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Instability of a stratified boundary layer and its
coupling with internal gravity waves.

Part 1. Linear and nonlinear instabilities
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In this paper, we consider a viscous instability of a stratified boundary layer that
is a form of the familiar Tollmien–Schlichting (T-S) waves modified by a stable
density stratification. As with the usual T-S waves, the triple-deck formalism was
employed to provide a self-consistent description of linear and nonlinear instability
properties at asymptotically large Reynolds numbers. The effect of stratification on
the temporal and spatial linear growth rates is studied. It is found that stratification
reduces the maximum spatial growth rate, but enhances the maximum temporal
growth rate. This viscous instability may offer a possible alternative explanation
for the origin of certain long atmospheric waves, whose characteristics are not well
predicted by inviscid instabilities. In the high-frequency limit, the nonlinear evolution
of the disturbances is shown to be governed by a nonlinear amplitude equation,
which is an extension of the well-known Benjamin–Davis–Ono equation. Numerical
solutions indicate that as a spatially isolated disturbance evolves, it radiates a beam
of long gravity waves, and meanwhile small-scale ripples develop on its front to
form a well-defined wavepacket. It is also shown that for jet-like velocity profiles, the
standard triple-deck theory must be adjusted to account for both the displacement
and transverse pressure variation induced by the inviscid flow in the main layer. The
nonlinear evolution of high-frequency disturbances is governed by a mixed KdV–
Benjamin–Davis–Ono equation.

1. Introduction
A stably stratified shear flow over topography can support a variety of waves.

The simplest are internal gravity waves (Lighthill 1978). They are sustained simply
by the dynamic balance between buoyancy and inertia, and hence can appear in an
otherwise static fluid. Internal gravity waves are dynamically stable, and they arise
owing to external excitations, such as orographic effects, meteorological fronts and
thunderstorms. Specifically, orography forcing on a stratified oncoming flow generates
mountain lee waves.

While a density decreasing with height tends to stabilize disturbances, background
shear presents a destabilizing mechanism, which in its simplest form leads to the
well-known Kelvin–Helmholtz (K-H) instability. This instability operates in stratified
shear flows, provided the stratification is not too strong. The instability causes certain
perturbations (i.e. instability modes) to amplify exponentially. Once reaching an
appreciable amplitude, they evolve nonlinearly to form complex structures, such as
vortex billows.
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One of the most important stratified shear flows in nature is the atmospheric
boundary layer, which occupies the lowest portion of the atmosphere (about 100 m to
a fewkm) (Stull 1988). The flow field in this layer is strongly and directly influenced
by the surface in order to satisfy the no-slip boundary condition. During the daytime,
the rapid temperature rise near the ground means that vigorous convection takes
place, rendering the flow fully turbulent. However, stratification reverts to a stable
state during the night, and consequently the nocturnal boundary layer is characterized
by intermittent bursts of turbulence, interspersed by periods of laminar, but highly
unsteady, fluctuations (Coulter & Doran 2002; Nakmura & Mahrt 2005).

The waves mentioned above have all been observed in the atmospheric boundary
layer (Gossard & Hooke 1975), among which internal gravity waves are naturally the
most prevalent (Chanin & Haucheccorne 1981; Einaudi, Bedard & Finnigan 1989).
Major field studies are reported by Smith et al. (2002) and Smith (2003) on mountain
lee waves, and by Newsom & Banta (2003) on shear instability waves. Nonlinear
solitary waves represent yet another important form of waves. Two types of solitary
waves have been observed in the atmosphere: those which propagate within the lower
few kilometres of the troposphere, and those which extend over the entire troposphere.
Usually, the former consist of several waves of elevation (a spectacular example of
which is the well-known ‘morning glory’ phenomenon), whereas the latter correspond
to isolated waves of depression (for reviews, see Smith 1988; Christie 1989; Rottman &
Grimshaw 2002).

All these waves are closely related to a range of atmospheric boundary-layer
phenomena that have important meteorological implications. For instance, nocturnal
boundary-layer intermittency occurs because of both the intrinsic boundary-layer
instability and triggering by external disturbances. Recent field observations have
identified the latter to be internal gravity waves, solitary waves (which may be a
specific form of internal waves) (Sun et al. 2004) and density currents originating
from distant sources (Sun et al. 2002). Weak turbulence in nocturnal boundary layers
also implies that waves play a predominant role in transporting moisture and heat
away from the surface, as well as in transporting momentum to the surface. Mountain
lee waves may cause orographic wind storms (Lilly & Zipser 1972) and severe clear-
air turbulence that can be hazardous to aircraft (Wurtele 1970; Ralph, Neiman &
Levinson 1997). Mountain lee waves and internal gravity waves in general exert a
mean drag on the tropospheric airflow, thereby influencing the circulation of the
atmosphere (Lindzen 1981).

Various waves arise in the atmosphere, and can propagate horizontally over a long
distance because the shear and stratification in the boundary layer act as a waveguide
to trap the kinetic energy. Moreover, a shear flow often provides a source of energy,
which feeds into waves via an instability mechanism (Drazin & Reid 1981).

Internal gravity waves and shear-instability waves can be treated in the same
mathematical framework. Within linear and inviscid approximations, they are small
perturbations superimposed on the background mean velocity and density profiles,
and are governed by the Taylor–Goldstein equation (Goldstein 1931; Taylor 1931)
together with appropriate boundary conditions. Such a boundary-value problem can
be solved to predict the development and propagation of the waves, including the
dispersion relation, the growth rate and the vertical distribution of the wave energy
(Gossard & Hooke 1975). In the presence of shear, the distinction between gravity
and shear-instability waves becomes blurred. If we insist that gravity waves must be
a continuation of the waves that exist in shear-free situation, then only those which
do not extract energy from the background shear flow can be called gravity waves,
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i.e. they must correspond to a class of neutrally stable modes. Discrete modes of
this kind arise only in some special cases, and so gravity waves consist primarily of
the continuous spectrum of the Taylor–Goldstein equation. Shear-instability waves
correspond to those modes which amplify at the expense of the mean-flow energy.
They are usually trapped in the shear layer, except the long-wavelength modes, which
may decay very slowly in the transverse direction and thus appear to be radiating
in practice. In most of the literature on atmospheric science, however, the above
distinction is not strictly made. Rather it is customary to refer loosely to the short-
wavelength portion of the spectrum of the Taylor–Goldstein equation as (K-H) shear
instability waves and the long-wavelength band as gravity waves (e.g. Lalas & Einaudi
1976; Mastrantonio et al. 1976; Chimonas 2002).

The dynamic stability of a stratified flow is controlled by the Richardson number Ri,
which measures the relative importance of the stabilizing effect of density stratification
to the destabilizing effect of the shear. A useful general result is that a necessary (but
not sufficient) condition for inviscid shear instability to occur is that the Richardson
number Ri must be less than 1/4 somewhere in the flow (Howard 1961; Miles
1961; Chimonas 1970). This criterion provides a quick assessment of the possibility
of an inviscid instability. Analytical solutions of the Taylor–Goldstein equation can
be found only for some special velocity and temperature distributions (Drazin &
Howard 1966; Gossard & Hooke 1975). In general, the equation must be solved
numerically. This has been carried out by a number of investigators for profiles
pertaining to atmospheric conditions (e.g. Davis & Peltier 1976; Lalas, Einaudi &
Fua 1976; Mastrantonio et al. 1976; Merrill 1977). The theoretical results were found
to correlate reasonably well with the observed waves. Dominant instability modes
have wavelengths comparable with the width of the background shear layer, and they
primarily concentrate in the so-called critical layer, i.e. a thin region surrounding the
level at which the base-flow velocity is equal to the phase speed. The wave momentum
flux is usually weak, and there is little momentum/energy transport across the critical
layer. The instability property depends on the profiles used (Mastrantonio et al. 1976;
Chimonas & Grant 1984) and can be significantly altered by the presence of the
ground. The latter may induce long-wavelength modes even at finite values of Ri

(Davis & Peltier 1976; Lalas & Einaudi 1976; Mastrantonio et al. 1976). It may be
noted that in all these studies except that of Mastrantonio et al. (1976), the base flows
have a non-zero velocity at the ground, which means that the models may not have
fully accounted for the ground effect.

Mountain waves are essentially stationary gravity waves excited by topography.
The mathematical prediction of such wave fields was initiated by Queney (1948) and
Scorer (1949). Viscosity and turbulence were both ignored, and no boundary layer
was present. Such an inviscid laminar-flow approximation was followed in many
subsequent studies. Theories which take into account turbulence and viscous effects
have been developed since the 1970s, and a vast literature has accumulated. Wood
(2000) reviews the technical and historical developments. Here, it suffices to mention
the work of Sykes (1978), who adapted the well-known triple-deck theory (Smith
1973; Stewartson 1974) to describe the atmospheric flow past a mountain. The height
and the horizontal scale of the mountain were chosen such that the local flow is
described by the standard triple-deck structure, consisting of a lower deck, where the
flow is viscous and nonlinear, a main deck, where the flow is rotational but inviscid,
and an inviscid upper deck. The viscous motion produces a displacement, which is
transmitted across the main deck and converted to a normal velocity. The latter
induces in the upper deck a pressure gradient which in turn acts on the viscous lower
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deck. The whole system is therefore interactive and the pressure is part of the solution.
As such, the theory can accommodate a zone of separated flow. The solution also
shows that lee waves are generated in the upper deck. The theory was later extended
to three-dimensions (Sykes 1980). Formulated for a laminar and somewhat idealized
background flow, this approach seems to be the only fully consistent viscous theory
for mountain flows/waves, and it will form the basis of the present investigation.

Solitary waves have localized profiles, which retain their shapes during propagation
because of the balance between the nonlinear steepening and linear dispersion effects.
These waves originate from strong disturbances, such as a thunderstorm outflow or
sea breezes, perturbing the background stably stratified shear layer. Most theories for
such nonlinear waves have been developed based on the two basic assumptions that
(a) the wavelengths are much longer than the thickness of the stratified shear layer,
and (b) the waves are weakly nonlinear, i.e. the displacement amplitude of the waves
is much smaller than the characteristic width of the shear layer. The shear layer serves
as a horizontal waveguide to provide energy trapping. The lower boundary of the
waveguide is the Earth’s surface, whereas the upper boundary is either an infinitely
deep layer of homogeneous fluid or a rigid lid. The former boundary condition leads
to the well-known Benjamin–Davis–Ono (BDO) equation (Benjamin 1967; Davis &
Acrivos 1967; Ono 1975; Grimshaw 1981), whereas the latter leads to the Kortweg–de
Vries (KdV) equation (Benney 1966; Gear & Grimshaw 1983; Maslowe & Redekopp
1980). The particular applications to atmospheric solitary waves have been described,
for example in Rottman & Einaudi (1993) and Rottman & Grimshaw (2002).

Most previous studies were concerned with inviscid instabilities. However, the
relevance of possible viscous instabilities cannot be discarded. First, waves which have
much longer wavelengths and periods than those of K-H modes have frequently been
observed in the first tens to hundreds of metres of the atmosphere (e.g. Caughey &
Reading 1975; Einaudi et al. 1989). Unlike K-H modes, these waves tend to carry
strong momentum flux (Eymard & Weill 1979). Although long-wavelength invsicid
modes do arise in the presence of the ground (e.g. Davis & Peltier 1976; Mastrantonio
et al. 1976), their significance is undermined by their extremely small growth rates,
which may be further reduced by viscous dissipation (Davis & Peltier 1977). Secondly,
waves are often observed in atmospheric boundary layers whose velocity profiles do
not have an inflection point. Although the presence of an inflection point is not a
necessary condition for instability when a solid ground is present (Chimonas 1974),
inflection-free profiles have often been found to be stable or very weakly unstable
on the inviscid basis (Chimonas 2002). In these situations, it is of interest to look
for alternative long-wavelength instability which has a viscous origin. The only work
on possible viscous instability is that of Chimonas (1993, 1995), who showed that
the aerodynamic surface drag acting on the surface layer may cause instability. The
mathematical formulation was based on an empirical modelling of the surface friction
(including both the molecular and Reynolds stresses), while the internal friction was
ignored and the velocity in the surface layer was taken to be uniform.

In this paper, we investigate viscous instability of a stably stratified boundary
layer, which is a modified form of the familiar Tollmien–Schlichting (T-S) waves. The
instability problem will be formulated in § 2, and described in a self-consistent fashion
using the well-known triple-deck theory (Smith 1979), adopted to take account of
stratification. The general fully nonlinear system is presented in § 3. Linear spatial
and temporal instabilities are considered in § 4. In § 5, we consider the high-frequency
limit of the nonlinear system and derive a nonlinear evolution equation which is an
extension of the BDO equation. The equation is solved numerically. In § 6, we show
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that for a jet-like profile with small but non-zero free-stream velocity, the triple-
deck theory must be adjusted to take into account the displacement and the normal
pressure gradient induced by the inviscid motion in the main deck. The nonlinear
evolution of high-frequency disturbances in such a flow is shown to be governed by
a mixed KdV-BDO equation. A summary and some concluding remarks are given in
§ 7.

The coupling of the viscous instability waves with gravity waves will be considered
in Part 2 (Wu & Zhang 2008).

2. Statement of the problem and formulation
We consider a two-dimensional boundary layer which forms owing to a uniform

flow over flat terrain. The flow is assumed to be incompressible, and the usual
Boussinesq approximation is invoked to account for the effect of density stratification
on the dynamics. In the Cartesian coordinates (x∗, y∗), with x∗ and y∗ being the axes
along and normal to the surface, respectively, the governing equations can be written,
in the dimensional form, as

∂u∗

∂t∗ + u∗ ∂u∗

∂x∗ + v∗ ∂u∗

∂y∗ = − 1

ρ̄

∂p∗

∂x∗ + ν∇2u∗, (2.1)

∂v∗

∂t∗ + u∗ ∂v∗

∂x∗ + v∗ ∂v∗

∂y∗ = − 1

ρ̄

∂p∗

∂y∗ − gρ∗

ρ̄
+ ν∇2v∗, (2.2)

∂ρ∗

∂t∗ + u∗ ∂ρ∗

∂x∗ + v∗ ∂ρ∗

∂y∗ = κ∇2ρ∗, (2.3)

∂u∗

∂x∗ +
∂v∗

∂y∗ = 0, (2.4)

where t∗ is the dimensional time, (u∗, v∗) and p∗ denote the velocity and pressure,
respectively, and ρ∗ is the density variation from the mean density ρ̄; an asterisk
indicates a dimensional variable. Here ν and κ stand for the kinematic viscosity and
thermal diffusivity, respectively, and g is the acceleration due to gravity.

We are interested in how the well-known viscous T-S instability is modified by
stratification. In addition to being a problem of fundamental interest in itself, it may
be relevant to certain long waves which reside in the so-called low-level jet occupying
the first few hundred metres of the atmosphere. The effect of the rotation is excluded
from the formulation for simplicity. In the intended application, the waves of interest
have periods of about 10 min (e.g. Einaudi et al. 1989; Sun et al. 2004), which is
sufficiently short that the Coriolis force can be neglected.

Suppose that at the location of interest, the boundary layer has a local thickness δ

and a characteristic velocity U0. Then we can define a local Reynolds number

R = U0δ/ν, (2.5)

which is assumed to be large, i.e. R � 1.
The effect of stratification is characterized by a local inverse internal Froude number

S = Nδ/U0, (2.6)

where N is the local Brunt–Väisälä frequency, defined as

N = (−(g/ρ̄)dρ∗
0/dy∗)1/2, (2.7)
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with ρ∗
0 (y

∗) being the basic density profile. In this study, we shall assume that N is
constant, that is, the density varies with y∗ linearly. This restriction can be somewhat
relaxed; see the discussion in § 3.1.

Introduce non-dimensionalized variables by writing

(x∗, y∗) = δ(x, y), t∗ = tδ/U0, (u∗, v∗) = U0(u, v), p∗ = ρ̄U 2
0 p. (2.8)

The basic density ρ∗
0 can be eliminated from (2.2) by absorbing the hydrostatic

pressure P ∗
0 , defined by dP ∗

0 /dy∗ = −gρ∗
0 , into the pressure p∗. Then the buoyancy

term in (2.2) becomes −(g/ρ̄)(ρ∗ − ρ∗
0 ), which in turn can be re-written as −δN2ρ

once a dimensionless density fluctuation (Sykes 1978),

ρ = (ρ∗ − ρ∗
0 )/(−δdρ∗

0/dy∗), (2.9)

is introduced. Equation (2.3) can be rewritten in terms of ρ. The full dimensionless
equations become

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

R
∇2u, (2.10)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
− S2ρ +

1

R
∇2v, (2.11)

∂u

∂x
+

∂v

∂y
= 0, (2.12)

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
− v =

1

Pr R
∇2ρ, (2.13)

where Pr is the Prandtl number, and S characterizes the stratification effect.
In the context of the atmospheric boundary layer, the background basic flow

(UB, R−1VB) may have rather complex profiles, depending on meteorological
conditions. Indeed, the flow is often turbulent. A steady laminar base flow will
be assumed in the present study, since our main interest is in waves in nocturnal
boundary layers, which are in a more-or-less laminar state, interrupted by brief
outbursts of intermittent turbulence (Nakmura & Mahrt 2005). Moreover, we shall
assume that UB(y) is such that

UB ∼ λy, as y → 0, UB ∼ u∞ as y → ∞, (2.14)

with λ=O(1) and u∞ being ‘constants’. The function UB(y) is an otherwise arbitrary
function of y and does not have to be monotonic. As usual, the horizontal slow
variation on the scale x ∼ O(R) is suppressed, which is justified since the waves to be
considered have length scales much shorter than O(R).

Two representative cases will be considered. The first corresponds to u∞ = O(1).
The second case has u∞ � 1, which is characteristic of low-level jets and tropospheric
jet streams (Mastrantonio et al. 1976). Specifically, we consider u∞ = O(R−1/7), which
is a distinguished scaling for reasons that will become clear later (§ 6).

In order to study the stability of the base flow, a small perturbation is introduced
so that the total flow field can be written as

(u, v, p, ρ) = (UB, R−1VB, PB, 0) + (ũ, ṽ, p̃, ρ̃), (2.15)

where the mean pressure PB in general is non-uniform. The characteristic scalings of
the instability modes are different for the cases u∞ = O(1) and u∞ = O(R−1/7). These
will be considered in turn.
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O (1)       Main deck

O (R–τ)       Lower deck

O (Rτ)       Upper deck

(Viscous flow generates displacement)

(Transmits the displacement)

(Generates pressure to act on the lower deck)

Figure 1. Triple-deck structure: the width and main role of each deck. For u∞ = O(1), τ = 1/4
(cf. Smith 1979). For a jet-like profile with u∞ =O(R−1/7), τ = 1/7 (cf. Smith & Duck 1977).

3. The triple-deck structure with stratification effect
3.1. Triple-deck scaling

For the case u∞ = O(1), the viscous instability is a modified form of the T-S waves in
a boundary layer. The unstable modes have characteristic wavelength and frequency
of O(R1/4δ) and O(R−1/2U0/δ), respectively, and so we introduce the scaled spatial
and temporal variables

X = R−1/4x ≡ εx, T = R−1/2t ≡ ε2t, (3.1)

where

ε = R−1/4. (3.2)

The instability can be described by the standard triple-deck structure (Smith 1979),
consisting of a main deck where y ∼ O(1), an upper deck where y ∼ R1/4, and a
lower deck where y ∼ R−1/4 (see figure 1). This structure remains intact for weak
stratifications corresponding to S ∼ O(ε), as was realized by Sykes (1978). Thus, S is
scaled as

S = εs, (3.3)

for which the buoyancy term is a leading-order effect in the upper deck, but largely
negligible in the main and lower decks. As indicated by (3.1), the viscous instability
modes have asymptotically large wavelengths, and low frequencies or correspondingly
small phase speeds.

Before turning to mathematical details, let us discuss the implications of the
assumptions of a weak stratification (S � O(1)) and a linear density profile
(S = constant). From (2.6) and (2.7) it follows that S � O(1) corresponds to

(�y∗/δ)/(�ρ∗/ρ̄) � gδ/U 2
0 , (3.4)

where �ρ∗ denotes the density variation (from a reference value ρ̄ over a vertical
distance �y∗). For the stratification effect to be present in the upper deck, it is
required that �y∗/δ � O(1), i.e. the density variation occurs over a length scale much
greater than the boundary-layer thickness, but the relative variation �ρ∗/ρ̄ may be
of order one or smaller. The flow stability is affected, to leading order, by the density
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profile at the outer edge of the boundary layer, while its distribution in the main deck
is largely irrelevant since stratification does not play a leading role there. Therefore,
the present theory is not restricted to a globally linear stratification of density; it is
actually applicable to more general density profiles provided they approach a linear
asymptote in the far field. A linear temperature profile at the outer edge of the
boundary layer was generated in laboratory conditions (Ohya & Uchida 2003). It
has also been observed in nocturnal atmospheric boundary layers, where intermittent
turbulence occurs (see e.g. figure 4 of Newsom & Banta 2003). In both cases, the
relative change in temperature is fairly small, and it thus can be deduced from a
Taylor expansion of the density–temperature relation that the density in the outer
reach of the boundary layer must also vary linearly with the height.

In passing, we note that using triple-deck formalism, Mureithi (1997) studied the
effect of unstable stratification on low-branch T-S waves, while its influence on the
upper branch instability was considered in Mureithi, Denier & Stott (1997). In both
studies, the density (temperature) variation is assumed to be confined within the
boundary layer. As a result, the free stream is homogeneous and hence supports no
gravity waves, and the stability is affected only when stratification is strong enough
for buoyancy to manifest itself in the main deck. In contrast, in our study, the density
varies across a vertical depth much thicker than the boundary layer. Gravity waves
can be present in the free stream, and a weak stratification over such a long scale can
influence the stability.

3.2. The main deck

In the main deck, where y = O(1), the perturbation takes the form

(ũ, ṽ, p̃, ρ̃) = (εU1, ε
2V1, ε

2P1, ερ1) + · · · . (3.5)

Here the magnitude of the perturbation is chosen such that the lower deck is fully
nonlinear. This leads to a general formulation, which can be subsequently linearized
for smaller disturbances. It follows from substituting (2.15) with (3.5) into (2.10)–(2.13)
and using (3.1) that (U1, V1, P1, ρ1) satisfy equations (cf. Stewartson 1974)

∂U1

∂X
+

∂V1

∂y
= 0, UB

∂U1

∂X
+ U ′

BV1 = 0, UB

∂ρ1

∂X
= V1,

∂P1

∂y
= 0.

The velocity and density has the solution

U1 = A(X, T )U ′
B, V1 = −AXUB, ρ1 = −A(X, T ). (3.6)

The pressure does not vary across the main deck so that

P1 = P (X, T ), (3.7)

where A and P are arbitrary functions of X and T .

3.3. The upper deck

The transverse variable in the upper deck is ỹ = εy, and the perturbation expands as

(ũ, ṽ, p̃, ρ̃) = (ε2Û , ε2V̂ , ε2P̂ , ερ̂) + · · · . (3.8)

Then substituting (2.15) along with (3.8) into (2.10)–(2.13) yields

u∞
∂Û

∂X
= −∂P̂

∂X
, (3.9)

u∞
∂V̂

∂X
= −∂P̂

∂ỹ
− s2ρ̂, (3.10)
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∂Û

∂X
+

∂V̂

∂ỹ
= 0, (3.11)

u∞
∂ρ̂

∂X
= V̂ . (3.12)

By eliminating Û , V̂ and ρ̂ among these equations, it can be deduced that

∂2P̂

∂X2
+

∂2P̂

∂ỹ2
+ ŝ2P̂ = 0, (3.13)

where we have put

ŝ = s/|u∞|.
By taking the limit ỹ → 0 in (3.10), and matching with the large-y asymptote of the
main-deck solution (3.6), we find the boundary condition

∂P̂

∂ỹ
= u2

∞(AXX + ŝ2A) at ỹ = 0. (3.14)

Now (3.13) with (3.14) forms a Neumann boundary-value problem for a Helmholtz
equation. It can be solved by taking the Fourier transform with respect to X, as in
Maslowe & Redekopp (1980) and Romanova (1981). Let p̂ and â denote the Fourier
transforms of P̂ and A, respectively. Then

p̂ = −im âu2
∞eimỹ with m = (ŝ2 − k2)1/2, (3.15)

where the branch of m is chosen to ensure that its imaginary part is positive if
m is complex, and that m � 0 ( < 0) if it is real and 0 <k < ŝ (−ŝ < k < 0). This
follows from the requirement that the pressure perturbation in the upper deck must
either decay exponentially or represent a radiating (gravity) wave. Clearly, an m with
a positive imaginary part guarantees an exponential decay. On the other hand, a
positive (negative) m for k > 0 (k < 0) gives a positive vertical group velocity so that
the disturbance is outgoing (Sykes 1978; Maslowe & Redekopp 1980; Romanova
1981). Putting ỹ = 0 in (3.15) yields the pressure–displacement relation in spectral
space

p̂ = −im âu2
∞. (3.16)

This can be inverted by using the convolution theorem to obtain the pressure–
displacement relation in physical space

P (X, T ) = u2
∞

∫ ∞

−∞
G(X; ξ )(Aξξ (ξ, T ) + ŝ2A(ξ, T ))dξ, (3.17)

where

G(X; ξ ) = 1
2
{Y0(ŝ|X − ξ |) + H0(ŝ(X − ξ ))}

≡ 1
2

{
− 2

π

∫ ∞

ŝ

cos ŝ(X − ξ )√
k2 − ŝ2

dk +
2

π

∫ ŝ

0

sin ŝ(X − ξ )√
ŝ2 − k2

dk
}

(3.18)

with Y0 being the order-one Bessel function of the first kind, H0 being the order-one
Struve function. Here the integral should be interpreted as a Cauchy principal value.
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3.4. The lower deck

In the lower deck, the appropriate transverse coordinate is defined by

Y = y/ε. (3.19)

The disturbance can no longer be treated as a small perturbation because it has a
magnitude comparable with the base flow velocity. The total flow field takes the form

(u, v, p, ρ) = ε(U, ε2V, εP, ρ) + · · · , (3.20)

Substitution of the above expansion into (2.10)–(2.13) yields, at leading order,

∂U

∂T
+ U

∂U

∂X
+ V

∂U

∂Y
= −∂P

∂X
+

∂2U

∂Y 2
, (3.21)

∂U

∂X
+

∂V

∂Y
= 0, (3.22)

plus ∂P/∂Y = 0, which has been used to equate the pressure in the lower deck to
P (X, T ). On the ground, U and V satisfy the no-slip and no-penetration boundary
conditions, i.e.

U = V = 0 at Y = 0, (3.23)

while matching εU with (UB + εU1) in the main deck (see (3.6)) requires

U → λ(Y + A(X, T )) as Y → ∞. (3.24)

The nonlinear instability problem is described by the system consisting of equations
(3.21)–(3.22), the pressure–displacement relation (3.17), and the boundary and
matching conditions (3.23) and (3.24).

Note that since the streamwise velocity of the disturbance is of the same order of
magnitude, viscous T-S modes spread over the majority of the boundary layer, in
contrast to typical K-H modes, which concentrate in their critical layers.

4. Linear stability analysis
4.1. Derivation of the dispersion relation

Now we assume that the perturbation is weak, i.e. (V, P, A) = O(ε̃) with ε̃ � 1. Then
the streamwise velocity U in the lower deck is a uniform shear flow λY superimposed
by a small perturbation. We thus can write

(U, V, A, P ) = (λY, 0, 0, 0) + ε̃(ũs, ṽs, ãs, p̃s) + · · · . (4.1)

Substituting (4.1) into (3.21)–(3.24) and linearizing for ε̃ � O(1), we obtain

∂ũs

∂T
+ λY

∂ũs

∂X
+ λṽs = −∂p̃s

∂X
+

∂2ũs

∂Y 2
,

∂ũs

∂X
+

∂ṽs

∂Y
= 0, (4.2)

ũs = ṽs = 0 at Y = 0; ũs → λãs as Y → ∞, (4.3)

supplemented by the pressure–displacement relation, which remains as (3.17) with P

and A being replaced by p̃s and ãs , respectively.
We can seek normal modes of the travelling-waveform

(ũs, ṽs, ãs, p̃s)) = (ûs, v̂s, âs, p̂s)e
i(kX−ωT ) + c.c.
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Then (ûs, v̂s, âs, p̂s) satisfy the equations

−iωûs + ikλY ûs + λv̂s = −ikp̂s + û′′
s , (4.4)

ikûs + v̂′
s = 0, (4.5)

ûs = 0, v̂s = 0 at Y = 0, (4.6)

ûs → λâs as Y → ∞, (4.7)

together with the pressure–displacement relation

p̂s = −imâs. (4.8)

By differentiating (4.4) with respect to Y , and using (4.5) to eliminate v̂s , we have

û′′′
s − i(kλY − ω)û′

s = 0. (4.9)

The solution satisfying ûs = 0 at Y = 0 is

ûs = C

∫ ξ

ξ0

Ai(ξ )dξ, (4.10)

where C is a constant, Ai denotes the Airy function, and

ξ = (ikλ)1/3Y + ξ0, ξ0 = −iω(ikλ)−2/3. (4.11)

The vertical velocity can be found from (4.5),

v̂s = −ik(ikλ)1/3C

∫ ξ

ξ0

(ξ − ξ̃ )Ai(ξ̃ )dξ̃ . (4.12)

From the matching requirement (4.7), it follows that

C

∫ ∞

ξ0

Ai(ξ )dξ = λâs . (4.13)

Setting Y = 0 in (4.4) yields û′′
s (ξ0) = ikp̂s . Application of this gives

CAi′(ξ0)(ikλ)
2/3 = ikp̂s. (4.14)

Elimination of p̂s and âs among (4.8) and (4.13)–(4.14) leads to the dispersion relation

�(k, ω) ≡
∫ ∞

ξ0

Ai(ξ )dξ − λ(ikλ)2/3Ai′(ξ0)/(km) = 0. (4.15)

When ŝ = 0, (4.15) is just the lowest-order large-R asymptotic approximation to the
characteristic equation for the lower branch T-S waves (Smith 1979).

4.2. Spatial and temporal growth rates

From (4.15), we can calculate either the complex wavenumber k = kr + iki for a given
real ω (spatial instability), or the complex frequency ω = ωr + iωi for a given real
wavenumber k (temporal instability). For that purpose, it is necessary to evaluate
the Airy function Ai(ξ ) numerically. This was done by a fourth-order Runge–Kutta
method, starting from a large ξ , at which the initial values are given by the asymptotic
behaviours of Ai and Ai′ (Abramowitz & Stegun 1964),

Ai(ξ ) ∼ 1
2
π−1/2ξ−1/4e−ζ

∞∑
0

(−1)ncnζ
−n, (4.16)

Ai′(ξ ) = − 1
2
π−1/2ξ 1/4e−ζ

∞∑
0

(−1)ndnζ
−n, (4.17)
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where ζ = (2/3)ξ 3/2, and the constants are defined by

c0 = 1, ck =
�

(
3k + 1

2

)
54kk!�

(
k + 1

2

) ; d0 = 1, dk = −6k + 1

6k − 1
ck, (4.18)

with �(k) being the gamma function. The root of the dispersion relation is sought by
Newton–Raphson iteration. Numerical results will be presented below.

In conjunction with numerical results, approximations can be found in the high-
frequency (or short-wavelength) limit, corresponding to k, ω � O(1). It turns out that
ω is O(k2) (see below) so that ξ0 = O(k4/3) � O(1), for which (Abramowitz & Stegun
1964)∫ ξ0

∞
Ai(ξ )dξ = − 1

2
π−1/2ξ

−3/4
0 exp

(
− 2

3
ξ

3/2
0

)[
1 −

(
3
4

+ 3
2
c1)ξ

−3/2
0 + O

(
ξ−3
0

)]
. (4.19)

On using (4.17) and (4.19) in (4.15), the dispersion relation is approximated by

k
[
1−

(
3
4
+3

2
c1

)
ξ

−3/2
0 +O

(
ξ−3
0

)]
+λ(ikλ)2/3ξ0

1√
ŝ2 − k2

[
1− 3

2
d1ξ

−3/2
0 +O

(
ξ−3
0

)]
= 0. (4.20)

Consider temporal instability first, for which k is real. We assume that k ∼ ŝ � 1,
and an inspection of the balance in (4.20) suggests that ω expands as

ω = k2(ω0 + k−2ω1 + · · ·). (4.21)

Inserting (4.21) into (4.20), we found that for k < ŝ

ω0 = − i

λ
(ŝ2/k2 − 1)1/2,

ω1 = i
(

3
4

+ 3
2
c1 − 3

2
d1

)
(ŝ2/k2 − 1)−1/4λ3/2 = i(ŝ2/k2 − 1)−1/4λ3/2.

⎫⎬
⎭ (4.22)

The above expressions are also valid for k > ŝ provided the branch of the square root
is taken to be eiπ/2(1 − ŝ2/k2)1/2, yielding

ω0 =
1

λ
(1 − ŝ2/k2)1/2,

ω1 = eπi/4(1 − ŝ2/k2)−1/4λ3/2.

⎫⎬
⎭ (4.23)

The results (4.22) and (4.23) indicate that the modes within the band 1 � k < ŝ are
highly damped, while those in the band k > ŝ are nearly neutral. Both (4.22) and
(4.23), however, cease to be valid when (1 − ŝ2/k2) ∼ O(k−8/3) because expansion
(4.21) becomes disordered. Furthermore, since ω becomes O(k2/3), ξ0 = O(1) and so
(4.17) and (4.19) can no longer be used. The full dispersion relation (4.15) must be
solved. Nevertheless, the above consideration suggests that the most unstable mode
exists in this regime, in which the real and imaginary parts of ω are comparable, both
of O(k2/3). Since k ∼ O(ŝ), it follows that in the limit ŝ � 1, the most unstable mode
has a characteristic frequency and a growth rate of O(ŝ2/3). We therefore come to
the surprising conclusion that stratification has a destabilizing effect in the present
temporal instability formulation. Numerical solutions of the full dispersion relation
will confirm this.

Consider now spatial instability, for which ω is real and can be taken to be
positive without loss of generality. We assume that ω � 1 and ŝ � 1 or more precisely
ŝ = O(ω1/2) so that we can write

ŝ = ω1/2ŝ0. (4.24)
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Inspection of the dominant balance in (4.20) suggests that k expands as

k = ω1/2(k0 + ω−1k1 + · · ·). (4.25)

A straightforward calculation shows that

k0 =
( ŝ2

0 +
√

ŝ4
0 + 4λ2

2

)1/2

,

k1 = − λ3√
ŝ4
0 + 4λ2

(
3
4

+ 3
2
c1 − 3

2
d1

)
eπi/4 = − λ3eπi/4√

ŝ4
0 + 4λ2

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.26)

The surface shear λ plays a key role in the present viscous instability. The
dependence on it can be best elucidated by the scaling relations

k = λ5/4kN, ω = λ3/2ωN, ŝ0 = λ5/4ŝN . (4.27)

It then follows that kN and ωN satisfy (4.15) with λ = 1 and sN being the parameter.
In the following, we shall present the result with λ = 1, but we shall drop the subscript
‘N ’ for brevity.

Typical eigenvalues for temporal instability are shown in figure 2, where the
frequency and growth rate, ωr and ωi , are plotted as functions of k for selected values
of ŝ. Modes with small wavenumbers k (i.e. small frequencies ωr ) decay, whereas
modes with relatively short wavelengths (i.e. large k) are unstable. As stratification
becomes strong, a broader band of decaying modes become more severely damped
(figure 2b). Meanwhile the unstable modes shift to the shorter wavelength end.
Stratification tends to increase the maximum temporal growth rate. For the moderate
values of ŝ considered here, the growing modes are all trapped (i.e. with k > ŝ).

Figure 3 shows the temporal growth rates for two relatively large values of ŝ:
ŝ = 7, 12. The numerical result obtained by solving the dispersion relation (4.15) is
compared with the asymptotic approximation (4.21)–(4.22). The agreement is good
even for moderate values of k. A close view of the band of growing modes is shown in
figure 3(b). These modes locate to the right of k = ŝ, near which the maximum growth
is attained. The maximum increases with ŝ, as suggested by the large-k asymptotic
approximation. Only trapped modes (k > ŝ) are unstable, while radiating modes, i.e.
those with k < ŝ, are heavily damped.

The numerical results together with the analysis in the limit ŝ � 1 indicate that
stable stratification has a destabilizing effect for any value of ŝ. This is a surprising
and highly counterintuitive result, despite the fact that a possible destabilizing role of
stratification was implied previously in an example given by Thorpe (1969), who gave
a velocity profile which is stable without stratification, but inviscidly unstable with
stratification. The occurrence of instability in the later context may be understood in
terms of an interaction between waves of negative and positive energies (Fabrikant &
Stepanyants 1998). However, it does not seem possible to explain the present
destabilization of viscous instability from that standpoint.

Figure 4 shows typical eigenvalues in the spatial instability formulation. Here the
real (kr ) and imaginary (ki) parts of the complex wavenumber are plotted as functions
of frequency ω for selected values of ŝ. Consistent with the spatial instability result,
modes with small ω are damped, and amplification occurs for relatively large ω. This
means that if a perturbation is weak, it will decay initially. However, as it propagates
downstream, its dimensionless frequency increases owing to the thickening of the
boundary layer and thus the perturbation will eventually undergo amplification.
Overall, stratification plays a stabilizing role in that the maximum growth rate
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(b)

Figure 2. Temporal instability: eigenvalue ω vs. k for selected values of ŝ. (a) The real part
(ωr ); (b) the imaginary part (ωi). The dashed lines represent the asymptotic approximation
(4.23).

decreases with ŝ. The stabilizing effect is not uniform for all disturbances as might
be intuitively expected. For disturbances with frequencies in a certain range (e.g.
8 <ω < 12 in figure 4b), their local growth rates may be enhanced by moderate
stratification (e.g. for ŝ < 3 in figure 4b). It is also surprising that stratification
has opposite effects on the maximum growth rates in the temporal and spatial
formulations.

4.3. Relevance of viscous instability

Waves in stratified boundary layers are usually attributed to inviscid instabilities of the
K-H type. Possible viscous instability has received scant attention. The only viscous
mechanism proposed is the drag-induced instability (Chimonas 1993, 1995). The
present modified T-S instability represents another. The two viscous instabilities share
the physics that viscous effect induces a suitable phase lag between the fluctuation
of the velocity components in such a way that the resulting Reynolds stress feeds
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ŝ = 12

(a)

k

ωi

6 8 10 12 14
0

1

2

3

4(b)

Figure 3. Temporal growth rate vs. wavenumber k for ŝ = 7, 12. The dotted lines represent
the asymptotic approximation (4.22)–(4.23).

energy into the waves. However, the mathematical formulations are very different,
and a concrete relation between them cannot be established.

The present paper shows that the T-S mechanism continues to operate in a stratified
boundary layer, leading to amplification of waves whose wavelengths are much
larger than the characteristic width of the shear layer. This viscous mechanism is
complementary to K-H instability since the latter primarily amplifies relatively short-
scale waves.

Evidence of T-S waves in stratified boundary layers can be found in the laboratory
experiment of Ohya & Uchida (2003), who measured the fluctuations in the weak
to strong stratification regimes. We performed the stability calculations pertaining
to their weak stratification (i.e. S1) case, for which the measurement provided the
velocity profile for UB(y) > 0.26 (see their figure 2). Using the velocity data close
to the wall, we deduced that the wall shear λ ≈ 3.0, which is a rough estimate. A
linear approximation was used to extrapolate the velocity from UB = 0.26 to UB = 0.
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ω

Figure 4. Spatial instability: the eigenvalue k vs. ω for selected values of ŝ. (a) The real part
(kr ); (b) the imaginary part (ki). The dashed lines represent the asymptotic approximation
(4.26).

The origin of the vertical coordinate, corresponding to UB = 0, was found to shift
downward by 0.1δ.

At the location of measurement, the Reynolds number based on a nominal
boundary-layer thickness δ = 0.45 m is R = 34500. It follows that the small parameter
ε = 6.92 × 10−2. The Richardson number in the outer portion of the boundary layer
is 0.28, from which we extracted a value for the stratification parameter ŝ = 1.94.

In order to facilitate a comparison with the experiment, we construct, using the
multiplicative rule, a composite solution for the eigenfunction of the streamwise
velocity,

ûc = U ′
B(y)

∫ ξ

ξ0

Ai(ξ )dξ, (4.28)

from the main-deck and lower-deck solutions, (3.6) and (4.10). Here a constant factor
has been dropped from (4.28) since it does not affect the shape of the instability modes.
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Figure 5. Comparison of the predicted mode shape (curves without symbols) for u and v
with the experimental measurement (symbols) (Ohya & Uchida 2003).

Similarly, we obtain the composite solution for the vertical velocity component

v̂c = eimỹUB(y)

∫ ξ

ξ0

(ξ − ξ̃ )Ai(ξ̃ )dξ̃ /y. (4.29)

from (3.6) and (4.12). Note that we also have to use the upper-deck solution v ∼ eimỹ

because the validity of the main-deck solution for v, unlike that for u, does not extend
to the upper deck. Expressions (4.28) and (4.29) describe the modal shape of a T-S
wave in the entire boundary layer.

For the stratification parameter ŝ =1.94, the locally most unstable mode has the
normalized frequency ω ≈ 8.0. However, this mode does not necessarily represent
the locally most predominant disturbance observed, because for a spatial developing
mode of fixed physical frequency to be dominant at an observation location, it must
have already gained a large amplitude through substantial amplification upstream.
Its normalized local frequency must be greater than 8.0 because of the thickening
of the boundary layer. In our calculation, we choose ω = 30.0. The wavelength of
this mode is about 1.8m, close to the wavelengths (approximately 1–2 m) of the
observed disturbances in the experiment (Ohya & Uchida 2003). The distribution
of the streamwise and normal velocities is shown in figure 5. Since linear stability
theory cannot predict the absolute amplitude, v̂c and ûc are normalized such that their
maximum is unity. The predicted modal shape is characteristic of a wall mode, quite
distinct from a K-H mode. The theoretical result clearly resembles the measurement.
A better agreement is not warranted because of several complications. First, the
disturbance in the experiment is uncontrolled and hence is most likely to be broadband
in its nature, but the spectral content is unknown. Secondly, the wall shear extracted
from the experimental data is not expected to be accurate, and indeed an error of 30 %
cannot be ruled out. In view of these uncertainties, we also computed eigenfunctions
using different values for ω (between 8 and 50) and λ (between 2 and 4), and found
that the result is only moderately altered. Based on this level of agreement and the
robustness of the modal shape, it seems reasonable to suggest that T-S instability
operates in the experiment.
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Before relating the theoretical findings to waves in the atmospheric boundary
layer, we must address a difficult question: how might the assumption of a laminar
base flow be justified? In nocturnal boundary layers, fluctuations are for most of
the time quite weak, and turbulence is intermittent (Nakmura & Mahrt 2005). We
believe that use of a laminar base flow is appropriate. In more general situations,
waves and persistent small-scale turbulence coexist. Not only are the waves nonlinear,
the Reynolds stresses contributed by these waves and turbulence act to alter the
mean flow substantially. Yet, since these fully developed waves originate from the
instability of a laminar state, a stability analysis of a laminar base flow might provide
a qualitative estimate of their gross characteristics such as wavelength, frequency and
propagation speed. Some investigators use instead a turbulent mean flow for stability
calculations; however, this practice is not as straightforward as it looks. Because a
turbulent profile is not a solution to the Navier–Stokes equations, the relevant stability
equation (i.e. the Goldstein–Taylor, or Orr–Sommerfeld-like equation when viscosity
is included) cannot be derived unless the effect of turbulence on instability waves is
assumed to be negligible. Such an assumption has often been made implicitly without
being acknowledged. In the case of inviscid instability, it may probably be justified
as follows: suppose that an eddy-viscosity model is used to parameterize the small-
scale effect, then the eddy viscosity, just like molecular viscosity, can be neglected
since inviscid instability is sensitive to neither. For the present viscous instability, the
logarithmic layer in the turbulent profile presents an additional complication. If the
lower deck lies just underneath this layer, the assumed property (2.14) is not satisfied.
In order for the analysis to be applicable, it must be further assumed that the lower
deck is embedded well within a laminar sublayer. Whether a laminar or turbulent
mean flow is used, the theory represents a drastic simplification of real atmospheric
boundary layers, and so we can only expect it to capture some qualitative features of
certain atmospheric waves.

Evidence of waves exhibiting the qualitative characteristics of the T-S instability may
be found in some field observations. For example, waves with very large wavelengths
(about 1–3 km) and long periods (5–10 min) have frequently been observed to reside
in the first few tens to hundreds metres of the atmosphere, where the wind speed
is in the range of 4 to 9 m s−1 (Caughey & Reading 1975; Eymard & Weill 1979;
Einaudi et al. 1989). The propagation velocities of these waves are also somewhat
small, between 0.3 and 0.5 of the maximum wind speed. They reside in the main
bulk of the boundary layer (see figure 7a of Caughey & Reading 1975), and carry
a strong momentum flux (Eymard & Weill 1979). These features are different from
those of typical inviscid K-H modes, but are consistent with T-S waves. This is
not surprising from the theoretical standpoint, because the long-wavelength nature
implies that these waves are sensitive to the viscous effect exerted by the ground. It
thus seems not unreasonable to suggest that these long waves arise owing to viscous
instability. Unfortunately, the observational data in the literature are not detailed
enough to enable us to make a firm connection.

5. Nonlinear stability and collapse of wave fronts
5.1. Extended Benjamin–Davis–Ono equation

In the high-frequency limit, k � O(1), the spatial linear growth rate is vanishingly
small (see (4.26)), and so is the temporal growth rate for k > ŝ (see (4.23)). When
such a nearly neutral instability mode amplifies, it will evolve through a series of
weakly nonlinear stages, for which amplitude equations of the Landau–Stuart type
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may be derived. However, similar to the non-stratified case (ŝ = 0) considered by
Smith & Burggraf (1985), the coefficients of the nonlinear terms turn out to be purely
imaginary with the consequence that the weakly nonlinear effect influences the phase
but not the magnitude of the unstable mode. Following Smith & Burggraf (1985), we
consider the strongly nonlinear stage.

Let ∂/∂T = O(Ω) � O(1). Then the dispersion relation in the high-frequency limit,
(4.21) or (4.25), implies that ∂/∂X = O(Ω1/2) � O(1). The above considerations suggest
the introduction of the fast time and short space variables

T̄ = ΩT, X̄ = Ω1/2X. (5.1)

In order to retain the stratification effect, the parameter ŝ is rescaled as

ŝ = Ω1/2s̄ with s̄ = O(1).

The lower deck splits into two layers: an inviscid buffer layer with Y ∼ Ω1/2 and a
viscous sublayer where Y ∼ Ω−1/2.

In the buffer layer, the appropriate transverse variable is Z = Ω−1/2Y = O(1), and
(U, V, P, A) expands as (Smith & Burggraf 1985)

(U, V, P, A) =
(
Ω1/2U ∗, Ω3/2V ∗, ΩP ∗, Ω

1
2 A∗) + · · · . (5.2)

Substitution of expansion (5.2) with (5.1) into (3.21)–(3.22) yields the inviscid equations

∂U ∗

∂X̄
+

∂V ∗

∂Z
= 0,

∂U ∗

∂T̄
+ U ∗ ∂U ∗

∂X̄
+ V ∗ ∂U ∗

∂Z
= −∂P ∗

∂X̄
. (5.3)

The matching condition (3.24) now reads

U ∗ → λ(Z + A∗) as Z → ∞ (5.4)

while the pressure–displacement relation becomes

P ∗(X̄, T̄ ) =

∫ ∞

−∞
G(X; ξ )(s̄|X̄ − ξ |)

(
A∗

ξξ + s̄2A∗) dξ. (5.5)

The functions

U ∗ = λ(Z + A∗), V ∗ = −λA∗
X̄
Z (5.6)

satisfy both the continuity equation and matching condition (5.4). Substitution of
these and (5.5) into the momentum equation in (5.3) yields a nonlinear equation for
A∗,

λ
∂A∗

∂T̄
+ λ2A∗ ∂A∗

∂X̄
+

∂

∂X̄

∫ ∞

−∞
G(X̄; ξ )((A∗

ξξ + s̄2A∗)dξ = 0. (5.7)

The parameter λ can be eliminated by putting A∗ = λ−2A† and T̄ = λT †, so that (5.7)
finally becomes

∂A†

∂T † + A† ∂A†

∂X̄
+

∂

∂X̄

∫ ∞

−∞
G(X; ξ )(s̄|X̄ − ξ |)(A†

ξξ + s̄2A†)dξ = 0. (5.8)

The viscous sublayer is described by the transverse variable Z̄ = Ω1/2Y = O(1),
and the solution expands as

(U, V, P, A) =
(
Ω1/2Ū , Ω1/2V̄ , ΩP ∗, Ω1/2A∗) + · · · . (5.9)
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Substitution of these with (5.1) into (3.21)–(3.22) shows that the full viscous nonlinear
equations

∂Ū

∂X̄
+

∂V̄

∂Z̄
= 0,

∂Ū

∂T̄
+ Ū

∂Ū

∂X̄
+ V̄

∂Ū

∂Z̄
= −∂P ∗

∂X̄
+

∂2Ū

∂Z̄2
, (5.10)

are reinstated. This is a system of classical boundary-layer equations because the
pressure P ∗ is given by (5.5). Since viscous diffusion appears at leading order, the
boundary conditions

Ū = V̄ = 0 at Z̄ = 0, (5.11)

can be imposed. Matching with the buffer layer requires that

Ū → λA∗ as Z̄ → ∞. (5.12)

It is worth noting that taking the limit Z̄ → ∞ in the momentum equation (5.10) and
using (5.12) and (5.5), also lead to evolution equation (5.7).

For s̄ � 1, the Bessel and Struve functions Y0 and H0 in G may be approximated by
their asymptotes for s̄X̄ � O(1), namely, Y0(s̄X̄) ∼ (2/π) ln(s̄X̄) and H0(s̄X̄) ∼ s̄X̄/(2π),
use of which in (5.8) reduces it to the original BDO equation (Smith & Burggraf
1985)

∂A†

∂T † + A† ∂A†

∂X̄
+

1

π

∫ ∞

−∞

A
†
ξξ

X̄ − ξ
dξ = 0. (5.13)

For this reason, (5.8) will be referred to as an extended BDO equation. This
equation may arise in a variety of flows. For example, by generalizing the model
of Benjamin (1967), Davis & Acrivos (1967) and Ono (1975) to include a weak
density stratification in the layer of infinite depth, Maslowe & Redekopp (1980)
and Romanova (1981) derived the evolution equation equivalent to (5.8) (with the
present form being somewhat simpler than theirs). A two-dimensional extension was
obtained by Voronovich, Shrira & Stepanyants (1998). It is, however, worth noting
that in these studies the leading-order propagation speed is predicted by linear theory
describing the waveguide property of the shear layer, and is generally comparable
with the characteristic speed of the background flow. There the nonlinear effect merely
provides a higher-order correction. The waves described by the present theory are of
a different kind in that their propagation speeds are much smaller than the base flow,
and are influenced by nonlinearity at leading order.

In the limit s̄ = 0, the BDO equation admits the well-known algebraic solitary
solution

A†(X̄, T †) =
a

1 + c2(X̄ − cT †)2
, (5.14)

where the propagation speed c is related to the amplitude a via

c = a/4. (5.15)

However, for s̄ = 0, following Maslowe & Redekopp (1980), it can be shown that

∂

∂T †

∫ ∞

−∞
A†2dX̄ = −

∫ s̄

0

k
√

s̄2 − k2 |a†(k, T †)|2dk, (5.16)

where a†(k, T †) denotes the Fourier transform of A†, and in the derivation the
integral representation (3.18) for G was used. The result (5.16) indicates that radiating
components in the wavenumber band −s̄ < k < s̄ appear as energy drain, and a
(spatially compact) perturbation must decay owing to radiation of gravity waves
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(Maslowe & Redekopp 1980; Romanova 1981). A solitary-wave solution thus no
longer exists. On the other hand, it will be shown in Part 2 that an extended BDO
equation with forcing may be derived, in which the incoming gravity waves in the
outer flow may act as a driving term. If these waves propagate at a common speed,
they may excite within the boundary-layer disturbances which may appear to be
solitary.

5.2. Numerical solutions

Equation (5.8) as a potentially generic equation clearly warrants a thorough
investigation. In the present paper, a preliminary study will be made. We solve
(5.8) numerically using a spectral method, which is convenient and also aids the
interpretation of numerical results. For the purpose of illustration, the initial condition
is taken to be (5.14), and the stratification parameter s̄ = 0.5. Both the initial profile
(5.14) and equation (5.8) are Fourier transformed with respect to X̄, and the resulting
equation for a†(k, T †) in the spectral space k is truncated for k ∈ [−K, K]. A fourth-
order Runge–Kutta scheme is used to obtain a†(k, T †) at subsequent time T †, which
is then inverted to find A†(X̄, T †).

The spatial distribution of the disturbance at three different times is displayed in
figure 6. As expected, the overall magnitude of the disturbance decays because of
energy loss caused by radiation of gravity waves. Oscillations or ripples of relatively
short scale soon appear on the front of the initially isolated disturbance. These
oscillations propagate downstream, and become stronger as time increases. At T † = 2,
the original peak is no longer dominant, and the front has almost collapsed completely,
replaced by a quite well-developed wavepacket of shorter wavelength. In this sense,
the front may be said to be locally unstable. A careful resolution check was carried
out to ensure that the oscillations were well resolved. The results shown here were
obtained with K = 8, the time step �T † = 10−3 and spectral discretization parameter
�k = 10−2. The results do not change when K = 8 is increased to 16, or when either
�k or �X̄ is halved.

The reason that the oscillations arise becomes clear when we examine the evolution
of spectrum a†(k, T †). As shown in figure 7, the energy of the radiating components
in the wavenumber band k ∈ (−s, s) decreases, but the (Fourier) spectral components
with wavenumbers |k| >s develop to acquire appreciable magnitudes. The appearance
of the oscillations is associated with these components, because when the latter are
filtered out in the Fourier inversion, ripples are found to disappear. The fact that
the energy in the high-wavenumber components has almost diminished completely
indicates that the spectral bandwidth is large enough to achieve convergence.

We also calculated the pressure field of the radiated gravity waves by inverting
(3.15). Figure 8 shows the contours of the pressure field at T † = 0 and 1. The emitted
gravity waves are highly directional; they form a beam, which is almost vertical.
The gross character of the radiation remains almost intact at later times, despite the
appearance of the ripples. This is not surprising, because those ripples are associated
with non-radiating components.

6. Triple deck theory for jet-like profiles
The viscous instability described in § 4 is robust in the sense that the leading-order

dispersion relation is controlled by the surface shear λ and is independent of the
detailed distribution provided u∞ = O(1). However, for u∞ � O(1), the scaling and
the instability property undergo significant changes. In the extreme case, u∞ = 0, the
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Figure 6. The profile of the disturbance: A†(X̄, T †) vs. X̄ at (a) T † = 0.5, (b) 1.0 and (c) 2.0.
The dashed lines represent the initial condition (5.14).

triple-deck structure is reduced to a double-deck one and the pressure–displacement
relation becomes P ∼ AXX instead of (3.17) (Smith & Duck 1977). Jet-like profiles
with small u∞ � O(1) frequently arise in the atmospheric boundary layer (e.g.
Mastrantonio et al. 1976). They possess inflection points and hence can support
short-scale inviscid instability whose wavelength is comparable with the width of
the shear layer. Our interest is in long-wavelength viscous instability. Specifically,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

93
8X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200700938X


Instability of a stratified boundary layer and internal gravity waves. Part 1 401

a†

–8 –4 0 4 8

–8 –4 0 4 8

–8 –4 0 4 8

–2

0

2

4

6

8

10

12
(a)

(b)

(c)

a†

–2

0

2

4

6

8

10

12

a†

–2

0

2

4

6

8

10

12

k

Figure 7. Evolution of the disturbance spectrum: a†(k, T †) vs. k at (a) T † = 0.5, (b) 1.0 and

(c) 2.0. Solid lines: real part a
†
r (k, T †); dashed-dotted lines: imaginary a

†
i (k, T †). The dashed

lines represent spectrum of the initial condition (5.14).

we consider the distinguished regime which ‘bridges’ the cases of u∞ = O(1) and
u∞ = 0. This regime is attained when the pressure variation across the main deck is
comparable with the pressure generated in the upper deck. This requirement fixes the
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Figure 8. Radiation of gravity waves as shown by contours of the pressure field in the upper
deck. (a) T † = 0.5; (b) T † = 1.0.

scaling for u∞ as

u∞ = R−1/7χ with χ = O(1). (6.1)

The instability modes have characteristic wavelengths of O(R1/7) and frequencies of
O(R−3/7), suggesting the introduction of the normalized space and time variables

X = εx, T = ε3t,

where throughout this section, the small parameter

ε = R−1/7. (6.2)

The resulting modified triple-deck structure is shown in figure 1. The stratification
parameter scales as

S = ε3/2s, (6.3)

so that stratification effects appear in the upper deck only.
The disturbance in the main deck now expands as

(ũ, ṽ, p̃, ρ̃) = ε2{(U1, εV1, ε
2P1, ρ1) + ε2(U2, εV2, ε

2P2, ρ2) + · · ·}. (6.4)
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The leading-order solution for the velocity and density remains the same as (3.6). One
of the main differences from § 3 occurs in the pressure, which now satisfies

UB

∂V1

∂X
= −∂P1

∂y
,

so that there is a normal pressure gradient across the main deck. P1 has the solution

P1 = P (X, T ) + AXX

∫ y

0

U 2
Bdy, (6.5)

with P (X, T ) being an arbitrary function. As ỹ → ∞,

P1 ∼ (P (X, T ) − IAXX) + ε2χ2y + · · · , (6.6)

where I is an O(1) constant defined as

I =

∫ ∞

0

(u2
∞ − U 2

B)dy.

For a jet-like profile, it turns out to be necessary to consider the second-order solution,
U2 and V2, which satisfy

∂U2

∂X
+

∂V2

∂y
= 0, UB

∂U2

∂X
+ U ′

BV2 = −AT U ′
B − ∂P1

∂X
. (6.7a, b)

After eliminating U2, and solving the resultant equation for V2, we find that

V2 = −A2,XUB − AT + UB

{
AXXX

∫ y

a

(
I +

∫ y

0

U 2
Bdŷ

)
dy

U 2
B

+(PX − IAXXX)
[∫ y

∞

(
1

U 2
B

− 1

ε2χ2

)
dy +

y

ε2χ2

]}
, (6.8)

where A2 is an O(1) arbitrary function of X, and a = 0 an arbitrary constant. It
follows that as y → ∞, V2 ∼ (PX − IAXXX)y/(εχ) + O(1) and so

ṽ ∼ ε4χ(−AX). (6.9)

The solution for U2 can be obtained from (6.7a), and it can be shown that for y � 1,

U2 ∼ ε−2(P − IAXX)λ(J − y/χ2) + PU ′′
B(0)λ−2

(
ln y + 3

2
+ O(y ln y)

)
+ · · · ,

where J denotes the Pearce integral

J =

∫ ∞

0

( ε2

U 2
B

− 1

χ2
− ε2

λ2y2

)
dy.

This integral is regular if U ′′
B(0) = 0 (i.e. if the mean pressure gradient is zero), but is

singular and hence must be interpreted as a Hadamard finite part if U ′′
B(0) = 0. Note

that for a jet-like profile under consideration, the integrand is O(1) so that J is O(1)
rather than O(ε2). As a consequence, the slip velocity in ε2U2 is comparable with U1,
and

ũ ∼ ε2λ{A + J (P − IAXX)}.
The extra term represents the displacement induced by the inviscid flow in the main
deck. This now becomes a leading-order effect as opposed to being a high-order
correction in the usual case where u∞ = O(1).
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In the upper deck, the transverse variable ỹ = εy = O(1), and the perturbation
expands as

(ũ, ṽ, p̃, ρ̃) = (ε4Û , ε4V̂ , ε4P̂ , ε2ρ̂) + · · · . (6.10)

Substituting (2.15) along with (6.10) and (6.3) into (2.10)–(2.13) yields the same
equations as (3.9)–(3.12) provided that u∞ is replaced by χ . It follows that P̂ satisfies
the same equation as (3.13) except that

ŝ = s/χ.

The boundary condition that ∂P̂ /∂ỹ = χ2(AXX + ŝ2A) remains intact in view of (6.9).
Thus with the right correspondence of the parameters, the solution for P̂ is identical
to that given in § 3.3. Matching P̂ with the main-deck solution (see (6.6)), we obtain
the pressure–displacement relation

P (X, T ) = IAXX + χ2

∫ ∞

−∞
G(X; ξ )(Aξξ (ξ, T ) + ŝ2A(ξ, T ))dξ. (6.11)

The first term on the right-hand side represents the pressure jump across the main
deck, while the second term is the pressure induced in the upper deck.

The appropriate transverse coordinate in the lower deck is Y = y/ε2. The total flow
field takes the form

(u, v, p, ρ) = (ε2U, ε5V, ε4P, ε2ρ) + · · · . (6.12)

The governing equations are (3.21)–(3.22), and the boundary condition (3.23) remains
intact, but the matching requirement with the main deck now becomes (cf. (3.24))

U → λ
{

Y + A + χ2J

∫ ∞

−∞
G(X; ξ )

(
Aξξ + ŝ2A

)
dξ

}
as Y → ∞. (6.13)

In addition to a different scaling, the present inviscid–viscous interaction for a jet-like
flow differs from the standard one in that the main deck plays a more active role,
namely, it contributes both a displacement effect and a normal pressure gradient. As
a result, the pressure induced in the inviscid upper deck, rather than acting entirely
on the viscous motion, is ‘cushioned’ by the pressure jump across the main deck.
Conversely, the displacement generated by the viscous motion, is ‘augmented’ by the
main-deck motion instead of being directly transmitted to the upper deck.

In the non-stratified case (ŝ = 0), the integral term in (6.11) and (6.13) reduces
to the familiar Hilbert transform. It should be mentioned that as with the standard
triple-deck theory, the present inviscid–viscous interaction for jet-like profiles can be
of general value. For instance, in addition to describing viscous instability, it may
describe separation of a jet-like flow encountering an abrupt perturbation.

By the same procedure as in § 5, the following equation can be derived in the
high-frequency limit:

∂Ã

∂T † + Ã
∂Ã

∂X̄
+ I

∂3A†

∂X̄3
+ χ2 ∂

∂X̄

∫ ∞

−∞
G(X; ξ )

(
A

†
ξξ + ŝ2A†)dξ = 0,

Ã = A† + χ2J

∫ ∞

−∞
G(X; ξ )

(
A

†
ξξ + ŝ2A†)dξ.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (6.14)

If we set J = 0, then Ã = A† and the equation is a combination of KdV and
BDO equations in that it consists of both AXXX and the integral term, which are
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the dispersion terms appearing respectively in those two equations. Equation (6.14)
may be referred to as a mixed KdV–BDO equation in the general case J = 0. Such
equations do not appear to have been derived before, except that their special form
with J =0 was obtained by Romanova (1984).

7. Summary and concluding remarks
In this paper, we show that a stably stratified boundary layer can support viscous

instability modes, which are a modified form of the well-known T-S waves. A triple-
deck theory is presented to describe the linear and nonlinear evolutions of these modes.
A linearized analysis was performed for both spatial and temporal instabilities. In
the spatial formulation, stratification has a stabilizing effect in that it reduces the
maximum growth rate. However, stratification does not stabilize all modes uniformly;
there exists a band of modes whose growth rates are enhanced by stratification.
In the temporal formulation, it is found, rather unexpectedly, that stratification
actually increases the maximum growth rate. Both formulations show that increased
stratification shifts the band of unstable modes towards high frequencies.

The nonlinear development of high-frequency/short-wavelength disturbances is
studied. An extended BDO equation is derived from the fully nonlinear triple-deck
system. As was shown in a related context (Maslowe & Redekopp 1980; Romanova
1981), where the same equation was derived, a spatially compact disturbance would
decay because of the energy loss caused by radiation of long gravity waves. Our
numerical solutions further suggest that when such an isolated disturbance decays,
small-scale ripples develop on its front. An inward energy flux is thus required to
compensate the energy loss if waves of permanent form are to be excited. Such a flux
may be provided by incoming gravity waves.

A triple-deck theory is also presented for a jet-like profile with a vanishingly
small free-stream velocity. It is shown that the inviscid–viscous interaction must
include the displacement induced by the inviscid motion in the main deck as well
as the pressure variation across the boundary layer. The nonlinear evolution of
high-frequency disturbances is then governed by a mixed KdV–BDO equation.

T-S instability plays a fundamental role in laminar–turbulent transition of
aerodynamic flows (such as the boundary layer around an airfoil), but its possible
relevance in the atmospheric boundary layer remains unexploited. The present
paper shows that the T-S mechanism continues to operate in the presence of
stable stratification. It should therefore form part of the theoretical framework for
understanding and interpreting wave activities in the atmosphere. On the basis of the
theoretical results and available observational/experimental data, it was suggested
that certain long-wavelength atmospheric disturbances, whose characteristics are not
predicted well by inviscid instabilities, may instead be attributed to this viscous
instability. Further laboratory and field investigations are required in order to establish
conclusively the viscous origin of these waves. For that task, the present work may
offer some useful guidance. For instance, the theory indicates that the principal
parameter controlling T-S instability is the surface shear λ, (see the scaling relation
(4.27)), and so it may be possible to identify the nature of the waves by studying the
correlation between the characteristic frequency of the instability and λ.

The potential importance of the viscous instability will be further highlighted by
the fact that it is coupled to gravity waves through topography, as will be shown in
Part 2.
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