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Abstract. Let Homeo+(D2
n) be the group of orientation-preserving homeomorphisms of

D2 fixing the boundary pointwise and n marked points as a set. The Nielsen realization
problem for the braid group asks whether the natural projection pn : Homeo+(D2

n)→

Bn := π0(Homeo+(D2
n)) has a section over subgroups of Bn . All of the previous methods

use either torsion or Thurston stability, which do not apply to the pure braid group P Bn ,
the subgroup of Bn that fixes n marked points pointwise. In this paper, we show that
the pure braid group has no realization inside the area-preserving homeomorphisms using
rotation numbers.

Key words: group actions, low-dimensional dynamics, topological dynamics
2020 Mathematics Subject Classification: 57K20 (Primary); 37E30, 37C25 (Secondary)

1. Introduction
Denote by D2 the two-dimensional disk. Let Homeo+(D2

n) be the group of orientation-
preserving homeomorphisms of D2 fixing the boundary pointwise and n marked points
as a set. Denote Bn := π0(Homeo+(D2

n)). The Nielsen realization problem for Bn asks
whether the natural projection

pn : Homeo+(D2
n)→ Bn

has a section over subgroups of Bn . For the whole group Bn , this question has several
previous results. Salter and Tshishiku [12] used Thurston stability to show that Bn has
no realization in Diff+(D2

n) and the author [1] used ‘hidden torsion’ and Markovic’s
machinery [9] to show that Bn has no realization in Homeo+(D2

n). Let P Bn < Bn be
the subgroup that preserves n marked points pointwise. The Nielsen realization problem
for P Bn is widely open since the two methods in [12] and [1] fail to work and have no hope
to repair. The following question is asked by [8, Question 3.12] and [12, Remark 1.4].
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Non-realizability of the pure braid group 1989

PROBLEM 1.1. (Realization of pure braid group) Does P Bn have realization as
diffeomorphisms or homeomorphisms? In other words, does pn have sections over P Bn?

Denote by Homeoa
+(D

2
n) the group of orientation-preserving, area-preserving homeo-

morphisms of D2 fixing the boundary pointwise and n marked points as a set. In this paper,
we make progress by proving the following result.

THEOREM 1.2. The pure braid group cannot be realized as area-preserving homeo-
morphisms on D2

n for n ≥ 9. In other words, the natural projection pa
n : Homeoa

+(D
2
n)→

Bn has no sections over P Bn .

We remark that the Nielsen realization problem is closely related to the existence of flat
structures on a surface bundle. We refer the reader to [8] for more history and background.

Comparing with the method in [2], the novelty of this paper is to provide a different
proof towards the final contradiction of the result in [2]. The original contradiction is to use
the fact that a certain Dehn twist is a product of commutators in its centralizer. However,
such structure does not hold in P Bn . Instead, we prove a stronger dynamical property
about Dehn twists about non-separating curves. In the beginning of §4, we present an
outline of the proof. Since this paper has a lot of overlap with [2], we omit or sketch many
proofs to reduce redundancy.

This paper is organized as follows.
• In §2, we discuss rotation numbers.
• In §3, we discuss the pure braid group and the minimal decomposition theory.
• In §4, we give an outline of the proof and finish the argument.

2. Rotation numbers of annulus homeomorphisms
In this section, we discuss the properties of rotation numbers on annuli.

2.1. Rotation number of an area-preserving homeomorphism of an annulus. Firstly, we
define the rotation number for geometric annuli. Let

N = N (r)=
{
w ∈ C :

1
r
< |w|< r

}
be the geometric annulus in the complex plane C. Denote the geometric strip in C by

P = P(r)=
{

x + iy = z ∈ C : |y|<
log r
2π

}
.

The map π(z)= e2π i z is a holomorphic covering map π : P→ N . The deck
transformation on P is T (x, y)= (x + 1, y).

Denote by p1 : P→ R the projection to the x-coordinate, and by Homeo+(N ) the
group of homeomorphisms of N that preserves orientation and the two ends. Fix f ∈
Homeo+(N ) and x ∈ N , and let x̃ ∈ P and f̃ ∈ Homeo+(P) denote lifts of x and f ,
respectively. We define the translation number of the lift f̃ at x̃ by

ρ( f̃ , x̃, P)= lim
n→∞

(p1( f̃ n (̃x))− p1(̃x))/n. (1)
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The rotation number of f at x is then defined as

ρ( f, x, N )= ρ( f̃ , x̃, P) (mod 1). (2)

The rotation number is not defined everywhere (see, e.g., [4] for more background on
rotation numbers). The closed annulus Nc is

Nc =

{
ω ∈ C :

1
r
≤ |ω| ≤ r

}
,

For f ∈ Homeo+(Nc), the rotation and translation numbers are defined analogously.
Let A be an open annulus embedded in a Riemann surface (in particular this endows

A with the complex structure). By the Riemann mapping theorem [7, Ch. 3.2], there
is a unique r such that there is a biholomorphic map u A : A→ N (r)=: N . For any
f ∈ Homeo+(A) (the group of end-preserving homeomorphisms), we define the rotation
number of f on A by

ρ( f, x, A) := ρ(g, u A(x), N ),

where g = u A ◦ f ◦ u−1
A .

We have the following theorems of Poincaré–Birkhoff and Handel about rotation
numbers [6] (See also Franks [4].)

THEOREM 2.1. (Properties of rotation numbers) If f : Nc→ Nc is an orientation-
preserving, boundary component preserving, area-preserving homeomorphism and f̃ :
Pc→ Pc is any lift, then:
• (Handel) the translation set

R( f̃ )=
⋃

x̃∈Pc

ρ( f̃ , x̃, Pc)

is a closed interval;
• (Poincaré–Birkhoff) if r ∈ R( f̃ ) is rational, then there exists a periodic orbit of f

realizing the rotation number r mod 1.

2.2. Separators and their properties. We let A continue to denote an open annulus
embedded in a Riemann surface. Then A has two ends and we choose one of them to be
the left end and the other one to be the right end. We call a subset X ⊂ A separating (or
essential) if every arc γ ⊂ A which connects the two ends of A must intersect X .

Definition 2.2. (Separator) We call a subset M ⊂ A a separator if M is compact,
connected and separating.

The complement of M in A is a disjoint union of open sets. We have the following
lemma.

LEMMA 2.3. Let M be a separator. Then there are exactly two connected components
AL(M) and AR(M) of A − M which are open annuli homotopic to A and with the
property that AL(M) contains the left end of A and AR(M) contains the right end of
A. All other components of A − M are simply connected.
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Proof. We compactify the annulus A by adding points pL and pR to the corresponding
ends of A. The compactifications is a two-sphere S2. Moreover, M is a compact and
connected subset of S2

− {pL , pR}.
Now we observe that every component of S2

− M is simply connected. Denote by
�L and �R the connected components of S2

− M containing pL and pR , respectively.
Since M is separating, we conclude that these are two different components. We define
AL(M)=�L − pL and AR(M)=�R − pR . It is easy to verify that these are required
annuli. �

We now prove another property of a separator. Let π : Ã→ A be the universal cover.

PROPOSITION 2.4. Let M ⊂ A be a compact domain with smooth boundary. Then
π−1(M) is connected; i.e., M is a separator.

Proof. Since M is a compact domain with boundary which separates the two ends of A,
we can find a circle γ ⊂ M which is essential in A (i.e., γ is a separator itself) (note that
M has only finitely many boundary components). Denote by T the deck transformation of
Ã. Thus, the lift π−1(γ ) is a T -invariant, connected subset of Ã. Let C be the component
of π−1(M) which contains π−1(γ ). Then C is T invariant. We show that π−1(M)= C .

Let p ∈ M . Since M is a compact domain with smooth boundary, we can find an
embedded closed arc α ⊂ M which connects p and γ . Let p̃ be a lift of p and let α̃
be the corresponding lift of α such that p̃ is one of its end points. Then the other end point
of α̃ is in π−1(γ ) and this shows that p̃ ∈ C . This concludes the proof. �

Now we discuss an ordering on the set of separators.

PROPOSITION 2.5. Suppose that M1, M2 ⊂ A are two disjoint separators. Then either
M1 ⊂ AL(M2) or M1 ⊂ AR(M2). Moreover, M1 ⊂ AL(M2) implies that M2 ⊂ AR(M1).

Proof. Since M1 is connected, it follows that M1 is a subset of a connected component
C of A − M2. Since C is open, we know that there is a neighborhood N1 of M1 with
smooth boundary such that N1 ⊂ C (It is elementary to construct such N1.) If C is simply
connected, the cover π−1(C)→ C is a trivial cover. Let C̃ be a connected component of
π−1(C). By Proposition 2.4, the set π−1(N1) is connected, so it is contained in a single
connected component of π−1(C). However, this contradicts the fact that π−1(N1) is also
translation invariant. Thus, either M1 ⊂ AL(M2) or M1 ⊂ AR(M2).

Suppose that M1 ⊂ AL(M2). Then AL(M1)⊂ AL(M2) as well. On the other hand,
by the first part of the proposition, we already know that either M2 ⊂ AL(M1) or
M2 ⊂ AR(M1). If M2 ⊂ AL(M1), then AL(M2)⊂ AL(M1). This shows that AL(M1)⊂

AL(M2), which implies that M2 ⊂ AL(M2). This is absurd, so we must have M2 ⊂

AR(M1). �

Definition 2.6. The inclusion M1 ⊂ AL(M2) is denoted as M1 < M2.

2.3. The rotation interval of an annular continuum and prime ends. Let K ⊂ A be
a separator (in the literature, also known as an essential continuum). We call K an
essential annular continuum if A − K has exactly two components. Observe that an
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essential annular continuum can be expressed as a decreasing intersection of essential
closed topological annuli in A.

It is possible to turn any separator M ⊂ A into an essential annular continuum. Let
M be a separating connected set. By Lemma 2.3, we know that A − M has exactly two
connected annular components AL(M) and AR(M), and all other components of A −
M are simply connected. We call a simply connected component of A − M a bubble
component. Then the annular completion K (M) of M is defined as the union of M and
the corresponding bubble components of A − M .

PROPOSITION 2.7. Let M ⊂ A be a separator. Then the annular completion K (M) is an
annular continuum.

Proof. We can again compactify A by adding the points pL and pR , one at each end. The
compactification is the two-sphere S2. Then AL(M) and AR(M) are two disjoint open
disks in S2, and K (M)= S2

− (AL(M) ∪ AR(M)). But the complement of two disjoint
open disks in S2 is connected. This proves the proposition. �

Now let f be a homeomorphism of A that leaves an annular continuum K invariant.
If µ is an invariant Borel probability measure supported on K , we define the µ-rotation
number

σ( f, µ)=
∫

A
φ dµ,

where φ : A→ R is the function which lifts to the function p1 ◦ f − p1 on Ã (recall that
p1 : Ã→ R is the projection onto the first coordinate).

The set of f invariant Borel probability measures on K is a non-empty, convex and
compact set (with respect to the weak topology on the space of measures), which is denoted
by M(K ). We define the rotation interval of K

σ( f, K )= {σ( f, µ)|µ ∈ M(K )},

which is a non-empty segment [α, β] of R. The interval is non-empty because there
exists at least one f invariant measure, and it is an interval because the set of f invariant
measures is convex.

The following is a classical result of Franks and Le Calvez [5, Corollary 3.1].

PROPOSITION 2.8. If σ( f, K )= {α}, the sequence

p1 ◦ f n(x)− p1(x)
n

converges uniformly for x ∈ π−1(K ) to the constant function α.

We remark that this implies that points in K all have the rotation number α.
The following theorem of Franks and Le Calvez [5, Proposition 5.4] is a generalization

of the Poincaré–Birkhoff theorem.

THEOREM 2.9. If f is area-preserving and K is an annular continuum, then every
rational number in σ( f, K ) is realized by a periodic point in K .
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The theory of prime ends is an important tool in the study of two-dimensional dynamics
which can be used to transform a two-dimensional problem into a one-dimensional
problem. Recall that we assume that A is an open annulus embedded in a Riemann surface
S. Suppose that f is a homeomorphism of S which leaves A invariant. Furthermore, let
K ⊂ A be an annular continuum and suppose that f leaves K invariant. Then both AL(K )
and AR(K ) are f invariant.

Since A is embedded in S, we can define the frontiers of A, AL(K ) and AR(K ). By
Carathéodory’s theory of prime ends (see, e.g., [11, Ch. 15]), the homeomorphism f
yields an action on the frontiers of AL(K ) and AR(K ). Consider the right-hand frontier
of AL(K ) (the one which is contained in A). Then the set of prime ends on this frontier
is homeomorphic to the circle, and we denote by fL the induced homeomorphism of this
circle. Likewise, the set of prime ends on the left-hand frontier of AR(K ) is homeomorphic
to the circle, and we denote by fR the induced homeomorphism of this circle.

The rotation number of a circle homeomorphism (defined by equation (2)) is well
defined everywhere and is the same number for any point on the circle. The rotation
numbers of fL and fR are called rL and rR . We refer to them as the left and right prime
end rotation numbers of f . We have the following theorem of Matsumoto [10].

THEOREM 2.10. (Matsumoto’s theorem) If K is an annular continuum, then its left and
right prime end rotation numbers rL , rR belong to the rotation interval σ( f, K ).

3. Minimal decompositions and characteristic annuli
3.1. Minimal decompositions. We recall the theory of minimal decompositions of
surface homeomorphisms. This is established in [9]. Firstly we recall the definition of
the upper semi-continuous decomposition of a surface and the minimal decomposition
theory; see also Markovic [9, Definition 2.1]. Let M be a surface.

Definition 3.1. (Upper semi-continuous decomposition) Let S be a collection of closed,
compact, connected subsets of M . We say that S is an upper semi-continuous
decomposition of M if the following holds.
• If S1, S2 ∈ S, then S1 ∩ S2 = ∅.
• If S ∈ S, then S does not separate M ; i.e., M − S is connected.
• We have M =

⋃
S∈S S.

• If Sn ∈ S, n ∈ N is a sequence that has the Hausdorff limit equal to S0, then there exists
S ∈ S such that S0 ⊂ S.

Now we define acyclic sets on a surface.

Definition 3.2. (Acyclic sets) Let S ⊂ M be a closed, connected subset of M which does
not separate M . We say that S is acyclic if there is a simply connected open set U ⊂ M
such that S ⊂U and U − S is homeomorphic to an annulus.

The simplest examples of acyclic sets are points, embedded closed arcs and embedded
closed disks in M . Let S ⊂ M be a closed, connected set that does not separate M . Then
S is acyclic if and only if there is a lift of S to the universal cover M̃ of M , which is a
compact subset of M̃ . The following theorem is a classical result called Moore’s theorem;
see, e.g., [9, Theorem 2.1].
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THEOREM 3.3. (Moore’s theorem) Let M be a surface and S be an upper semi-continuous
decomposition of M so that every element of S is acyclic. Then there is a continuous map
φ : M→ M that is homotopic to the identity map on M and such that for every p ∈ M, we
have φ−1(p) ∈ S. Moreover, S= {φ−1(p)|p ∈ M}.

We call the map M→ M/∼ the Moore map, where x ∼ y if and only if x, y ∈ S for
some S ∈ S. The following definition appears in [9, Definition 3.1]

Definition 3.4. (Admissible decomposition) Let S be an upper semi-continuous
decomposition of M . Let G be a subgroup of Homeo(M). We say that S is admissible for
the group G if the following holds.
• Each f ∈ G preserves setwise every element of S.
• Let S ∈ S. Then every point in every frontier component of the surface M − S is a

limit of points from M − S which belong to acyclic elements of S.
If G is a cyclic group generated by a homeomorphism f : M→ M , we say that S is an
admissible decomposition of f .

An admissible decomposition for G < Homeo(M) is called minimal if it is contained in
every admissible decomposition for G. We have the following theorem [9, Theorem 3.1].

THEOREM 3.5. (Existence of minimal decompositions) Every group G < Homeo(M) has
a unique minimal decomposition.

Denote by A(G) the subcollection of acyclic sets from S(G). By a mild abuse of
notation, we occasionally refer to A(G) as a subset of M (the union of all sets from
A(G)). To distinguish the two notions, we do as follows. When we refer to A(G) as a
collection, then we consider it as the collection of acyclic sets. When we refer to as a set
(or a subsurface of M), we have in mind the other meaning.

We have the following result [9, Proposition 2.1].

PROPOSITION 3.6. Every connected component of A(G) (as a subset of Sg) is a
subsurface of M with finitely many ends.

LEMMA 3.7. For H < G < Homeo(M), we have that A(G)⊂ A(H).

Proof. The inclusion A(G)⊂ A(H) is because the minimal decomposition of G is also
an admissible decomposition of H and the minimal decomposition of H is finer than that
of G. �

3.2. Lifting through hyperelliptic branched cover. Denote by Sg;n,b the surface of
genus g with b boundary components and n marked points. To make the analysis easier,
we take the following hyperelliptic Z/2 branched cover:

πn : S = S(n−1)/2;n,1→ S0;n,1 for n odd or πn : S = S(n/2)−1;n,2→ S0;n for n even.

The cover is shown by Figures 1 and 2. The hyperelliptic involution on S is denoted
by τ .
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FIGURE 1. n even.

FIGURE 2. n odd.

Denote by P̃ Bn the lifts of mapping classes under πn , where they satisfy the following
exact sequence:

1→ Z/2→ P̃ Bn
L
−→ P Bn→ 1.

Let c be a simple closed curve on S0;n,1 and denote by Tc the Dehn twist about c. For
every simple closed curve c on S0;n,1, we have the following easy fact about its preimage
under πn .

Fact 3.8.
(1) If c bounds an odd number of points, then the lift is a single curve c′. The preimages

of T 2
c under L are Tc′ and Tc′τ .

(2) If c bounds an even number of points, then the lift is two curves c1, c2. The
preimages of Tc under L are Tc1 Tc2 and Tc1 Tc2τ . In particular, if c bounds 2 points,
then c1 = c2.

From the above fact, we know that if c bounds two points and c1 = c2 are the lifts, we
have that T 2

c1
∈ P̃ Bn . We have the following fact.

Fact 3.9. If α is a non-separating simple closed curve that is invariant under τ , then a
square of the Dehn twist about c is in P̃ Bn . We call such element an invariant Dehn twist
square.

Let b be the curve in D2
n bounding five points P1, . . . , P5. The lift of b under the cover

πn is a curve c bounding a genus-two subsurface as Figure 3.
If a curve α is on the genus-two subsurface of S that is cut out by c, then we call

the invariant Dehn twist square about α a left invariant Dehn twist square. We have the
following important relation in P̃ Bn .

PROPOSITION 3.10. The element Tc ∈ P̃ Bn is a product of left invariant Dehn twist
squares in P̃ Bn .
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FIGURE 3. The curve c bounding a genus-two surface is the lift of a curve bounding five points.

Proof. We have the basic fact that P Bn is generated by Dehn twists about curves in the
interior of b bounding two points; see, e.g., [3, Ch. 9]. Take a lift of all of the elements;
we obtain a product of squares of Dehn twists about non-separating curves that are disjoint
from c and on the left of c in P̃ Bn . After taking a square of the equation, we obtain the
proposition. �

3.3. Characteristic annuli. From now on, we work with the assumption that there exists
a realization of the pure braid group

E ′ : P Bn→ Homeoa
+(D

2
n).

Lifting by the hyperelliptic involution, we obtain a new realization

E : P̃ Bn→ Homeoa
+(Sg)

τ ,

where the image lies in the centralizer of the hyperelliptic involution τ . We now only work
with the new realization E .

For an element f ∈ P̃ Bn or a subgroup F < P̃ Bn , we shorten A(E( f )) to A( f ), and
A(E(F)) to A(F), denoting the corresponding collections of acyclic components. Denote
by S the hyperelliptic cover we defined in §3.2. Recall that c ⊂ S is a separating curve that
is invariant under τ and divides S into subsurfaces SL of genus two and SR = S − SL (see
more about c in the previous section). We know that Tc ∈ P̃ Bn . We have the following
theorem about the minimal decomposition of E(Tc).

THEOREM 3.11. The set A(Tc) has a component L(c) which is homotopic to SL and a
component R(c) homotopic to SR .

Proof sketch. The proof is the same as the proof of [2, Theorem 4.1]. We use the fact
that there are pseudo-Anosov elements on the left and on the right of c in P̃ Bn . In this
theorem, we need n ≥ 9. �

For the rest of paper, we write

B := S − L(c)− R(c).

Let pL : L(c)→ L(c)/∼ and pR : R(c)→ R(c)/∼ be the Moore maps of L(c) and R(c)
corresponding to the decomposition S(c). Let L⊂ L(c)/∼ be an open annulus bounded
by the end of L(c)′ on one side, and by a simple closed curve on the other. The open
annulus R⊂ R(c)/∼ is defined similarly. We have the following definition (see [9,
Ch. 5]).
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Definition 3.12. An annulus of the form A = p−1
L (L) ∪ B ∪ p−1

R (R) is called a
characteristic annulus.

Denote f = E(Tc). Every characteristic annulus is invariant under f . We observe
that B is a separator in A, that is, B is an essential, compact and connected subset of
A. Note that a characteristic annulus A is invariant under f , but it may not be invariant
under homeomorphisms which are lifts (with respect to E) of other elements from P̃ Bn .
However, B is invariant under these lifts of elements from the image under E of the
centralizer of Tc in P̃ Bn . As we see from the next lemma, the dynamical information
about f is contained in B.

LEMMA 3.13. Fix a characteristic annulus A. Then:
(1) every number 0< r < 1 appears as the rotation number ρ( f, x, A) for some x ∈ A;
(2) if 0< ρ( f, x, A) < 1, then x ∈ B.

The proof of the above lemma can be seen in [2, Lemma 4.5], which is a result of two
facts. One is that f is homotopic to a Dehn twist and the other is that the realization is
area-preserving.

4. The proof of Theorem 1.2
In this section, we give the proof of Theorem 1.2. We first discuss the main strategy.

4.1. Outline of the proof. Recall that c is a separating simple closed curve that divides
the surface S (the hyperelliptic cover of S0;1,n) into a genus-two subsurface and its
complement. Fix a characteristic annulus A of Tc. Let Er be the set of points in A that
have rotation numbers equal to r under E(Tc). Lemma 3.13 states that the set Er is not
empty when 0< r < 1.

The key observation of the proof lies in the analysis of connected components of Er .
Let E be a component of Er . We show the following results:
(1) E is E(h)-invariant for h a left invariant Dehn twist square;
(2) E is a separator in A;
(3) if E contains a periodic orbit, then E contains a separator.

Denote by K (E) the annular completion of E , and let ρ(E(Tc), K (E)) be the rotation
interval of K (E). We claim that ρ(E(Tc), K (E))= {r}. First of all, we know that r ∈
ρ(E(Tc), K (E)). If ρ(E(Tc), K (E)) 6= {r}, then ρ(E(Tc), K (E)) contains infinitely many
rational numbers. By Theorem 2.9, there exist three periodic points x1, x2, x3 ∈ K (E)
with different rational rotation numbers r1, r2, r3. Let Fi denote the connected component
of Eri containing ri , and let Mi ⊂ Fi be a separator.

By Proposition 2.5, there is an ordering on disjoint separators. Without loss of
generality, we assume that M1 < M2 < M3. Based on a discussion about the position of E
with respect to the Mi , we obtain a contradiction. Thus, ρ(E(Tc), K (E)) is the singleton
{r}. We know from Theorem 2.10 that the left and right prime end rotation numbers of
K (E) are both r . In the group of circle homeomorphisms, the centralizer of an irrational
rotation is essentially SO(2).
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We then show a new ingredient of the proof: the rotation numbers of the realization
of a left invariant Dehn twist square on the set of prime ends of K (E) are all zero.
This contradicts the fact that Tc is a product left invariant Dehn twist square as in
Proposition 3.10.

4.2. The set Er . Once again we use abbreviation f = E(Tc). For a characteristic
annulus A, we let

Er = {x ∈ A : ρ
(

f, x, A
)
= r}.

By Lemma 3.13, if 0< r < 1, we know that Er is non-empty and Er ⊂ B.
Next, we have the following key lemmas, which correspond to [2, Lemmas 5.1, 5.3 and

5.4].

LEMMA 4.1. Fix 0< r < 1 and let E denote a connected component of Er . Fix a left
invariant Dehn twist square h in P̃ Bn . For x ∈ E, let C(x) ∈ A(h) be the corresponding
acyclic set. Then C(x)⊂ E. In particular, E is E(C(Tc))-invariant.

LEMMA 4.2. The closed set E is a separator (as defined in §2).

LEMMA 4.3. Let x be a periodic orbit of f such that ρ( f, x, A)= p/q and 0< p/q < 1.
Then the connected component E of E p/q , which contains x, also contains a separator (as
a subset).

Fix an irrational number r ∈ (0, 1). By Lemma 3.13, we know that Er is not empty. Let
E be a connected component of Er . By Lemma 4.1, we know that E is invariant under
E(C(Tc)). By Lemma 4.2, we know that E is a separator. The annular completion K (E)
of E is also E(C(Tc))-invariant since the definition is canonical. The following claim is at
the heart of the entire construction.

CLAIM 4.4. Let rL and rR be the left and right prime end rotation numbers of f on K (E).
Then rL = rR = r .

Remark. We refer the reader to [2, Claim 5.2] for the proof. The only property we use
about P̃ Bn is Proposition 3.10.

4.3. Finishing the proof. We need to show a new property of a left invariant Dehn twist
square h ∈ P̃ Bn .

CLAIM 4.5. The action of E(T 2
b ) on the set of prime ends of K (E) has rotation number

zero.

Proof. Now we consider the rotation set of E(T 2
b ) on K (E). We claim that the rotation set

satisfies
σ(E(Tb), K (E))= {0}.

Since E ⊂ B, and the fact that S − B is a union of two open subsurfaces, we know that
K (E)⊂ B. This means that for every point x ∈ K (E)⊂ B, there exists C(x) ∈ A(T 2

b )

such that C(x)⊂ B by Lemma 4.1. However, C(x) is acyclic and fixed by E(T 2
b ).

Therefore, we know that the rotation number of E(T 2
b ) on points in C(x) is zero. By
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Theorem 2.10, we know that the rotation number of the action of E(T 2
b ) on the set of

prime ends is also zero. �

We now finish the proof.

Proof. Since the rotation number of E(Tc) on the prime ends of K (E) is an irrational
number r , it is semiconjugate to an irrational rotation. Then, up to the same semiconjugacy,
the image of the centralizer of Tc under E is SO(2). The image of each element
is determined by its rotation number. However, E(Tc) is a product of E(T 2

b ) for b
non-separating and invariant under τ by Proposition 3.10. By Lemma 4.5, we know
that the rotation number of E(T 2

b ) is zero. Thus, their product should also have zero
rotation number. This contradicts the fact that the rotation number of E(Tc) is r , which
is non-zero. �
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