
structures (on average) to become thinner towards the surface. As the diameter of the
vortical structures scales with η (Jimenez et al. 1993), the thinning mentioned above
explains the decrease in η observed in figure 9 between ζ/L∞ ≈ 0.05 and 0.008.
Closer to the surface, the horizontal velocities become constant due to the free-slip
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FIGURE 8. (Colour online) Snapshots of vortical structures identified using λ2 = −200
(upper panels) and λ2=−5 (lower panels), normalised by L∞ and u∞: (a,c) present DNS
at t= 146.6L/U and (b,d) case GS500 from HW14 (RT = 507).
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FIGURE 9. (a) Variation of the mean Kolmogorov length scale with depth. (b) Detailed
view of (a) immediately beneath the surface.

boundary condition. As a result, the horizontal stretching no longer increases, which
is an explanation of the slight increase in η observed between ≈0.008 and 0. In the
relatively small downwelling-dominated regions, the downward velocity increases
with distance from the surface, thereby stretching and strengthening the local
surface-attached (surface-normal) vortical structures (SAVS). Note that the SAVS
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FIGURE 10. (Colour online) Isolines of λ2 =−5 at ζ/L∞ = 0.01 and t= 146.6L/U with
(a) contours of KL for Sc = 20 and (b) contours of |ωz|. Note that λ2, KL and ωz were
normalised using L∞ and u∞.

observed in the downwelling regions are seeded by relatively weak surface-normal
vorticity transported upwards in the upwelling regions, where they attach to the
surface and are subsequently moved towards the downwelling regions.

While the SAVS promote mixing in the horizontal direction, the structures with
axes parallel to the interface promote the exchange of fluid between the upper
bulk and the surface. Their relation with mass transfer is studied in figure 10(a),
by combining contours of KL with a cross-section of the vortical structures from
figure 8(c) at ζ/L∞ = 0.01. The horizontally aligned slender vortical structures can
be found near the edges of areas with high KL, adjacent to locations where saturated
fluid is transported downwards. The SAVS, on the other hand, are generally located in
areas with relatively low KL. To distinguish the SAVS from the horizontally aligned
vortical structures, in figure 10(b), the λ2 isolines are combined with contours of the
surface-normal vorticity component ωz. In contrast to the horizontally aligned vortices,
SAVS are marked by elevated levels of ωz in their entire interior.

Figure 11 shows a detailed view of the β and KL contours from figure 6 combined
with isolines of relatively high-intensity surface-normal vorticity |ωz|. As mentioned
above, because of the stretching of SAVS, it is expected to see such isolines only in
downwelling areas. When this downwelling is very strong, SAVS undergo significant
stretching and quickly become exceedingly thin, leading to their dissipation within a
relatively short time. SAVS in areas of very weak downwelling (as seen in figure 11a)
tend to survive for a long time in the absence of large-scale turbulent motion. Because
of the extended exposure time at the surface, the fluid inside these structures has
become highly saturated due to diffusive mass transfer, as indicated by the local low
KL values in figure 11(b). While the correlation of these SAVS with low KL values
is very good, the correlation with low β values is rather poor. This indicates that the
local correlation ρ(β, KL) will be rather small. Note that the above observations are
generally confirmed in all recorded snapshots.
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FIGURE 11. (Colour online) Zoomed view of figure 6 combined with isolines of surface-
normal vorticity magnitude at |ωz| (L∞/u∞)= 14, 34, 51 and 68. (a) Contours of β and
(b) contours of KL.

The dynamics of vortical structures in open-channel flow and their influence on
interfacial mass transfer has been discussed by, for example, Pan & Banerjee (1995),
Nagaosa (1999) and Nagaosa & Handler (2003). Pan & Banerjee (1995) discovered
the existence of relatively large ring-like vortices at the surface of open-channel flow
that are associated with vertical mixing. In the interior of the ring, unsaturated fluid
from the bulk is transported towards the surface (splat), while immediately outside
of the ring, saturated fluid is transported down into the bulk (antisplat). Nagaosa &
Handler (2003) found that the ring-like vortical structures originate from near the
bottom of the channel and start their life as hairpin vortices. In our case, in the
absence of bottom shear and associated vortical structures like hairpin vortices, the
vortical dynamics of the turbulent flow changes significantly. Individual upwellings
are usually relatively small but tend to cluster together into larger areas separated by
narrow regions with strong downwelling. The topology of the clusters is very complex
and rapidly changes in time. As discussed above (see also figure 10), the vortices
parallel to the surface, which are responsible for vertical mixing, tend to lie along
the edges of upwelling regions and sometimes resemble parts of ring-like vortices,
similar to the ones previously observed by, for example, Nagaosa & Handler (2003).
As mentioned earlier, the SAVS only promote horizontal mixing and hence do not
directly contribute to the turbulent vertical mass transfer, which is in agreement with
the findings of Nagaosa (1999).

4.3.3. Spectra of turbulent mass flux
As illustrated above, the mass transfer is directly related to the presence of vortical

structures immediately underneath the surface. With increasing RT , the quantity of
vortical structures increases, while their diameter typically decreases. To further
investigate the relative importance of large- and small-scale structures for vertical
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FIGURE 12. (a) Premultiplied cospectra of turbulent mass flux c′w′ at ζ = 5δ. Cumulative
cospectra of c′w′ at (b) ζ = 5δ and (c) ζ = δ.

mass transfer, time-averaged spectra of the turbulent mass flux c′w′ are plotted as
a function of the normalised wavenumber κL∞ (cf. figure 12). The present results,
obtained at RT = 1440, are compared to the results of GS500 at RT = 507 and GS80
at RT = 84 (see HW14).

Figure 12(a) shows the cospectra premultiplied by the wavenumber κ . Compared to
the present simulation at RT = 1440, the energy-containing range at RT = 507 moves to
smaller values of κL∞. At RT = 84, only a relatively narrow band of energy-containing
scales was observed, which coincides with the largest energy-containing scales
observed at RT = 507. Hence, it can be concluded that at low RT large scales
dominate the turbulent mass flux, while at high RT the contribution of the small
scales becomes more important, supporting the two-regime mass transfer concept
of Theofanous et al. (1976). Near the critical RT , both small and large scales were
found to contribute significantly to the overall turbulent mass transfer.
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FIGURE 13. Influence of Sc on KL. Data shown are from the snapshot at t= 140L/U.

To further illustrate the contribution of the different scales to the mass transfer, the
cumulative cospectra of c′w′ are shown in figure 12(b,c) at ζ = 5δ and δ, respectively.
It can be seen that with increasing RT the smaller scales become more and more
important for the vertical turbulent mass transport. For instance, at ζ = 5δ, the
contribution of relatively large scales with wavenumbers κL∞6 10 to the total energy
of the turbulent flux decreases from 70 % for RT = 84 to 55 % for RT = 507 and
finally to 34 % for RT = 1440. Higher up in the boundary layer, at ζ = δ, the presence
of the free-slip surface causes the flow to become increasingly two-dimensional. This
is evidenced by the change in orientation of the vortical structures when approaching
the surface as mentioned above (cf. figure 8a,c). The inverse energy cascade, that is
typical for two-dimensional turbulence, explains the increased importance of the larger
scales to the vertical mass transfer when approaching the surface (cf. figure 12c).

4.4. Scaling of transfer velocity with Sc and RT

In agreement with the experiments of Chu & Jirka (1992), Atmane & George
(2002) and Herlina & Jirka (2008), for example, in the HW14 simulations it was
found that the concentration boundary layer thickness δ depends on the level of
isotropic turbulence diffusing from below. This turbulence promotes the interchange of
unsaturated fluid from the bulk with saturated fluid from the surface. For constant Sc,
the boundary layer thickness (normalised by L∞) decreases with increasing turbulence
level, resulting in a steeper concentration gradient at the surface and therefore an
increased normalised mass transfer velocity. On the other hand, for constant RT , it
was shown that δ scales with Sc−1/2 (cf. figure 5). The same scaling was found for
KL, as can be seen in figure 13. This implies that, for constant RT and free-slip
surface boundary conditions, the mass transfer velocity KL is proportional to δ. Note
that the same instantaneous scaling behaviour KL ∝ Sc−1/2 was consistently found for
all t > 126L/U. Also, this scaling is in agreement with the theoretical scaling found
for free-slip surface conditions (e.g. Ledwell 1984; Jähne & Haussecker 1998).

Free-slip boundary conditions are applied to represent a clean (surfactant-free)
surface. Contaminated surfaces, on the other hand, can be modelled, for example,
by using a no-slip boundary condition to represent some of the physics pertinent to
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FIGURE 14. Variation of the normalised KL with RT . For the free-slip boundary condition,
the present DNS results are combined with results from HW14 obtained at low to
moderate RT . In addition, results from HW16, using a no-slip boundary condition, are
also shown. Note that the lines represent the fitted scaling laws.

severe contamination (Herlina & Wissink 2016) or by explicitly solving the surfactant
transport at the surface and modelling the influence of surfactants on the near-surface
velocity field (Shen, Yue & Triantafyllou 2004; Khakpour et al. 2011; Wissink et al.
2017). As seen in Wissink et al. (2017), the scaling behaviour of the mass transfer
velocity with the Schmidt number smoothly changes from Sc−1/2 for clean surfaces
to Sc−2/3 for severely contaminated surfaces.

As mentioned above, the present high-RT , high-Sc DNS study builds on our
previous DNS of interfacial mass transfer driven by isotropic turbulence diffusing
from below (see Herlina & Wissink 2014, 2016; Wissink et al. 2017). Figure 14
shows the normalised mass transfer velocity as a function of the turbulent Reynolds
number RT ,

KL

u∞Sc−n
= cR−q

T , (4.8)

where n= 1/2 and n= 2/3 for the free-slip and no-slip surface boundary conditions,
respectively, while q depends on the size of the dominating turbulent scales, as
discussed below. Note that, after using u∞ and Λ for non-dimensionalisation, it can
be seen that for n= q= 1/2 equation (4.8) is equivalent to (1.3), while for n= 1/2
and q= 1/4 it is equivalent to (1.4) (cf. Theofanous et al. 1976). The data shown in
figure 14 originate from our previous (HW14) and present DNS of interfacial mass
transfer driven by isotropic turbulence with free-slip surface boundary conditions.
While HW14 only considered low to moderate RT values, our present DNS for the
first time combines high-RT turbulence (RT ≈ 1440) with low-diffusivity mass transfer
(Sc up to 500), which is typical for dissolved oxygen in water. In agreement with
Theofanous (1984), two regimes can be identified in figure 14. For turbulent Reynolds
numbers smaller than RT ≈ 500, the HW14 numerical results show a scaling of the
normalised mass transfer velocity with R−1/2

T , which supports the large-eddy model
of Fortescue & Pearson (1967). For larger RT , our present DNS results – obtained by
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combining horizontal averaging with ensemble averaging over time periods of 30L/U
– clearly show the presence of a different scaling law where (KL/u∞Sc−1/2) ∝ R−1/4

T ,
which is in agreement with the small-eddy model of Banerjee et al. (1968) and
Lamont & Scott (1970). The same KL dependence on R−1/4

T was reported in the
experimental work of Herlina & Jirka (2008). The data shown in figure 14 are
complemented by results from our no-slip simulations (cf. HW16). As in the free-slip
case, both the small- and large-eddy regimes can be clearly identified. It can be seen
in Herlina & Wissink (2016) that the fitted line through the free-slip numerical results
for high RT also agrees well with the upper bound of the experimental findings of
McKenna & McGillis (2004) obtained using a clean surface. Note that, even though
we expect a smooth transition between the two regimes, it was found that the line
through the present free-slip DNS data also intersects the result obtained in HW14 at
RT = 507. Further investigations would be needed to determine a detailed picture of
the transitional regimes around RT ≈ 500 for both the free-slip and the no-slip case.

5. Conclusions
A large-scale DNS of interfacial mass transfer at moderate to high Schmidt numbers

(up to Sc= 500) across a free-slip surface, driven by relatively high-intensity isotropic
turbulence (RT ≈ 1440–1856), has been performed. The isotropic turbulence, generated
in a concurrently running LES, was introduced at the bottom of the DNS domain. It
was found that the missing subgrid scales in the LES energy spectrum established very
rapidly as the turbulence diffused upwards in the DNS domain. Even though the depth
of the computational domain was relatively small compared to the integral length scale,
the statistics typical for shear-free turbulence near a free-slip surface were found to
be consistent with previous data. For instance, the time-averaged turbulent Reynolds
number was found to be approximately constant in most of the lower part of the DNS
domain.

Previous numerical investigations of interfacial mass transfer driven by turbulence
were mostly limited to low RT and/or low Sc. As far as the authors are aware, this is
the first DNS in which both the Kolmogorov scale of the relatively highly turbulent
flow (significantly higher than the critical RT ≈500, above which the small-eddy model
is believed to be applicable for the estimation of the mass transfer velocity KL) and
the Batchelor scale, typical for the low-diffusivity mass transfer, are resolved. This was
made possible by employing a dual-mesh approach in which the turbulent flow and
the lower-Schmidt-number (Sc= 20) scalar transport were resolved on the base mesh
comprising 524× 106 grid points, while a refined mesh of 65.5× 109 grid points was
used for the higher-Schmidt-number (Sc= 500) scalar transport, which is typical for
oxygen in water. The presence of an inertial subrange with a κ−5/3 behaviour and a
broad dissipative range in the energy spectra, as found at various z locations, further
confirms that the turbulent flow in the DNS is very well resolved.

Independent of RT and Sc, the profiles of the mean concentration, the concentration
fluctuation, the diffusive flux and the turbulent mass flux obtained in this simulation
and our previous simulations (HW14) were found to nearly collapse when applying
suitable normalisations. In agreement with the theory, the sum of the diffusive and
turbulent fluxes in the upper bulk was observed to be equal to the diffusive flux at
the surface.

At constant RT , the scaling of both δ and KL with Sc−1/2 was found to be accurately
reproduced, indicating that KL varies linearly with δ. At constant Sc, however, with
increasing RT , δ/L∞ is expected to become smaller, resulting in a steeper gradient of
the vertical concentration profile near the surface giving rise to an increase in KL.
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The instantaneous correlation of the surface divergence with the local KL at the
surface was found to worsen with increasing RT . As suggested by Turney & Banerjee
(2013), this can be attributed to the presence of small time scales in the highly
turbulent flow. Compared to our previous simulation at a lower RT = 507, here the
vortical structures were found to be smaller and far more numerous. As a result, the
contribution of the smaller scales to the total turbulent mass flux was observed to be
significantly larger than in the lower-RT simulations. Also, close to the surface, the
turbulent intensity in the present simulation remains highly significant, while the axes
of the vortical structures in both simulations became either aligned with or orthogonal
to the surface. The latter is a consequence of the flat, free-slip boundary condition
at the top forcing the turbulent flow to become increasingly two-dimensional. The
structures that aligned with the surface were located at the boundaries of upwelling
and downwelling regions and contributed to the vertical mixing of saturated and
unsaturated fluid, which at the surface is characterised by relatively high levels of KL.
The orthogonal (surface-attached) structures, on the other hand, were mostly located
in highly saturated areas and merely mixed already saturated fluid in the horizontal
direction.

Previously, the existence of the small- and large-eddy regimes in the presence of a
no-slip surface boundary condition was confirmed numerically in Herlina & Wissink
(2016). By ensemble averaging the data in the present simulation, we were able to
obtain the mass transfer velocities for a range of RT values between approximately
1440 and 1856. In line with the observations above, the importance of small-scale
turbulent structures was further confirmed by the scaling of the normalised mass
transfer velocity KL/(u∞Sc−1/2) with R−1/4

T . The latter corresponds to the small-eddy
model of Banerjee et al. (1968) and Lamont & Scott (1970), which according to
Theofanous (1984) is applicable for RT larger than ≈ 500. Combining results from
the present simulation with results from HW14 confirmed that, for interfacial mass
transfer driven by isotropic turbulence diffusing from below, the critical RT is indeed
approximately 500. It is likely, however, that there will be a smooth transition between
the large-eddy and the small-eddy model, which needs further investigation.
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