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SUMMARY
A characterization of singularities for a six-wire parallel
architecture is presented as a result of numerical and ex-
perimental analyses. Numerical analysis has been developed
through geometrical and analytical considerations. The study
is based on a classification that has been derived on the basis
of the geometry of tetrahedra, and singular configurations
have been classified as a function of the tetrahedron volume.
Experimental characterization has been carried out by con-
sidering the wire parallel architecture Cassino tracking
system (CATRASYS). Experimental results are reported
to characterize the performance of the CATRASYS chain
in different operating conditions as an illustrative practical
example.
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1. Introduction
Measuring systems determining the position and orientation
of a moving object can be cameras, theodolites, laser
tracking systems, and wire-based tracking systems. Most of
these have a trilateration- or triangulation-based process of
measurement.

In this paper, we address the wire-based tracking systems,
which appear to be interesting since they show a good
combination of accuracy, resolution, cost, measurement
range, portability, and calibration procedure. Wire-based
tracking systems consist of a fixed base and a moving
platform connected by at least six wires whose tension is
maintained by pulleys and spiral springs on the base. They
can be modeled as six-degrees-of-freedom (DOF) parallel
manipulators because wires can be considered as extensible
legs connecting the platform and the base by means of
spherical and universal joints, respectively.

The problem of pose identification of a rigid body in
space has drawn great attention as can be seen in theoretical
approaches and numerical algorithms.1–3,4

At the Laboratory of Robotics and Mechatronics (LARM),
University of Cassiono, we have approached the problem
looking at practical application with robust easy-operation
device. Thus, the Cassino tracking system (CATRASYS)
came into existence in 1994,5 which uses an algebraic
formulation via trilateration in order to identify the pose of a
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rigid body during its motion through an online computation
of the position kinematics of the designed 3-2-1 wire parallel
architecture. The wire-tracking systems have also been
studied elsewhere.6

Here, a wire-based parallel architecture measuring system
is considered to determine the position and orientation of
moving objects. The architecture is modeled as a Gough–
Stewart platform.7

In particular, the proposed parallel architecture measuring
system can be modeled as a special type of Gough–Stewart
platform having three attachment points at the moving
platform and six attachment points at the base. For the
above-mentioned model, only two wire clusters are possible,
namely, the 2-2-2 and the 3-2-1 configurations. The parallel
architecture measuring system with the 3-2-1 configuration
has been chosen for the measuring system, since for
this special type 3-2-1 Gough–Stewart platform, the direct
kinematics can be solved in close form using trilateration.8

An important feature in the use of a measuring system is
its accuracy, which can be related to the presence of singular
configurations. In fact, the accuracy of measurements is
pose-dependent and is strongly influenced by the closeness
to singular configurations. Therefore, the identification and
characterization of singularities of wire-parallel measuring
systems is of great interest.8

Here, we propose a method that is based on characteristic
tetrahedra, which describes the occurrence of singularity in
parallel architectures qualitatively and qualitatively. In this
paper, the characterization of singularities of the proposed
wire parallel architecture for a measuring system is addressed
and experimental results are reported not only to show the
engineering significance of the proposed analysis, but also
to obtain an experimental characterization of manipulator
operation into singularity.

2. A six-wire parallel architecture
CATRASYS is a measuring system that has been conceived
and designed at the LARM, to determine the pose
(position and orientation) of a moving object during large
displacements by using trilateration. Details of CATRASYS
and its evolution are reported elsewhere.9–11

The CATRASYS system is composed of a mechanical
part, an electronics/informatics interface unit, and a software
package. The mechanical part consist of a fixed base, which
has been named as the trilateral sensing platform, and a
moving platform, which has been named as the end-effector
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316 Six-wire parallel architecture

Fig. 1. A scheme of six-wire parallel architecture measuring system
CATRASYS.

for CATRASYS. The two platforms are connected by six
wires, whose tension is maintained by pulleys and spiral
springs that are fixed on the base. The peculiarity of the
mechanical structure is that it can be modeled as a six-DOFs
parallel manipulator because the wires can be considered
as extensible legs connecting the platform and the base
by means of spherical and universal joints, respectively.
The end-effector for CATRASYS is the moving platform
operating as a coupling device: It connects the wires of the
six transducers to the extremity of a movable system. It allows
the wires to track the system while it moves. Signals from
wire transducers are fed though an amplified connector to
the electronic interface unit, which consists of a PC for data
analysis. In particular, referring to Fig. 1, H is the reference
point of the moving platform and a general scheme is shown
as 3-2-1 parallel manipulator, whose platform is determined
by points H, F, and Q. Points F and Q have been used to
determine the orientation of the moving platform. The base
reference frame is O-XYZ. The prototype of the measuring
system is shown in Figs. 2 and 3.

Fig. 2. The CATRASYS measuring system at LARM in Cassino:
Lay-out for experimental tests with a PUMA robot.

Fig. 3. The end-effector for CATRASYS.

The trilateral sensing platform (Fig. 2) has been designed
such that it remains portable and easy to locate. Furthermore,
it allows changing the position of the transducers on it and the
usage of other measurement instruments. The end-effector
for CATRASYS allows a suitable connection to the wires
to measure position and orientation of the movable system.
The single module for the end-effector for CATRASYS has
a fully rotating shaft, which permits an easy connection to
the wires and avoids wrapping of the wires. The prototype,
shown in Fig. 3, is composed of three identical modules for
the end-effector for CATRASYS in order to give an easy
connection to all the six wires. The wire transducers in the
built prototype are of a potentiometric type. They have a
working range of 2500 mm and have a continuous resolution.
A torsional spring, a pulley for the wire, and a potentiometer
are fixed on a common shaft. The output transducer signal
is proportional to the length of the wire and is expressed in
volt. Tension in the wire is maintained through the torsional
spring.

CATRASYS has been used successfully for the
determination of the workspace and kinematic parameters
of complex mechanical systems, as reported in refs. 11
and 12, and in the experimental analysis of the kinematic
parameters of human arm. Kinematics of the measuring
system CATRASYS has been solved in closed-form due
to the special arrangement of the system by using the
trilateration technique as reported in ref. 3.

3. Singularity determination
A singularity of the parallel architecture measuring system
can be defined as the configuration at which the measure
cannot be determined or it is not reliable.

In general, the analysis of singularities of parallel arch-
itectures is an important issue since they set the limits of
the kinematic motion and static load equilibrium. Several
authors have extensively studied singularities of parallel
architectures. For example, Merlet has used Plucker line
coordinates, Grassmann line geometry, and the screw
theory.13 Line geometry, wrench singularity analyses for
parallel architectures have been presented in refs. 14–16.
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Fig. 4. Nonsingular characteristic tetrahedra for the parallel architecture CATRASYS: (a) T1; (b) T2; and (c) T3.

Based on their nature, singularities of a measuring
system can be classified into three categories: configuration,
architecture, and formulation singularities. The above-
mentioned classification has been proposed in ref. 17, for
parallel manipulators.

The first type of singularity is an inherent property of the
device, which occurs at some points within its workspace.
Architecture singularities are due to the architecture and can
prevail over the entire workspace. Formulation singularities
are caused due to the adopted analysis formulation and can
be avoided easily by changing the formulation method.

In order to analyze the singularities of the six-wire
parallel architecture, the characteristic tetrahedron has been
introduced here. The parallel architecture measuring system
can be thought as being composed of three nonsingular
characteristic tetrahedra, as shown in Fig. 4. By observing
the singularity of the three tetrahedra, one can deduce the
singularity of the parallel architecture measuring system, as
outlined in refs. 18 and 19 in a preliminary manner. For the
following analysis of each tetrahedron, the base is identified
by three points, whose positions are known or determined,
as shown in Fig. 4; the position of the apex is unknown.

Indeed, by considering Fig. 4, tetrahedron T1 is defined
by its base formed by connecting a1, a2, and a3, with three

edges d1, d2, and d3, and its apex which is H. Tetrahedron T2

is identified by its base formed by H, a4, and a5, with three
edges d4, d5, and HF, and its apex which is F. Tetrahedron
T3 is identified by its base formed by H, F, and a6, with
three edges d6, HF, and FQ, and its apex which is Q. All the
three nonsingular characteristic tetrahedra for the parallel
architecture measuring system are shown in Fig. 4.

A tetrahedron is nonsingular if and only if it does not
collapse to give zero volume. By considering the definition,
singular tetrahedra have a great variety of forms. We do
not consider tetrahedra with infinite elements, since they do
not have a physical meaning. For a singular tetrahedron, the
position of the apex cannot be univocally determined when
the base points lie on a line. Therefore, the possibilities for
zero-volume tetrahedron are only the following: The apex
collapse into the base plane of the tetrahedron, or the base
points are aligned, as shown in Fig. 5.

When the tetrahedron is singular, its volume is zero,
i.e., the tetrahedron degenerates in a triangle in a plane.
In addition, for a singular tetrahedron the position of the
apex cannot be univocally determined when the base points
lie on a line. In this case, the apex can be on a circle in
the space, and therefore, its position cannot be univocally
determined. Indeed, one of the basic requirements to obtain a

Fig. 5. Characteristic tetrahedra: (a) nonsingular tetrahedron; (b) singularity of zero high; and (c) singularity of zero area.
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measure is that the parallel architecture does not meet special
configurations, which will be explored experimentally in the
next section.

Applying the above-mentioned considerations to the
CATRASYS measuring system, a singularity of one or more
tetrahedra arises for particular arrangement of anchor points
of the parallel architecture. Indeed, a study for the positioning
of the wire transducers on the trilateral sensing platform
(points ai, for i = 1, . . . , 6), can be also carried out in order
to avoid possible singularities of the three tetrahedra. In
particular, by considering the Cayley–Menger determinant,20

which has been introduced and used to study basic geometry,
one can also derive the analytical conditions to determine
singularities of the characteristic tetrahedra.18,19 In fact, the
Cayley–Menger determinant is equal to zero if the three
points of the base and the apex of a tetrahedron lie on a
plane. This case occurs if the height is zero, or if the three
points of the base are aligned, i.e., the base area is equal to
zero. Analysis that is based on the geometry of the tetrahedra
have been also presented21 for a class of parallel manipulators
with three legs.

A general nonsingular tetrahedron, which is depicted in
Fig. 5(a), and singularities of zero high and zero area types
are shown in Fig. 5(b) and (c), respectively.

Indeed, the singular configurations for the parallel
architecture CATRASYS can be determined by observing
the three tetrahedra T1, T2, and T3 defined by points (a1, a2,
a3, H); (a4, a5, H, F); and (a6, H, F, Q), respectively, as shown
in Fig. 4.

Singular configurations can occur and their classification
type can be determined as in the following.

1. Singularity of tetrahedron T1.
(a) a1, a2, a3 are aligned: This can be considered as an

architecture singularity.
(b) a1, a2, a3, and b1 lie on a plane: This is a configuration

singularity.
2. Singularity of tetrahedron T2.

(a) a4, a5, F are aligned: This is configuration singularity.
(b) a4, a5, H, F lie on a plane: This is configuration

singularity.
3. Singularity of tetrahedron T3.

(a) a6, H, F are aligned: This is configuration singularity.
(b) a6, H, F, and Q lie on a plane: This is configuration

singularity.
4. Combined singularities.

Special cases can arise if T1, T2, and T3 or a combination of
any two of them are contemporaneously singular.

Singular configurations of the parallel architecture
CATRASYS can be determined by using the above-
mentioned analysis for tetrahedra, as shown in Figs. 6–
16. These are all the possible singular configurations for
CATRASYS. By looking at the geometry of the tetrahedra,
basic conditions can be determined for proper design and
operation of CATRASYS. Thus, condition 1(a) can be
avoided by considering an arrangement of the transducers on
the trilateral sensing platform to avoid the alignment of points
a1, a2, and a3. The above-mentioned singular configuration
is shown in Fig. 6.

Fig. 6. Singular configuration of tetrahedron T1 with zero area.

Fig. 7. Singular configuration of tetrahedron T2 with zero height.

Fig. 8. Singular configuration of tetrahedron T3 with zero area.

Conditions 1(b), 2(a), and 2(b) can be avoided by choosing
the working area of the system outside the trilateral sensing
platform. This means that points H, F, and Q should never
reach the plane of the trilateral sensing platform.

Conditions 3(a) and 3(b) and combined singularities can
occur in the working area of CATRASYS, and they should
be avoided by properly choosing the working area of the
measuring system. In particular, Fig. 7 shows the singularity
2(b) of T2, in which the tetrahedron has zero height. Figure 8
shows the singularity of T3, which has been classified as 3(a).
Most of the configuration singularities can be avoided only
by redesigning the manipulative task.

Figures 9–12 show the possible configurations for the
singularities of tetrahedron T3, when it has zero height.

Figures 13–16 show four possible configurations, which
are given as combined singularities of the three tetrahedra.
Of course, all the three give singular configurations of
CATRASYS.

It is worth noting that the above-mentioned analysis, which
is based on descriptive geometry is an alternative method to
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Fig. 9. Singular configuration of tetrahedron T3 with zero height.

Fig. 10. Singular configuration of tetrahedron T3 with zero height.

Fig. 11. Singular configuration of tetrahedron T3 with zero height.

Fig. 12. Singular configuration of tetrahedron T3 with zero height.

Fig. 13. Combined singular configuration of tetrahedra T1 and T2.

the Grassmann line geometry and the screw theory in order
to obtain singular configurations for a class of both parallel
and serial manipulators named as trilaterable manipulators,
as pointed out in ref. 19. Indeed, the above-mentioned

Fig. 14. Combined singular configuration of tetrahedra T2 and T3.

Fig. 15. Combined singular configuration of tetrahedra T2 and T3.

Fig. 16. Combined singular configuration of tetrahedra T2 and T3.

analysis can be considered general for six-legged trilaterable
manipulators, with or without wires, although it has been
applied specifically to CATRASYS architecture.

In addition, the use of characteristic tetrahedra allows one
to determine their volume and obtain analytical conditions for
the singularity analysis by considering the Cayley–Menger
determinant. This characterization has been attempted
elsewhere.18,19

The forward kinematics for 3-2-1 parallel chains can
be solved in closed form either using the formulation
for trilateration,9–11 or by using the Cayley–Menger
determinants.19 Thus, given three points in space whose
positions are given by vectors a1, a2, and a3, the trilateration
problem consists in finding the location of another point H,
whose distance to these three points is known (Fig. 1).
According to the results presented in ref. 19, H can be
expressed as

H = a1 + k1v1 + k2v2 ± k3(v1 × v2) (1)

where v1 = (a2 − a1); v2 = a3 − a1; the ± sign takes into
account the two mirror symmetric solutions with respect to
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the plane defined by points a1, a2, and a3 in Fig. 1 and

k1 = −D (a1, a2, a3; a1, a3, H)

D (a1, a2, a3)
;

k2 = D (a1, a2, a3; a1, a2, H)

D (a1, a2, a3)
; (2)

k3 =
√

D (a1, a2, a3, H)

D (a1, a2, a3)

in which D(p1, . . . , pn; q1, . . . , qn) denotes the Cayley–
Menger determinant of the two sequences of n points
p1, . . . , pn and q1, . . . , qn.20 It can be expressed as

D (p1, . . . , pn; q1, . . . , qn) = 2

(−1

2

)n

×

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1

1 D (p1, q1) D (p1, q2) · · · D (p1, qn)

1 D (p2, q1) D (p2, q2) · · · D (p2, qn)
...

...
...

. . . · · ·
1 D (pn, q1) D (pn, q2) · · · D (pn, qn)

∣∣∣∣∣∣∣∣∣∣∣∣
. (3)

Advantages of the above-mentioned formulation can be
that it is coordinate-free and all the involved determinants
have geometric meaning, as outlined in refs. 19 and 20.

By applying the above-mentioned formulation for three
consecutive trilateration operations, the forward kinematics
of the 3-2-1 parallel structure can be solved. Indeed,
according to Fig. 1, giving the wire lengths d1, d2, and
d3, there are two possible mirror locations for point H with
respect to the plane defined by points a1, a2, and a3. Once
one of these two solutions is chosen, a4, a5, and H define the
second tetrahedron with known edge lengths. Again, there
are two possible mirror locations for F, in this case with
respect to the plane defined by a4, a5, and H, as shown in
Fig. 4(b). Finally, after choosing one of the two solutions,
a6, H, and F define another tetrahedron with known edge
lengths. In this case, there are two possible mirror locations
for Q with respect to the plane defined by a6, H, and
F [Fig. 4(c)].

Once the points H, F, and Q have been located, they can
be used to define a reference frame on the moving object,
which is useful to determine the orientation of the moving
rigid body that is attached to the CATRASYS end-effector
with respect to the base frame of CATRASYS.

To summarize, the CATRASYS singular configurations
can be detected by analyzing the three determinants for the
characteristic tetrahedra as

D (a1, a2, a3, H); D (a4, a5, H, F); D (a6, H, F, Q). (4)

Determinants in Eq. (4) are proportional to the volumes of
the tetrahedra T1, T2, and T3. Indeed, it is possible to track the
pose of a moving object that is attached to the mobile frame
HFQ by using Eqs. (1)–(3) and detect the presence and/or
closeness to singularity by using Eq. (4). Furthermore, a

sensitivity index has been proposed19 to give a measure on
the pose error as a function of the wire length errors. The
above-mentioned sensitivity index has also been defined as
a function of the tetrahedra volumes that are computed by
Eq. (4).

The results that are obtained by using Eq. (4) are in
accordance with the characterization of singularities given
in ref. 22.

4. An experimental characterization of singularities
Experimental activity for investigating singularities in
Figs. 6–16 has been carried out with CATRASYS at the
LARM by using a PUMA 562 robot. The layout with the
PUMArobot is shown in Figs. 2 and 3. The wire transducers
in the built prototype have a working range of 2500 mm.
The output transducer signal is proportional to the length
of the wire and is expressed in volt. The tension of the
wire (0.08 N) is maintained through the torsional spring
in the transducers. The used PC IBM 486 with 32 MB of
RAM is equipped with an acquisition card AT-MIO16F5 and
has been used for programming and monitoring the system
performance. The resolution of the acquisition card is 28

bit. The scan rate for the following experiments has been
set equal to 1500 scan/s. The calibration of the wire system
is obtained with another suitable measuring system. The
above-mentioned singularity classification has been useful
to determine singular configurations of CATRASYS system.
It is worth noting that only singular configurations with
zero area can be considered as singularities of CATRASYS
operation, i.e., they are configurations in which the measure
cannot be determined. For the experimental tests, the PUMA
robot has been used to repeat the experiments with suitable
trajectories. In Fig. 17, the experimental results have been
reported during a regular operation for a robot movement,
which involves configurations of the measuring system far
from singularities.

The robot movement consists of a translation and a rotation
of the end-effector.

Singular configurations of CATRASYS that are expressed
by conditions 2(b), 3(a), 3(b), and the combined singularity
have been experimentally detected using the PUMA robot,
and the results are shown in Figs. 18–21. In particular,
Fig. 18 shows a singular configuration when the tetrahedron
T2 is with zero high, which is shown in the scheme of Fig. 7.

Figures 18 and 19 show the layout and experimental results
that have been obtained by using the CATRASYS system
during a robot movement, in which the end-effector passes
trough a zero-high singularity for the tetrahedron T2. By
analyzing Fig. 19, it should be noted that the coordinates
of point F have been determined but their value cannot be
considered correct. Close to the singular configuration, an
amplification of the noise for the x- and y-coordinates of F
give problems on the determination of point Q in the recursive
trilateration operation, as shown in Fig. 19. The singular
configuration can be clearly determined at t = 87 s in the
plots for Q coordinates. Thus, the singularity occurrence can
be detected both by an increase of noise in coordinate values
and an irregular tracking of the measured values, as shown
in the experimental tests of Fig. 19. A measure of singularity
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Fig. 17. A measure of the CATRASYS system during a robot movement, which involves configurations far from singularities: (a) plots of
the measures for di (i = 1, . . . , 6); (b) computed coordinates of points H, F, and Q (time unit for the x-axis of the plots is second; distance
unit for the y-axis of the plots is millimeter).

https://doi.org/10.1017/S0263574706003110 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574706003110


322 Six-wire parallel architecture

Fig. 18. Experimental layout of CATRASYS at zero high singular configuration of tetrahedron T2 in Fig. 7.

Fig. 19. Experimental determination of the zero high singular configuration of tetrahedron T2 in Fig. 7, through the computation of
coordinates of points F and Q in Fig. 18 (time unit for the x-axis of the plots is second; distance unit for the y-axis of the plots is millimeter).

Fig. 20. Experimental layout of CATRASYS at the zero height singular configuration of the tetrahedron T3 in Fig. 10: (a) overall view and
(b) a detailed view of the end-effector.
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Fig. 21. Experimental determination of the zero high singular configuration of tetrahedron T3 in Fig. 10, through the computation of
coordinates of point Q in Fig. 20 (time unit for the x-axis of the plots is second; distance unit for the y-axis of the plots is millimeter).

detection can be seen in the plots of Fig. 19, where the noise
oscillation has a value that is comparable with the measure
of the wire length itself. Even the magnitude of the jump in
the measure is considerable and it can be easily detected and
understood as an indication of singularity presence.

Experimental results of Figs. 20 and 21 refer to a robot
movement of the end-effector crossing a singularity that is
zero high, as shown in the scheme of Fig. 10. It is worth
noting that the measuring systems still work properly, but
the determination of coordinates of point Q is not accurate,
since it is affected by considerable noise, as shown in
Fig. 21.

Figures 22 and 23 show the experimental results that
have been obtained by considering a robot movement of the
end-effector involving the singularity of Fig. 8 concerning
tetrahedron T3 with zero area. In this configuration, the
measure cannot be determined and what experimentally
happens to the measuring system is that the measured
coordinates of point Q are not physically correct. In
particular, it is worth noting that even if a smooth trajectory
is imposed and no noise is detected, the related measure
presents a jump that is not the real measure but due to the
numerical instability of the trilateration calculation for the
system close to the above-mentioned singular configuration.

Fig. 22. Experimental layout of CATRASYS at zero area singular configuration of tetrahedron T3 in Fig. 8.

Fig. 23. Experimental determination of CATRASYS at the zero area singular configuration of the tetrahedron T3 in Fig. 8, through the
computation of coordinates of point Q in Fig. 22 (time unit for the x-axis of the plots is second; distance unit for the y-axis of the plots is
millimeter).
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The singular configuration can be clearly determined at
t = 92 s in the plots of Q coordinates.

The wrong computation can be easily detected by an
increase of the numerical noise of computation in the
neighborhood of the singularity, and finally by an irregular
tracking of the computed values with a jump at the singularity
configuration. To summarize, a singularity configuration for
CATRASYS can be identified and characterized by the
numerical noise and the computed coordinates, and the
presence of sudden jumps in the tracked values. This paper is
mainly focused on practical aspect for experimental analysis,
characterization, and identification of singularities in wire-
based tracking systems. Previous works17,18 were mainly
focused on the formulation for singularity detection and the
definition of indices based on numerical simulation.

5. Conclusion
In this paper, a characterization of singularities of a
wire-based parallel architecture has been performed by
considering the geometry of three characteristic tetrahedra.
In particular, the analysis is based on the singularities of these
tetrahedra. The obtained results can be used in future work
by considering the Cayley–Menger determinant in order
to have an analytical description based on the tetrahedral
volumes, which gives a tool for the practical use of the
measuring system. The main and novel goal of the paper is an
experimental characterization of singularities for detecting
their existence in a straightforward simple experiment.
A quantitative measure of singularity detection can be
considered through the noise oscillation of the measure
itself. Experimental results have been reported to show the
engineering significance of the proposed formulation and
analysis.
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