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The Green–Naghdi equations are an extension of the shallow-water equations that
capture the effects of finite fluid depth at arbitrary order in the characteristic height
to width aspect ratio H/L. The shallow-water equations capture these effects to
first order only, resulting in a relatively simple two-dimensional fluid-dynamical
model for the layer horizontal velocity and depth. The Green–Naghdi equations,
like the shallow-water equations, are two-dimensional fluid equations expressing
momentum and mass conservation. There are different ‘levels’ of the Green–Naghdi
equations of rapidly increasing complexity. In the present paper we focus on the
behaviour of the lowest-level Green–Naghdi equations for a rotating shallow fluid
layer, paying close attention to the flow structure at small spatial scales. We compare
directly with the shallow-water equations and study the differences arising in their
solutions. By recasting the equations into a form which both explicitly conserves
Rossby–Ertel potential vorticity and represents the leading-order departure from
geostrophic–hydrostatic balance, we are able to accurately describe both the ‘slow’
predominantly sub-inertial balanced dynamics and the ‘fast’ residual imbalanced
dynamics. This decomposition has proved fruitful in studies of shallow-water
dynamics but appears not to have been used before in studies of Green–Naghdi
dynamics. Importantly, we find that this decomposition exposes a fundamental
inconsistency in the Green–Naghdi equations for horizontal scales less than the
mean fluid depth, scales for which the Green–Naghdi equations are supposed to
more accurately model. Such scales exhibit pronounced activity compared to the
shallow-water equations, and in particular spectra for certain fields like the divergence
are flat or rising at high wavenumbers. This indicates a lack of convergence at small
scales, and is also consistent with the poor convergence of total energy with resolution
compared to the shallow-water equations. We suggest a mathematical reformulation
of the Green–Naghdi equations which may improve convergence at small scales.

Key words: atmospheric flows, rotating flows, shallow water flows

1. Introduction

Green & Naghdi (1976a) proposed a set of equations, now known as the ‘Green–
Naghdi (GN) equations’, to model wave propagation in fluids of finite, variable depth.
Their primary objective was to develop a two-dimensional (2-D) set of equations, like
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On the regularity of the Green–Naghdi equations 101

the shallow-water equations, capable of modelling the parent three-dimensional (3-D)
Navier–Stokes equations, even for wavelengths comparable to the fluid depth. No long-
wave approximation, like that used to derive the shallow-water equations, is imposed.
Green and Naghdi maintained that their model of wave propagation could also handle
the problematic nonlinear inertia terms as well as general boundary conditions.

The GN equations are not derived from an asymptotic expansion in a small
parameter, such as a characteristic wave slope or height to width aspect ratio.
Asymptotic expansions were previously used by Stokes (1847), Skjelbreia &
Hendrickson (1960) and Peregrine (1967, 1972) to study irrotational, potential flows
with a free surface. Rotational flows with a free surface may be studied using the
shallow-water equations, arising at first order in an asymptotic expansion in the
height to width aspect ratio. Deeper flows do not appear to be amenable to such
treatment. Instead, Green & Naghdi (1976b) applied Cosserat surface theory as the
basis for their equations. Introduced by the Cosserat brothers (Cosserat & Cosserat
1909), Cosserat surface theory is the theory of ‘directed fluid sheets’. This theory
was first used by Green, Naghdi & Wainwright (1965) and later by Naghdi (1972)
to study problems in continuum mechanics. This led to the development of the GN
equations from the theory of directed fluid sheets (Green, Laws & Naghdi 1974;
Green & Naghdi 1976b).

In fact, credit should be given to Serre (1953) for the first derivation of what are
commonly referred to as the ‘Green–Naghdi equations’. The well-known dispersive
term in the GN momentum equations, specifically arising from the non-hydrostatic
pressure (see next section), was first introduced by Serre (1953). The history of these
equations is discussed in Dutykh et al. (2013) and in Castro-Orgaz & Hager (2015).
To be consistent with most treatments of the subject, we nonetheless refer to the
equations as the ‘GN equations’ in the present paper.

The GN equations for a homogeneous, incompressible, inviscid fluid were derived
from 3-D incompressibility and energy conservation. A single approximation was
made for the velocity field: it was assumed that the vertical velocity component
is a linear function of the z coordinate (parallel to gravity) and the horizontal
velocity components are independent of z. The shallow-water equations also make
this assumption, but go further by assuming the pressure is determined by hydrostatic
balance.

Instead of approximately satisfying the 3-D nonlinear equations (as in an
asymptotic expansion), the GN equations exactly satisfy the boundary conditions, 3-D
incompressibility and an integral form of energy conservation. According to Green &
Naghdi (1976a), the GN equations are a specific rotational set of equations in which
the horizontal flow is rotational but without vertical shear (no z variation). Moreover,
Green & Naghdi (1976a) claimed that their equations were particularly appropriate
for studying the evolution of nonlinear shallow-water waves. Later, Ertekin (1984)
applied the GN equations to investigate solitary wave generation and propagation in
shallow water. Miles & Salmon (1985) showed that the GN equations can be derived
variationally from Hamilton’s principle, thereby ensuring conservation of momentum,
energy and ‘potential vorticity’, a material invariant carried by every fluid particle.
Miles & Salmon (1985) concluded that for uniform fluid depth, the GN equations
are equivalent to a generalisation of Boussinesq’s equations (Whitham 1967).

Shields & Webster (1988) applied the Kantorovich method (Kantorovich & Krylov
1958) to develop a hierarchy of approximations of the GN equations. The velocity
field was expressed as a finite sum of coefficients, depending on the horizontal
coordinates (x, y) and time t, multiplied by weighting functions of z, the ‘directors’.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

47
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.47


102 D. G. Dritschel and M. R. Jalali

The Kth level approximation uses K > 1 such directors (Demirbilek & Webster 1999).
With increasing level, the complexity of the GN equations rapidly grows. Shields &
Webster (1988) compared the first three levels of the GN hierarchy, for steady flows
depending only on one horizontal coordinate, with various orders of approximation
of the Rayleigh–Boussinesq equations (Boussinesq 1871, 1877; Rayleigh 1876). Both
solitary and periodic wave solutions were compared. Shields & Webster (1988) found
that the GN equations converge rapidly with increasing level, and that the solutions
become increasingly irrotational. Zhao & Duan (2010) revealed that the higher-level
GN equations (up to the third level) generate more accurate predictions of fully
nonlinear shallow water waves as the waves shoal and interact with a plane beach.
For small amplitude shallow-water waves, Webster, Duan & Zhao (2011) demonstrated
that the most accurate form of the dispersion relation is found for the GN equations
at the highest level (they examined up to the seventh level).

Nevertheless, the great complexity of the GN equations beyond the first level has
virtually prohibited their use in studies of time-dependent nonlinear flows depending
on both horizontal coordinates. This led Zhao & Duan (2010), Webster et al. (2011),
Zhao, Duan & Ertekin (2014) and Zhao et al. (2015) to simplify the higher-level
GN equations by discarding high derivative terms in order to make any headway.
These simplified equations are not derivable from a variational principle, so there is
no guarantee of basic conservation of energy, etc. As the focus in this work is on the
original GN equations, we do not consider the higher levels or their simplifications
further. In what follows, we refer to the first-level GN equations as simply the ‘GN
equations’.

The GN equations are computationally challenging due to their implicit form.
Le Métayer, Gavrilyuk & Hank (2010) proposed a hybrid numerical solver of the
GN equations by applying a Godunov scheme. Bonneton et al. (2011) developed a
shock-capturing scheme to solve the GN equations for shallow-water waves of large
amplitude. For applications to geophysical flows (where the Coriolis acceleration
plays a major role), Pearce & Esler (2010) derived a form of the GN equations
which uses height, horizontal divergence and vertical vorticity as prognostic variables.
Pearce & Esler (2010) used a pseudo-spectral algorithm and an implicit iterative
method to compute the prognostic variable tendencies. The present paper uses a
similar approach but for a different set of prognostic variables.

The main focus here is on the regularity of the GN equations. To date, there have
been few systematic studies of the convergence of the GN equations with increasing
numerical resolution – and without any viscous (or implied numerical) regularisation
(some results for non-rotating flows can be found in Jalali 2016). It is often assumed
that the small scales play at most a minor role, as for instance found in many two-
dimensional flow models including the shallow-water equations (see, e.g. Dritschel
et al. 2009; Dritschel, Gottwald & Oliver 2017), for which no viscous regularisation
is necessary. Mathematically, it is important to establish the regularity of a given set
of partial differential equations (PDEs), i.e. whether solutions to the PDEs exist for
all time starting from sufficiently smooth initial data. For the GN equations, there
is no mathematical proof, and it may be elusive given the degree of nonlinearity of
the equations. In lieu of this, the present study aims to provide detailed numerical
evidence questioning the regularity of the GN equations. Notably, rotation generally
suppresses nonlinear scale cascades in the simpler shallow-water equations (which we
also study; see also Dritschel et al. 2017). Thus, a priori, we anticipate rotation is
also beneficial for the GN equations.

The paper is organised as follows. The GN equations are stated in § 2 and then
transformed to a more convenient form for studying rotating shallow-water flow, a
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widely studied model of large-scale atmospheric and oceanic flows (Gill 1982; Vallis
2008). In particular, the transformed equations make explicit use of the material
conservation of potential vorticity, a fundamental Lagrangian invariant, together with
a pair of variables expressing the first-order departure from geostrophic–hydrostatic
balance first introduced by Mohebalhojeh & Dritschel (2001). These variables are a
natural starting point for decomposing the fluid motion into balanced and imbalanced
components, associated with slow vortical motions and relatively fast gravity waves,
respectively. This decomposition has been instrumental for understanding planetary
circulations and geophysical fluid dynamics in general (Norbury 2002a,b), and is
crucial for interpreting the results in § 3. There, we identify features of the GN flow
at small scales (horizontal scales smaller than the mean fluid depth) that exhibit poor
convergence (or no convergence) with increasing numerical resolution. Comparisons
with solutions of the shallow-water equations, obtained using identical numerical
methods, furthermore reveal the terms in the GN equations responsible for the poor
convergence. Our conclusions are offered in § 4. We advocate modifying the GN
equations to improve convergence while preserving their more accurate dispersion
characteristics at horizontal scales comparable to the mean fluid depth.

2. The GN equations recast
Following Pearce & Esler (2010), we consider the GN equations for a rotating layer

of fluid lying on a flat bottom at z= 0. With h(x, t) the height of the free surface and
u(x, t)= (u(x, t), v(x, t)) the height-independent horizontal velocity, the equations take
the form

Du+ f k× u=−g∇h−
1
3h
∇(h2D2h), (2.1)

Dh+ h∇ · u= 0, (2.2)

where x= (x, y) is the horizontal position vector, t is time, k is the vertical unit vector,
D= ∂/∂t+ u · ∇ is the material derivative, g is the gravitational acceleration and f is
the constant Coriolis frequency (see e.g. Pearce & Esler 2010).

The nonlinear term on the right-hand side of (2.1) makes the equations fundamen-
tally implicit and challenging to solve. This term represents non-hydrostatic pressure
effects, and is absent in the corresponding shallow-water (SW) equations (this is the
only difference between the GN and SW equations). While Dh=−h∇ · u from (2.2),
a second application of the material derivative D generates time derivatives of u. It is
not possible to explicitly solve for these time derivatives in (2.1). Nonetheless, many
numerical methods have been developed to cope with this difficulty.

In this paper, we wish to explore the differences between the solutions to the GN
and the SW equations in order to better understand the role played by the above
non-hydrostatic pressure term in the nonlinear dynamics. It is well known that the
linearised GN equations (about a state of rest) better approximate the dispersion
relation for a finite depth fluid than do the linearised SW equations (Webster et al.
2011). Here the focus is on the nonlinear behaviour of the solutions.

To this end, it is helpful to recast the GN equations into a form which permits more
accurate numerical solutions of rotating shallow-water flows when the Rossby number
Ro� 1 (Mohebalhojeh & Dritschel 2000, 2001). The Rossby number is the ratio of
a characteristic vertical vorticity ζ = vx − uy to the Coriolis frequency f (subscripts
x and y denote differentiation). The small Rossby number regime is an extensively
well-studied regime of geophysical fluid dynamics, due to its relevance to atmospheric
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104 D. G. Dritschel and M. R. Jalali

and oceanic dynamics, and potentially to other planetary atmospheres (see Gill (1982),
Ford, McIntyre & Norton (2000), Norbury (2002b), Vallis (2008) and Read (2011) for
a sample of the vast literature).

Past studies of rotating shallow-water flows in both planar and spherical geometry
have identified a particular set of variables having both significant theoretical and
computational advantages over the traditional set (h, u, v). These new variables consist
of the Rossby–Ertel potential vorticity q and a pair of other variables expressing the
departure from geostrophic–hydrostatic balance at first order, namely the divergence
δ = ∇ · u = ux + vy and the acceleration divergence γ = ∇ · (Du) (Mohebalhojeh &
Dritschel 2001; Smith & Dritschel 2006; Mohebalhojeh & Dritschel 2007; Dritschel
et al. 2017). Their theoretical advantage is that they allow one to separate, to leading
order, fundamentally distinct dynamical motions: ‘slow’ vortical motions induced by
potential vorticity and ‘fast’ inertia–gravity wave motions arising from departures from
geostrophic–hydrostatic balance (or geostrophic balance in the SW equations which
assume hydrostatic balance). In fact, the (q, δ, γ ) variable set forms a convenient
basis for separating flows into ‘balanced’ and ‘imbalanced’ components, the former
controlled by potential vorticity and the latter consisting of the residual motions
identified as inertia–gravity waves (IGWs). The balanced component is determined
by a pair of balance conditions such as δt = γt = 0 (the subscript t denotes partial
differentiation with respect to time), and the imbalanced component is the residual
flow. The balance conditions effectively filter out the IGWs. While the estimate of
balance depends on the balance conditions chosen (albeit weakly for Ro� 1), this
separation is nevertheless fruitful for understanding IGW emission and the breakdown
of balance (see e.g. Dritschel & Vanneste 2006).

Computationally, the (q, δ, γ ) variable set also offers significant advantages over
the traditional set (h, u, v) as well as the commonly used vorticity-divergence set
(h, ζ , δ) in the SW equations (Mohebalhojeh & Dritschel 2001; Smith & Dritschel
2006; Mohebalhojeh & Dritschel 2007; Dritschel et al. 2017). First of all, material
conservation of potential vorticity can be made explicit, using highly accurate
Lagrangian contour-advection methods (Dritschel & Ambaum 1997; Dritschel &
Fontane 2010). Secondly, the height field h is diagnosed rather than prognosed. It
is diagnosed from the definition of potential vorticity. This avoids the generation of
erroneous IGWs from discretisation errors in (2.2). These errors obscure the natural,
but often exceedingly weak, spontaneous emission of IGWs from the balanced vortical
motions. The result is a more accurate representation of both the balanced and the
imbalanced dynamics, at minimal extra computational cost.

2.1. The GN equations in (q, δ, γ ) variables
We next develop the prognostic (or time-evolution) equations for potential vorticity q,
divergence δ=∇ ·u and acceleration divergence γ =∇ · (Du). Potential vorticity (PV)
satisfies material conservation

Dq= 0, (2.3)

which is a consequence of the particle-relabelling symmetry of the GN equations
(and many other equations used in studies of geophysical fluid dynamics). The PV is
defined by

q =
ζ + f

h
+

1
3

k · (∇(Dh)×∇h)

=
ζ + f

h
+

1
3

J(h, δ), (2.4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

47
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.47
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where J(a, b)= axby − aybx for any two scalar fields a and b (Pearce & Esler 2010).
Here Dh = −hδ has been used from (2.2). The Jacobian term here is absent in the
corresponding SW PV.

The divergence equation is found from the definition of acceleration divergence γ ,

γ =∇ · (Du)= δt +∇ · (δu)− 2J(u, v), (2.5)

which can be rearranged to give

δt = γ −∇ · (δu)+ 2J(u, v). (2.6)

This equation is identical to that appearing in the SW model.
The explicit form of γ is obtained by taking the divergence of (2.1) yielding

γ = f ζ − g∇2h+ 1
3∇

2(hD(hδ))+ 1
3∇ · (∇h D(hδ)), (2.7)

where ∇2 is Laplace’s operator and the relative vorticity ζ is

ζ = h
(
q− 1

3 J(h, δ)
)
− f (2.8)

from the definition of PV in (2.4). All of the terms multiplied by 1/3 in the above
equations are absent in the corresponding SW equations. These extra terms make (2.7)
implicit. Using

D(hδ)= hγ̃ where γ̃ ≡ γ + 2J(u, v)− 2δ2, (2.9)

which comes from combining Dh = −hδ, i.e. (2.2), with (2.6), we can eliminate all
time derivatives in the definition of γ :

γ = f ζ − g∇2h+ 1
3∇

2(h2γ̃ )+ 1
3∇ · (hγ̃∇h). (2.10)

While we cannot solve for γ explicitly, in fact this equation is only used to determine
h as part of the inversion procedure discussed in § 2.2.

The evolution equation for γ is found by taking a partial time derivative of (2.10).
This gives

γt = f ζt − g∇2ht +
1
3∇

2(2hhtγ̃ + h2γ̃t)+
1
3∇ · (γ̃∇(hht)+ hγ̃t∇h), (2.11)

where the time derivatives in (2.11) are

ζt =−∇ · ((ζ + f )u)+
h
3

J(h, γ̃ ), (2.12)

ht =−∇ · (hu), (2.13)
γ̃t = γt + 2J(ut, v)+ 2J(u, vt)− 4δδt, (2.14)

ut =−u · ∇u+ fv − ghx +
1

3h
(h3γ̃ )x, (2.15)

vt =−u · ∇v − fu− ghy +
1
3h
(h3γ̃ )y, (2.16)

while δt is given in (2.6). It is not possible to obtain γt directly and so iteration is
generally required (see appendix B). The corresponding SW equations in (q, δ, γ )
variables are found by dropping all terms multiplied by the factor 1/3. Then, γt is
explicit.
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2.2. Inversion
As the height field h and velocity field u are not explicitly evolved, they must be
obtained from the definitions of q, δ and γ by a process called ‘inversion’. The
velocity field is decomposed into a domain-mean part U(t), a non-divergent part
expressed in terms of a streamfunction ψ and a divergent part expressed in terms of
a potential χ :

u=U −ψy + χx; v = V +ψx + χy. (2.17a,b)

Then ψ and χ are found from

∇
2ψ = ζ ; ∇2χ = δ, (2.18a,b)

where ζ is defined in (2.8). In the doubly periodic domain considered, these equations
are readily solved algebraically after a Fourier transform (see appendix A).

The mean flow U(t) is determined by the condition of zero (relative) momenta,
〈hu〉 = 0 (here 〈·〉 denotes a domain average). As shown in § 2.3, if these momenta
are zero initially, they remain zero. Defining H = 〈h〉 to be the mean fluid height (a
constant) and decomposing h as H(1 + h̃) where h̃ is a dimensionless anomaly, the
condition 〈hu〉 = 0 implies

〈(1+ h̃)u〉 = 0 ⇒ U=−〈h̃ũ〉, (2.19)

where ũ is the part of u with zero mean, i.e. the part involving ψ and χ in (2.17).
Hence, U is fully determined from h̃, ψ and χ .

The potential χ , and hence the divergent part of the velocity field ∇χ , are found
directly from δ. However, ψ and the remaining part of the velocity field cannot be
found without knowledge of h since ζ depends on h (as well as on q and δ) in (2.8).
To determine h, we use the definition of γ in (2.10). Rearranging this equation and
replacing ζ by its explicit dependence on h, q and δ, we obtain

g∇2h− fqh+ f 2
=−γ − 1

3 fhJ(h, δ)+ 1
3∇

2(h2γ̃ )+ 1
3∇ · (hγ̃∇h). (2.20)

This is an implicit, nonlinear equation for h (the solution method used for it is
described in appendix A). The corresponding SW form of this equation only has −γ
on the right-hand side. The SW equation is elliptic if the PV q> 0 everywhere, which
is guaranteed by material conservation of PV when q > 0 initially. The ellipticity of
the GN equation is uncertain, but according to the numerical results presented in the
next section, it appears to be satisfied when the nonlinear GN terms on the right-hand
side are not dominant.

The SW form of (2.20) is linear in h and thus a unique solution may be readily
found. But the GN form is nonlinear in h and moreover couples to u and v. The result
is a coupled set of nonlinear elliptic equations for h, u and v which must be solved
iteratively (details may be found in appendix A).

2.3. Conservation
The inviscid, unforced GN equations like their SW counterparts conserve mass, energy
and an infinite set of Casimirs associated with material conservation of PV. Depending
on the boundary conditions, they also conserve momentum (in x and y) and angular
momentum.
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Conservation of mass means that 〈h〉, the mean height of the fluid H, remains
constant since the GN and SW equations both assume that the fluid has uniform
density. This is simply shown by taking an average of (2.2).

Conservation of energy implies

H=
A
2

〈
h
(
‖u‖2
+ gh+ 1

3 h2δ2
)〉

(2.21)

remains constant (A is the domain area). This is actually the Hamiltonian from which
one may derive the equations of motion (Miles & Salmon 1985). Its conservation may
be demonstrated by taking the inner product of (2.1) with hu and averaging over the
domain. In the SW equations, the term involving δ2 is absent. Conservation of energy
arises from time-translational invariance of the equations.

Material conservation of PV (cf. (2.3)) implies that any mass-weighted functional
of PV is conserved:

C = 〈hF(q)〉, (2.22)

where F is an arbitrary convex function. This follows by averaging (2.3) multiplied
by h and using (2.2). Conservation of these Casimirs arises from particle-relabelling
symmetry.

In an infinite domain, both momentum and angular momentum are conserved. Since
the background flow is rotating uniformly at rate Ω = f /2, conservation of momentum
implies

Mx
= 〈h(u− fy)〉 and My

= 〈h(v + fx)〉 (2.23a,b)

are both conserved. This follows by averaging h times (2.1) and using (2.2).
Conservation of momentum arises from space-translational invariance of the equations.

In a doubly periodic domain such as considered in the present work, Mx and My

are not conserved. However, the relative momenta 〈hu〉 and 〈hv〉 obey

d〈hu〉
dt
= f 〈hv〉 and

d〈hv〉
dt
=−f 〈hu〉 (2.24a,b)

i.e. they exhibit an inertial oscillation at frequency f . This means that their squared
magnitude 〈hu〉2 + 〈hv〉2 is conserved. It is natural to set this to zero, for then the
mean flow U= 〈u〉 is determined from 〈hu〉 = 〈hv〉 = 0, see (2.19).

Finally, the conserved angular momentum in an infinite domain, or in any circularly
symmetric domain is given by

J = 〈hk · (x× (u+Ωk× x))〉 = 〈h(xv − yu+Ω(x2
+ y2))〉. (2.25)

Again, conservation of J can be shown by manipulating equations (2.2) and (2.1),
integrating by parts repeatedly. Conservation of angular momentum arises from
rotational invariance of the equations. In a doubly periodic domain, J is not
conserved.

Except for energy, all of the conserved quantities have the same form in the GN
and SW equations.
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3. Results
We study the evolution of an unstable jet or zonal current in a doubly periodic

domain −π6 x, y<π. This a classical paradigm used in geophysical fluid dynamics
to study shear instabilities, vortex roll-up, merger and mixing, processes central to the
dynamics of the atmosphere, the oceans and other planetary atmospheres (see Juckes
& McIntyre 1987; Waugh & Dritschel 1991; Thomson 2008; Thomson & McIntyre
2016, and references therein). Rotation and stratification both play leading-order roles
in shaping planetary circulations across a wide range of spatial scales (Gill 1982;
Vallis 2008; Read 2011). These effects tend to regularise the dynamics by suppressing
relatively high-frequency motions associated with inertia–gravity and acoustic waves,
leaving predominantly low frequency motions dominated by the advection of PV
(Hoskins, McIntyre & Robertson 1985; Ford et al. 2000). This state of affairs is called
‘balance’, a hypothetical state entirely determined by the distribution of PV, a single
scalar field. For example, neglecting the horizontal and vertical acceleration in the
momentum equations gives rise to geostrophic and hydrostatic balance, respectively.
However, this balance is only the leading-order approximation to the actual balance
exhibited by typical nonlinear flows (see Mohebalhojeh & Dritschel 2001; Viúdez
& Dritschel 2004; Dritschel & McKiver 2015, and references therein). In the results
below, we investigate for the first time the nature of balance in the GN equations,
starting either from an initially imbalanced state or a balanced one.

We compare GN and SW simulations carried out at two different resolutions,
256× 256 and 512× 512. The effective resolution is approximately 16 times higher
due to the use of the combined Lagrangian advection method (Dritschel & Fontane
2010), as explained in appendix C and demonstrated by Dritschel & Tobias (2012) for
2-D magnetohydrodynamic turbulence in a direct comparison with the standard
pseudo-spectral method. Similar gains in resolution were found by Dritschel, Qi &
Marston (2015) for two-dimensional turbulence on a sphere.

All simulations use the same physical and numerical parameters for a given
resolution. We take the Coriolis frequency to be f = 4π so that one unit of time
corresponds to the rotation period of the background uniformly rotating flow. Gravity
g only appears in the combination c2

= gH when the equations are written using
the dimensionless height anomaly h̃ = (h − H)/H and the PV anomaly q̃ = Hq − f
(see appendix A). In the SW equations, c corresponds to the short-scale gravity-wave
speed. This is taken to be c= 2π. The ratio c/f , known as the Rossby deformation
length LD, is then 0.5. Scales larger than this are strongly affected by rotation (see e.g.
Vallis 2008). The SW equations depend on no other physical parameters. However,
the GN equations depend explicitly on the mean depth, independently of c2 (see
appendix A). Here we take H= 0.2, comparable to but smaller than LD. The effect of
variations in these parameters is discussed below in § 3.5. The numerical parameters
used are given in appendix D.

The initial flow state is prescribed through the PV anomaly q̃ together with either
δ = γ = 0, or non-zero δ and γ determined from the balance conditions δt = γt = 0,
as elaborated in § 3.2. By the inversion procedure detailed in appendix A, we can
then obtain h̃, u and v initially. The specific initial PV anomaly field considered has
a parabolic profile in y,

q̃(x, 0)=
4(y2(x)− y)(y− y1(x))

(y2(x)− y1(x))2
f +Q (3.1)

for y1(x) < y< y2(x) and q̃=Q otherwise. Here Q is a constant chosen to satisfy the
mathematical requirement that the domain-integrated relative vorticity ζ = vx − uy be
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zero (this constant is determined as part of the inversion procedure, see appendix A).
The functions y1(x) and y2(x) are chosen to impart a weak, non-zonal perturbation on
the initial flow, allowing instabilities to grow. We take

y1 =−
1
2 w and y2 =

1
2 w+ a2 sin 2x+ a3 sin 3x, (3.2a,b)

with parameters w= 0.4 (the average jet width), a2 = 0.02 and a3 =−0.01. Note: the
maximum value of q̃ exceeds the background value by f = 4π.

The flow regime considered is strongly ageostrophic, as measured by the initial
Rossby and Froude numbers, Ro = |ζ |max/f and Fr = (‖u‖/

√
gh)max. For the GN

simulations starting with δ = γ = 0 or with δt = γt = 0, we find Ro ≈ 0.66 and
Fr ≈ 0.18. These values rise to approximately 0.75 and 0.23 over the course of the
evolution. Closely similar values are found in the SW simulations.

3.1. Flow evolution and model inter-comparison
We begin by a qualitative description of the flow evolution. We illustrate the PV
field at several characteristic times in figure 1. This is for the GN dynamics starting
from δ = γ = 0 and simulated on a 512 × 512 grid (n = 512). The PV evolution is
nearly identical in the SW dynamics at the same resolution, and also when the initial
conditions are determined from δt = γt = 0 (not shown). More significant differences
are found when comparing with lower-resolution simulations, though these are minor
and are relegated to late times, as discussed below.

The initial ribbon of PV destabilises and rolls up into set of unequal-sized vortices.
The evolution qualitatively resembles that exhibited by a strip of uniform PV in a two-
dimensional (uniform depth) flow (Dritschel 1989), and the instability arises from the
phase locking and mutual amplification of the waves propagating on the PV contours.
In the present case, two of the vortices formed at early times partially merge, leading
to a rapid growth in complexity. The PV field develops exceedingly sharp gradients
and a multitude of fine-scale filamentary debris. By the end of the simulation at t=
25, the flow becomes more regular, settling into a pair of dominant vortices. This is
arguably a demanding test case for studying both GN and SW dynamics.

Like PV, the fields of height h, velocity u, vorticity ζ and, to a lesser extent,
acceleration divergence γ exhibit closely similar behaviour in the GN and SW
simulations. The one field that stands out is the divergence δ, shown in figure 2 at
early times and in figure 3 at late times. The divergence largely consists of gravity
waves generated by the imbalanced initial conditions (this is demonstrated below).
These waves propagate differently in the GN and SW dynamics, due in part to a
fundamental difference in the linear dispersion relation for waves on a basic state at
rest. Considering small disturbances proportional to exp i(kxx+ kyy−ωt), in the SW
dynamics such waves have frequencies

ω=±
√

f 2 + c2k2, (3.3)

where c=
√

gH and k =
√

k2
x + k2

y is the wavenumber magnitude. Hence, all gravity
waves have phase speeds cp = ω/k exceeding c, with the longest waves having the
highest speeds. Moreover, the group velocity cg=‖(∂ω/∂kx, ∂ω/∂ky)‖→ c=

√
gH for

kx→∞ and/or ky→∞. Hence, short-scale waves propagate away from their source.
However, in the GN dynamics, gravity waves propagate at the frequencies

ω=±

√
f 2 + c2k2

1+ 1
3 H2k2

. (3.4)
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(d)

(a)

(b)

(c)

0 20 40 60

FIGURE 1. (Colour online) PV anomaly field q̃ at times t = 0, 5, 15 and 25 (a–d) in
the GN dynamics starting from δ = γ = 0 and simulated on a 512× 512 grid. Only the
middle portion of the domain in y is plotted where the PV is non-uniform. In (c,d) this
is −π/2 6 y 6π/2.
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FIGURE 2. (Colour online) Divergence field δ at early times (as indicated) in both the
GN and SW dynamics (top and bottom) starting from δ = γ = 0.
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-0.08 -0.04 0 0.04 0.08

FIGURE 3. (Colour online) Divergence field δ at late times in both the GN and SW
dynamics starting from δ = γ = 0.

Here, short waves having wavelengths comparable to or less than H are slowed down
relative to the SW dynamics (the GN and SW dispersion relations are compared in
figure 16, which also includes the exact dispersion relation for a 3-D fluid derived
in § 4). In fact the shortest waves have both vanishing phase and group velocities:
cp, cg → 0 as kx → ∞ and/or ky → ∞. This is responsible for the differences
seen between the GN and SW divergence evolution in figures 2 and 3. In the GN
dynamics, the short-scale gravity waves remain close to the centre of the domain in
y, whereas in the SW dynamics, all waves propagate away. In both dynamics, long
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FIGURE 4. (Colour online) Divergence field δ at t= 25 in both SW and GN simulations
starting from either δ = γ = 0 or δt = γt = 0. The former simulations are denoted by SW
and GN, while the latter are denoted by SW-bal and GN-bal.

waves escape most rapidly, re-entering the periodic edges and creating a complex
interference pattern at late times.

In simulations initialised with the balance conditions δt = γt = 0 (see § 3.2 for
details), the gravity waves are much weaker at all later times – even in the divergence
field δ. This is shown in figure 4 comparing δ at t = 25 between four simulations
differing in the model used (SW or GN) and/or the initialisation used (δ = γ = 0 or
δt= γt= 0). In the simulations starting from balance, the flow surrounding the vortices
which emerged from the earlier instability contains much weaker amplitude divergence
than seen in the simulations starting from δ = γ = 0. Instead, the divergence is
primarily trapped in the vicinity of the vortices, evidence that the divergence remains
close to balance. The characteristic quadrupole pattern of balanced divergence is a
typical feature of elliptically deformed vortices in SW flows (see below).

3.2. Balance–imbalance decomposition
We next look more carefully at the balance and imbalance present in both the SW and
GN flows. To do this, the PV anomaly field q̃ is taken from a particular simulation at
a given time and used to generate associated balanced fields denoted by a subscript ‘b’,
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e.g. δb, from the balance conditions δt= γt= 0. Hence, the balance fields depend only
on q̃; that is, they are entirely determined by q̃. The residual, imbalanced fields are
denoted by a subscript ‘i’, e.g. δi= δ− δb. These fields are regarded as gravity waves,
though a precise definition of gravity waves in a nonlinear flow is impossible (Ford
et al. 2000; Mohebalhojeh & Dritschel 2001). Nonetheless, the definition of balance
adopted adequately identifies plausible gravity waves in the flows simulated.

Numerically, the balanced fields are found by solving (C 1) and (C 2), with δt= γt=

0 and no diffusion D= 0, for δ and γ iteratively until convergence. At each step of
the iteration, we must also recover the height h and velocity fields u by the inversion
procedure described in appendix A. Upon convergence, the fields obtained are denoted
hb, ub, etc.

In the SW dynamics, convergence is said to occur when

〈(1δ)2〉

〈δ2〉
+
〈(1γ )2〉

〈γ 2〉
< 2× 10−10, (3.5)

where 1δ and 1γ are the changes in δ and γ , respectively, between the last two
estimates. In the GN dynamics, convergence is poorer and in particular cannot reach
such low levels of error. Instead, the iteration with the smallest level of error is
considered to be converged. This error can be as large as 10−4. Moreover, to achieve
even this level of convergence, it is first necessary to find the SW balanced fields
and use them as a first guess in the iteration to find the GN ones. Otherwise, the
error may be substantially larger. Suffice it to say, balance in the GN dynamics is
much harder to achieve. This is an indication that the regularity of the GN equations
is significantly poorer than that of the SW equations.

Consider then the balanced divergence fields δb in the SW and GN simulations at
t= 25. These are shown in figure 5 and should be compared with the corresponding
full fields in figure 4. First of all, note the absence of significant balanced divergence
in the background flow far from the vortices. The balanced divergence is mainly
concentrated around the vortices and exhibits a predominant quadrupole pattern in all
simulations. In the GN simulations, δb further exhibits fine-scale structure concentrated
where the PV gradients are strongest. Due to the peculiar gravity-wave dispersion
relation in the GN equations (see (3.4)), this fine-scale structure could in fact be
trapped gravity waves, since the group velocity cg→ 0 for kx→∞ and/or ky→∞.
Hence, gravity waves generated by evolving sharp PV gradients cannot easily escape.
By contrast, in the SW dynamics, cg→ c =

√
gH for short-scale waves, and hence

such waves propagate away from their source. Note that, despite the different initial
conditions used, the SW and SW-bal balanced fields are closely similar, as are the
GN and GN-bal ones.

The corresponding imbalanced divergence fields δi are shown in figure 6. In the
SW simulation, comparable amplitudes of δi are seen throughout the flow, with a
slight increase in the generation region around the vortices. Nonetheless, the largest δi
values are only approximately 20 % of the largest δb values. In the SW-bal simulation,
δi is largest where it is being generated and weakens as it disperses throughout the
domain. Amplitudes of δi are noticeably smaller than in the SW simulation. In the GN
simulation, δi exhibits much more fine-scale structure than in the SW simulation, and
at a much larger amplitude – comparable to δb. The largest amplitudes occur along
the sharp PV gradients bounding each vortex; here the gravity waves are trapped, as
discussed above. In the GN-bal simulation, there is much less fine-scale structure far
from the vortices but comparable imbalance near the vortices. The pattern of δi is
consistent with slowly propagating short-scale waves.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

47
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.47


114 D. G. Dritschel and M. R. Jalali

π

π/2

-π/2

-π

0

π

π/2

-π/2

0

ππ/2-π/2 0-π ππ/2-π/2 0-π

0.08

0.04

0

-0.04

-0.08

0.08

0.04

0

-0.04

-0.08

0.08
0.06
0.04
0.02
0
-0.02
-0.04
-0.06
-0.08

0.08
0.06
0.04
0.02
0
-0.02
-0.04
-0.06
-0.08

SW SW-bal

GN GN-bal

∂b

FIGURE 5. (Colour online) Balanced divergence field δb at t = 25 in both SW and GN
simulations starting from either δ = γ = 0 or δt = γt = 0.

We briefly discuss the acceleration divergence γ as it is a primary variable in
the reformulated equations. The balanced and imbalanced components, γb and γi
respectively, are shown in figures 7 and 8 for all four simulations at the final time
t = 25. Though not shown, γ is hardly distinguishable from γb, apart from some
weak fine-scale structure in the GN simulations. The imbalance γi has much weaker
amplitude, and resembles propagating gravity waves like those seen in δi in figure 6.

The acceleration divergence is mainly confined to the vortex cores and is strongly
negative there. Notably, γ̃ defined in (2.9) and shown in figure 9 is of much weaker
amplitude and is significantly less well balanced than γ , or even δ. The condition
γ̃ = 0 may be regarded as ‘quasi-geostrophic balance’, as it is essentially the balance
obtained at second order in Rossby number under quasi-geostrophic scaling (see
Appendix A in Mohebalhojeh & Dritschel 2001), namely γ + 2J(u, v) = 0. Since δ
is already second order in Rossby number under this scaling, then the extra 2δ2 term
in γ̃ ≡ γ + 2J(u, v) − 2δ2 makes no difference at this order. Note, this balance is
sometimes referred to as cyclostrophic or gradient-wind balance in the literature.

Like divergence, γ̃ exhibits a quadrupole pattern around each vortex, but the
pattern is rotated by 45◦. This is particularly evident in the SW and GN simulations
starting from balance. The other simulations are dominated by imbalance, which is
intermediate scale in the SW simulation and fine scale in the GN simulation. Finally,
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FIGURE 6. (Colour online) Imbalanced divergence field δi at t= 25 in both SW and GN
simulations starting from either δ = γ = 0 or δt = γt = 0.

note that γ̃ is significantly different from γi, even though they often have closely
comparable amplitudes.

The height anomaly field h̃ exhibits the greatest degree of balance, and the
differences between the four simulations are imperceptible. However, the structure
of the imbalanced fields h̃i is revealing, as shown in figure 10. First of all, the
amplitudes are around a thousand times smaller than the amplitude of h̃, or even
smaller in the SW-bal simulation. The imbalance is predominantly at large scales in
the SW simulations, but exists at both small and large scales in the GN simulations,
with the largest amplitudes concentrated in the smallest features. Gravity waves appear
to be trapped on the edges of the vortices in the GN simulations, most clearly in the
GN-bal simulation (the same is seen in the fields of δi and γi).

The differences between the SW and GN solutions mainly arise from the additional
terms in the GN equation relating h̃ to δ, γ and q, see (2.20) or (A 3). The terms
multiplied by 1/3 in (2.20) are all absent in the corresponding SW equation. These
terms may reduce the regularity of h̃ (make it less differentiable) since both δ and
γ are differentiated on the right-hand side. In the next subsection, we verify this by
considering field spectra.

The time evolution of the root-mean-square (r.m.s.) values of the balanced and
imbalanced fields are summarised in figures 11 and 12, for all four simulations. The
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FIGURE 7. (Colour online) Balanced acceleration divergence field γb at t = 25 in both
SW and GN simulations starting from either δ = γ = 0 or δt = γt = 0.

balanced norms are closely similar, despite the differences in the initial conditions
and model type (SW or GN). Only hb and δb show slight differences emerging after
t = 6. Moreover, the GN results are rougher, an indication of the increased power
at small scales in the GN simulations. On the other hand, the imbalanced norms
show wide variations, with the closest results found between SW-bal and GN-bal,
apart from δi, which is approximately 3 times larger in the GN-bal simulation. The
results for SW and GN are rougher and reflect the significant gravity-wave activity
released initially from the imbalanced initial conditions. Here, δi in GN is about 2
times larger than in SW, while γi in GN starts initially comparable to that in SW but
eventually also becomes 2 times larger. The spike around t= 22 in the GN-bal results
is the result of poor convergence of the post-processing balancing routine. This also
explains the rise in δi and γi after t= 23.

3.3. Spectra
To better understand the differences between the SW and GN simulations, we turn
next to the power spectra of various fields. The power spectrum of h, for example, is

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

47
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.47


On the regularity of the Green–Naghdi equations 117

0.4

SW SW-bal

GN GN-bal

0.2

0

-0.2

-0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

©i

π

π/2

-π/2

-π

0

π

π/2

-π/2

0

ππ/2-π/2-π 0 ππ/2-π/2-π 0

2

1

0

-1

-2

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

FIGURE 8. (Colour online) Imbalanced acceleration divergence field γi at t= 25 in both
SW and GN simulations starting from either δ = γ = 0 or δt = γt = 0.

defined by

Sh(k)=
∑

kx,ky∈R(k)

|ĥ(kx, ky)|
2, (3.6)

where ĥ(kx, ky) is the Fourier coefficient for the wave vector (kx, ky) and R(k) is the

set of all wave vectors lying in the shell k − 1/2 6
√

k2
x + k2

y < k + 1/2. The power
spectrum thus measures the contribution of each length scale 2π/k to the mean-square
field amplitude 〈h2

〉.
Spectra of the original fields h, ζ , δ and γ are shown in figure 13 at t = 25 for

all four simulations (note the log10 scaling of both axes). The vertical dashed line in
the plots marks the wavenumber k = 3/H where the frequency of gravity waves in
GN is reduced by a factor of two relative to that in SW (see (3.3) and (3.4)). First
of all, the vorticity spectra are practically indistinguishable. This means that the non-
divergent part of the flow is closely similar in all simulations, and is insensitive to
any imbalance present. The acceleration divergence spectra also correspond, apart from
that in the GN simulation at small scales (log10 k > 1.9). This heightened activity at
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FIGURE 9. (Colour online) Residual acceleration divergence field γ̃ (or quasi-geostrophic
imbalance) at t = 25 in both SW and GN simulations starting from either δ = γ = 0 or
δt = γt = 0.

small scales is especially visible in figure 9 for γ̃ (which mainly differs from γ by
2J(u, v)).

The height spectra closely correspond at large and intermediate scales (log10 k<1.5),
but again the GN simulation shows much greater power at small scales. Even the
GN-bal simulation shows increased power, but it is approximately 100 times smaller
than in the GN one. The fact that spectra flatten or even rise (in the GN simulation)
at high k is not a numerical artefact: numerical damping does not appreciably change
the spectra except near k = n/2 (or log10 k = 2.408 . . .). The flat or rising spectra
indicate a fundamental problem in the GN equations: their representation of small
scales. To represent these scales, fields should converge with increasing resolution,
and the present results indicate this does not happen for h. Simulations performed at
n= 256 resolution reveal the same problem to a lesser degree: h spectra flatten but do
not rise toward k= n/2 (not shown). Increasing resolution does not solve the problem
– it makes it worse. This is reflected in the poor convergence of total energy discussed
in the next subsection.

Finally, divergence spectra show the greatest differences between the SW and GN
simulations. A broader range of scales show increased power in GN, and even in
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FIGURE 10. (Colour online) Imbalanced height anomaly field h̃i at t = 25 in both SW
and GN simulations starting from either δ = γ = 0 or δt = γt = 0.

GN-bal. The SW and SW-bal spectra are indistinguishable across all scales. The GN
and SW spectra separate around the wavenumber k = 3/H where the gravity-wave
frequencies in the two models differ by a factor of two. The other significant
difference between the SW and GN simulations occurs at large scales, and only for δ.
Evidently, the additional nonlinear terms in the GN equations contribute to divergence
at large scales as well as at small scales.

The nearly flat spectra seen in both h and δ in the GN simulations at large k are
problematic for the regularity of the GN equations. If a quantity a has a spectrum Sa∼

k−p for large k, the corresponding Fourier amplitudes scale as |â|−(1+p)/2. Both Sh and
Sδ decay more slowly than k−1, implying that both |ĥ| and |δ̂| also decay more slowly
than k−1. This means that derivatives of h and δ do not converge with increasing
resolution. But in the GN equations as originally formulated, three derivatives of h
appear in the non-hydrostatic pressure term in (2.1). For this to be resolvable, |ĥ|
would have to decay faster than k−3 and the spectrum Sh would have to decay faster
than k−5. This is not observed, and seriously questions the mathematical regularity of
the GN equations. By contrast, only one derivative of h or of u appears in the SW
equations, and all spectra are sufficiently steep that these derivatives converge with
increasing resolution.

Further differences are revealed by examining the spectra of the imbalanced fields
hi, ζi, δi and γi. Figure 14 shows that while SW spectra rapidly decay with increasing
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FIGURE 11. Root-mean-square (r.m.s.) norms of the balanced fields hb, ζb, δb and γb as
a function of time in both SW and GN simulations starting from either δ = γ = 0 or
δt = γt = 0.

k, the GN spectra are either flat or rising, indicating that the GN equations are
incapable of representing small-scale imbalance. Again, the problem is exacerbated at
high resolutions, as confirmed by examining spectra at lower resolution (not shown).
The shallow GN spectra reflect the grainy appearance seen in the GN imbalanced
fields in figures 6, 8 and 10. The GN and SW spectra separate even before the
wavenumber k = 3/H where the gravity wave frequencies in the two models differ
by a factor of two. Only the largest wavenumbers approximately correspond.

3.4. Energy
Another important, and revealing, diagnostic is the energy per unit mass E = H/H,
see (2.21), which is conserved in the absence of forcing and dissipation. This energy
may be divided into kinetic K and (available) potential P parts, defined by

K=
A
2
〈(1+ h̃)‖u‖2

〉 +
AH2

6
〈(1+ h̃)3δ2

〉, (3.7)

P =
Ac2

2
〈h̃2
〉, (3.8)
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FIGURE 12. Root-mean-square norms of the imbalanced fields hi, ζi, δi and γi as a
function of time in both SW and GN simulations starting from either δ = γ = 0 or
δt = γt = 0.

where A is the domain area (A= 4π2) and c2
= gH. The potential energy excludes the

constant mean part Ac2/2, which is not available dynamically for exchange with the
kinetic energy. In the SW model, the second term in K is absent.

Figure 15 shows the evolution of K, P and E = K + P for all four simulations
and at two different resolutions: n = 512 (a–c) and n = 256 (d–f ). Both K and P
exhibit variations of the order of 0.1 and smaller high-frequency variations (associated
with gravity waves) which approximately cancel out. The total energy is conserved to
within a few tenths of a per cent and does not exhibit high-frequency variations.

The initially balanced simulations SW-bal and GN-bal have a little less energy
than their imbalanced counterparts, and this energy difference remains approximately
constant in time. The loss in energy is not due to dissipating gravity waves, though
there is some effect of hyperdiffusion. There are many more gravity waves present
in the SW and GN simulations, and these waves persist. Instead, the loss in energy
is caused by the dissipation of a multitude of PV filaments following the roll-up
of the initial ribbon of PV into vortices, see figure 1. The loss of energy can be
reduced primarily by reducing the hyperdiffusion acting on the residual PV in the
numerical method used (see appendix C), but this comes at a price: field spectra
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FIGURE 13. Power spectra of the original fields h, ζ , δ and γ at t = 25 for both SW
and GN simulations starting from either δ= γ = 0 or δt = γt = 0. The vertical dashed line
corresponds to the wavenumber k= 3/H.

at high wavenumbers then show a strong upturn due to insufficient damping (not
shown). The energy loss seen is an inevitable consequence of finite resolution.

More important is how the energy loss changes with resolution n. First consider
the SW simulations. For n = 256, the energy loss over 0 6 t 6 25 is approximately
0.004274, while for n = 512, the loss is approximately 0.001007 (in both SW and
SW-bal). The error thus reduces by a factor of 3.995, compatible with an energy
spectrum decaying like k−3 for large k. This spectrum is expected for a strong PV
filament cascade to small scales in the flow regime considered (Dritschel et al. 2009).
Qualitatively, the unresolved energy in wavenumbers k > n/2 is proportional to∫

∞

n/2
k−3
∝ n−2. (3.9)

Thus, a doubling of resolution should reduce the total energy loss by a factor of 4,
as observed in the SW simulations.
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FIGURE 14. Power spectra of the imbalanced fields hi, ζi, δi and γi at t = 25 for both
SW and GN simulations starting from either δ= γ = 0 or δt = γt = 0. The vertical dashed
line corresponds to the wavenumber k= 3/H.

Next consider the GN simulations. For n = 256, the energy loss over the same
time period is about 0.005816, while for n = 512, the loss is about 0.003203 (in
both GN and GN-bal). The error reduces by a factor of 1.816, which is much less
than the factor of 3.995 found for the SW simulations (and corresponds to a spectral
decay close to k−7/3). This poor convergence comes from the enhanced, and likely
spurious, small-scale activity in the GN simulations, seen already in the field spectra
in figure 13. The likely contributors are the height h and divergence δ, whose spectra
are greatly enhanced at small scales relative to those found in the SW simulations.
Vorticity spectra are equally steep and closely similar in all simulations. This means
that the divergent part of the velocity field dominates the kinetic energy at small scales
(compounded by the poor behaviour of h). The potential energy likewise is affected
by the behaviour of h at small scales, leading to stronger dissipation. In summary, the
erroneous fine-scale structure in the height and divergence fields is responsible for the
poor convergence of the GN simulations.
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FIGURE 15. Evolution of the kinetic K, potential P and total energy E =K+P at two
resolutions: n= 512 (a–c) and n= 256 (d–f ). Results are presented for both SW and GN
simulations starting from either δ = γ = 0 or δt = γt = 0.

3.5. Parameter variations
This study has focused on a particular flow to enable a careful assessment of the
differences between GN and SW flows. However, the differences reported are not
unique to the particular flow considered. We have also examined increasing H from
0.2 to 0.3 or reducing it to 0.1, and the primary impact of this is to shift the
transition wavenumber k = 3/H where GN divergence spectra and all imbalance
spectra separate from the corresponding SW spectra. On the other hand, halving c
greatly slows down the dynamics, since the Rossby deformation length LD is reduced
by two, and this length controls the range of interaction between different parts
of the flow. Increasing the PV in the initial ribbon increases both the Rossby and
Froude numbers, making the flow evolve more rapidly and in a more nonlinear
manner, with stronger imbalance. All of these effects, apart from H, are well known
in past SW studies (see e.g. Polvani et al. 1994; Płotka & Dritschel 2014). They do
not qualitatively affect the differences observed between GN and SW flows. Those
differences occur primarily at small scales, except for the divergence, which differs
at all scales. In the following section, we explain why these differences are likely to
be erroneous.

4. Conclusions
For shallow flows, the Green–Naghdi model (Serre 1953; Green & Naghdi 1976a)

is widely considered to be a more accurate extension of the classical shallow-water
model. Both models are founded on the assumption that the horizontal flow is
independent of depth (Miles & Salmon 1985), but the shallow-water model goes
further and imposes the hydrostatic approximation. This greatly simplifies the model,
at the expense of a less accurate representation of linear wave dispersion.

The Green–Naghdi equations are implicit and challenging to solve numerically. In
the present work, we find that the computational cost is approximately three times
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greater than required for the shallow-water equations. Higher-level Green–Naghdi
equations exist (Shields & Webster 1988), but their exceedingly complex form makes
their study impractical.

Regardless, this study has exposed a fundamental and serious shortcoming of the
Green–Naghdi model. The model fails to properly represent nonlinear interactions at
small scales, likely leading to a lack of regularity of the mathematical equations. This
is seen not only in the grainy appearance of the divergence field ∇ ·u in particular, but
also in field spectra, including that of the height field h. Consequently, the numerical
dissipation of energy is much greater in the Green–Naghdi model than in the shallow-
water one, and convergence with resolution is poor (or even lacking for some fields).

The numerical evidence here, obtained using a carefully designed numerical
algorithm, indicates that the spatial derivatives appearing in the original (momentum-
based) Green–Naghdi equations do not converge with increasing resolution. In
particular, the shallow height spectra observed indicate that not even one spatial
derivative converges. But in fact three are needed to evaluate the non-hydrostatic
pressure term appearing in the Green–Naghdi momentum equation. By contrast,
the shallow-water equations exhibit sufficiently steep spectra (for the flow regime
investigated here) to ensure convergence of all terms in the equations.

Shallow spectra do not, in themselves, imply a lack of regularity of the equations
under consideration. The structure of the equations also matters. For example, the
three-dimensional rotating stratified Boussinesq equations have been reported to
exhibit energy spectra having a −5/3 slope at high wavenumbers (as in homogeneous
turbulence, see Waite & Bartello 2006; Deusebio, Vallgren & Lindborg 2013),
indicating a forward energy cascade to progressively smaller scales. However, in
the range of scales unaffected by dissipation, the corresponding spectral decay of
the density and velocity fields is still sufficiently fast that the first spatial derivatives
of these fields converge with increasing resolution (assuming existence of solutions).
Notably, only first derivatives are required in the momentum-based formulation of
these equations (excluding dissipation terms).

One may argue that dissipation is essential to regularise equations like Green–
Naghdi or even shallow water in the high Froude number regime where shocks
may form. Any system of fluid equations exhibiting a forward energy cascade needs
a dissipation mechanism to remove that energy near the smallest scale resolved.
In applications to geophysical fluid dynamics, the range of scales unaffected by
dissipation is vast, well beyond present modelling capabilities. Instead, some sort of
turbulent mixing argument is used to justify dissipating the smallest resolved scales
just enough to prevent energy from building up there. With increasing resolution,
one hopes that spectra converge, as for example seen in studies of three-dimensional
rotating stratified flows (e.g. Waite & Bartello 2006; Deusebio et al. 2013). But
for the Green–Naghdi equations, the situation appears to be fundamentally different.
Spectra in the range of wavenumbers k > 1/H do not converge with increasing
resolution. Even if viscous dissipation were included, this would only reduce
spectral amplitudes for k � 1/H, potentially leaving a wide range of wavenumbers
unaffected by dissipation. Moreover, this range increases with resolution. This lack
of convergence indicates that the equations lack regularity.

We argue that the assumption underpinning the derivation of the Green–Naghdi
model for shallow flows, namely that the horizontal flow is independent of depth, does
not properly represent motions at horizontal scales comparable to or less than the fluid
depth. This is despite the fact that linear wave dispersion appears to be much better
represented than in the shallow-water model (see below).
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Basically, short-scale waves on a free surface are not typically associated with depth-
independent fluid motions. More naturally, fluid motions decay with depth, as can
be seen by considering the characteristics of linear waves in a homogeneous rotating
three-dimensional fluid with a free surface. Taking the mean depth to be H and the
free surface to be at z=H+ η(x, y, t) with η�H, the linearised equations of motion
for a basic state at rest (in a rotating frame of reference) are

ut − fv =−P′x, (4.1)
vt + fu=−P′y, (4.2)

wt =−P′z, (4.3)
ux + vy +wz = 0, (4.4)

where P′ = p′/ρ is the perturbation pressure scaled by the density ρ, and f /2 is the
background rotation rate. The boundary conditions are

w(x, y, 0, t)= 0, (4.5)
w(x, y,H, t)= ηt, (4.6)
P′(x, y,H, t)= gη (4.7)

(assuming there are no boundaries in x and y, or periodic ones). Seeking solutions of
the form

u(x, y, z, t)= û(z)ei(kxx+kyy−ωt), etc., (4.8)

we find after straightforward algebra that

ŵzz −
ω2k2

ω2 − f 2
ŵ= 0, (4.9)

where k2
= k2

x + k2
y is the squared horizontal wavenumber. The general solution

consistent with ŵ= 0 at z= 0 is

ŵ= A sinh

(
ωkz√
ω2 − f 2

)
, (4.10)

where A is an arbitrary constant, and assuming ω2 > f 2. The scaled pressure
perturbation has the form

P̂= iA

√
ω2 − f 2

k
cosh

(
ωkz√
ω2 − f 2

)
. (4.11)

Imposing the remaining boundary conditions leads to the dispersion relation

ω
√
ω2 − f 2 = gk tanh

(
ωkH√
ω2 − f 2

)
, (4.12)

which reduces to the well-known form ω2
= gk tanh(kH) when f = 0, as well as to

the shallow-water dispersion relation ω2
= f 2
+ gHk2 in the long-wave limit kH� 1
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FIGURE 16. (Colour online) Scaled dispersion relations (ωH/c versus kH) for linear
waves in the shallow-water (SW), Green–Naghdi (GN) and exact 3-D Euler equations (see
§ 3.1), with and without rotation (solid and dashed lines respectively) for the simulation
parameters chosen. The figure on the left shows a zoom of the one on the right for kH 62.
Note that the Green–Naghdi dispersion relation well approximates the exact relation in this
range of wavenumbers. Only for kH� 1 does the Green–Naghdi relation underestimate
the exact relation.

(see figure 16 for a comparison with the shallow-water and Green–Naghdi dispersion
relations). The important point is that the horizontal velocity components, which have
the form

û=
ωkx + ifky

ω2 − f 2
P̂, (4.13)

v̂ =
ωky − ifkx

ω2 − f 2
P̂, (4.14)

vary with z just like P̂. Only in the long-wave limit does P̂ become independent of z.
This is the limit taken for the validity of the shallow-water equations.

The Green–Naghdi equations appear to represent horizontal waves of arbitrary
scale, but they do so incorrectly as just demonstrated. Shorter waves are not depth
independent, yet this is the fundamental assumption from which the equations
are derived (Miles & Salmon 1985). This is where the problem lies. A different
starting assumption is required, one which couples horizontal and vertical variations.
For example, one could use the linearised eigenmodes above, together with the
zero-frequency mode corresponding to material conservation of potential vorticity,
as a basis for the nonlinear equations. In this way, the linearised equations are
guaranteed to have the correct dispersion relation, which the original Green–Naghdi
equations only approximate. Nonlinear equations may be constructed by projecting
the nonlinear terms onto the appropriate vertical basis functions (as given above).
This has to be done in the spectral domain horizontally, and likely gives rise to
integro-differential equations in the spatial domain.

The approach suggested above is similar in spirit to the one used for the
Green–Naghdi equations, in that only one vertical mode – the gravest – is retained
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in order to derive a two-dimensional flow model. The parent Euler equations however
allow for arbitrary vertical variations, so restricting the dynamics to only one mode is
an approximation (though a commonly made one). Higher-order vertical modes may
be accounted for along the same lines used to derive the higher-level Green–Naghdi
equations (Shields & Webster 1988; Demirbilek & Webster 1999), though these
equations become exceedingly complicated beyond the 1st level. Arguably, accounting
for the gravest vertical mode exactly in linear theory may lead to a significant advance
in our understanding of shallow free-surface flows. At the very least, any model
derived should exhibit regularity and possess a variational formulation to guarantee
basic conservation. We hope to report on a new model in the near future.

To the authors’ knowledge, there have been no direct comparisons between
the parent 3-D Euler equations for shallow free-surface flows and reduced two-
dimensional equations, either shallow water or Green–Naghdi. While there have been
many studies of 3-D Euler (or Navier–Stokes) flows with or without stratification in
triply periodic geometry, they are not directly relevant to understanding a shallow
flow, with energy dominantly residing at large scales (kH < 1), and having a free
surface. The large scales in such flows are highly constrained by the shallow fluid
depth, leading to qualitatively different dynamics and different nonlinear interactions
between large and small scales, compared to those occurring in isotropic domains.
The study of such shallow flows is a priority. It would allow one to accurately
quantify the extent to which reduced models capture the dynamics of the parent
equations – under conditions where one may expect a correspondence.

Appendix A. Numerical inversion procedure
Here we provide details on how we solve for h, u and v given the variables q, δ

and γ . Following Dritschel et al. (2017) (see § 4.2 therein), we scale the height field
h by the mean fluid depth H and work with a dimensionless anomaly h̃:

h=H(1+ h̃). (A 1)

The mean fluid depth remains constant due to mass conservation. Defined this way,
the mean value of h̃ is zero.

Likewise, we work with the PV anomaly defined by

q̃ = Hq− f

=
ζ + f

1+ h̃
− f +

H2

3
J(h̃, δ). (A 2)

This is zero for a flow at rest and with an undisturbed free surface. Since both H
and f are constant, material conservation of q implies the same for q̃. In general, the
mean value of q̃, denoted q̃, is non-zero.

Letting c2
≡ gH be a characteristic squared gravity-wave speed, the dimensionless

height anomaly h̃ is determined from (2.20), which becomes

c2
∇

2h̃− f ( f + q̃)h̃= f q̃− γ − fA+∇2(B(1+ h̃))+∇ · (B∇h̃), (A 3)

where

A≡
H2

3
(1+ h̃)J(h̃, δ) and B≡

H2

3
(1+ h̃)γ̃ (A 4a,b)
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are terms specific to the GN equations that are absent from the SW equations. The PV
anomaly q̃ is divided into a mean part q̃=〈q̃〉 and a perturbation q̃′. The mean part is
kept on the left-hand side of (A 3) while the perturbation is moved to the right-hand
side. Then, the Helmholtz operator c2

∇
2
− f ( f + q̃) on the left-hand side has constant

coefficients and is easily inverted (algebraically) after a Fourier transform. The right-
hand side is evaluated using previous estimates for h̃, u and v, and then a new estimate
for h̃ is obtained by inversion.

Immediately after, new estimates for u and v are obtained from (2.17), (2.18) and
(2.19). Here, only the non-divergent part (−ψy, ψx) and the mean flow U need to be
updated. For this, we use a new estimate for the relative vorticity

∇
2ψ = ζ = (1+ h̃)( f + q̃)− f − A, (A 5)

where A is defined in (A 4). This is also inverted algebraically after a Fourier
transform. Note: the mean PV anomaly q̃ is determined here from the mathematical
requirement that 〈ζ 〉 = 0, i.e.

q̃=−〈h̃q̃〉 (A 6)

since 〈A〉= 0 as A can be written as J(h2/6, δ) and the domain average of a Jacobian
is zero. Equation (A 6) may appear circular, but q̃ on the right-hand side need not
have the correct mean value a priori, since its mean value contributes nothing to
〈h̃q̃〉. In practice, we take q̃ to have a zero mean value on the right-hand side. Once
q̃ is computed from (A 6), we add it to q̃ so that subsequently q̃ has a mean value
consistent with 〈ζ 〉 = 0.

This completes one iteration. Further iterations are carried out until the errors in h̃, u
and v (their changes between the last two estimates) fall below a prescribed tolerance.
Here we use an energy norm and require

〈1u2
+1v2

+ c21h̃2
〉< 10−10

〈u2
+ v2
+ c2h̃2

〉, (A 7)

where 1u, 1v, 1h̃ are the changes between the last two estimates.

Appendix B. Numerical procedure to obtain γt

In order to integrate the equations of motion forward in time, the time derivatives of
the prognostic variables need to be known explicitly. The only variable which poses
difficulties is the acceleration divergence γ , since γt appears both on the left- and the
right-hand side of (2.11). Fortunately, this equation is linear in γt so that in principle
there is a unique solution. In practice, γt is found by iteration, as described next.

We start by rewriting (2.11) to isolate the dependencies on γt:

γt = S̄γ + 1
3∇

2(h2γt)+
1
3∇ · (hγt∇h), (B 1)

where

S̄γ = f ζt − g∇2ht +
1
3∇

2(2hhtγ̃ + hβ)+ 1
3∇ · (γ̃∇(hht)+ β∇h) (B 2)

contains all terms not dependent on γt, and where

β = 2h(J(ut, v)+ J(u, vt)− 2δδt). (B 3)
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The time derivatives of δt, ζt, ht, ut and vt are given in (2.6), (2.12), (2.13), (2.15)
and (2.16) respectively.

Decomposing h into a mean part H and a dimensionless anomaly h̃ as in (A 1),
then grouping together the constant-coefficient parts of (B 1) on the left hand side,
we obtain

Pγt = S̄γ +
H2

3
∇

2((h̃2
+ 2h̃)γt)+

H2

3
∇ · ((1+ h̃)γt∇h̃), (B 4)

where

P= 1−
H2

3
∇

2 (B 5)

is an invertible elliptic operator. Numerically, equation (B 4) is solved by iteration,
using a guess for γt on the right-hand side, applying a Fourier transform, and inverting
the elliptic operator P (algebraically) to obtain a new estimate for γt. This is then
repeated until the maximum pointwise difference between successive estimates falls
below 10−10f 3. The first guess is taken to be P−1S̄γ .

Appendix C. Iterative implicit time stepping procedure
Time stepping is carried out using the implicit trapezoidal rule and splitting the

(explicitly) linear and nonlinear terms in the evolution equations. Specifically, for δ
and γ we first re-write their evolution equations as

δt +Dδ − γ =Nδ, (C 1)
P(γt +Dγ )−Gδ =Nγ , (C 2)

where P is defined in (B 5),

G= c2
∇

2
− f 2 (C 3)

is the gravity-wave operator appearing in the linearised shallow-water equations,

D= ν(−∇2)m (C 4)

is a hyperdiffusion operator introduced to control grid-scale errors, while Nδ and Nγ

are the remaining terms in (2.6) and (B 4). The value of the hyperviscosity coefficient
ν used is given in appendix D. Note that the term Gδ in (C 2) comes from the linear
part of f ζt − g∇2ht in S̄γ defined in (B 2). The forms of Nδ and Nγ are

Nδ = 2J(u, v)−∇ · (δu), (C 5)

Nγ = c2
∇ · (h̃u)− f∇ · (ζu)+

H2

3
f (1+ h̃)J(h̃, γ̃ )

+
H2

3
∇

2((1+ h̃)(2h̃tγ̃ + β̃))+
H2

3
∇ · (γ̃∇((1+ h̃)h̃t)+ β̃∇h̃)

+
H2

3
∇

2((h̃2
+ 2h̃)γt)+

H2

3
∇ · ((1+ h̃)γt∇h̃), (C 6)

where β̃ = β/H and β is defined in (B 3).
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Note that γt must be first obtained iteratively using (B 4) in order to define Nγ in
(C 6). However, γt is not used explicitly to evolve γ . Instead, equations (C 1) and (C 2)
are first discretised and solved as a 2×2 linear system after taking a Fourier transform.
Using the trapezoidal rule, the discrete system takes the form

δn+1
− δn

1t
+

1
2
D(δn
+ δn+1)−

1
2
(γ n
+ γ n+1)=

1
2
(Nn

δ +Nn+1
δ ), (C 7)

P
(
γ n+1
− γ n

1t
+

1
2
D(γ n

+ γ n+1)

)
−

1
2
G(δn
+ δn+1)=

1
2
(Nn

γ +Nn+1
γ ), (C 8)

where 1t is the time step and the superscript n or n+ 1 indicates the time at which
a quantity is evaluated, either at t= tn or t= tn+1 = tn +1t. Note that Nn+1

δ and Nn+1
γ

depend on fields evaluated at t = tn+1, which are not known at the start, and so the
above pair of equations needs to be solved iteratively to improve estimates for δn+1

and γ n+1 and thereby improve those for Nn+1
δ and Nn+1

γ . We use the fields at t = tn
in place of those at t= tn+1 to start. Simultaneously, we also need improved estimates
for q̃n+1 (discussed below) so that we can find h̃n+1, un+1 and vn+1 by the inversion
procedure detailed in appendix A.

Following Mohebalhojeh & Dritschel (2004), it is most efficient to solve for the
field averages

δ̄ = 1
2(δ

n
+ δn+1) and γ̄ = 1

2(γ
n
+ γ n+1) (C 9a,b)

in terms of which (C 7) and (C 8) become(
2
1t
+D

)
δ̄ − γ̄ =N∗δ +

1
2

Nn+1
δ , (C 10)

P
(

2
1t
+D

)
γ̄ −Gδ̄ =N∗γ +

1
2

Nn+1
γ , (C 11)

where

N∗δ =
2
1t
δn
+

1
2

Nn
δ and N∗γ =

2
1t

Pγ n
+

1
2

Nn
γ (C 12a,b)

are both entirely known at t = tn. After a Fourier transform, the operators D, P and
G become simply numerical coefficients depending on k2

= k2
x + k2

y , the squared
wavenumber. Hence, equations (C 10) and (C 11) reduce to a simple 2× 2 algebraic
problem to determine δ̄ and γ̄ (in spectral space).

Without any loss in order of accuracy (preserving second-order accuracy in time),
we can eliminate γ̄ between these two equations to obtain an explicit equation for δ̄:

Tδ̄ =RN∗δ +N∗γ +
1
2(RNn+1

δ +Nn+1
γ ), (C 13)

where

T≡
(

2
1t
+D

)2

P−G≈
(

4P
1t2
−G

)(
1+

1t
2
D
)2

(C 14)

and

R=
(

2
1t
+D

)
P. (C 15)
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Having thus obtained δ̄, without any loss in order of accuracy we obtain γ̄ from (C 10)
but with the diffusion operator D omitted:

γ̄ =
2
1t
δ̄ −N∗δ −

1
2

Nn+1
δ . (C 16)

From δ̄ and γ̄ , we obtain new estimates for the fields at the next time step:

δn+1
= 2δ̄ − δn and γ n+1

= 2γ̄ − γ n. (C 17a,b)

In practice, this procedure is iterated 3 times before the solutions are accepted.
For consistency, a similar procedure is used to evolve the PV. Here we follow

Dritschel & Fontane (2010) and decompose the PV into a Lagrangian part q̃c,
represented by a set of material contours {X1,X2, . . . ,Xnc}, and two Eulerian parts q̃a
and q̃d, represented as fields on a regular grid of dimensions n × n (or equivalently
as a set of spectral coefficients) in a 2π× 2π doubly periodic domain. The entire PV
field q̃ is recovered by

q̃= Fq̃a + (1− F)q̃c + q̃d, (C 18)

where F is the low-pass filter

F=
1

1+ (6k/n)2
(C 19)

defined in spectral space, and k is the wavenumber magnitude. F is known as the
‘Butterworth filter’ in signal processing (details may be found in Dritschel & Fontane
(2010)). At the beginning of every time step, the field q̃a is reset to q̃, and the field
q̃d is reset to (1−F)(q̃− q̃c) so that q̃ remains unchanged while q̃a is given the most
accurate representation on the grid possible. Note, q̃c is obtained on the grid (or in
spectral space) after a fast contour to grid conversion developed originally by Dritschel
& Ambaum (1997). Hence, q̃a is initialised every time step with a PV field containing
fine-scale structure undiffused even at the grid scale (the PV contours represent sub-
grid scales down to a sixteenth of the grid spacing). The purpose of this unusual
construction is to achieve high accuracy at all scales, with the Eulerian fields used
predominantly at large scales to improve energy conservation, and the Lagrangian
contours used predominantly at small scales to represent fine-scale, indeed sub-grid-
scale motions characteristic of PV advection.

The specific time-stepping procedure carried out is as follows. Every point i on a
contour satisfies

dXi

dt
= u(Xi, t) (C 20)

and so their implicit trapezoidal integration leads to

Xn+1
i =X∗i +

1t
2

un+1(Xn+1
i , tn+1), (C 21)

where

X∗i =Xn
i +

1t
2

un(Xn
i , tn) (C 22)
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is entirely known at the beginning of the time step. In practice, equation (C 21) must
be iterated to obtain improved estimates for the PV contours at t = tn+1, along with
improved estimates of all other quantities such as γ and δ above.

The Eulerian PV fields q̃a and q̃d are treated similarly, except we add a small
amount of hyperdiffusion to the equation for q̃d to control grid-scale errors. The
evolution equations are

∂ q̃a

∂t
=−u · ∇q̃a ≡Na, (C 23)

∂ q̃d

∂t
+Dq̃d =−u · ∇q̃d ≡Nd, (C 24)

where D is the same hyperdiffusion operator defined in (C 4). The implicit trapezoidal
integration of q̃a leads to

q̃n+1
a = q̃∗a +

1t
2

Nn+1
a , (C 25)

where

q̃∗a = q̃n
a +

1t
2

Nn
a . (C 26)

For q̃d, we obtain

q̃n+1
d =

(
1+D

1t
2

)−1 (
q̃∗d +

1t
2

Nn+1
d

)
− q̃n

d, (C 27)

where

q̃∗d = 2q̃n
d +

1t
2

Nn
d . (C 28)

For D= 0, the discretised equations for q̃d and q̃a have exactly the same form.
All of the above estimates for quantities at t = tn+1 are obtained together at each

step of the iteration. Initially, the estimates are the known quantities at t = tn. The
first step is to invert q̃n+1, δn+1 and γ n+1 to obtain estimates for h̃n+1, un+1 and vn+1

using the procedure detailed in appendix A. The next step is to compute the ‘sources’
Nγ , Nδ, Na and Nd at t= tn+1. Then we obtain new estimates of the contour positions
Xn+1

i from (C 21), and of the Eulerian fields q̃n+1
a and q̃n+1

d from (C 25) and (C 27),
respectively. Finally, we update δn+1 and γ n+1 using (C 13), (C 16) and (C 17). This
completes one iteration. Altogether, three iterations are carried out, as a compromise
between accuracy and efficiency.

Appendix D. Numerical parameter settings
In all simulations conducted, we use a fixed time step of 1t = 0.321x/c, where

1x= 2π/n is the grid spacing and c=
√

gH, for both the GN and SW simulations.
This time step is sufficiently small to marginally resolve the highest frequency
gravity waves in the SW simulations (such waves are of lower frequency in the GN
simulations but the time step is kept the same to minimise differences). Without
loss of generality, we set the Coriolis frequency f = 4π, so that one unit of time
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corresponds to a nominal ‘day’. We take the short-scale SW gravity-wave speed
c=
√

gH to be 2π, implying that the highest-frequency gravity wave has a frequency
of

ωmax =
√

f 2 + c2n2/4=π
√

16+ n2 ≈πn (D 1)

so that ωmax1t ≈ 2. This is in fact independent of c so long as f 2
� (cn/2)2.

Simulations carried out with a time step half this size differ negligibly from those
illustrated in this paper.

To control grid-scale noise, we use third-order hyperdiffusion, i.e. m = 3 in (C 4),
with a hyperviscosity coefficient

ν =
10f
(n/2)6

. (D 2)

This corresponds to a damping rate of 10 per inertial period 2π/f at the grid-scale
wavenumber k = n/2. By careful experimentation, this value proves sufficient to
control the spurious upturn in field spectra at small scales.
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