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Numerical investigation of semifilled-pipe flow
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This study describes turbulent flow in a semifilled pipe with a focus on its secondary
currents. To the authors’ knowledge, we provide the first highly resolved data-set for
semifilled-pipe flow using direct numerical simulation. The flow parameters range from
Reτ = 115, just maintaining turbulence, to moderate turbulent flow at Reτ = 460. Some
of the main flow characteristics are in line with previously published results from
experiments, such as the velocity-dip phenomenon, the main secondary flow and the
qualitative distribution of the Reynolds stresses in the core of the flow. We observe some
flow phenomena which have not yet been reported in the literature so far for this type
of flow. Among those is the inner secondary cell in the mixed corner between the free
surface and the pipe’s wall, which plays a major role in the distribution of the wall shear
stress along the perimeter. We observe that the position and extension of the inner vortex
scale with the wall shear stress and those of the outer vortex scale with outer variables.
For the first time, we present and discuss distributions of the complete Reynolds stress
tensor and its anisotropy which gives rise to the generation of mean streamwise vorticity
in a small region in the mixed corners of the pipe. Mean secondary kinetic energy,
however, is generated at the free surface around the stagnation point between the inner and
outer vortices. This generation mechanism is in line with a vortex dynamics mechanism
proposed in the literature.

Key words: pipe flow, turbulent boundary layers, channel flow

1. Introduction

Turbulent flow in partially filled pipes represents an important flow class as it is ubiquitous
in waste water channels, to some degree it can be viewed as a model flow for rivers and last,
but not least, it represents a fundamental flow problem that is not fully understood yet. In
contrast to full-pipe flow a secondary flow of Prandtl’s second kind is generated in partially
filled pipe flow as the free surface breaks the azimuthal homogeneity. The property
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distinguishing the partially filled pipe flow from a rectangular open-channel flow is that
there are no geometrical inhomogeneities apart from the intersections between the free
surface and the pipe wall, the so-called mixed corner (Grega et al. 1995). While in
rectangular open-channel flow, the secondary flow is generated by the mixed and solid
corners (solid means with no-slip walls on both sides), in partially filled pipe flow,
secondary flow is generated at the mixed corner only. Therefore, in partially filled pipes
the generation of secondary flow at a mixed corner can be studied without the influence
of other inhomogeneities. So far partially filled pipe flow has only been experimentally
investigated. Velocity distributions were measured by Knight & Sterling (2000) using
Pitot and Preston tubes, Clark & Kehler (2011) using acoustic Doppler velocimetry and
Yoon, Sung & Ho Lee (2012) and Ng et al. (2018) performing stereoscopic particle image
velocimetry measurements. Clark & Kehler (2011) and Yoon et al. (2012) have an inflow
length of ≈25DH hydraulic diameters, with DH = 4RH where RH is the hydraulic radius,
which is the same for Tominaga et al. (1989). According to Gessner (1973) ≈70DH are
needed to establish a fully developed flow, including secondary flow in a closed-duct
flow. Knight & Sterling (2000) and Ng et al. (2018) have at least 70DH as the inflow
length. The papers before 2012 focused on the main hydraulic flow parameters such
as friction coefficient, mean streamwise velocity distribution, estimations of the wall
shear stress distribution and secondary flow patterns. Ng et al. (2018) complemented
the previous publications with an extensive investigation of different filling heights for
Reb ≈ 30 000. Furthermore, they investigated flow structures in instantaneous velocity
fields and patterns of streamwise velocity correlations in comparison with full-pipe flow.
Recently they published further analyses of their data focusing on high energy modes
of the flow appearing in the mixed corner and on pseudo-instantaneous very large-scale
motions (Ng et al. 2021). All publications to date report only two big counter-rotating
secondary current cells over the whole cross-section.

Partially filled pipe flows represent a form of a wider class of open-channel flows.
A closely related form is an open-channel flow with a rectangular cross-section. They
incorporate mixed corners, but also solid corners. Nezu & Nakagawa (1993)’s monograph
gives a comprehensive overview of such flows, which is followed up by Nezu (2005). A
pair of two vortices per duct half-plane as the secondary flow pattern can be observed for
rectangular open-duct flow. One, more intense, vortex at the free surface rotating towards
the centre of the duct and one counter-rotating bottom vortex. Special attention to the
mixed corner was drawn by the experiments of Grega, Hsu & Wei (2002). In the mixed
corner they found another small vortex, the so-called inner secondary cell, counter-rotating
the free surface vortex. Unfortunately their measurement technique was intrusive and their
inflow length was rather short. However, they could measure an additional vortex, which
is in line with observations by simulations (Joung & Choi 2009; Lee et al. 2012; Sakai
2016). They all show a vortex with a diameter size of ≈70 wall units.

There are still ongoing debates on details of the generation mechanism of secondary
flow in free surface flows, especially on the interaction between secondary flow and
turbulence (Nikora & Roy 2012). As pointed out by Einstein & Li (1958), secondary
flow of Prandtl’s second kind requires an anisotropic turbulence structure. Anisotropy is
induced by the geometry and leads to gradients in the Reynolds normal stresses, which
are supposed to generate secondary flows. In general there are several different ways to
describe the interaction between turbulence and secondary flow, as highlighted by Nikora
& Roy (2012). In particular via the (i) mean vorticity equation (Einstein & Li 1958;
Gessner 1973; Nezu & Nakagawa 1993; Nezu 2005), (ii) Reynolds-averaged Navier–Stokes
equations (Yang, Tan & Wang 2012), (iii) energy balance of the mean flow (Gessner 1973;
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Flow in semifilled pipe

Yang & Lim 1997; Nikora & Roy 2012), (iv) mean and turbulent enstrophy (Nikora & Roy
2012) and (v) coherent structures(Uhlmann et al. 2007; Pinelli et al. 2010; Sakai 2016).
Nikora & Roy (2012) emphasise that it could be worthwhile to interconnect the different
approaches and compare the results, in order to gain new insights into the generation
mechanism of secondary currents.

The present study contributes highly resolved numerical data for low-Reynolds-number
flows in semifilled pipes. Our focus is on the secondary flow, its connection to the wall
shear stress distribution and its generation mechanism guided by the perspective of mean
and turbulent kinetic energy (TKE) budgets.

The organisation of this paper is as follows. In § 2 the numerical set-up is introduced,
followed by an analysis of the Reynolds-dependence of the friction factor in § 3 and the
mean velocity distribution in § 4. The spatiotemporal distribution of the wall shear stress
is discussed in § 5. The Reynolds stresses and their anisotropy are presented and discussed
in § 6. Finally, we track the path of kinetic energy (§ 7), from input to dissipation and
explain how secondary flow obtains its kinetic energy within that framework. In § 8 further
conclusions from the foregoing findings are drawn and summarised.

2. Numerical set-up

2.1. Numerical method
We performed direct numerical simulations (DNS) with our in-house code MGLET. It
solves the incompressible Navier–Stokes equations

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρ

∂pi

∂xi
+ gi + ν

∂2ui

∂x2
j
, (2.2)

by a finite-volume method with a staggered, Cartesian grid. Its spatial approximations are a
second-order central scheme and time integration is applied by a third-order Runge–Kutta
scheme in which a standard projection method is embedded to guarantee divergence free
intermediate velocity fields for the Runge–Kutta substeps.

A conservative second-order immersed boundary method represents the pipe geometry
(Peller et al. 2006; Peller 2010). We achieve mass conservation and second order at
the immersed boundary by treating the momentum and mass balance in different ways.
For computing the advective and diffusive terms in the momentum balance, we use a
second-order pointwise interpolation to prescribe Dirichlet boundary conditions for the
cells which are intersected by the boundary (Peller et al. 2006). For computing the mass
flux through the open faces of the pressure cells, the fluxes are interpolated considering
the open face areas. These fluxes are used to distribute the divergence of the intersected
cells within the pressure correction cycle (Peller 2010). This procedure reduced the mass
defect in selected cases by three orders of magnitude (Peller 2010). Thus mass conservation
is guaranteed cell-wise after the pressure correction cycle. This property was crucially
needed for computing the secondary flows, as the non-conservative variant generated
spurious currents near the wall. As we are using a finite-volume method, there is no
singularity at the intersection of the pipe’s wall with the free surface.

Locally the grid can be refined by zonally embedded grids (Manhart 2004). Thus, we
are able to refine the computational grid in a flexible way along the wall and around the
mixed corners. The code has been successfully applied for various applications, including,
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Figure 1. Flow domain.

for example, the flow around a prolate spheroid (El Khoury, Andersson & Pettersen 2012;
Jiang et al. 2016) and the flow around a cylinder-wall junction (Schanderl & Manhart 2016;
Schanderl et al. 2017).

2.2. Flow domain and simulation cases
Our flow domain is a semifilled pipe with radius R and a length L, see figure 1. Periodic
boundary conditions are applied in the streamwise direction; at the pipe’s wall there is
a no-slip condition. At the top a slip condition represents a free surface with zero shear
stress and zero surface deformation. Such a condition represents the limit of a vanishing
Froude number.

The main parameter is the friction Reynolds number Reτ = uτR/ν, using the
perimeter-averaged friction velocity uτ , the radius R and the kinematic viscosity ν. The
friction velocity uτ = √

τw/ρ was fixed a priori by a constant body force g1 using the
integral force balance τw = (g1RH). The volume force can also be interpreted as a gravity
force or as a pressure gradient. Here Reτ spans from 115, which is just maintaining
turbulence, to 460. Unlike the friction Reynolds number, the bulk Reynolds number
Reb = ub2R/ν can only be calculated a posteriori based on the bulk velocity ub, which
results from the simulations. Please note that Reb is based on the pipe diameter being in
line with the full-pipe flow definition and is equal to a Reynolds number based on the
hydraulic diameter ReH for semifilled-pipe flow as used, for example, by Ng et al. (2018).

We performed six simulations of turbulent semifilled-pipe flow of which the main
parameters are summarised in table 1. For Reynolds numbers smaller or equal to Reτ =
230, we applied a constant grid spacing throughout the whole cross-section. In order to
save computational costs for the highest Reynolds number, we refined the grid with a
factor of two in the vicinity of the wall and a larger area in the mixed corner, where the
rigid wall and the free surface intersect, as we especially want to examine this region of the
flow, see figure 2. For generating a turbulent flow for low Reynolds numbers, we followed
a similar procedure as executed in Jiménez & Moin (1991). We started with a turbulent
flow field at a larger Reynolds number and reduced the viscosity step by step to achieve
the desired Reynolds number. The lowest Reynolds number with which we could maintain
a turbulent flow state was Reτ = 115.

After generating a fully developed flow we gathered statistics for over at least 4950 bulk
time units R/ub. We averaged over the domain length and, furthermore, took advantage of
the half-plane symmetry of the flow and mirrored the results for the averaged quantities.
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Reτ Reb L/R Ntotal × 106 �x+
1 �x+

2 = �x+
3 �tb �t+

115 3240 38.46 48 4.38 0.73 11 489 93 058
120 3364 38.46 48 4.56 0.76 9053 76 898
140 3874 25.91 43 4.74 0.79 11 486 115 395
180 5198 25.54 90 4.74 0.79 5068 62 849
230 6874 25.36 242 3.32 0.83 5511 84 424
460 15 452 25.36 749 3.32–6.64 0.83–1.66 4958 135 489

Table 1. Simulation parameters for turbulent semifilled-pipe flow: Reτ = uτR/ν, friction Reynolds number;
Reb = ub2R/ν, bulk Reynolds number; Ntotal, total number of grid points; �x+

i , grid spacing in wall units
(based on bulk friction); �tb = �tub/R and �t+ = �tu2

τ /ν, averaging times for statistics in bulk and viscous
time units, respectively.

1.0 0.5 –0.5 –1.0
0

0.25

0.75

1.00

x2/R

x3/R

Figure 2. Grid configuration for Reτ = 460, base grid (red) and local grid refinement (blue). Every grid box
contains 403 cells.

The length of the flow domain is L ≈ 8πR for Reτ � 140 and L ≈ 12πR in the two
lowest Reynolds numbers to obtain two-point correlations which decayed within half of
the length of the pipe. The location at which the two-point correlations in the streamwise
direction decay slowest lies near the mixed corner. In figure 3(a) the two-point correlation
for Reτ = 180 is shown for a point near the mixed corner (−0.97, 0.97) for half of the
domain length. We conclude that the two-point correlations decay within this length.
Recently, Zampiron, Cameron & Nikora (2020) observed very large-scale motion of
lengths up to 25 flow depths in open channel flow. We would not be able to represent
such structures in our simulation. However, Feldmann, Bauer & Wagner (2018) reported
that 14 radii are sufficiently long to obtain converged second-order statistics in fully filled
pipe flow and Ng et al. (2021) reported a maximal length of structures of approximately
11R in partially filled pipe flow, which is our flow case. Our domain is more than twice
as large. It is also longer than what has been used in some recent comparable numerical
studies, e.g. Pirozzoli et al. (2018).

2.3. Validation of the immersed boundary method and the grid
For validation of the immersed boundary method and the grid resolution, we performed
a grid resolution study at Reτ = 180 for the semifilled-pipe flow at resolutions of �x+

2 =
�x+

3 = 3.2, 1.6, 1.2, 1.0 and 0.8. As an additional test we computed a full-pipe flow at
three different grids, �x+

2 = �x+
3 = 3.2, 1.6 and 0.8. These tests served to quantify the
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Figure 3. Streamwise two-point correlation for all three normal components Ruiui for Reτ = 180 in the mixed
corner (−0.97, 0.97) (a). Black solid line is streamwise component, red dashed line is spanwise component
and blue dotted line is vertical component. Grid study of wall shear stress τw/τ0 for Reτ = 180 for semifilled
and full-pipe flow (b). Grid size equal to 3.2, 1.6, 1.2, 1.0 and 0.8 wall units for semifilled and 0.8 wall units for
full-pipe flow.

uncertainty in and the radial homogeneity of the friction coefficient. Moreover, we are able
to compare with results from DNS with body-fitted grids for the full-pipe flow (El Khoury
et al. 2013). The streamwise spacing in both semifilled and fully filled pipes was set to
�x+

1 = 6�x+
2 .

In an immersed boundary method, the actual wall distance of the centres of the first
momentum cells near the wall are randomly distributed. Using a�x+

i = 0.8 at Reτ = 180,
we obtain a mean wall distance of the momentum cell centres of �r+ = 0.7871 with a
root mean squares (r.m.s.) of �r+

rms = 0.8135. It is evident that the spatial variability of
the wall distances lead to spatial variabilities of the numerical errors. These errors are
typically seen in variations of the computed wall shear stress. Thus, our validation tests
served primarily for assessing how the radial symmetry and homogeneity of the computed
wall shear stress was disturbed by the boundary condition. We have to note here that the
volume force has been applied only in the momentum cells, and that the cells intersected
by the wall are excluded. Therefore, the volume force is applied in a smaller volume.
We accounted for this fact when normalising quantities in inner coordinates and when
computing the friction factors. The differences in the volume are 0.5 % at 0.8, 1.4 % at 1.6
and 2.6 % at 3.2 inner units. This means, the Reynolds numbers Reτ given in table 1 are
actually approximately 0.5 % smaller than given.

In figure 3(b) we demonstrate the converging behaviour of the wall shear stress along
the perimeter together with the wall shear stress along the lower perimeter for the full
pipe from the finest resolution. We computed the wall shear stress in a post-processing
step by interpolating the time and streamwise averaged velocities to a wall distance of
�r+ = 2. These interpolated values were used to compute the wall gradients. We can see
for the coarser simulations that there are larger deviations of the maxima in the mixed
corner and the minima at approximately ±3/8π. Furthermore, large unphysical wiggles
appear at the coarsest resolution. The distributions at the finer resolutions with �x+

2 =
�x+

3 � 1.2 are very similar, but still a wavy pattern can be noticed in the centre. The
finest grid delivers, however, very smooth results in the centre part of the semifilled pipe.
The remaining variations in the centre part can be compared with the variations of the
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Figure 4. Azimuthally averaged streamwise velocity u1/uτ in wall-normal direction xn for full-pipe flow of
Reτ = 180 for different grid resolutions (a). Red represents �x+

2 = �x+
3 = 0.8, blue corresponds to 1.6 and

green to 3.2. For comparison, data from El Khoury et al. (2013) are included as grey circles and the black
line shows the linear law of wall u+

1 = x+
n . The boxes include details of the near wall and centre region. The

r.m.s. of velocity fluctuations u+
1,rms (+) , u+

r,rms (◦) and u+
θ,rms (×) in inner units for full-pipe flow simulation of

Reτ = 180 averaged in azimuthal direction (b). The distinction by the colours red, blue and green is the same as
in panel (a). Lines correspond to our simulation and every fifth data point of El Khoury et al. (2013) is included
(grey pluses, circles and crosses) for comparison.

local wall shear stress in the full-pipe flow at the same grid resolution. The maximum
variation herein is below 1 % from the ideal value.

We present a comparison of the time and azimuthally averaged velocity with data
from El Khoury et al. (2013) in figure 4(a). The averaged streamwise velocity profile
(figure 4(a)) converges in the viscous layer towards the law of the wall, but we see that
we need our finest grid of 0.8 wall units. While our coarse grid velocity is slightly lower
in the centre than the ones of El Khoury et al. (2013) the finer grid results converge at
a somewhat higher level already at the medium grid with 1.6 wall units. As a result, our
uτ /ub demonstrates a difference of 0.6 % between the finest and the second finest grid,
and a slightly larger difference of 1.1 % to the reference of El Khoury et al. (2013).

In figure 4(b) we document the convergence behaviour of the r.m.s. of the velocity
fluctuations in full-pipe flow and compare the profiles with El Khoury et al. (2013). We
can conclude that the finest grid gives a very good agreement with the reference results for
all components. While for u+

1,rms and u+
θ,rms the finest resolution is needed, u+

r,rms seems to
be converged already in the coarsest simulation. We would like to emphasise that there is
no distortion of the Reynolds stresses visible near the wall. Thus the immersed boundary
method works well for representing the pipe’s wall at the chosen grid resolution.

The convergence study indicates that a grid with a near-wall normal-to-flow grid
resolution around 0.8 wall units is sufficiently fine to keep uncertainties in spatial wall
shear stress variations and the global friction factor below 1 %, and to represent the
time-averaged velocity and the Reynolds stresses in an accurate way. Therefore, we
applied this resolution at all other simulations. The validation tests were done with a
cell aspect ratio of �x1/�x2 = 6. Note that at the two highest Reynolds numbers, we
used a lower aspect ratio of �x1/�x2 = 4. We would like to emphasise that our grid
resolution in the cross-flow directions is well below that of standard wall resolutions of
turbulent channel flow (Vreman & Kuerten 2014), except in the wall-normal direction
in immediate wall-proximity. Furthermore, a consistent grid resolution study using our
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(b)(a)

Figure 5. Friction Reynolds number Reτ over bulk Reynolds number Reb (a). Bulk Reynolds dependency of
friction factor λ (b). The symbols are as follows: + (red) indicate present simulations; ◦ (red) represent our
full-pipe flow simulation; � show Sakai (2016)’s data; ◦ (grey) are measurements for full-pipe flow extracted
from textbook of Schlichting & Gersten (2017); × (blue) show data for 52 %-filled pipe by Ng et al. (2018); ◦
(blue) show data for full-pipe by Ng et al. (2018); and � (blue) represents a measurement by Yoon et al. (2012).
The solid line follows (3.1) and the dashed line follows λ = 64/Reb.

code for turbulent channel flow (Schwertfirm & Manhart 2007) has demonstrated that the
Reynolds stresses computed at a grid of (�x+

1 ,�x+
2 ,�x+

3,min) = (4.8, 5.76, 1.35) were
nearly indistinguishable from the ones computed at (1.92, 2.2, 0.5). Thus, we believe that
a grid resolution of 0.8 wall units in the cross-flow direction is sufficiently fine for our
purpose.

3. Friction factor

The flow of our simulations was driven by a constant volume force, hence by configuring
the pressure force and the kinematic viscosity we could set the friction Reynolds number
a priori. As a result we could calculate the bulk Reynolds number a posteriori via the
bulk velocity. Figure 5(a) shows the ratio of Reτ to Reb. Red pluses indicate the results
of the present study. In addition grey squares are included, representing the data of Sakai
(2016) for open-duct flow with an aspect ratio of 2 : 1. In order to be able to compare the
two different flow cross-sections, the Reynolds numbers of the rectangular cross-section
were based on an equivalent length scale Heq as characteristic length scale. By assuming
an equally large cross-sectional area for both geometries, Heq has been defined as Heq =
H2/

√
π, with H being the flow depth (Sakai 2016). The two data-sets agree very well

for all Reynolds numbers. For comparison with empirical formulae we added Prandtl’s
friction law for smooth pipes

1√
λ

= 2 log10(
√
λReb)− 0.8. (3.1)

In figure 5(b) the friction factor λ = (8g1RH)/u2
b is plotted as a function of Reb as in

the Moody-diagram. The grey circles show measurements extracted from the textbook
of Schlichting & Gersten (2017) for a smooth full-pipe flow, the solid line is (3.1). In
colour, data for semifilled-pipe flow are included, except for the red circle, representing
the additional validation simulation of a full-pipe flow at Reτ = 180. The red pluses
symbolise the present study, the measurements from Ng et al. (2018) are shown as blue
crosses and the blue diamond is taken from Yoon et al. (2012). While the measurements
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of Ng et al. (2018) and Yoon et al. (2012) suggest a large increase of the friction
factor in semifilled-pipe flow compared with full-pipe flow, our simulations give only a
mild increase. One has to bear in mind that both measurements are affected with large
uncertainties. Yoon et al. (2012) performed stereoscopic particle image velocimetry from
which they were not able to compute the wall gradient directly. Thus they estimated the
wall shear stress on the basis of a fitted streamwise velocity, based on the method proposed
by Chiu & Said (1995). We believe that this procedure can introduce large errors. Ng
et al. (2018) obtained their friction factors from a global force balance for which they
measured the slope of the water surface. They rate this indirect method as associated with
‘relatively large uncertainty’. Based on our validation and grid study presented in § 2.3,
we are confident that the large increase of the friction factor as inferred from the two
experiments is unrealistic.

4. Mean velocity

4.1. Mean streamwise flow
Although the rotational symmetry of the pipe is broken, laminar flow is invariant with
respect to rotations about the pipe axis. This does not hold for turbulent flows. In figure 6
the normalised mean streamwise velocity is shown for Reτ = 115, 140, 180 and 460.
The distribution of the mean streamwise velocity depends on the Reynolds number. For
Reτ � 140 we can observe the so-called ‘velocity-dip’ phenomenon, i.e. the maximum
velocity – indicated by a plus in the plots – is not at the free surface. The distance of
the velocity maximum from the surface increases within this Reynolds number range,
which is further investigated below, see figures 7 and 8. These velocity distributions differ
significantly from rotational symmetry. The general picture is in accordance with findings
from higher Reynolds numbers in partially filled pipe flows (Knight & Sterling 2000; Clark
& Kehler 2011; Yoon et al. 2012; Ng et al. 2018) and rectangular open-duct flow (Tominaga
et al. 1989; Joung & Choi 2009; Sakai 2016). For the very low, but still fully turbulent,
Reynolds number Reτ = 115 the velocity distribution is much closer to full-pipe flow and
no ‘velocity-dip’ phenomenon can be detected. The same behaviour was observed by Sakai
(2016) for turbulent rectangular open-duct flow at marginal Reynolds numbers.

The distance of the maximum mean streamwise velocity from the free surface is
shown in figure 7 in inner units. The data of a rectangular open-duct flow are shown for
comparison (Sakai 2016), again taking the difference in cross-sectional area into account
via the equivalent length scale Heq. For the very low Reynolds numbers there is a slight
difference, which can be explained by the different geometry and the vortex pattern, but
for higher Reynolds numbers both cases match well. The distance in outer units can be
compared with several other measurements of semifilled-pipe flows (Knight & Sterling
2000; Clark & Kehler 2011; Yoon et al. 2012; Ng et al. 2018) at higher Reynolds numbers
(figure 8). The experiment of Yoon et al. (2012), which is in the same Reynolds number
range as our simulation, deviates from our data. Maybe their inflow length of 25DH is too
short to have fully developed secondary flow. Note that Demuren & Rodi (1984) reported a
fully developed secondary flow in a rectangular channel not before 70DH from the inlet. On
the other hand, the high-Reynolds-number cases would approximately follow the trend of
our data. Taking all data into account, after a strong increase for small Reynolds numbers,
the distance from the velocity maximum to the free surface�z(ūmax/R) seems to settle for
larger Reynolds numbers between 0.3 and 0.4.

The magnitude of the normalised maximum mean streamwise velocity decreases with
Reynolds number when normalised by ub, see figure 9. This means that the momentum is
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Figure 6. Mean streamwise velocity ū/ub of Reτ = 115, 140 (a,c) and 180, 460 (b,d). The symbol +
indicates the position of the velocity maximum.
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Figure 7. Distance �z+ from the free surface to the maximum mean streamwise velocity of Reτ = 115, 120,
140, 180, 230, 460 (+, red). The symbol � represents data for rectangular open-duct flow from Sakai (2016).

more evenly distributed with higher Reynolds number, hence, the velocity distribution is
more balanced and its peak, the maximum velocity, is less distinct. The data for ūmax/ub
reported in the literature do not generally match to our results. While the maximum
velocity measured by Ng et al. (2018) continues our trend, the older measurements by
Yoon et al. (2012), Clark & Kehler (2011) and Knight & Sterling (2000) largely deviate.

The ‘velocity-dip’ phenomenon can also be seen in figure 10, which shows the mean
velocity profiles in the symmetry plane in inner units (for this plot, we used the local wall
shear stress, obtained by the velocity gradient at the wall – see § 5). Near the wall, all
profiles collapse to the linear law of the wall. For Reτ � 140, the profiles do not develop
a logarithmic layer. For Reτ = 180 and 230 a logarithmic layer can be observed, which
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Figure 8. Distance �z/R from the free surface to the maximum mean streamwise velocity of Reb = 3240,
3364, 3874, 5198, 6874, 15 452 (+, red). The symbol � represents data for rectangular open-duct flow from
Sakai (2016). Including data from experiments: � (blue) (Yoon et al. 2012); × (blue) (Ng et al. 2018); ∗ (blue)
(Clark & Kehler 2011); and � (blue) (Knight & Sterling 2000).
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Figure 9. Maximum mean streamwise velocity ūmax/ub of Reb = 3240, 3364, 3874, 5198, 6874, 15 452.
Including experimental data: � (blue) (Yoon et al. 2012); × (blue) (Ng et al. 2018); ∗ (blue) (Clark & Kehler
2011); and � (blue) (Knight & Sterling 2000).

reaches up to the velocity dip but the slopes are decreasing with increasing Reynolds
number. Overall the Reynolds numbers seem to be too low to render a clear logarithmic
behaviour such as is visible in higher Reynolds number pipe flows (El Khoury et al. 2013),
but they approach the standard log law u+ = 0.41−1 ln(x+

3 )+ 5.2 at Reτ = 460. At this
Reynolds number a pronounced wake region develops beneath the velocity maximum. As
the Reynolds number increases, the wake region becomes more distinct, which is visible
also for experiments and simulations of full-pipe flow (Zagarola & Smits 1997; El Khoury
et al. 2013) but has not been reported in experiments of semifilled-pipe flow so far (Ng
et al. 2018).

In outer units we can see that the velocity gradient is getting steeper close to the wall
as the Reynolds number increases, see figure 11. The low Reynolds numbers increase
monotonically and reach higher magnitudes. At high Reynolds numbers the velocity
distribution is more complex. They have a less steep gradient from a wall distance of
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Figure 10. Mean streamwise velocity distribution ū/uτ,local from the wall to the pipe centre at the vertical
symmetry line of Reτ = 115, 120, 140, 180, 230, 460.
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Figure 11. Mean streamwise velocity distribution ū/ub from the wall to the pipe centre at the vertical
symmetry line of different Reb. Including experimental data: � (blue) (Yoon et al. 2012); × (blue) (Ng et al.

2018).

z/R = 0.1 on and the velocity-dip phenomenon in the bulk region. We can compare with
the semifilled-pipe flows of Yoon et al. (2012) and Ng et al. (2018). They basically show
a similar velocity distribution, but for Yoon et al. (2012) the velocity-dip phenomenon is
not as pronounced as it is for our simulation and the velocities in the symmetry plane
are much higher than for any of our simulations when normalised by ub. The velocity
magnitude of the experiment by Ng et al. (2018) fits quite well to our data and they also
found an approximately zero gradient approaching the free surface.

4.2. Secondary flow
We are looking at the distribution of streamlines of the secondary flow over the
cross-section, defined as lines of constant stream functionψ and ∇2ψ = −ω̄1. We can find
an alternating pattern of clockwise (red) and anticlockwise (blue) rotating vortices, which
are symmetrically arranged with respect to the vertical bisector, see figure 12. The basic
pattern does not change with Reynolds number. According to Grega et al. (2002), the
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Figure 12. Contours of stream functionψ of mean cross-flow velocities u2 and u3 and as greyscale the velocity
magnitude of

√
u2

2 + u3
2/ub for Reτ = 115, 140 (a,b) and 180, 460 (b,d). The increments for the contour lines

of ψ are 0.003. For clarity the increments of Reτ = 460 are doubled.

vortex in the mixed corner is also called the inner secondary cell and the centre vortex
the outer secondary cell. For very low Reynolds numbers the vortices are almost equally
strong and distributed over the whole circumference. The inner secondary cell gets smaller
and moves towards the mixed corner when the Reynolds number is increased. In contrast,
the centre vortex enlarges and is shifted towards the free surface. For higher Reynolds
numbers the outer secondary cell has a negligible effect in the bottom region of the pipe.
These observations are in line with the distribution of the in-plane velocity magnitude√

u2
2 + u2

3/ub, shown as greyscale in figure 12. For friction Reynolds numbers smaller than
180, the in-plane velocity is active over the whole cross-section. With higher Reynolds
numbers the activity in the bottom region becomes less and the areas with high in-plane
velocities concentrate at the free surface. For friction Reynolds numbers below 180 the
maximum in-plane velocity can be found in the inner secondary cell at x2/R ≈ ±0.80 and
for higher Reτ it is located in the outer secondary cell at x2/R ≈ ±0.43 directly at the
free surface. The maximum in-plane velocity magnitude increases with Reynolds number
from 1.3 % to 5.7 % of ub (note that the limits of the greyscales in the plot do not represent
the exact range). This agrees well with data found in the literature for similar geometries
(Tominaga et al. 1989; Sakai 2016; Ng et al. 2018).

The pattern of the mean streamwise vorticity is similar to the one of the stream function,
but does not truly reflect the mean vortex pattern, see figure 13. As it is the Laplacian of
the stream function, the vorticity renders a smaller structure than the stream function. This
is especially visible for the shear layers at the wall. As the Reynolds number increases
the vorticity maxima are even farther shifted towards the free surface than the vortex
centres deduced from the streamlines. Similar to the stream function, the mean streamwise
vorticity is almost zero in the bottom region for higher Reynolds numbers, which indicates
that the influence of the secondary flow could be very small in the lower part of a semifilled
pipe.
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Figure 13. Mean dimensionless streamwise vorticity ω1R/ub of Reτ = 115, 140 (a,c) and 180, 460 (b,d). The
increments for the contour lines of ω1R/ub are 0.04.

The distance of the vortex centres to the free surface (+) and the mixed corner (◦) are
shown in outer units over the bulk Reynolds number in figure 14(a). For both vortices
the distances to the free surface and the mixed corner decrease with Reynolds numbers.
For the outer secondary cell the distance to the mixed corner is approximately constant
at ≈0.6�s/R for the higher Reynolds numbers, whereas the other distances are further
decreasing. In wall units the outer secondary cell (blue) does not scale, whereas both
distances of the inner secondary cell (red) scale well (figure 14b) especially at higher
Reynolds numbers. Its distances range from 20 to 50 wall units. This is in agreement with
the findings of Sakai (2016) for rectangular open-duct flow in a similar range of Reynolds
numbers. If the inner vortex continues to scale with inner units at higher Reynolds numbers
one can expect that the inner secondary cell is getting very small compared with the radius
of the pipe. Consequently, it would be more and more difficult to detect it by measurements
with limited spatial resolution. This could explain why previous measurements in partially
filled pipe flow only reported the outer secondary vortex (Clark & Kehler 2011; Ng et al.
2018).

As a measure for the strength of the secondary vortices, we have a look at the peak values
of the stream function in the inner and outer secondary cells in figure 15. At the lowest two
Reynolds numbers, both vortices exhibit the same amount of volume flux between the free
surface and the vortex centre. At higher Reτ the peak of the stream function reaches larger
values in the outer vortex than in the inner vortex. While the stream function seems to
saturate for larger Reynolds numbers in the outer vortex, it appears to attain its maximum
at between Reτ = 230 and 460 in the inner vortex.

The Reynolds dependency of the positions of the inner and outer secondary cells within
the cross-section is shown in figure 16 by the locations of the vortex centres in one half
of the duct. In agreement with the stream function distribution (cf. figure 12) the vortex
centres move upwards as the Reynolds number increases. The inner secondary cell does
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Figure 14. Normalised distance �s from the mixed corner (+) and free surface (◦) to the minimum and
maximum of the stream function ψ in outer (a) and inner (b) units over Reb and Reτ , respectively. Red
corresponds to the inner secondary vortex and blue to the outer secondary vortex.
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Figure 15. Normalised peak values of the stream function ψ/(uτ /R) of the inner (◦, red) and the outer
secondary cell (+, blue) of Reτ = 115, 120, 140, 180, 230, 460.

always cover the position in the mixed corner and with decreasing size it moves farther
into the mixed corner. For small Reynolds numbers the outer vortex centre is located close
to the bottom and its circulation is similar to the one of the inner vortex. For moderate
Reynolds numbers its position and the area it is covering change quickly. As the inner
vortex becomes smaller, the size of the outer secondary cell becomes larger and moves
to the centre. While the magnitude of the inner vortex vorticity strongly increases with
Reynolds number (figure 13), its peak stream function remains bounded (figure 15). The
peak values of the stream function in the outer cell grow stronger with Reynolds numbers
than the one of the inner cell, whereas its vorticity only moderately increases. For higher
Reτ the position and the intensity of the outer secondary cell seems to stabilise, whereas
the intensity of the inner secondary cell even decreases. Apparently, with increasing
Reynolds number the outer secondary cell becomes more and more the dominating vortex.
A similar observation has been made by Pirozzoli et al. (2018) for the case of a closed
square duct. They observe a corner circulation with inner scaling and a core circulation
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Figure 16. Positions of the inner and outer secondary cell centres for Reτ = 115, 120, 140, 180,230, 460. Cell
centres are defined as local minima and maxima of the stream function ψ . The symbol ◦ (red) corresponds to
the inner secondary vortex and the symbol + (blue) to the outer secondary vortex.

scaling with the duct half-height, the latter being more and more dominant with increasing
Reynolds number.

5. Wall shear stress

The local wall shear stress τw is an important parameter in terms of sedimentation and
resuspension in sewage pipes. Its distribution over the perimeter can be seen as a footprint
of the secondary flow. The wall shear stress is obtained by near wall velocity gradients.
In figure 17(a) the distribution of the time-averaged wall shear stress τw/τ0 around the
wetted perimeter is shown for various Reynolds numbers, τ0 being the perimeter- and
time-averaged wall shear stress. Independent of the Reynolds number the maxima can
be found at the mixed corners. The local minima can be found at ±π/4 at the lowest
Reynolds numbers and move towards the mixed corners when the Reynolds number is
increased. At small Reynolds numbers (Re � 140) the distribution is nearly harmonic with
a clear local maximum in the symmetry plane of the pipe. This local peak flattens and
moves towards τw ≈ τ0 when the Reynolds number is increased. Eventually, secondary
local maxima will be forming between the flat region and the minima. For small Reynolds
numbers the maxima in the corners and in the symmetry plane have approximately the
same magnitude. For increasing Reynolds numbers the difference between maxima and
minima becomes larger while in the symmetry plane the wall shear stress tends to be
τw ≈ τ0, reflecting the low activity of the secondary flow in the lower part of the pipe
(cf. figure 12). The wall shear stress distribution can be explained with the secondary
flow. In regions with a secondary flow pointing towards the wall, τw is high and when the
secondary flow is directed away from the wall τw is small.

In figure 17(b) our results are compared with the high Reynolds number experiments
of Knight & Sterling (2000) (Reb = 110 000) and Clark & Kehler (2011) (Reb = 557 000,
only data for one side available). They both match each other fairly well, but as they could
not detect the inner secondary cell within their measurements, they also do not show a
global wall shear stress maximum at the mixed corner. Instead, they found the global
minimum at the mixed corner and the global maximum at the centre bottom.
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Figure 17. (a) Normalised mean wall shear stress τw/τ0 of Reτ = 115, 120, 140, 180, 230, 460. (b) Normalised
mean wall shear stress τw/τ0 of Reb = 15 452 and including experimental data: ∗ (blue) (Clark & Kehler 2011);
and � (blue) (Knight & Sterling 2000).
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Figure 18. Normalised r.m.s. of wall shear stress fluctuations τw,rms/τ0 over the perimeter for
Reτ = 115, 120, 140, 180, 230, 460.

In order to quantify the level of fluctuations of the wall shear stress we obtained the
instantaneous local wall shear stresses from velocities interpolated to a wall distance of
�r+ = 2. The r.m.s. of its fluctuations normalised by the global wall shear stress are
plotted in figure 18 along the perimeter. In general, the distribution resembles the mean
wall shear stress distribution with its maxima at the mixed corners, followed by a minimum
and a plateau in the centre. Hence, the largest fluctuations in wall shear stress occur in the
mixed corner. With increasing Reynolds number the local minimum moves towards the
mixed corner as was observed for the mean wall shear stress. The r.m.s. level in the centre
increases with Reynolds number and nearly reaches τw,rms/τ0 ≈ 0.4, a value that was
observed in channel and pipe flows at high Reynolds numbers (Alfredsson et al. 1988; El
Khoury et al. 2013). The local fluctuations in the mixed corners are approximately 1.2–1.7
times stronger than in the centre of the perimeter. Moreover, they reach approximately the
value by which the time-averaged wall shear stress exceeds the perimeter-averaged one.

In the mixed corner the secondary flow points towards the pipe’s wall which explains
the large wall shear stress values in the mixed corner. The first wall shear stress minimum
is close by the location where the flow separates from the perimeter and marks the end of
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Figure 19. Azimuthal distance in wall units �s+ from mixed corner to first minimum of wall shear stress (+,
red) and to the separation point of the secondary flow (◦, blue) for Reτ = 115, 120, 140, 180, 230, 460.

the inner vortex. This is demonstrated in figure 19 in which both locations are plotted in
dependence of the Reynolds number. At the lower Reynolds number the separation point is
approximately 10 wall units farther away from the mixed corner than the wall shear stress
minimum. The distance from the mixed corner to the first wall shear stress minimum and
the separation point has its minimum at Re ≈ 230. At Reτ = 460 the distance to both
points increases and reaches ≈90+ and 65+, respectively. More data at higher Reynolds
numbers would be necessary to elucidate a scaling here.

In pipe flow, wall shear stress fluctuations are linked to the appearance of streaks in
instantaneous near-wall streamwise velocities, which are plotted in figure 20 at a constant
distance from the wall of 10+. An alternating pattern of low- and high-speed streaks can
be detected independent of Re. In outer units individual streaks become smaller with
increasing Reynolds number, as they scale with inner units, having an average spacing
of 100+ in channel flow (Kim, Moin & Moser 1987). This streak spacing would give
rise to approximately 3.5 high-speed streaks fitting in the perimeter at Reτ = 115 and to
14.5 streaks at Reτ = 460. A similar approach was employed by Pinelli et al. (2010) for
a rectangular closed duct, which will be further referred to at the end of this section.
The instantaneous velocity distributions do not contradict such a spacing. The wall shear
stress peak in the mixed corners, i.e. at ±1

2π, can hardly be seen as increased levels in
the instantaneous velocity distribution. There are strong fluctuations of the streamwise
velocity at a 10+ wall distance which do not seem to differ in the mixed corners from the
centre of the channel.

The observation that the time-averaged wall shear stress distribution is not visible in
instantaneous velocity distributions is supported by figure 21 in which cross-sectional
distributions of the instantaneous streamwise velocity are plotted. The uplift of low-speed
fluid from the wall can be clearly seen at specific spots along the circumference. With
increasing Reynolds number, more and smaller uplift events can be seen, as expected.
There is no specific structure visible in the mixed corners. However, in the higher Reynolds
numbers, the velocity dip is clearly visible.

In order to evaluate the character of the wall shear stress distribution, we computed
running averages of the wall shear stress at a fixed streamwise position using an averaging
time of one flow-through time L/ub. These are plotted for 40L/ub (figure 22). In this
representation, the short-time fluctuations which obscured the long-term variations of the

932 A25-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

95
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.956


Flow in semifilled pipe

0 5 10 15 20 25 30 35
–1/2 π

0
1/2 π

0.2

1.1

0.2

1.1

0.2

1.1

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

0.2

1.1

x1/R

φ

–1/2 π

0

1/2 π

φ

–1/2 π

0

1/2 π

φ

–1/2 π

0

1/2 π

φ

(b)

(a)

(c)

(d )

Figure 20. Instantaneous normalised streamwise velocity u1/ub at a constant distance of 10 wall units from
the wall over the channel length for Reτ = 115, 140, 180, 460 (a–d).
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Figure 21. Instantaneous normalised streamwise velocity u1/ub over the cross-section for Reτ = 115, 140
(a,c) and 180, 460 (b,d).

wall shear stress are not visible. It becomes obvious that the running averages reveal large
wall shear stresses in the mixed corners for most of the time. In addition to these wall shear
stress maxima in the mixed corners, local minima occur next to them. The variations in the
centre appear more random and only a few extreme values show up. In a similar manner,
Pinelli et al. (2010) investigated the velocity streak behaviour for the solid corner in a
rectangular closed duct with a local wall shear stress minimum appearing in the vicinity
of the solid corner. The Reynolds dependency of their velocity streaks is analogous to
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Figure 22. Temporal distribution of the normalised running-averaged wall shear stress τw/τ0 over the
perimeter for Reτ = 180. One time instant represents the running-averaged τw over a period of L/ub. Total
time interval is 40 L/ub.

our case, with the difference that in our case the fixed peak is not in the solid corner, but
at the free surface. Overall the evaluation of the wall shear stress and near wall velocity
streaks suggests that the mixed corner vortex is not a stable vortex – in the sense that it
rotates constantly in the same direction – but results from an averaging of many individual
uplift and downwash events which are present in wall-bounded turbulence. This is in
good agreement with the findings of Sakai (2016), who did a statistical analysis on the
probability of vortex positions in rectangular open-duct flow. He showed that in the mixed
corner mostly vortices are present, that rotate towards the wall at the free surface, which
would generate a similar wall shear stress pattern like our running averaged wall shear
stress distribution.

It seems that for all Reynolds numbers the low- and high-speed streaks appear, which
can be associated with quasi-streamwise vortices. These structures are scaling in inner
units, i.e. with a streak spacing of around 100ν/uτ . In the low-Reynolds-number cases
(Reτ � 140) they fill the whole cross-section and their movement is restricted. It seems
that in this range, only four streaks fit into the semifilled pipe. This leads to a preferential
position of the streamwise vortices which can explain the mean secondary flow cells and
the harmonic distribution of the mean wall shear stress. At higher Reynolds numbers
(Reτ � 180), the time-averaged cells seem to be lifted from the lower part of the semifilled
pipe towards the free surface (see figure 12). This might be a result of a larger variability
of the streaks in circumferential direction which leads to averaging out of the low- and
high-speed zones in the statistical sense. This can explain the plateau in the wall-shear
stress. Similar observations for a comparable range of Reynolds numbers were made by
Pinelli et al. (2010) for a rectangular closed-duct flow. In the mixed corners there is always
a low- or a high-speed streak, since at the free surface the in-plane velocity vector always
points towards or from the corner for kinematical reasons, thus fixing the streak there.
From figure 22 we can infer that the flow has the preference to point towards the mixed
corners, thus transporting high-speed fluid towards the corners.

6. Reynolds stresses

In this section we examine the spatial distribution of the Reynolds stresses. First, we
examine the Reynolds number dependence of the Reynolds stress profiles in the symmetry
line (figure 23). For the normal stresses, we plot the r.m.s. of the velocity fluctuations.
Between their maxima and the wall, all profiles share a high degree of similarity with
those found in full-pipe flow. The streamwise normal stresses u′2

1 are largest and peak at
around x+

3 ≈ 15. The position is rather independent of the Reynolds number while the
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Figure 23. The r.m.s. of the velocity fluctuations u1,rms/uτ , u2,rms/uτ , u3,rms/uτ and Reynolds shear stress
u′

1u′
3/u

2
τ in inner units in the vertical symmetry line of Reτ = 115, 120, 140, 180, 230, 460. The straight black

lines represent full-pipe flow from our DNS. Please note that for the shown data along the vertical symmetry
line the Cartesian coordinates in x2 and x3 directions are equal to the polar coordinates θ and r, respectively.

peak value slightly increases. Similarly to the observations of El Khoury et al. (2013),
there is a strong increase of the other Reynolds stresses in inner coordinates with Reynolds
number. Note that in the symmetry line, u3 is the radial component and u2 is the azimuthal
component. The most prominent difference to the Reynolds stress distributions in full-pipe
flow can be found near the free surface at which the velocity component perpendicular
to the surface u3 is strongly damped and the other two components are amplified. The
minima of u1,rms are approximately 0.75uτ and the ones of u2,rms are a little smaller. The
distances of these minima from the free surface seem to coincide in inner units while the
thickness of the damping layer of u3,rms to the free surface is much thinner. The shear
stress u′

1u′
3 does go to zero at the free surface, but changes its sign beforehand and shows a

small positive maximum close to the free surface. The deviation from the full pipe profile
above the maximum demonstrates that the Reynolds shear stress does not follow the linear
trend between its maximum and the centre, which is typical for turbulent flow in a full
pipe. This departure can be explained with the momentum transport by the secondary
flow. The Reynolds stress distributions presented by Ng et al. (2018) are similar to ours.
Unfortunately, they did not give their results in inner units. However, their measured

maxima seem to be smaller than ours when normalised in bulk units (u′2
1 /u

2
b ≈ 0.01 to

u′2
1 /u

2
b ≈ 0.025 for Reτ = 460).
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Figure 24. Normalised r.m.s. of velocity fluctuations u1,rms/uτ , (ur,rms + uθ,rms)/uτ (a,b), u′
1u′

r/u
2
τ , u′

1u′
θ /u

2
τ

(c,d) for Reτ = 180.

The cross-sectional distributions of the Reynolds stresses reveal that the levels of
turbulence intensities are equally high around the perimeter up to the area of the mixed
corner – see figure 24 showing the Reynolds normal and shear stresses for Reτ = 180 in
polar coordinates. We plot the sum of the cross-stream normal stresses for clarity. The
streamwise stresses have considerably larger values than the other stresses, demonstrating
that the TKE (not shown here) is dominated by u′2

1 . The minimum of u′2
1 appears at the

location of the mean streamwise velocity maximum. The layer of large values of u′2
1 around

the perimeter has local minima in the inner vortex where the secondary flow is parallel to
the wall. A local maximum occurs at the location at which the secondary flow points away
from the wall.

The streamwise Reynolds stress and the sum of the cross-stream stresses are nearly
homogeneous in azimuthal direction in the lower part of the pipe within ±45◦ from
the bisector. This is consistent with the observation that the secondary flow is weak in
the lower part of the flow and suggests that the flow near the lower wall could behave
like a normal pipe flow. This conjecture is partly supported by the shear stress u′

1u′
θ

which is essentially zero in the lower part. However, the distribution of u′
1u′

r is not fully
homogeneous in the lower part. We don’t show u′

ru′
θ because it is very small throughout

the whole cross-section.
The sum of the cross-stream components shows their maximum at approximately 0.25R

from the wall with a stronger contribution of the azimuthal component at the bottom and
along the wall, whereas the radial component has its maximum at the free surface. The
effect of the mixed corner on the normal stresses u′2

1 and (ur,rms + uθ,rms) is primarily a
damping. The shear stresses, however, are strongly affected near the mixed corner. The
magnitude of u′

1u′
r peaks in the area below the inner vortex where the secondary flow

points away from the wall. The magnitude of u′
1u′
θ peaks in the region where the corner

vortex flow is parallel to the wall. Both of those peaks could be linked to strong fluctuations
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Figure 25. Lumley triangle in the η–ξ plane of the Reynolds stress tensor in the vertical symmetry line for
Reτ = 115, 120, 140, 180, 230, 460.

of the corner vortex associated with the dynamics of the near-wall streaks discussed in the
previous section.

In order to better understand the Reynolds stress distribution, the anisotropy of the
Reynolds stress tensor will be evaluated by the so-called Lumley or turbulence triangle.
This is done in figure 25 in the symmetry line according to its invariants η and ξ . They
are defined by the eigenvalues of the Reynolds stress tensor: η2 = 1

3 (λ
2
1 + λ1λ2 + λ2

2) and
ξ3 = −1

2(λ1λ2(λ1 + λ2)) (Pope 2000). Starting from the wall, the general behaviour first
follows the distribution of a channel flow (see Pope (2000)) until a turning point is reached.
Directly at the wall the streamwise component is dominant and the azimuthal component
is weakly present. At a wall distance of 10+ the flow tends towards the one-component
state. This is more pronounced at lower Reynolds number. With increasing wall distance
the Reynolds stresses move towards the isotropic state until they reach a sharp turning
point, which is closer at the isotropic state when the Reynolds number is higher. This
turning point is the point at which the boundary condition of the free surface starts to
damp the vertical component and which is marked by a local minimum in the streamwise
and spanwise Reynolds stresses. Upwards from this point, the Reynolds stresses have to
move towards the two-component state as the vertical component is zero at the free surface.
For Reynolds numbers � 140 the two-components at the free surface are equally strong,
whereas for lower Reτ the second component is less dominant. For the higher Reτ an
oblate-spheroid-shaped anisotropy appears underneath the free surface.

Emory & Iaccarino (2014) proposed to link the position in the anisotropy map to a colour
code, which can be used to visualise the turbulence state over the entire cross-section
(figure 26a). The specific colour map is defined in figure 26(b). The nearly one-component
turbulence (red colour) spreads along the whole perimeter including the inner vortex
region. From the Reynolds stress plots it becomes clear that the streamwise component
is dominant in this region. Farther away from the wall there is another ring-like area in
which the Reynolds stresses move towards the three-component state (magenta). The area
of the velocity maximum is characterised by a state which is near the three-component
limit (blue). Near the free surface, a layer behaves differently. Here, the damping of the
vertical fluctuations changes the flow state to a two-component limit (yellow and green).
When moving from the mixed corner to the centre, the state changes gradually from a
one-component (red) to two-component (green) state.

Moreover, Einstein & Li (1958) found out that the anisotropy of the in-plane Reynolds
stresses is generating streamwise vorticity, hence, turbulence-induced secondary flow.
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Figure 26. Anisotropy componentiality of Reynolds stresses over the cross-section for Reτ = 180 (a). Colour
map according to nonlinear anisotropy invariant map (b).
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∂2/∂x3∂x2(u′2
3 − u′2

2 )+ (∂2/∂x2
3 − ∂2/∂x2

2)(−u′
3u′

2)R
2/u2

τ for Reτ = 180.

This conclusion can be drawn from the equation for the mean streamwise vorticity (as
follows), simplified for a straight and steady flow:

ū2
∂ω̄1

∂x2
+ ū3

∂ω̄1

∂x3
= ∂2

∂x2∂x3
(u′2

3 − u′2
2 )+

(
∂2

∂x2
3

− ∂2

∂x2
2

)
(−u′

3u′
2)+ ∂

∂xj

(
ν
∂ω̄1

∂xj

)
.

(6.1)

The convection terms on the left-hand side are balanced by gradients of the Reynolds
shear and normal stress terms and a vorticity dissipation term. The Reynolds shear and
normal stress terms have been denoted as vorticity dissipation and generation, respectively
(Nezu & Nakagawa 1993; Nikora & Roy 2012). It is obvious that this denomination is
not invariant with respect to coordinate transformations. As a sum, however, they are
responsible for the production (or destruction) of streamwise vorticity (Einstein & Li 1958;
Nezu & Nakagawa 1993). In figure 27 one can see the sum of the Reynolds stress terms
which is approximately zero over the whole cross-section apart from a small region at
the mixed corners. A negative value of vorticity production leads to a clockwise rotating
vortex and vice versa. Hence, following the derivation of Einstein & Li (1958) and Nezu
& Nakagawa (1993), we can conclude that the mixed corner region is responsible for the
generation of the mean secondary flow in semifilled-pipe flow, which emphasises the role
of the inner secondary cell.
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Flow in semifilled pipe

While the general distribution is similar to rectangular open-duct flow (Kara, Stoesser &
Sturm 2012), in rectangular open-duct flow the mean streamwise vorticity is also produced
at rigid, solid–solid, corners. The total secondary flow generated there is similarly strong
as for semifilled-pipe flow. This means the inner secondary cell alone is able to produce
a similarly strong secondary flow which underlines the prominent role the mixed corner
plays in open-duct flows. In the next section we draw the attention to the aspect of how the
secondary flow obtains its kinetic energy, highlighting another perspective to the question
of how turbulence-induced secondary flow is generated in semifilled-pipe flow.

7. Path of kinetic energy

Nikora & Roy (2012) have proposed a path of kinetic energy highlighting the perspective of
the mean kinetic energy (MKE) (K = 1/2(u1

2 + u2
2 + u3

2)) budget on the generation of
mean secondary flow. It is based on the component-wise MKE budget for steady, straight
and uniform flow in which u1 is the streamwise and u2 and u3 are the secondary velocity
components (7.1) and (7.2), as follows:

0 = −ūj
∂

∂xj

(
ū2

1
2

)
︸ ︷︷ ︸

convection
C1

− ∂

∂xj
(ū1u′

1u′
j)+ ν

∂2

∂x2
j

(
ū2

1
2

)
︸ ︷︷ ︸

transport
T1=T1,turb+T1,visc

+ g1ū1︸︷︷︸
energy input

by volume force
Ein

+ u′
1u′

j
∂ ū1

∂xj︸ ︷︷ ︸
production of TKE

P1

+ ν
(
∂ ū1

∂xj

)2

︸ ︷︷ ︸
dissipation

ε̄1

, with j = 2, 3, (7.1)

0 = −ūj
∂

∂xj

(
ū2

2 + ū2
3

2

)
︸ ︷︷ ︸

convection
C2,3

− 1
ρ

(
∂ p̄
∂x2

ū2 + ∂ p̄
∂x3

ū3

)
− ∂

∂xj
(ū2u′

2u′
j + ū3u′

3u′
j)+ ν

∂2

∂x2
j

(
ū2

2 + ū2
3

2

)
︸ ︷︷ ︸

transport
T2,3=T2,3,press+T2,3,turb+T2,3,visc

+ u′
2u′

j
∂ ū2

∂xj
+ u′

3u′
j
∂ ū3

∂xj︸ ︷︷ ︸
production of TKE

P2,3

+ ν
(
∂ ū2

∂xj

)2

+ ν

(
∂ ū3

∂xj

)2

︸ ︷︷ ︸
dissipation
ε̄2,3

, with j = 2, 3. (7.2)

Please note, since the steady volume force driving the flow gi acts only in the
streamwise direction (g2 = g3 = 0), the energy input Ein appears only in the MKE budget
for the streamwise component. In a gravity-driven flow, the term g3u3 would be in
equilibrium with the hydrostatic pressure, hence no energy input would occur in the
velocity component u3. The kinetic energy is redistributed in space by the convection term
C1 and the turbulent and the viscous transport terms T1. Parts of it are directly dissipated
(ε̄1) and other parts are transferred to TKE (k = 1/2(u′2

1 + u′2
2 + u′2

3 )) via the production
term P1. Note that there is no direct intercomponent transfer term from the streamwise to
the secondary velocity components. The kinetic energy enters the mean secondary flow in
a two-step process. First the production terms P1 transfer energy to TKE, where it is partly
dissipated, redistributed in space and spread among the fluctuation components. Second,
some of the remaining part is transferred to the secondary flow (u2

2 + u3
2) by the terms
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Figure 28. Primary (a,c) and secondary component (b,d) terms of MKE budget (a,b) and only the transport
terms as sum and individually (c,d) taken four wall units below and parallel to the free surface for Reτ = 180.

u′
2u′

j(∂ ū2/∂xj) and u′
3u′

j(∂ ū3/∂xj) (P2,3). The secondary MKE is redistributed in space,
directly dissipated or transferred back to TKE by the other terms in (7.2). In order to verify
the suggested path of kinetic energy and to explicitly apply it to the semifilled-pipe flow,
all important terms of the path will be analysed in the following.

First of all the budget of the MKE shall be validated by checking the residuum of the
primary and in-plane components of the MKE budget at the free surface, where strong
convection is present. The residuum (RES) is the black solid line in figure 28. Hence, for
the primary MKE budget the maximum residuum is less than 2 % of the maximum of
other terms, apart from the very first cell at the wall. For the secondary components the
residuum is also less than 2 % compared with the other terms in most of the cross-section
apart from the first cells at the wall.

Looking at the magnitude of the budget terms near the free surface, it is obvious
that the primary MKE is highly dominating the total MKE budget. Very close to the
mixed corner the viscous transport balances the direct dissipation. Moving away from
the mixed corner the production, convection and turbulent transport also contribute to
the budget. In the bulk region the energy input is mainly balanced by the convection
and the turbulent transport. Focusing on the secondary component mostly the terms of
production, convection, pressure and turbulent transport are balancing each other. A more
detailed look at the budget is presented via the expansion of selected terms over the whole
cross-section.
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Figure 29. Mean kinetic energy K of primary component (a) and secondary components (b) for Reτ = 180
normalised by u2

τ .

We first inspect the distributions of the primary and secondary MKE and TKE, see
figures 29 and 23(a,b). The distribution of the primary MKE, ū2

1, is similar to the
distribution of the streamwise velocity (figure 6) displaying large values of MKE in the
pipe’s centre and below where the velocity maximum can be found. The secondary MKE
has peak values less than one per mille of the primary MKE. Two peaks can be found at
the free surface symmetrically between the pipe axis and the mixed corners. Smaller local
peaks can be found around the corner vortex. The values in figure 23 would need to be
squared in order to get the right magnitude for the TKE, but qualitatively the distribution
does not change. For the readers’ convenience we recall briefly the most important points.
The largest values of primary TKE, u′2, can be found in a band along the perimeter at
a wall distance of approximately 15 wall units. The maxima of the secondary TKE are
distributed along the perimeter at larger wall distances than the maxima of the primary
TKE. Below, we will discuss the terms in the balance equation for the MKE.

The primary MKE is generated by the gravity input term, see (7.1), which is proportional
to the streamwise velocity. The production terms of TKE are displayed in figure 30. It is
obvious that the production of primary TKE is similarly distributed as the primary TKE
itself. It seems to be very similar to the distribution in a standard turbulent pipe flow with a
nearly homogeneous distribution around the perimeter. On the other hand, the production
term of secondary TKE is strong at the free surface, where the secondary MKE has its
maxima. While the production term of primary TKE is consistently negative in the MKE
balance equation (energy is transferred from the mean flow to the turbulent fluctuations),
its counterpart for secondary TKE changes sign. This means that in the regions where
the production term is positive, energy is transferred from the fluctuations to the mean
secondary flow and vice versa.

We can observe that kinetic energy is transferred to the mean secondary flow only in
two regions symmetrically around the pipe’s axis being located at the stagnation point at
the free surface marking the boundary between the inner and outer vortices. The mean
secondary flow points away from this stagnation point, thus giving rise to a positive
production term u′

2u′
2(∂u2/∂x2) in the MKE balance. In the pipe centre, the secondary

flow from both sides of the pipe point to each other and are redirected downwards. This
situation generates a negative production term in the MKE balance and kinetic energy is
transferred back from the secondary MKE to the secondary TKE. A similar effect can be
observed at the lower boundary of the inner vortex where the secondary flow is directed
away from the wall. Here as well, transfer from secondary MKE to TKE is indicated by a
negative production term. We can, therefore, infer that a part of the kinetic energy that the
mean secondary flow receives at the free surface is passed back to the turbulent secondary
flow.
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Figure 30. Production P of primary component (a) and secondary components (b) for Reτ = 180 normalised
by R/u3

τ .

A condition of having a non-zero transfer between secondary MKE and TKE is that
the vertical fluctuations are damped near the free surface. This can be seen by rewriting
the production term of secondary TKE in (7.2) neglecting the shear production – which is
small – and using the continuity equation (∂ ū2/∂x2 = −∂ ū3/∂x3):

u′
2u′

2
∂ ū2

∂x2
+ u′

3u′
3
∂ ū3

∂x3
=
(

u′
2u′

2 − u′
3u′

3

) ∂u2

∂x2
. (7.3)

At the free surface, the vertical fluctuations u′
3 are damped and the horizontal fluctuations

u′
2 are amplified – compare figures 24 and 23. Thus, in contrast to an isotropic turbulence

structure, the normal stress difference in (7.3) increases at the free surface enabling
exchange of kinetic energy between the mean and the fluctuating velocities.

In figure 31 the primary and secondary terms of the convection, the summed transport
terms and dissipation of the MKE budget are shown. Overall, all individual distributions
have in common that their high intensities are mostly along the perimeter, in the mixed
corner and along the free surface. There are no high intensities where the mean streamwise
flow has its maximum. The convection of primary kinetic energy is effectuated by the
secondary flow. It has large values in the mixed corner, positive at the upper side of the
inner secondary cell and negative at the lower side of the vortex. This means that the
secondary flow transports high energetic fluid into the mixed corners and low energetic
fluid from below the inner vortex into the bulk. Within the area in which the convection
term is negative (marked as blue) the streamwise velocity and, therefore, the primary MKE
increases along the streamlines.

The transport terms lump together viscous, pressure and turbulent transport which
all contribute to a spatial redistribution of the MKE. Along the perimeter the transport
terms have a small layer of high positive intensities presumably from viscous transport
of momentum towards the wall. This effect seems to be strongest near the mixed corner.
Around the inner vortex, two patches appear obviously counteracting the convective term.
Overall the primary transport terms are carrying primary MKE from the pipe centre
(negative) towards the walls (positive), where it is either dissipated or transferred to TKE.

The convection of the secondary MKE is negligibly small over the cross-section in
comparison with the other terms. The largest magnitudes of the secondary transport terms
are smaller than the magnitudes of the primary transport by a factor of ∼100, which is not
surprising given the ratio of primary to secondary MKE being approximately 1500 (cf.
figure 29). They are mostly active in the mixed corner and in the centre of the free surface,
negative where stagnation and positive where separation points of the mean secondary
flow exist. As seen in figure 28 the transport terms balance the production terms, hence,
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Figure 31. Convection C (a,b), transport terms T (c,d) and dissipation ε̄ (e, f ) of primary component (a,c,e)
and secondary components (b,d, f ) of the MKE budget for Reτ = 180 normalised by R/u3

τ .

where secondary MKE is produced it is transported away and where TKE is produced
secondary MKE is needed and brought to that location by the secondary transport terms,
especially the turbulent transport. The primary direct dissipation acts in the vicinity of the
wall with its highest intensities in the mixed corner. The secondary components of the
direct dissipation are very small and visible only along the wall where the inner secondary
cell is located and in a small region at the bisector of the mixed corner. Please note that
primary and secondary terms have different scales. Moreover, please keep in mind that
the overall energy input is contributed proportional to the mean streamwise velocity by a
constant pressure force as external force. An equilibrium state has been reached, to which
every term contributes.

The path of kinetic energy is further illustrated by the cross-section integrated terms
of the kinetic energy budgets (figure 32). Terms redistributing kinetic energy in space,
such as convection and the transport terms, vanish after integration. Approximately
two thirds of the kinetic energy input are dissipated directly by the mean streamwise
velocity ε1 which can be explained by the relatively low Reynolds number (Reτ = 180).
One third is transferred to TKE and mainly dissipated by the dissipation of TKE ε =
ν
2
∑

ij

(
∂u′

i
∂xj

+ ∂u′
j

∂xi

)2

. Only a very small fraction, less than one per mille of the total kinetic

energy flux is fed to the secondary flow in regions in which the production term is positive
(P2,3 > 0). More than two thirds of this energy is transferred back to TKE in regions
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Figure 32. Path of kinetic energy for Reτ = 180. Integrated values normalised by the energy input gū1.
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Figure 33. Cross-section integrated values of P1, ε̄ and ε (a) and P2,3>0 and P2,3<0 (b) for Reτ = 115, 140,
180, 230, 460 normalised by the energy input gū1.

in which the production term is negative (P2,3 < 0). The difference (0.7 per mille) is
dissipated by the mean secondary flow ε2,3. Please note, ε = ε1 + ε2,3. The magnitudes of
the energy fluxes reflect the ratios of the kinetic energies of which the secondary MKE has
amplitudes approximately 1500 times smaller than the primary MKE and approximately
10 times smaller than the secondary TKE. Nevertheless, the secondary flow has a strong
impact on the distribution of the statistical quantities, especially the time-averaged wall
shear stress.

The path of the kinetic energy in figure 32 is complemented with values for other
Reynolds numbers in figure 33. As expected, with increasing Reynolds number direct
dissipation decreases and the share of energy transferred to TKE increases. We see that
independent of the Reynolds number the turbulent dissipation is nearly equal to the
production of TKE. The energy exchange between turbulence and secondary flow, P2,3
gets stronger with increasing Reynolds number and seems to saturate for larger Reτ .
This behaviour is similar to the behaviour of the peak values of the stream function, see
figure 15. The forward transfer from the turbulence to the secondary flow P2,3 > 0 is
always larger than the backward transfer P2,3 < 0. The difference is the energy dissipation
by the secondary flow which has a nearly invisible share of the total energy balance.
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8. Conclusion

We have performed DNS of turbulent semifilled-pipe flow from low (Reτ = 115) to
medium Reynolds numbers (Reτ = 460). The simulations have been carefully validated
by a grid study for semifilled and fully filled pipe flow.

The computed friction coefficient for our semifilled-pipe flow is in good accordance
to Prandtl’s relation for smooth full-pipe flows. This finding establishes an update to
previously published experimental results in which friction factors were reported to lie
above the full-pipe’s values.

For the mean streamwise velocity in general a good agreement with existing experiments
was obtained, however, important details of the flow were found to be different. The
appearance and position of the velocity maximum are Re-dependent and seem to settle at
a distance of 0.3–0.4/R from the free surface for the highest simulated Reynolds number.
This is very similar to values found by Sakai (2016) for free surface flow in a rectangular
duct and within the range of values measured by Yoon et al. (2012) and Ng et al. (2018) for
a similar Reynolds number range. In the symmetry plane, the velocity in the lower half of
the domain seems to move towards the standard log-law and matches well with the profile
measured by Ng et al. (2018) at a slightly higher Reynolds number.

The mean secondary flow is organised into four secondary vortices arranged in
counter-rotating pairs symmetrical to the centre plane. Thus, we can confirm the existence
of the so called inner secondary cell appearing in the mixed corner of semifilled-pipe flow,
postulated by Grega et al. (2002) and already confirmed for rectangular open-duct flows
by the simulations of Joung & Choi (2009) and Sakai (2016) for low Reynolds numbers.
While the geometry of the outer secondary cell is scaling in bulk units, the position and
size of the inner secondary cell are scaling with wall units, which could explain that it has
not yet been found in experiments performed at higher Reynolds numbers as it becomes
smaller with increasing Reynolds number.

The inner secondary vortex has strong implications on the distribution of the wall
shear stress over the perimeter. The inner vortex transports high-momentum fluid from
the free surface towards the wall which results in a global maximum of the wall shear
stress in the mixed corner. At the lowest Reynolds numbers an almost harmonic wall
shear stress distribution can be observed with a local maximum in the pipe’s symmetry
plane. At Reynolds numbers above Reτ ≈ 140 a plateau is formed in the centre of
the perimeter, which becomes wider as the Reynolds number increases. At the highest
simulated Reynolds number, the wall shear stress in the centre is only slightly above the
global wall shear stress. In the mixed corner, it is more than 40 % larger. This has not yet
been reported elsewhere.

Instantaneous near-wall streamwise velocities are organised in a streaky pattern as in a
standard pipe flow. The increased near-wall velocities in the mixed corner cannot be seen
in instantaneous distributions. After applying running time averages over time intervals of
L/ub, smoothing the large fluctuations occurring in the mixed corner, the mean wall shear
stress distribution becomes detectable.

The Reynolds stresses in the symmetry plane behave similar to the full-pipe flow, apart
from a narrow layer at the free surface in which the vertical component is damped and the
horizontal components are amplified. In the lower part of the pipe, the Reynolds stresses
are nearly homogeneously distributed in the azimuthal direction. At the free surface and
especially at the mixed corner, this homogeneity is broken by the fact that local maxima
or minima occur in and around the corner vortex. An anisotropy map highlights the
prominent role of the free surface and the corner vortex for the Reynolds stresses and
infers a Reynolds stress anisotropy. Moreover, it gives rise to the generation of mean
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streamwise vorticity which – according to the classical picture – is a necessary condition
for the generation of secondary flow.

In a different point of view, we demonstrated that the mean secondary flow obtains
its kinetic energy from the secondary fluctuations in a small area around the stagnation
point located at the free surface, separating the inner and the outer secondary flow cells.
From this point, secondary kinetic energy is transported by turbulent transport towards
the pipe’s centre where its main part is fed back to the secondary fluctuations. The
largest values of secondary kinetic energy can be found midway between the maximum
(positive) and minimum (negative) of the production term. A smaller part of the secondary
kinetic energy is transported towards the mixed corner where the majority of the direct
dissipation of mean secondary kinetic energy is taking place. The sketched process is fully
compatible with the mechanism proposed by Sakai (2016) based on the two-dimensional
vortex interactions with different boundary conditions by Orlandi (1990). According to
this mechanism, streamwise vortices moving towards the free surface move either towards
the centre or the mixed corners depending on their sense of rotation. If the sense of rotation
were such that the free surface velocity pointed towards the mixed corner, then the vortex
moves outwards giving rise to an accumulation of outwards rotating vortices in the mixed
corner. Inward-rotating vortices move towards the pipe’s centre thus contributing to the
outer secondary vortices.

The share of direct dissipation by the primary flow decreases with increasing Reynolds
number while the production of TKE increases. The levels of energy fluxes to the
secondary flow are very small compared with the primary TKE production and seem
to saturate within the Reynolds number range considered. The secondary flow mainly
transports kinetic energy from a region at the free surface near the mixed corner to the
centre and dissipates only a fraction of this energy. Although its energetic share is small,
the secondary flow has a visible impact to the mean wall shear stress distribution and
its fluctuations. This can be understood by the fact that the kinetic energy of the mean
secondary flow is mainly concentrated near the free surface and the mixed corner where it
plays a prominent role in momentum transport towards the wall.
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