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EXISTENTIAL ∅-DEFINABILITY OF HENSELIAN VALUATION RINGS

ARNO FEHM

Abstract. In [1], Anscombe and Koenigsmann give an existential ∅-definition of the ring of formal
power series F [[t]] in its quotient field in the case where F is finite. We extend their method in several
directions to give general definability results for henselian valued fields with finite or pseudo-algebraically
closed residue fields.

§1. Introduction. The question of first order definability of valuation rings in
their quotient fields has a long history. Given a valued field K , one is interested
in whether there exists a first order formula ϕ in the language L = {+,−, ·, 0, 1}
of rings such that the set ϕ(K) defined by ϕ inK is precisely the valuation ring, and
what complexity such formula must have.
Many results of this kind are known for henselian valued fields, like fields of

formal power series K = F ((t)) over a field F , and their valuation ring F [[t]]. In
this setting, a definition going back to Julia Robinson gives an existential definition
of the valuation ring using the parameter t. Later, Ax [2] gave a definition of the
valuation ring, which uses no parameters, but is not existential.
Recently, Anscombe and Koenigsmann [1] succeeded to give an existential and

parameter-free definition of F [[t]] in F ((t)) in the special case where F = Fq is
a finite field. Their proof uses the fact that Fq can be defined in Fq((t)) by the
quantifier-free formula xq − x = 0. In particular, their result does not apply to any
infinite field F , and their formula depends heavily on q.
In this note we simplify and extend their method. As a first application we get

the following general definability result for henselian valued fields with finite or
pseudo-algebraically closed residue fields (Theorem 2.6 and Theorem 3.5), which
generalizes [1, Theorem 1.1] on Fq((t)) and [5, Theorem 6] on finite extensions
of Qp:
Theorem 1.1. Let K be a henselian valued field with valuation ring O and residue

field F . If F is finite or pseudo-algebraically closed and the algebraic part of F is not
algebraically closed, then there exists an ∃-∅-definition of O in K .
As a further application, in Section 4, we find definitions of the valuation ring

which are uniform for large (infinite) families of finite residue fields, like the
following one for finite prime fields (Theorem 4.3):

Received August 22, 2013.
Key words and phrases. Henselian valuation, existential definability, finite fields, pseudo-algebraically

closed fields.

c© 2015, Association for Symbolic Logic
0022-4812/15/8001-0015
DOI:10.1017/jsl.2014.13

301

https://doi.org/10.1017/jsl.2014.13 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.13


302 ARNO FEHM

Theorem 1.2. For every � > 0 there exists an ∃-∅-formula ϕ and a set P of prime
numbers of Dirichlet density at least 1 − � such that for any henselian valued field K
with valuation ringO and residue field F with |F | ∈ P, the formula ϕ definesO in K .
In particular, this applies to power series fields Fp((t)) and p-adic fields Qp.
Theorem 1.2 is in a sense optimal, see the discussion at the end of this note.

§2. Defining subsets of the valuation ring. Let K be a henselian valued field with
valuation ringO ⊆ K , maximal idealm ⊆ O and residue field F = O/m. For a ∈ O
we let ā = a + m ∈ F be its residue class and write f̄ ∈ F [X ] for the reduction of
a polynomial f ∈ O[X ].
We start by simplifying the key lemma of [1], thereby generalizing it to arbitrary
henselian valuations. This proof follows Helbig [10]. Here, and in what follows, by
f(K)−1 we mean the set {f(x)−1 : x ∈ K} and implicitly claim that f(x) �= 0 for
all x ∈ K .
Lemma 2.1. Let f ∈ O[X ] be a monic polynomial such that f̄ has no zero in F ,
and let a ∈ K . Let Uf,a := f(K)−1 − f(a)−1. Then the following holds:
a) f(K)−1 ⊆ O,
b) Uf,a ⊆ O,
c) If in addition a ∈ O and f′(a) /∈ m, then m ⊆ Uf,a .
Proof. a) We have that f(K) ∩ m = ∅: If x ∈ K with f(x) ∈ m, then x ∈ O
since O is integrally closed and f is monic, and hence f̄(x̄) = 0, contradicting the
assumption that f̄ has no zero in F . Therefore, f(K)−1 ⊆ (K �m)−1 = O.
b) From a) we get that f(K)−1 ⊆ O, and in particular f(a)−1 ∈ O. Thus,
Uf,a ⊆ O.
c) Now assume that a ∈ O and f′(a) /∈ m. Let x ∈ m. Since a ∈ O we have
f(a) ∈ O, hence f(a) ∈ O×. Define g(X ) = f(X ) − (f(a) + x) ∈ O[X ]. Then
g(a) = −x ∈ m and g ′(a) = f′(a) /∈ m, so by the assumption that O is henselian
there exists b ∈ O with g(b) = 0, i.e. f(a) + x = f(b). Hence, f(a) +m ⊆ f(K).
Sincef(a) ∈ O× we get thatf(a)−1+m = (f(a)+m)−1 ⊆ f(K)−1, and therefore
m ⊆ Uf,a . �
We observe that one can get rid of the element a even if it is not in the
(model theoretic) algebraic closure of the prime field:

Lemma 2.2. Letf ∈ O[X ] be amonic polynomial such that f̄ has no zero in F , and
a ∈ O such that f′(a) /∈ m. Then U := f(K)−1 − f(K)−1 satisfies m ⊆ U ⊆ O.
Proof. By Lemma 2.1a, f(K)−1 ⊆ O, hence U ⊆ O. Since a ∈ O and
f′(a) /∈ m, Lemma 2.1c implies that m ⊆ Uf,a ⊆ U . �
Clearly, U can be defined in K by the ∃-formula

ϕf(x) ≡ (∃y, z, y1 , z1)(x = y1 − z1 ∧ y1f(y) = 1 ∧ z1f(z) = 1).
Note that if f ∈ Z[X ], then ϕf is an ∃-∅-formula.
Lemma 2.3. If U,T ⊆ O are such that m ⊆ U and T meets all residue classes
(i.e. T̄ = F ), thenO = U + T .
Proof. If for x ∈ O we let t ∈ T with t̄ = x̄, then x = u + t with u := x − t ∈

m ⊆ U . �
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Thus, if ϕ defines U and � defines T , then

�(x) ≡ (∃u, t)(x = u + t ∧ ϕ(u) ∧ �(t))
defines O. Note that if ϕ and � are ∃-∅-formulas, then so is �.
We now give a first generalization of [1, Theorem 1.1]. We denote by F0 the

prime field of F and by Falg the algebraic closure of F0 in F . By abuse of notation
we will consider polynomials f ∈ Z[X ] as elements of O[X ] via the canonical
homomorphism Z → O.
Lemma 2.4. For every prime p and positive integer m, there exists f ∈ Fp[X ]

monic, separable, and irreducible of degree m with f′(0) �= 0.
Proof. Let q = pm. Since Fq/Fp is Galois it has a normal basis, i.e. there exists

α ∈ Fq such that the conjugates of α form an Fp-basis of Fq . In particular, α has
degree m and nonzero trace over Fp. Let f ∈ Fp[X ] be the minimal polynomial of
α−1. Then f is irreducible of degreem and f′(0) = ±TrFq/Fp (α)/NFq/Fp(α) �= 0. �
Lemma 2.5. If F is finite, then there exist f ∈ F0[X ] monic, separable, and

irreducible which has no zero in F , and a ∈ F with f′(a) �= 0.
Proof. Identify F0 = Fp, let m be any positive integer that does not divide

[F : F0], choose f of degree m as in Lemma 2.4, and let a = 0. �
Theorem 2.6. Let K be a henselian valued field with valuation ring O and residue

field F . If F is finite, then there exists an ∃-∅-definition of O in K .
Proof. If F = Fq , let g = Xq − X ∈ Z[X ] and �(x) ≡ (g(x) = 0). Since

ḡ ′ = −1, the assumption that O is henselian gives that T := �(K) ⊆ O is a set of
representatives of F . In particular, it meets all residue classes. Choose f ∈ F0[X ]
as in Lemma 2.5 and let f̃ ∈ Z[X ] be a monic lift of f. Since there exists a ∈ F
with f′(a) �= 0, a lift ã ∈ O of a satisfies f̃′(ã) /∈ m. Let ϕ ≡ ϕf . By Lemma 2.2,
U := ϕ(K) satisfies m ⊆ U ⊆ O. Therefore, Lemma 2.3 shows that �(K) = O. �
The special case of Theorem 2.6 where F is a finite field and K = F ((t)) was

proven by Anscombe andKoenigsmann in [1, Theorem 1.1]. The special case where
K is a finite extension ofQp was proven by Cluckers, Derakhshan, Leenknegt, and
Macintyre in [5, Theorem 6].

§3. Pseudo-algebraically closed residue fields. We now consider assumptions on
the residue field F under which we can define a set T as in Lemma 2.3. For basics
on pseudo-algebraically closed (PAC) fields we refer to [8, Chapter 11]. For d ∈ N

we fix the constant c(d ) = (2d − 1)4.
Lemma 3.1. Let f ∈ F [X ] be nonconstant and square-free (over the algebraic

closure). Then F = f(F )f(F )∪{0} if F is PAC or F is finite with |F | > c(deg(f)).
Proof. Let 0 �= c ∈ F .One checks that the polynomialf(X )f(Y )−c ∈ F [X,Y ]

is absolutely irreducible, cf. [9, Proposition 1.1]. Thus, if F is PAC we can conclude
that there exist x, y ∈ F with f(x)f(y) − c = 0, i.e. c ∈ f(F )f(F ). If F is finite
with |F | > c(deg(f)) we come to the same conclusion by applying the Hasse-Weil
bound, cf. [8, Corollary 5.4.2]. �
Lemma 3.2. Let f ∈ O[X ] be monic such that f̄ is square-free and has no zero

in F . Then T := f(K)−1f(K)−1 ∪ {0} ⊆ O. If in addition F is PAC or finite with
|F | > c(deg(f)), then T meets all residue classes.
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Proof. By Lemma 2.1a, f(K)−1 ⊆ O, hence T ⊆ O. If F is PAC or finite with
|F | > c(deg(f)), then, since F× ⊆ f̄(F )f̄(F ) by Lemma 3.1, also

F× ⊆ (f̄(F )f̄(F ))−1 ⊆ (f(O) · f(O))−1 ⊆ f(K)−1f(K)−1,
hence T satisfies F = T . �
Clearly, the set T can be defined in K by the ∃-formula
�f(x) ≡ (∃y, z, y1, z1)(x = 0 ∨ (x = y1z1 ∧ y1f(y) = 1 ∧ z1f(z) = 1)).

Let
�f(x) ≡ (∃u, t)(x = u + t ∧ ϕf(u) ∧ �f(t)).

Proposition 3.3. Let f ∈ O[X ] be monic such that f̄ is square-free and has no
zero in F . Then �f(K) ⊆ O. If in addition there exists a ∈ O such that f′(a) /∈ m
and F is PAC or finite with |F | > c(deg(f)), then �f(K) = O.
Proof. Let U = ϕf(K), so U ⊆ O by Lemma 2.1. By Lemma 3.2, T :=

�f(K) ⊆ O, so �f(K) = U + T ⊆ O. If in addition there exists a ∈ O such that
f′(a) /∈ m and F is PAC or finite with |F | > c(deg(f)), then Lemma 2.2 gives that
m ⊆ U , and Lemma 3.2 gives that T meets all residue classes, hence �f(K) = O by
Lemma 2.3. �
Lemma 3.4. If F is infinite and Falg is not algebraically closed, then there exist
f ∈ F0[X ] monic, separable, and irreducible which has no zero in F , and a ∈ F with
f′(a) �= 0.
Proof. Since Falg is not algebraically closed, there exists a monic irreducible
f ∈ F0[X ] which has no zero in Falg, hence in F . Since F0 is perfect, f is separable,
hence f′ �= 0. Therefore, since F is infinite, there exists a ∈ F with f′(a) �= 0. �
Theorem 3.5. Let K be a henselian valued field with valuation ring O and residue
field F . If F is pseudo-algebraically closed and Falg is not algebraically closed, then
there exists an ∃-∅-definition of O in K .
Proof. Choose f ∈ F0[X ] as in Lemma 3.4 and let f̃ ∈ Z[X ] be a monic lift of
f. Since there exists a ∈ F with f′(a) �= 0, a lift ã ∈ O of a satisfies f̃′(ã) /∈ m.
By Proposition 3.3, �f̃(K) = O. �
Corollary3.6. LetK be a henselian valued field with valuation ringO and residue
fieldF . IfF is pseudo-real closed andFalg is neither real closed nor algebraically closed,
then there exists an ∃-∅-definition of O in K .
Proof. Let K ′ = K(

√−1). Then the residue field F ′ = F (
√−1) of K ′ is PAC

by [11], and F ′
alg = Falg(

√−1) is not algebraically closed by the Artin-Schreier
theorem. By Theorem 3.5 there exists an ∃-∅-definition of the unique prolongation
O′ of O in K ′. By interpreting K ′ in K we get an ∃-∅-definition of O = O′ ∩ K in
K . �
Remark 3.7. Note that as soon as F is infinite we cannot hope to have an

∃-∅-definition of a set of representatives T ⊆ O of F : For example, if K = F ((t)),
then F is never ∃-∅-definable inK unless it is finite, cf. [7, Corollary 9]. This explains
why we rather define a set T ⊆ O that meets all residue classes.
Remark 3.8. Wepoint out that the assumption thatFalg is not algebraically closed
in Theorem 3.5 is indeed necessary. For example, let K be the field of generalized
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power series F ((Q)) over a field F . If Falg is algebraically closed, then so is K ′ :=
Falg((Q)), cf. [6, 18.4.3]. Therefore, K ′ is existentially closed in K . So, if ϕ is an
∃-∅-definition of the valuation ring in K , then ϕ(K ′) = ϕ(K) ∩ K ′ is a nontrivial
valuation ring, contradicting the fact that definable subsets of an algebraically closed
field are finite or cofinite.

§4. Uniform definitions. We now deal with definitions which are uniform over
certain families of finite residue fields. We start with an example in fixed residue
characteristic p:

Theorem 4.1. Given a prime number p and a positive integer m there exists an
∃-∅-formula ϕ such that ϕ(K) = O for all henselian valued fields K with valuation
ring O and residue field F = Fpn with m � |n.
Proof. Assume that F = Fpn withm � |n. Choosef ∈ Fp[X ] irreducible of degree

m as in Lemma 2.4. Thenf has no zero in F and there exists a ∈ F withf′(a) �= 0.
Let f̃ ∈ Z[X ] be a monic lift off. By Proposition 3.3, �f̃(K) ⊆ O, and �f̃(K) = O
for pn > c(m). For k ∈ N with m � |k let �k(x) ≡ (xpk − x = 0) and let

�k(x) ≡ (∃u, t)(x = u + t ∧ ϕf̃(u) ∧ �k(t)).
As in the proof of Theorem 2.6 we see that �k(K) ⊆ O, and �k(K) = O if n = k.
Therefore, withM = {k ∈ N : m � |k and pk ≤ c(m)},

ϕ(x) ≡ �f̃(x) ∨
∨
k∈M
�k(x)

satisfies ϕ(K) = O for all n with m � |n. �
Remark 4.2. The condition m � |n in Theorem 4.1 is indeed necessary:

If a ∃-∅-formula ϕ defines Fpn [[t]] in Fpn ((t)) for all n in a set M , then there is
some m ∈ N such that m � |n for all n ∈ M : Otherwise, ⋃n∈M Fpn would equal the
algebraic closure of Fp, so since every finite extension of Fpn ((t)) is isomorphic to
Fpn′ ((t)) for some n|n′, wewould get a definition of a nontrivial valuation ring in the
algebraic closure of Fp((t)), which is impossible. For details the reader may consult
[5, Theorem 4], where it is shown that no ∃-∅-formula can define the valuation ring
uniformly for all finite extensions of a fixed henselian valued field K .

We now turn to uniformity in p. Let P denote the set of all odd prime numbers.
For a subset P ⊆ P, we denote by �(P) the Dirichlet-density of P, if it exists. For
a formula ϕ let

P(ϕ) = {p ∈ P : ϕ(Qp) = Zp}
and let P′(ϕ) be the set of p ∈ P such that ϕ(K) = O for all henselian valued fields
K with valuation ringO and residue fieldF = Fp.We have thatP′(ϕ) ⊆ P(ϕ), and it
is known that P(ϕ) has a Dirichlet-density for every formula ϕ, cf. [3, Theorem 16],
[8, Theorem 20.9.3]. It is also known that P(ϕ) differs from {p ∈ P : ϕ(Fp((t))) =
Fp[[t]]} only by a finite set, see [4, p. 606], so for all results concerning Dirichlet
density we could as well use Fp((t)) instead of Qp.

Theorem 4.3. For every � > 0 there exists an ∃-∅-formula ϕ such that �(P′(ϕ)) >
1− �.
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Proof. For n ∈ N let fn = X 2 − n ∈ Z[X ] and

Pn =
{
p ∈ P :

(
n

p

)
= −1

}
=

{
p ∈ P : Fp �|= (∃y)(y2 = n)

}
.

Note that if K is henselian valued with residue field F = Fp, p > 2, then p ∈ Pn
if and only if K �|= (∃y)(y2 = n). If p ∈ Pn with p > c(2), then p ∈ P′(�fn )
by Proposition 3.3. By the quadratic reciprocity law and Dirichlet’s theorem, there
exists N ∈ N such that for P =

⋃N
n=2 Pn we have �(P) > 1− �. Let

ϕn(x) ≡ (∃y)(y2 = n) ∨ �fn (x)
andϕ(x) ≡ ∧N

n=2 ϕn(x). Let p ∈ Pwhich lies in the open interval I := (c(2),∞). If
p ∈ Pn, then ϕn(K) = O, otherwise ϕn(K) = K . Thus, ϕ(K) =

⋂N
n=2 ϕn(K) = O

if p ∈ P, and ϕ(K) = K otherwise. So, if p ∈ P, then p ∈ P′(ϕ) ⊆ P(ϕ), and
if p /∈ P, then p /∈ P(ϕ). Thus, P′(ϕ) ∩ I = P(ϕ) ∩ I = P ∩ I , and therefore
�(P′(ϕ)) = �(P(ϕ)) = �(P) > 1− �. �
On the other hand, it is well known that there is no such formula that works
uniformly for almost all p:

Proposition 4.4. Let P ⊆ P be a cofinite set of prime numbers. Then there exists
no ∃-∅-formula ϕ such that P ⊆ P(ϕ).

A proof of this can be found in [5, Theorem 5]. In fact, the proof given there
shows the following stronger statement:

Proposition 4.5. Let P be a set of prime numbers with �(P) = 1. Then there
exists no ∃-∅-formula ϕ such that P ⊆ P(ϕ).

This also explains that Theorem 4.3 cannot be strengthened to give a uniform
∃-∅-definition for every set P with �(P) < 1:
Proposition 4.6. There exists a set P of prime numbers with �(P) = 0 for which
there exists no ∃-∅-formula ϕ such that P ⊆ P(ϕ).

Proof. List all ∃-∅-formulas as ϕ1, ϕ2, . . . and let N = {�1, �2, . . . } ⊆ P be any
infinite set with �(N) = 0. Proposition 4.4 implies that for each i , P(ϕi) is not
cofinite in P. Therefore, we can choose some pi ∈ P with pi > �i and pi /∈ P(ϕi).
Then P = {p1, p2, . . . } has �(P) ≤ �(N) = 0, but P �⊆ P(ϕi) for each i . �
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