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Autocorrelation functions for quantum
particles in supersymmetric Pöschl-Teller
potentials
Francesco Cellarosi

Abstract. We consider autocorrelation functions for supersymmetric quantum mechanical systems
(consisting of a fermion and a boson) confined in trigonometric Pöschl–Teller partner potentials. We
study the limit of rescaled autocorrelation functions (at random time) as the localization of the initial
state goes to infinity. The limiting distribution can be described using pairs of Jacobi theta functions
on a suitably defined homogeneous space, as a corollary of the work of Cellarosi and Marklof. A
construction by Contreras-Astorga and Fernández provides large classes of Pöschl-Teller partner
potentials to which our analysis applies.

1 Introduction

1.1 Supersymmetric Quantum Mechanics

Supersymmetric (SUSY) quantum mechanics is the study of a pair of Hamiltonians (in
units where h̵ = mass = 1)

H0 = − 1
2

d2

dx2 + V0(x), H1 = − 1
2

d2

dx2 + V1(x)(1.1)

that are intertwined by a differential operator A and its adjoint A† as

H0A = AH1 , H1A† = A†H0 .(1.2)

The term “supersymmetric” is motivated as follows. If we define the operator matrices

Q = (0 0
A 0) Q† = (0 A†

0 0 ), Hss = (A†A 0
0 AA†),(1.3)

Q 1 =
Q† + Q√

2
, Q2 = Q† − Q

i
√

2
,(1.4)
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Autocorrelation functions for quantum particles in SUSY Pöschl-Teller potentials 841

then we have the commutator and anticommutator relations of the supersimmetry
algebra with N = 2 generators

[Q 1 , Hss] = 0, [Q2 , Hss] = 0, {Q 1 , Q 1} = {Q2 , Q2} = Hss , {Q 1 , Q2} = 0,
(1.5)

where [X , Y] = XY − Y X and {X , Y} = XY + Y X denote the commutator and the
anticommutator of X and Y, respectively. The algebra (1.5) corresponds to the simplest
supersymmetric quantum system (see [9], as well as [2, §5]). The operators Q , Q† are
called supercharges or supersymmetry generators, and the Hamiltonians H0 , H1 (as well
as the potentials V0 , V1) are called supersymmetric partners.

Given a general 1-dimensional Hamiltonian H0 whose eigenfunctions and eigen-
values are known, there is an intertwining method due to Sukumar (see [5] for an
historical account, tracing back to the work of Dirac) to construct various partners H1
using various differential operators A, A†. The advantage of the intertwining relations
(1.2) is to generate eigenvalues and eigenfunctions of H1 from those of H0. In general,
if A is a differential operator of order k, then the spectra of H0 and H1 differ by at most
k values. Moreover, if we denote by

H = (H1 0
0 H0

)(1.6)

the physical Hamiltonian, then the supersymmetric Hamiltonian Hss in (1.3) and (1.5)
can be expressed as a polynomial of degree k in H. It is therefore enough to study the
time-independent Schrödinger equation

Hψ = Eψ,(1.7)

where ψ(x) = (ψ1(x)
ψ0(x)). From the physical point of view, SUSY predicts that each

particle of the Standard Model has a partner particle with a spin that differs by a half
unit. Therefore, we can think of H as describing the joint action of H0 on fermions
(particles with half-integer spin) and of H1 on bosons (particles with integer spin).

1.2 Autocorrelation Functions

The time-dependent Schrödinger equation corresponding to (1.7) is

i ∂
∂t

Ψ = HΨ,(1.8)

where Ψ(x , t) = (Ψ1(x , t)
Ψ0(x , t)). We consider the 1-dimensional case in which x ∈ I,

where I ⊆ R denotes an interval. Moreover, we restrict our analysis to the class of
physical Hamiltonians H acting on L2(I) ⊕ L2(I) with purely discrete spectrum.
This means that there exists an orthonormal basis of L2(I) ⊕ L2(I) consisting of

eigenfunctions of H, say ψn(x) = (ψ1,n(x)
ψ0,n(x)) with eigenvalues En , n ≥ 0. In this case,

the solution of (1.8) with initial condition Ψ(x , 0) is given in terms of the evolution
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842 F. Cellarosi

operator U(t) = e−iH t as

Ψ(x , t) = U(t)Ψ(x , 0) =
∞
∑
n=0

cn e−iEn tψn(x),(1.9)

where

cn = (c1,n
c0,n

), c�,n = ∫
I

Ψ�(x , 0), ψ�,n(x)dx , � = 0, 1.(1.10)

The autocorrelation function for the initial state Ψ(x , 0) is the function A ∶ R → C2,

A(t) = ∫
I

Ψ(x , 0)Ψ(x , t)dx =
⎛
⎜
⎝

∑
n≥0

∣c1,n ∣2e iEn t

∑
n≥0

∣c0,n ∣2e iEn t

⎞
⎟
⎠

.(1.11)

We further restrict our attention to the case of autocorrelation functions A(t) as in
(1.11) where the coefficients c�,n have a special form, namely,

∣c�,n ∣
2 = 1

N
f�(

n
N

),(1.12)

for some nonnegative functions f1 , f0 supported on R≥0 and some N ≥ 1. This is a
natural choice, which appears in several interesting cases. Define

AN( f1 , f0; t) =
⎛
⎜⎜⎜⎜
⎝

1
N ∑

n≥0
f1(

n
N

)e iEn t

1
N ∑

n≥0
f0(

n
N

)e iEn t

⎞
⎟⎟⎟⎟
⎠

.(1.13)

We will consider the large N regime, which physically represents the case of initial
states Ψ(x , 0) that are highly localized in space. We will focus on the autocorrelation
functions for a class of Hamiltonians H as in (1.6), where the spectra of H0 and of
H1 differ by at most finitely many values. For random t, we will treat AN( f1 , f0; t)
as a random variable at the scale N−1/2. In this case, as N → ∞, the contribution
of finitely many eigenvalues to AN( f1 , f0 , t) is O(N−1) and hence negligible in our
analysis. Therefore, without loss of generality, we can assume that H0 and H1 have the
same spectrum, and thus, sp(H) = sp(H0) = sp(H1).

1.3 Trigonometric Pöschl–Teller Potentials

Let us discuss the case when H0 is the Hamiltonian corresponding to the so-called
trigonometric Pöschl–Teller potential with parameters (α, β), i.e.,

V0(x) = (α − 1)α
2 sin2(x)

+ (β − 1)β
2 cos2(x) , α, β > 1, 0 ≤ x ≤ π

2
.(1.14)

The potential V0 can be interpreted as an infinite well, confining the particle to the 1-
dimensional box [0, π

2 ], with “soft walls”, where the the parameters α and β represent
the strength of the reflection of the particle off the two walls. Denote γ = α + β. The
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Figure 1: The potential V0(x) for α =
√

2 and β = 4 and the probability densities x ↦ ∣ψ0,n(x)∣2
on [0, π

2 ] for 0 ≤ n ≤ 4.

eigenvalues of H0 on L2([0, π
2 ]) are

En = 1
2
(2n + γ)2 , n ≥ 0.(1.15)

The corresponding normalized eigenfunctions are

ψ0,n(x) =
�
��� 2(2n + γ)�(n + γ)(α + 1

2 )n

n! �(α + 1
2 )�(β + 1

2 )(β + 1
2 )n

sinα(x) cosβ(x)(1.16)

× 2F1( − n, n + γ; α + 1
2 ; sin2(x)),

where 2F1(a, b; c; z) = ∑∞n=0
(a)n(b)n
(c)n

zn

n! is the hypergeometric function, and (a)n =
�(a+n)
�(a) is the Pochhammer symbol; see [3, 4].

Using various differential operators A, A† as in (1.2), Contreras-Astorga and Fer-
nández [3] were able to construct various families of partner potentials V1 such that
H0 and H1 are isospectral. We discuss two such families in Section 4.

1.4 The Main Theorem

Let H0 = − 1
2

d2

dx2 + V0 be the Hamiltonian with with Pöschl-Teller potential (1.14) with
parameters (α, β). Let γ = α + β. Let H1 be any supersymmetric partner of H0 such
that sp(H1) and sp(H0) differ by at most finitely many eigenvalues. Fix two compactly
supported, Riemann integrable functions f0 , f1 ∶ R≥0 → R. Let λ be a probability
measure onR, absolutely continuous with respect to the Lebesgue measure. Denote by
ρ the density of λ, i.e., dλ(t) = ρ(t)dt. Rescaled autocorrelation functions are viewed
as random variables, i.e., as C2-valued measurable functions of t ∈ (R, B(R), λ).
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844 F. Cellarosi

More precisely, consider the random variables

X N ∶ (R, B(R), λ) �→ (C2 , B(C2)), X N(t) =
√

NAN( f0 , f1; t), N ≥ 1.
(1.17)

Throughout the paper, B(⋅) denotes the Borel σ-algebra. Our main result is the
following theorem.

Theorem 1.1 Assume γ ∉ Q. Then the random variables X N have a limiting distri-
bution as N → ∞. That is, there exists a (non-degenerate) random variable X on C2

such that X N converge in law to X as N → ∞. Moreover, the law of X (which does not
depend on ρ nor γ) can be realized as the push forward onto C2 of the Haar measure on
a homogeneous space �/G via an explicit function �/G → C2.

Remark 1.2 In this case, � < G is a lattice in the Lie group G, and �/G has finite
volume. We describe �/G, its normalized Haar measure, and the function X on �/G
explicitly in Section 2. The proof of Theorem 1.1 is provided in Section 3.

In particular, we show that the law of X is not the product of two measures on C.
This means that the two random variables

1√
N

∑
n≥0

f0(
n
N

)e iEn t and 1√
N

∑
n≥0

f1(
n
N

)e iEn t(1.18)

do not become independent as N → ∞. This can be interpreted physically as follows.
The probability distribution of the autocorrelation function (at a random time) of
an individual particle is altered if we condition on the event that the autocorrelation
function of the partner particle lies in a certain set in C, at least for highly localized
particles. This means, in particular, that if we observe—at a random time t—a
localized quantum particle undergoing a quantum revival (i.e., we observe a large
value of its correlation function), then the probability that the partner particle (which
we may have no access to) is also undergoing a quantum revival at time t is not the
same as the unconditional probability of the same event; see Remark 3.2.

As an illustration, in Figure 2, we plot the real and imaginary parts of both
components of X N(t) when f1 and f0 are indicator functions for different values of N.

2 The Limiting Random Variable X

In this section, we describe explicitly the random variable X featured in Theorem 1.1.
We refer the reader to [1, §2] for more details.

2.1 The Universal Jacobi Group G

Let H ∶= {w ∈ C ∶ I(w) > 0} denote the upper half plane. The group SL(2,R) acts on

H by Möbius transformations z ↦ gz ∶= az+b
cz+d , where g = (a b

c d) ∈ SL(2,R). Every
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Figure 2: The real and imaginary parts of the two components of the rescaled autocorrelation
function t ↦ X N(t) = (XN( f1 , t), XN( f0 , t)) for f1 = 1[0,1] (left panels) and f0 = 1[1/3,4/3]
(right panels) and N = 10 (top four panels) and N = 40 (bottom four panels). In all the panels,
α =
√

2 and β = 3.

g ∈ SL(2,R) can be written uniquely via Iwasawa decomposition as

g = nx ay kϕ ,(2.1)

where

nx = (1 x
0 1), ay = (y1/2 0

0 y−1/2 ), kϕ = (cos ϕ − sin ϕ
sin ϕ cos ϕ ),(2.2)

and z = x + iy ∈ H, ϕ ∈ [0, 2π). Set e(t) ∶= e2πi t and εg(z) = (cz + d)/∣cz + d∣. The
universal cover of SL(2,R) is defined as

S̃L(2,R) ∶= {[g , βg] ∶ g ∈ SL(2,R), βg a continuous function on H(2.3)
such that e(iβg(z)) = εg(z)} ,
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and has the group structure given by

[g , β1
g][h, β2

h] = [gh, β3
gh], β3

gh(z) = β1
g(hz) + β2

h(z),(2.4)

[g , βg]−1 = [g−1 , β′g−1], β′g−1(z) = −βg(g−1z).(2.5)

The group S̃L(2,R) is identified with H ×R via [g , βg] ↦ (z, ϕ) = (gi , βg(i)) and
acts on H ×R via

[g , βg](z, ϕ) = (gz, ϕ + βg(z)).(2.6)

The Iwasawa decomposition (2.1) of SL(2,R) extends to a decomposition of S̃L(2,R):
for every g̃ = [g , βg] ∈ S̃L(2,R), we have

g̃ = [g , βg] = ñx ãy k̃ϕ = [nx , 0][ay , 0][kϕ , βkϕ ].(2.7)

Let ω be the standard symplectic form on R2, ω(ξ, ξ′) = x y′ − yx′, where

ξ = (x
y), ξ′ = (x′

y′). The Heisenberg group H(R) is defined as R2 ×R with the

multiplication law

(ξ, t)(ξ′ , t′) = (ξ + ξ′ , t + t′ + 1
2 ω(ξ, ξ′)).(2.8)

We consider universal Jacobi group

G = S̃L(2,R) ⋉H(R),(2.9)

having the multiplication law

([g , βg]; ξ, ζ)([g′ , β′g′]; ξ′ , ζ′) = ([g g′ , β′′g g′]; ξ + gξ′ , ζ + ζ′ + 1
2 ω(ξ, gξ′)),(2.10)

where β′′g g′(z) = βg(g′z) + β′g′(z). The Haar measure on G is given in coordinates
(x + iy, ϕ; (ξ1

ξ2
), ζ) by

dμ(g) = dx dy dϕ dξ1 dξ2 dζ
y2 .(2.11)

2.2 Hermite Expansion

Let Hk be the k-th Hermite polynomial

Hk(t) = (−1)k e t2 dk

dtk e−t2
= k!

⌊ k
2 ⌋

∑
m=0

(−1)m(2t)k−2m

m!(k − 2m)!
.(2.12)

We define the Hermite functions

ψk(t) = (2π) 1
4 hk(

√
2πt) = (2k− 1

2 k!)−1/2Hk(
√

2π t)e−πt2
,(2.13)
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which form an orthonormal basis for L2(R, dx). Let f ∈ L2(R). Following [6], we set

fϕ(t) =
∞
∑
k=0

f̂ (k)e−i(2k+1)ϕ/2ψk(t),(2.14)

where f̂ (k) = ⟨ f , ψk⟩L2(R). For an equivalent definition of fϕ , see [1, §2.3]. The space
of functions f ∶ R → R for which fϕ has a prescribed decay at infinity, uniformly in
ϕ, is denoted by Sη(R). More precisely,

Sη(R) ∶= { f ∶ R �→ R ∶ supt ,ϕ ∣ fϕ(t)∣(1 + ∣t∣)η < ∞};(2.15)

see e.g., [8].

2.3 Jacobi Theta Functions on G

For g = (z, ϕ; ξ, ζ) ∈ G and f ∈ Sη(R), η > 1, define the Jacobi theta function as

Θ f (z, ϕ; ξ, ζ) = y1/4e(ζ − 1
2 ξ1 ξ2) ∑

n∈Z
fϕ((n − ξ2)y1/2)e( 1

2 (n − ξ2)2x + nξ1),(2.16)

where z = x + iy, ξ = (ξ1
ξ2
)and fϕ is as in (2.14).

2.4 A Lattice � < G such that Θ f is �-invariant

Consider the following elements of G, each written in two ways using the identifica-
tion described in Section 2.1:

γ1 =
⎛
⎝

⎡⎢⎢⎢⎢⎣
(0 −1

1 0 ), arg
⎤⎥⎥⎥⎥⎦

; 0, 1
8
⎞
⎠
= (i , π

2
; 0, 1

8
),(2.17)

γ2 =
⎛
⎝

⎡⎢⎢⎢⎢⎣
(1 1

0 1), 0
⎤⎥⎥⎥⎥⎦

;(1/2
0
), 0

⎞
⎠
=
⎛
⎝

1 + i , 0;(1/2
0
), 0

⎞
⎠

,(2.18)

γ3 =
⎛
⎝

⎡⎢⎢⎢⎢⎣
(1 0

0 1), 0
⎤⎥⎥⎥⎥⎦

;(1
0
), 0

⎞
⎠
=
⎛
⎝

i , 0;(1
0
), 0

⎞
⎠

,(2.19)

γ4 =
⎛
⎝

⎡⎢⎢⎢⎢⎣
(1 0

0 1), 0
⎤⎥⎥⎥⎥⎦

;(0
1
), 0

⎞
⎠
=
⎛
⎝

i , 0;(0
1
), 0

⎞
⎠

,(2.20)

γ5 =
⎛
⎝

⎡⎢⎢⎢⎢⎣
(1 0

0 1), 0
⎤⎥⎥⎥⎥⎦

;(0
0
), 1

⎞
⎠
= (i , 0; 0, 1).(2.21)
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848 F. Cellarosi

It was shown in [7] that for i = 1, . . . , 5, we have Θ f (γ i g) = Θ f (g) for every g ∈ G.
The Jacobi theta function Θ f is therefore invariant under the left action by the group

� = ⟨γ1 , γ2 , γ3 , γ4 , γ5⟩ < G .(2.22)

This means that Θ f is well defined on the quotient �/G. The group � is a lattice in G ,
and �/G is a 4-torus bundle over the modular surface SL(2,Z)/H. In particular, �/G
is non-compact. A fundamental domain for the action of � on G is

F� = {(z, ϕ; ξ, ζ) ∈ FSL(2,Z) × [0, π) × [ − 1
2 , 1

2)
2 × [ − 1

2 , 1
2)},(2.23)

where FSL(2,Z) is a fundamental domain of the modular group in H. The hyperbolic
area of FSL(2,Z) is π/3, and hence, by (2.11), we have that μ(�/G) = μ(F�) = π2/3.

Remark 2.1 Although we defined the Jacobi theta function in (2.16) assuming that f
is regular enough (η > 1), it can be shown Θ f is a well-defined element of L2(�/G , μ)
(in fact, of L4(�/G , μ)) provided f ∈ L2(R); see [1, §2.9].

We are finally ready to define X. Given f0 , f1 as in the Section 1.4, set X ∶ �/G → C2

as

X(�g) = (Θ f1(�g)
Θ f0(�g)).(2.24)

Observe that X ∶ (�/G , B(�/G), 3
π2 μ) → (C2 , B(C2)) is a random variable whose

law is simply the push forward of the normalized Haar measure 3
π2 μ onto C2 via X.

The properties of the law of each component Θ f (�g) when �g is Haar-random on
�/G were studied in [1]. In particular, we have the following lemma.

Lemma 2.2 [1] Let η > 1 and f ∈ Sη . Then for all sufficiently large R > 0, we have

μ({�g ∈ �/G ∶ ∣Θ f (g)∣ > R}) = 2
3

D( f )R−6(1 + Oη(κη( f )2η R−2η)),(2.25)

where D( f ) ∶= ∫
∞
−∞ ∫

π
0 ∣ fϕ(w)∣6dϕ dw and κη( f ) ∶= supw ,ϕ ∣ fϕ(w)∣(1 + ∣w∣)η .

If f is less regular (e.g., when f is the indicator of an interval, in which case f ∈ S1
and Lemma 2.2 does not apply) a delicate analysis can be performed to study the tail
asymptotic (see [1, §3.6]). In any case, the complex-valued random variable Θ f has
heavy tails and all moments of order p ≥ 6 are infinite.

3 Proof of Theorem 1.1

Recall (2.7). The following theorem describes how certain “irrational” horocycle lifts
of the form u ↦ M(u)Ψu , with M(u) ∈ G and Ψu = (ñu , ( 0

0 ), 0), become equidis-
tributed in �/G under the action of the geodesic flow Φs = (ãe−s , ( 0

0 ), 0). It follows
immediately from [1, Corollary 4.3].
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Theorem 3.1 Let σ ∶ R → R≥0 be a probability density, and let F ∶ �/G → C2 be a
bounded continuous function. For any θ ∈ R ∖Q and any ϖ ∈ R, we have

lim
s→∞∫

R

F(�(I2;(θu
0 ), ϖu)ΨuΦs)σ(u)du = 1

μ(�/G) ∫
�/G

F(�g)dμ(�g).(3.1)

Note that the limit depends neither on σ , nor on θ (provided it is irrational), nor
on ϖ. Our assumptions on the Pöschl–Teller potential V0 and on the functions f0 , f1,
along with (1.15), allow us to write

1
2π En t = 1

2π
(2n + γ)2

2
t = 1

2
(n − ξ2)2u + nξ1 + ζ − 1

2
ξ1 ξ2 ,

where ξ1 = γ
2 u, ξ2 = 0, ζ = γ2

8 u, and u = 2t
π . Therefore, using (2.16) and setting s =

2 log N , we have

1√
N

∑
n≥0

f�(
n
N

)e iEn t = Θ f�(u + ie−s , 0;(
γ
2 u
0 ), γ2

8 u), � = 0, 1.(3.2)

Recall that ρ denotes the density of the probability measure λ on R, and that t in
(1.17) is distributed according to the law λ. Therefore, u = 2t

π has density σ = π
2 ρ( π

2 ⋅).
We now can write

X N(t) = X(u + ie−s , 0;(
γ
2 u
0
), γ2

8
u),

and proving Theorem 1.1 is equivalent to showing that for every bounded, continuous
function h ∶ C2 → R, we have that

lim
s→∞∫

R

h(X(u + ie−s , 0;(
γ
2 u
0 ), γ2

8 u))σ(u)du

= 1
μ(�/G) ∫

�/G
h(X(�g))dμ(�g).(3.3)

Observe that if f0 , f1 ∈ Sη with η > 1, then h ○ X is bounded and continuous, and,
since we are assuming that γ is irrational, we can apply Theorem 3.1 to achieve (3.3).

Finally, if f0 and f1 are bounded, Riemann-integrable functions, then we can
use a standard approximation argument, analogous to the one used in [1, Lemmata
4.5–4.9].

Remark 3.2 Since the two components of X are both functions of the same random
variable (�g distributed in �/G according to the normalized Haar measure), it is clear
that the law on C2 of X is not the product measure of its two marginals on C. The
analogue of Theorem 1.1 for rational γ can also be considered, but the statement of
Theorem 3.1 needs to be modified. In fact, the hororcyle lifts do not equidistribute on
the homogeous space �/G; instead, they equidistribute on a submanifold of positive
codimension of the form �γ/G. In this case, the random variable �g on the right-hand
side of (3.1) would be distributed according the normalized Haar measure on �γ/G.
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The extension of Theorem 3.1 for rational γ is the subject of a joint work in progress
with Tariq Osman.

4 A Class of SUSY Partner Pöschl–Teller Potentials

In this section, we explore two constructions that, given a Pöschl–Teller potential,
allow us to construct infinitely many isospectral supersymmetric partners, thus
providing us with a plethora of cases in which our Theorem 1.1 can be applied.
Let H0 be the Hamiltonian with potential V0 as in (1.14). Recall that γ = α + β. A
general solution to the equation H0u = εu (regardless of boundary conditions) for
any ε > 0 is

uε ,a ,b(x) = sinα(x) cosβ(x)
⎛
⎝

a 2F1(
γ
2
+
√ ε

2
, γ

2
−
√ ε

2
; α + 1

2
; sin2(x))

(4.1)

+ b sin1−2α(x) 2F1(
1 + β − α

2
+
√ ε

2
, 1 + β − α

2
−
√ ε

2
; 3

2
− α; sin2(x))

⎞
⎠

.

Using first-order intertwining operators of the form

A = 1√
2
( d

dx
+ κ(x)), A† = 1√

2
( − d

dx
+ κ(x)),(4.2)

Contreras–Astorga and Fernández [3] were able to construct a 1-parameter family of
partner potentials V1 such that H0 and H1 are isospectral; see also [5]. Specifically,

V1(x) = α(α + 1)
2 sin2(x)

+ (β − 2)(β − 1)
2 cos2(x) − ( log vε(x))′′ , α > 1, β > 2,(4.3)

where

vε(x) = uε ,1,0(x)
sinα(x) cos1−β(x)(4.4)

= cos2β−1(x)2F1(
γ
2
+
√ ε

2
, γ

2
−
√ ε

2
; α + 1

2
; sin2(x)),

and ε < E0 = γ2

2 is an arbitrary real parameter. The corresponding eigenfunctions for
H1 are

ψ1,n = A†ψ0,n√
En − ε

,(4.5)

where κ(x) = (log uε ,1,0(x))′ in (4.2). Such a potential V1 for α =
√

2, β = 3, and ε = 9
is shown in Figure 3, along with the supersymmetric partner V0.

In the same paper [3], the authors also used second-order intertwining operators
B, B† of the form so that H1B† = B†H0, where

B† = 1
2
( d2

dx2 − η(x) d
dx

+ θ(x)),(4.6)
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Figure 3: The potentials V0 and V1 of two isospectral supersymmetric partner Hamiltonians,
given by (1.14) and (4.3), respectively.

to construct a 2-parameters family of partner potentials V1 such that H0 and H1 are
isospectral. Specifically,

V1(x) = (α + 1)(α + 2)
2 sin2(x)

+ (β − 3)(β − 2)
2 cos2(x) − (logW(x))′′ , α > 1, β > 3,(4.7)

where

W(x) = W(uε1 ,1,0 , uε2 ,1,0)
sin2α+1(x) cos3−2β(x)

,(4.8)

W( f , g) = f ′g − f g′ denotes the Wronskian of f and g, uε i ,1,0 is as in (4.1) for i = 1, 2,
and ε1 , ε2 are real parameters such that E l < ε2 < ε1 < E l+1 for some l ≥ 0. In this case,
the normalized eigenfunctions of H1 are

ψ1,n = B†ψ0,n√
(En − ε1)(En − ε2)

,(4.9)

where in (4.6), we have η = (log(W(uε1 ,1,0 , uε2 ,1,0)))′, θ = η′
2 + η2

2 − 2V0 + d, and d =
ε1 + ε2.

In all these classes of supersymmetric partner potentials, our Theorem 1.1 applies,
provided γ is irrational.
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