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Abstract. We construct conjugacies between linear and nonlinear non-uniform exponential
contractions with discrete time. We also consider the general case of a non-autonomous
dynamics defined by a sequence of maps. The results are obtained by considering both
linear and nonlinear perturbations of the dynamics xm+1 = Am xm defined by a sequence
of linear operators Am . In the case of conjugacies between linear contractions we describe
them explicitly. All the conjugacies are locally Hölder, and in fact are locally Lipschitz
outside the origin. We also construct conjugacies between linear and nonlinear non-
uniform exponential dichotomies, building on the arguments for contractions. All the
results are obtained in Banach spaces.

1. Introduction
In the stability theory of dynamical systems one wants to understand what properties of a
given dynamics persist under sufficiently small perturbations. This leads to the introduction
of the notion of conjugacy that provides a faithful correspondence between the orbits of
two given dynamics. Namely, given homeomorphisms f, g : X → X of the topological
space X , we say that a homeomorphism h : X → X is a topological conjugacy if

h ◦ f = g ◦ h.

This implies that
h ◦ f m

= gm
◦ h for every m ∈ Z,

and thus the conjugacy h transforms the orbit { f m(x) : m ∈ Z} of f into the orbit
{gm(h(x)) : m ∈ Z} of g. Roughly speaking, this provides a dictionary between the two
dynamics.

Our main objective is to construct conjugacies, as explicitly as possible, between
linear and nonlinear dynamics. Here we concentrate on the case of contractions with
discrete time, and we consider arbitrary non-uniform exponential contractions, for which
the Lyapunov stability is not necessarily uniform. We also consider the general case of
a non-autonomous dynamics defined by a sequence of maps. This means that, given
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sequences of homeomorphisms fm, gm : X → X , m ∈ Z (that define two non-autonomous
dynamics), we look for homeomorphisms hm : X → X such that

hm+1 ◦ fm = gm ◦ hm, m ∈ Z. (1)

It should be noted that there is an obvious solution of (1). Namely, we can take h0 = Id,
and for each m > 0 set

hm = gm−1 ◦ · · · ◦ g0 ◦ f −1
0 ◦ · · · ◦ f −1

m−1 (2)

and
h−m = g−1

−m ◦ · · · ◦ g−1
−1 ◦ f−1 ◦ · · · ◦ f−m . (3)

However, this solution does not satisfy the following property.
(A) Given homeomorphisms f, g : X → X with fm = f and gm = g for m ∈ Z, there

exists h : X → X such that hm = h for every m ∈ Z.
The conjugacies that we construct in this paper have this additional property. Furthermore,
they are locally Hölder, and even locally Lipschitz outside the origin, provided that the
maps fm and gm are sufficiently regular (again this is obvious for the construction in (2)
and (3)).

A related fundamental problem is whether the linearization g = dx f of a
diffeomorphism f along the orbit of a fixed point x is conjugated to the original dynamics.
For hyperbolic trajectories the solution of this problem is given by the Grobman–Hartman
theorem. Strictly speaking, this only provides conjugacies between dynamics with the same
linear part, although some approaches to the proof of the Grobman–Hartman theorem
lead to conjugacies between maps with different linear parts. In the case of conjugacies
between linear contractions we describe the conjugacies explicitly (see §5). To the best of
our knowledge, explicit conjugacies satisfying Property A are given here for the first time
even in the particular case of non-autonomous uniform exponential contractions.

We also consider the general hyperbolic situation in which there are simultaneously
contraction and expansion. This case is treated by first obtaining separately conjugacies
between contractions and between expansions, and then putting the two together.

The content of the paper is the following. In §2 we consider the problem of
robustness of a non-uniform exponential contraction, which asks whether any of its linear
perturbations that is sufficiently small is still a non-uniform exponential contraction.
Section 3 presents our results on the existence of Hölder conjugacies between linear and
nonlinear contractions. In §4 we obtain corresponding results for non-uniform exponential
dichotomies. Section 5 contains the proof of Theorem 2, which establishes the existence
of locally Hölder conjugacies between linear contractions.

2. Robustness of non-uniform contractions
Let B(X) be the space of bounded linear operators in the Banach space X . Consider a
sequence of invertible operators Am ∈ B(X) for m ∈ Z, and set

A(m, n) =


Am−1 · · · An, m > n,

Id, m = n,

A−1
m · · · A−1

n−1, m < n.
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We say that the sequence (Am)m∈Z admits a strong non-uniform exponential contraction
if there exist constants b ≥ a > 0, D > 0, and ε ≥ 0 such that for each m ≥ n we have

‖A(m, n)‖ ≤ De−a(m−n)+ε|n|, ‖A(n, m)‖ ≤ Deb(m−n)+ε|m|. (4)

The following is our robustness result.

THEOREM 1. Let Am, Bm ∈ B(X), m ∈ Z be invertible operators such that:
(1) (Am)m∈Z admits a strong non-uniform exponential contraction; and
(2) ‖Bm‖ ≤ δe−ε|m+1| and Am + Bm is invertible for every m ∈ Z.
If δD < min{1 − e−a, e−b

}, then (Am + Bm)m∈Z admits a strong non-uniform exponential
contraction, with the constants a and b replaced respectively by a − log(1 + δDea) and
b − log(1 − δDeb) (and with D and ε unchanged).

Proof. One can easily verify that, for each m ≥ n,

C(m, n) = A(m, n) +

m−1∑
l=n

A(m, l + 1)BlC(l, n), (5)

where

C(m, n) =


(Am−1 + Bm−1) · · · (An + Bn), m > n,

Id, m = n,

(Am + Bm)−1
· · · (An−1 + Bn−1)

−1, m < n.

Setting xm = ‖C(m, n)‖, it follows from (5) that

xm ≤ ‖A(m, n)‖ +

m−1∑
l=n

‖A(m, l + 1)‖ · ‖Bl‖xl ,

and hence

xm ≤ De−a(m−n)+ε|n|
+ δD

m−1∑
l=n

e−a(m−l−1)xl .

Consider the sequence 8m defined recursively by

8m = De−a(m−n)+ε|n|
+ δD

m−1∑
l=n

e−a(m−l−1)8l . (6)

Clearly, xm ≤ 8m . Setting 0m = ea(m−n)8m , we can rewrite (6) in the form

0m = Deε|n|
+ δDea

m−1∑
l=n

0l .

Clearly, 0m+1 − 0m = δDea0m , i.e.

0m+1 = (1 + δDea)0m .

Furthermore, again by (6), 0n = 8n = Deε|n| and, for each m ≥ n,

0m = (1 + δDea)m−n0n

= Deε|n|(1 + δDea)m−n

= Delog(1+δDea)(m−n)+ε|n|.
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Hence,
‖C(m, n)‖ = xm ≤ 8m = De−(a−log(1+δDea))(m−n)+ε|n|.

Similarly, for each m ≥ n we have

C(n, m) = A(n, m) −

m−1∑
l=n

A(n, l + 1)BlC(l, m).

Setting yn = ‖C(n, m)‖ we obtain

yn ≤ Deb(m−n)+ε|m|
+ Dδ

m−1∑
l=n

eb(l+1−n)+ε|l+1|e−ε|l+1|yl . (7)

Set now 0l = yle−b(m−l)−ε|m|. It follows from (7) that

0n ≤ D + Dδeb
m−1∑
l=n

eb(l−n)−b(m−n)−ε|m|yl = D + Dδeb
m−1∑
l=n

0l . (8)

We proceed by backwards induction on n to show that

0n = yne−b(m−n)−ε|m|
≤

D

(1 − Dδeb)m−n . (9)

For n = m − 1 this follows readily from (8). We now assume that (9) holds for n > m − k.
Setting c = Dδeb, it follows from (8) that, for n = m − k,

0n ≤ D + c
m−1∑
l=n

0l ≤ D + c
m−1∑

l=n+1

D

(1 − c)m−l + c0n .

This yields

(1 − c)0n ≤ D + c
m−1∑

l=n+1

D

(1 − c)m−l

= D +
(1 − c)−(m−n−1)

− 1

(1 − c)−1 − 1
·

Dc

1 − c

= D +
D

(1 − c)m−n−1 − D,

and hence (9) holds for n = m − k. It now follows from (9) that

‖C(n, m)‖ = yn ≤ De(b−log(1−Dδeb))(m−n)+ε|m|.

This completes the proof of the theorem. 2

3. Conjugacies between linear and nonlinear contractions
This section is dedicated to the construction of conjugacies between two given dynamics,
either linear or nonlinear. We emphasize that we always obtain Hölder continuous
conjugacies.
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Conjugacies between non-uniform contractions 5

3.1. Main results. We consider here two sequences (Am)m∈Z and ( Âm)m∈Z of
linear operators admitting strong non-uniform exponential contractions. Without loss of
generality we always take for the two contractions the same constants a, b, D and ε in (4).
We continue to denote by B(X) the space of bounded linear operators in the Banach
space X . We say that Property P holds for the pair (Am, Âm) if there is a Lipschitz
curve γm : [0, 1] → B(X) in the set of invertible operators with bounded inverse, such
that γm(0) = Âm and γm(1) = Am .

The following is our main result on conjugacies between linear systems.

THEOREM 2. Let (Am)m∈Z and ( Âm)m∈Z be sequences of invertible linear operators
admitting strong non-uniform exponential contractions, such that Property P holds for the
pair (Am, Âm) for every m ∈ Z. If a > 2ε, then there exist homeomorphisms hm : X → X,
m ∈ Z, satisfying

hm+1 ◦ Am = Âm ◦ hm, m ∈ Z, (10)

and Property A. The maps hm are locally Hölder with Hölder exponent

α =
a − 2ε

b + 2ε
, (11)

and are locally Lipschitz outside zero. The same happens with the maps h−1
m .

The proof of Theorem 2 is given in §5.
We now consider the particular case of non-uniform exponential contractions in the

finite-dimensional space X = Rk . We denote by sgn(σ ) the sign of the number σ .

THEOREM 3. Let (Am)m∈Z and ( Âm)m∈Z be k × k matrices admitting strong non-uniform
exponential contractions, such that sgn(det Am) = sgn(det Âm) for all m ∈ Z. If a > 2ε,
then there exist homeomorphisms hm : X → X, m ∈ Z, with the properties in Theorem 2.

Proof. It is sufficient to verify that, for each m ∈ Z, Property P holds for the pair (Am, Âm)

if and only if sgn(det Am) = sgn(det Âm). But this is an immediate consequence of the fact
that the set of k × k invertible matrices has two connected components, namely those with
positive determinant and those with negative determinant. 2

It follows from Theorem 1 that for sufficiently small perturbations of a strong
non-uniform exponential contraction, when looking for a conjugacy as in (10) we can
in fact assume that only one of the sequences (Am)m∈Z and ( Âm)m∈Z admits a strong
non-uniform exponential contraction (in both Theorems 2 and 3), since the other one will
then automatically admit such a contraction.

THEOREM 4. Let Am, Âm ∈ B(X), m ∈ Z, be invertible operators such that:
(1) (Am)m∈Z admits a strong non-uniform exponential contraction;
(2) Property P holds for the pair (Am, Âm) for every m ∈ Z; and
(3) ‖Am − Âm‖ ≤ δe−ε|m| for every m ∈ Z.
If a > 2ε, and δ is sufficiently small, then there exist homeomorphisms hm : X → X, m ∈ Z,
with the properties in Theorem 2.
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3.2. Linear and nonlinear dynamics. To obtain conjugacies between two arbitrary
systems, either linear or nonlinear, we require a non-uniform version of the classical
Grobman–Hartman theorem. We recall an appropriate version established in [1]. Consider:
(1) invertible operators Am ∈ B(X), m ∈ Z; and
(2) maps fm : X → X , m ∈ Z, such that, for some δ > 0 and each m ∈ Z,

sup{‖ fm(x)‖ : x ∈ X} ≤ δe−ε|m|, (12)

‖ fm(x) − fm(y)‖ ≤ δe−4ε|m|
‖x − y‖, x, y ∈ X, (13)

with the constant ε ≥ 0 as in (4).
We also introduce new norms. Choose % ∈ (0, a) with a as in (4), and for each m ∈ Z set

‖x‖m =

∑
k≥m

‖A(k, m)‖e−(a+%)(k−m).

The following statement is a particular case of more general results established in [1]
(see also Proposition 2).

PROPOSITION 1. If the sequence (Am)m∈Z of invertible linear operators admits a strong
non-uniform exponential contraction and δ is sufficiently small, then:
(1) there exist unique homeomorphisms hm : X → X, m ∈ Z, satisfying

hm+1 ◦ Am = (Am + fm) ◦ hm, m ∈ Z,

and
sup
m∈Z

sup
x∈X

‖hm(x) − x‖m < ∞; (14)

(2) if there exist maps A ∈ B(X) and f : X → X such that

Am = A and fm = f for each m ∈ Z, (15)

then there is a homeomorphism h : X → X with hm = h for m ∈ Z; and
(3) for each α ∈ (0, a/b), there exists K > 0 such that

‖hm(x) − hm(y)‖ ≤ K e2εα|m|
‖x − y‖

α, (16)

‖h−1
m (x) − h−1

m (y)‖ ≤ K e2εα|m|
‖x − y‖

α, (17)

for every m ∈ Z and x, y ∈ X with ‖x − y‖ ≤ e−2ε|m|.

Proof of statement (2). We note that, although statement (2) is not formulated explicitly
in [1], it is a simple consequence of the proofs of Theorems 1 and 3 in that paper.
The argument is the following. Let X be the space of sequences (um)m∈Z of continuous
functions um : X → X such that

‖(um)m∈Z‖ := sup{‖um(x)‖m : x ∈ X, m ∈ Z} < ∞.

One can easily verify that X is a Banach space with this norm. We now observe that

pu := {(um)m∈Z : um = u for every m ∈ Z}

is in X for each continuous function u : X → X . Furthermore, when (15) holds, the
contraction maps S : X → X and T : X → X in the proofs of Theorems 1 and 3 take the set
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Conjugacies between non-uniform contractions 7

D = {pu : u is continuous} into itself. Finally, since D is a closed non-empty subset of the
Banach space X, the unique fixed points of the maps S and T , namely (h−1

m − Id)m∈Z and
(hm − Id)m∈Z, are also in D. This yields statement (2). 2

It is the uniqueness property of the sequence of homeomorphisms (hm)m∈Z among
those satisfying (14) that makes Proposition 1 non-trivial. Otherwise, proceeding as in
the introduction, we could choose h0 = Id, and for each m > 0 set

hm = (Am−1 + fm−1) ◦ · · · ◦ (A0 + f0) ◦ A−1
0 ◦ · · · ◦ A−1

m−1 (18)

and

h−m = (A−m + f−m)−1
◦ · · · ◦ (A−1 + f−1)

−1
◦ A−1 ◦ · · · ◦ A−m (19)

(one can show that for δ sufficiently small the transformations Am + fm are invertible).
Then the maps hm defined by (18) and (19) are automatically Lipschitz (or even more
regular if this happens with the maps fm) and not only locally Hölder as in (16) and
(17). In the particular case when (15) holds, the maps hm in (18) and (19) are given
by hm = (A + f )m

◦ A−m and thus depend on m. On the other hand, in this situation
Proposition 1 provides a homeomorphism h such that hm = h for every m ∈ Z. This is
the crucial difference in Proposition 1 with respect the construction in (18) and (19).

Notice that when ε = 0 and (15) holds we recover the classical Grobman–Hartman
theorem, in fact with the additional Hölder regularity property in (16) and (17). Thus,
Proposition 1 provides new information even when ε = 0 and in the autonomous case
(when (15) holds). The original references for the Grobman–Hartman theorem are
Grobman [2, 3] and Hartman [4, 5]. It was extended to Banach spaces by Palis [6] and Pugh
[7]. We emphasize that in general the conjugacies are not more than Hölder continuous.
In particular, the work of Sternberg [8, 9] showed that there are algebraic obstructions,
expressed in terms of resonances between the eigenvalues of the linear approximation, that
prevent the existence of conjugacies with a prescribed high regularity. See [1] for more
details.

The following statement is an immediate consequence of Theorem 2 and Proposition 1.

THEOREM 5. Let (Am)m∈Z and ( Âm)m∈Z be sequences of invertible linear operators
admitting strong non-uniform exponential contractions, such that Property P holds for the
pair (Am, Âm) for every m ∈ Z. Given maps fm, f̂m : X → X, m ∈ Z, such that (12) and
(13) hold, also with fm replaced by f̂m , if a > 2ε, and δ is sufficiently small, then there
exist locally Hölder homeomorphisms hm : X → X, m ∈ Z, with locally Hölder inverse,
satisfying

hm+1 ◦ (Am + fm) = ( Âm + f̂m) ◦ hm, m ∈ Z, (20)

and Property A.

4. The case of non-uniform exponential dichotomies
4.1. Conjugacies between linear systems. Here we construct conjugacies between two
linear dynamics given by sequences of linear operators (Am)m∈Z and ( Âm)m∈Z admitting
strong non-uniform exponential dichotomies.
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We continue to denote by B(X) the space of bounded linear operators in the Banach
space X . We say that a sequence of invertible linear operators (Am)m∈Z admits a
strong non-uniform exponential dichotomy if there exist projections Pm ∈ B(X) for m ∈ Z
satisfying

PmA(m, n) = A(m, n)Pn for every m, n ∈ Z,

and there exist constants

a ≤ a < 0 < b ≤ b, D > 0, and ε ≥ 0

such that for each m ≥ n we have

‖A(m, n)Pn‖ ≤ Dea(m−n)+ε|n|, ‖A(n, m)Qm‖ ≤ De−b(m−n)+ε|m|, (21)

and for each m ≤ n we have

‖A(m, n)Pn‖ ≤ De−a(m−n)+ε|n|, ‖A(n, m)Qm‖ ≤ Deb(m−n)+ε|m|, (22)

where Qm = Id −Pm is the complementary projection of Pm for each m.
Now let (Am)m∈Z and ( Âm)m∈Z be sequences of invertible linear operators admitting

strong non-uniform exponential dichotomies, with projections respectively Pm and P̂m

for m ∈ Z. For simplicity of the exposition we assume that there exists a decomposition
X = E ⊕ F (independent of m) with

Am =

(
Bm 0
0 Cm

)
and Âm =

(
B̂m 0
0 Ĉm

)
,

such that, for each m ∈ Z,

Am Pm = Bm, Am Qm = Cm, Âm P̂m = B̂m, Âm Q̂m = Ĉm .

The following is our main result.

THEOREM 6. Let (Am)m∈Z and ( Âm)m∈Z admit strong non-uniform exponential
dichotomies, such that Property P holds for the pairs (Bm, B̂m) in E and (Cm, Ĉm) in
F for each m ∈ Z. If min{−a, b} > 2ε, then there exist homeomorphisms hm : X → X,
m ∈ Z, satisfying (10) and Property A. The maps hm are locally Hölder, and are locally
Lipschitz outside zero. The same happens with the maps h−1

m .

The proof of Theorem 6 is given in §5.
We now consider the particular case of non-uniform exponential dichotomies in

the finite-dimensional space X = Rk . The following is an immediate consequence of
Theorem 6.

THEOREM 7. Let (Am)m∈Z and ( Âm)m∈Z be k × k matrices admitting strong non-uniform
exponential dichotomies, such that

sgn(det Bm) = sgn(det B̂m) and sgn(det Cm) = sgn(det Ĉm),

for each m ∈ Z. If min{−a, b} > 2ε, then there exist homeomorphisms hm : X → X,
m ∈ Z, with the properties in Theorem 6.
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Conjugacies between non-uniform contractions 9

4.2. Linear and nonlinear dynamics. Now we obtain conjugacies between a strong non-
uniform exponential dichotomy and its sufficiently small nonlinear perturbations.

We first recall the following statement established in [1].

PROPOSITION 2. If the sequence (Am)m∈Z of invertible linear operators admits a strong
non-uniform exponential dichotomy and δ is sufficiently small, then statements (1)–(3) in
Proposition 1 hold.

The following result is now an immediate consequence of Theorem 6 and Proposition 2.

THEOREM 8. Assume that:
(1) (Am)m∈Z and ( Âm)m∈Z admit strong non-uniform exponential contractions, such

that Property P holds for the pairs (Bm, B̂m) in E and (Cm, Ĉm) in F for each
m ∈ Z; and

(2) the maps fm, f̂m : X → X, m ∈ Z, satisfy (12) and (13), also with fm replaced
by f̂m .

If min{−a, b} > 2ε and δ is sufficiently small, then there exist locally Hölder
homeomorphisms hm : X → X, m ∈ Z, with locally Hölder inverse, satisfying (20) and
Property A.

5. Proofs of Theorems 2 and 6
We separate the proof of Theorem 2 into several steps.

5.1. Preliminaries. For each m ∈ Z and x ∈ X we set

qm(x) =

∞∑
k=0

‖A(k + m, m)x‖. (23)

It follows from (4) that

qm(x) ≤ D‖x‖

∞∑
k=0

e−ak+ε|m|
=

Deε|m|

1 − e−a ‖x‖ < ∞, (24)

and that

qm(x) ≥ ‖x‖

∞∑
k=0

1
‖A(m, k + m)‖

≥
1
D

‖x‖

∞∑
k=0

1
ebk+ε|k+m|

≥
1
D

‖x‖

∞∑
k=0

1

e(b+ε)k+ε|m|
=

1
D(1 − e−b−ε)

‖x‖e−ε|m|. (25)

Setting α = 1/(D(1 − e−b−ε)) and β = D/(1 − e−a), we thus obtain

αe−ε|m|
‖x‖ ≤ qm(x) ≤ βeε|m|

‖x‖. (26)
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On the other hand,

qm(A(m, n)x) =

∞∑
k=0

‖A(k + m, m)A(m, n)x‖

=

∞∑
k=0

‖A(k + m, n)x‖ =

∞∑
j=m

‖A( j, n)x‖, (27)

and hence

qm(A(m, n)x) − qm−1(A(m − 1, n)x)

=

∞∑
j=m

‖A( j, n)x‖ −

∞∑
j=m−1

‖A( j, n)x‖ = −‖A(m − 1, n)x‖. (28)

In particular, whenever x 6= 0 the sequence m 7→ qm(A(m, n)x) is strictly decreasing.
By (24) and (27) we have that

qm(A(m, n)x) → 0 as m → +∞. (29)

Furthermore, using (26) and (4) we find that, for m ≤ n,

qm(A(m, n)x) ≥ α‖A(m, n)x‖e−ε|m|

≥
α‖x‖e−ε|m|

‖A(n, m)‖
≥

α‖x‖

D
ea(n−m)−2ε|m|.

Thus, since a > 2ε, we have that

qm(A(m, n)x) → +∞ as m → −∞. (30)

We now define

Dm = {x ∈ X : qm(x) ≤ 1} and Rm = Dm \ Am−1(Dm−1). (31)

By (28), (29), and (30), for each n ∈ Z and x ∈ X \ {0} there is a unique integer m ∈ Z such
that A(m, n)x ∈ Rm . We denote it by τn,x .

We also consider the function

q̂m(x) =

∞∑
k=0

‖Â(k + m, m)x‖,

and the sets

D̂m = {x ∈ X : q̂m(x) ≤ 1} and R̂m = D̂m \ Âm−1(D̂m−1).

The strategy of the proof of Theorem 2 is to construct maps zm : Rm → R̂m such that
zm+1(Am x) = Âm zm(x) for every x ∈ X with qm(x) = 1. They will be given in the form

zm = ûm ◦ Hm ◦ u−1
m : Rm → R̂m, (32)

with the transformations um , Hm and ûm constructed in the following sections. The
conjugacies hm will then be obtained from the maps zm by using the evolution given by
the two dynamics A(m, n) and Â(m, n).
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5.2. Construction of the maps um . Set S = {x ∈ X : ‖x‖ = 1}. For each m ∈ Z we define
the map

um : [0, 1] × S → Rm by um(t, x) = τm(t, x)x,

where

τm(t, x) =
t

r(x)
+

1 − t

s(x)
,

having set for simplicity

r(x) = qm(x) and s(x) = qm−1(A−1
m−1x).

By (28) we have r(x) < s(x), and hence

qm(um(t, x)) = t + (1 − t)
r(x)

s(x)
≤ t + (1 − t) = 1.

Analogously,

qm−1(A−1
m−1um(t, x)) = t

s(x)

r(x)
+ 1 − t ≥ 1.

This shows that indeed um(t, x) ∈ Rm for every t ∈ [0, 1] and x ∈ S. We also define the
map vm : Rm → [0, 1] × S by

vm(y) =

(
(s(y) − 1)r(y)

s(y) − r(y)
,

y

‖y‖

)
. (33)

Using again (28), we can easily verify that the first component of vm(y) is in [0, 1]: given
numbers c > d > 0 with c > 1 we have

(c − 1)d

c − d
≤ 1 if and only if d ≤ 1,

and since s(y) > 1 ≥ r(y), the first component of vm(y) is indeed at most one. Observe
now that

um(vm(y)) =
y(s(y) − 1)

s(y) − r(y)
+

y

s(y)

(
1 −

(s(y) − 1)r(y)

s(y) − r(y)

)
=

y(s(y) − 1)

s(y) − r(y)
+

y

s(y)

s(y) − s(y)r(y)

s(y) − r(y)

=
y

s(y) − r(y)
(s(y) − r(y)) = y.

Thus, vm is the inverse of um .

LEMMA 1. There exists a continuous function Cm : (X \ {0})2
→ R such that for every

x, y ∈ Rm \ {0} we have

‖vm(x) − vm(y)‖ ≤ Cm(x, y)‖x − y‖.

Proof. We have

vm(x) − vm(y) =

(
G(x, y)

(s(y) − r(y))(s(x) − r(x))
,

x

‖x‖
−

y

‖y‖

)
,
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where

G(x, y) = (s(y) − r(y))(s(x) − 1)r(x)

− (s(x) − r(x))(s(y) − 1)r(y)

= (r(x) − r(y))(s(x)s(y) − s(y))

− (s(x) − s(y))(r(x)r(y) − r(y)).

Therefore,

‖G(x, y)‖ ≤ |r(x) − r(y)| · |s(x) − 1|s(y)

+ |s(x) − s(y)| · |r(x) − 1|r(y).

By (23) and (24),

r(x) − r(y) =

∞∑
k=0

‖A(k + m, m)x‖ −

∞∑
k=0

‖A(k + m, m)y‖

≤

∞∑
k=0

‖A(k + m, m)(x − y)‖ ≤
Deε|m|

1 − e−a ‖x − y‖. (34)

Since A−1
m−1 = A(m − 1, m) we have

‖A−1
m−1‖ ≤ Deb+ε|m−1|

≤ Deb+ε+ε|m|,

and it follows from (34) that

‖G(x, y)‖ ≤
Deε|m|

1 − e−a ‖x − y‖ · |s(x) − 1| s(y)

+
D2eb+ε+2ε|m|

1 − e−a ‖x − y‖ · |r(x) − 1| r(y)

≤
D3eb+ε+3ε|m|

(1 − e−a)2 ‖y‖

(
D2eb+ε+2ε|m|

1 − e−a ‖x‖ + 1
)

‖x − y‖

+
D3eb+ε+3ε|m|

(1 − e−a)2 ‖y‖

(
Deε|m|

1 − e−a ‖x‖ + 1
)

‖x − y‖

≤
2D3eb+ε+3ε|m|

(1 − e−a)2 ‖y‖

×

(
1 +

Deb+ε+2ε|m|

1 − e−a max{D, 1}‖x‖

)
‖x − y‖. (35)

Furthermore,∣∣∣∣ x

‖x‖
−

y

‖y‖

∣∣∣∣ =

∣∣∣∣ x‖y‖ − y‖x‖

‖x‖ · ‖y‖

∣∣∣∣
≤

|x‖y‖ − y‖y‖ + y‖y‖ − y‖x‖|

‖x‖ · ‖y‖

≤
1

‖x‖
‖x − y‖ +

1
‖x‖

|‖y‖ − ‖x‖| ≤
2

‖x‖
‖x − y‖. (36)
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By (35) and (36) we can set

Cm(x, y) =
2D3eb+ε+3ε|m|

(1 − e−a)2 ‖y‖

(
1 +

Deb+ε+2ε|m|

1 − e−a max{D, 1}‖x‖

)
×

1
|s(y) − r(y)| · |s(x) − r(x)|

+
2

‖x‖
.

This completes the proof of Lemma 1. 2

5.3. Construction of the maps ûm . Each map ûm is constructed in a similar manner to
that of the map um . Namely, for each m ∈ Z we define

ûm : [0, 1] × S → R̂m by ûm(t, x) = τ̂m(t, x)x, (37)

where

τ̂m(t, x) =
t

r̂(x)
+

1 − t

ŝ(x)
,

having set for simplicity

r̂(x) = q̂m(x) and ŝ(x) = q̂m−1( Â−1
m−1x).

LEMMA 2. There exist continuous functions Dm, Em : S × S → R such that for every
t, s ∈ [0, 1] and x, y ∈ S we have

‖ûm(t, x) − ûm(s, y)‖ ≤ Dm(x, y)|t − s| + Em(x, y)‖x − y‖.

Proof. We have

‖ûm(t, x) − ûm(s, y)‖ ≤ ‖ûm(t, x) − ûm(t, y)‖ + ‖ûm(t, y) − ûm(s, y)‖

≤ τ̂m(t, x)‖x − y‖ + |τ̂m(t, x) − τ̂m(t, y)| · ‖y‖

+ |τ̂m(t, y) − τ̂m(s, y)| · ‖y‖.

Proceeding as in (25) and using (4) we obtain

ŝ(x) ≥ α‖ Â−1
m−1x‖e−ε|m−1|

≥ α‖ Âm−1‖
−1

‖x‖e−ε|m−1|

= α‖Â(m, m − 1)‖−1e−ε|m−1|
≥

α

D
ea−2ε|m−1|.

Using again (25) and since ‖x‖ = 1, this implies that

τ̂m(t, x) ≤
t

r̂(x)
+

1 − t

ŝ(x)

≤ tα−1eε|m|
+ (1 − t)α−1 De−a+2ε|m−1|

≤ α−1e2ε|m| max{1, De−a+2ε
}. (38)

Furthermore,

|τ̂m(t, x) − τ̂m(t, y)| ≤
t

r̂(x)r̂(y)
|r̂(y) − r̂(x)| +

1 − t

ŝ(x)ŝ(y)
|ŝ(y) − ŝ(x)|.
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Observe that by (34) and (25) the second summand can be estimated by

e3ε|m−1|

α2‖ Â−1
m−1x‖ · ‖ Â−1

m−1 y‖
β‖ Â−1

m−1‖ · ‖x − y‖ ≤
βe3ε|m−1|

α2 ‖ Â−1
m−1‖ · ‖ Âm−1‖

2
‖x − y‖.

Therefore,

|τ̂m(t, x) − τ̂m(t, y)| ≤
βe3ε|m|

α2 ‖x − y‖ +
β D3e−2a+b+6ε|m−1|

α2 ‖x − y‖. (39)

On the other hand, proceeding as in (38) we obtain

|τ̂m(t, y) − τ̂m(s, y)| ≤

(
1

r̂(y)
+

1
ŝ(y)

)
|t − s|

≤ α−1(eε|m|
+ De−a+2ε|m−1|)|t − s|. (40)

The desired statement follows readily from (38), (39) and (40). 2

5.4. Construction of the maps Hm . It follows from Property P for the pair (Am, Âm)

that there is a Lipschitz curve γm : [0, 1] → B(X) in the set of invertible operators with
bounded inverse such that γm(0) = Âm and γm(1) = Am . We define

Hm+1 : [0, 1] × S → [0, 1] × S by Hm+1(t, x) =

(
t,

γm(t)A−1
m x

‖γm(t)A−1
m x‖

)
. (41)

We also define Gm+1 : [0, 1] × S → [0, 1] × S by

Gm+1(t, y) =

(
t,

Amγm(t)−1 y

‖Amγm(t)−1 y‖

)
.

We observe that Gm is the inverse of Hm . Indeed, given (t, y) ∈ [0, 1] × S we have

(Hm ◦ Gm)(t, y) =

(
t,

y

‖y‖

)
= (t, y).

LEMMA 3. There exist continuous functions D′
m, E ′

m : S × S → R such that for every
t, s ∈ [0, 1] and x, y ∈ S we have

‖Hm(t, x) − Hm(s, y)‖ ≤ D′
m(x, y)‖x − y‖ + E ′

m(x, y)|t − s|.

Proof. Set

u = γm(t)A−1
m x, v = γm(t)A−1

m y and w = γm(s)A−1
m y.

We have

‖Hm+1(t, x) − Hm+1(s, y)‖

≤ ‖Hm+1(t, x) − Hm+1(t, y)‖ + ‖Hm+1(t, y) − Hm+1(s, y)‖

≤
F

‖u‖ · ‖v‖
+ |t − s| + ‖A−1

m y‖
G

‖v‖ · ‖w‖
,
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where

F =
∥∥(‖v‖ − ‖u‖)u + ‖u‖(u − v)

∥∥
≤ ‖γm(t)A−1

m (y − x)‖ · ‖u‖ + ‖u‖ · ‖γm(t)A−1
m (x − y)‖,

≤ ‖γm(t)A−1
m ‖

2
‖x − y‖

and

G =
∥∥(‖w‖ − ‖v‖)γm(t) + ‖v‖(γm(t) − γm(s))

∥∥
≤ 2‖γm(t)‖ · ‖A−1

m y‖ · ‖γm(t) − γm(s)‖.

Therefore, since

‖v‖ ≥
‖y‖

‖(γm(t)A−1
m )−1‖

≥
1

‖Am‖ · ‖γm(t)−1‖
,

we obtain

‖Hm+1(t, x) − Hm+1(s, y)‖

≤ ‖Am‖
2
‖γm(t)−1

‖
2
‖γm(t)A−1

m ‖
2
‖x − y‖ + |t − s|

+ 2‖Am‖
2
‖γm(t)−1

‖ · ‖γm(s)−1
‖ · ‖A−1

m y‖ · ‖γm(t) − γm(s)‖.

Since γm is Lipschitz we obtain the desired statement. 2

5.5. Construction of the maps hm . Using the transformations um , Hm and ûm

constructed above we can define maps zm : Rm → R̂m by (32). In fact it also follows from
the above constructions that each map zm has a continuous extension to the closure of Rm .
Without loss of generality we continue to denote it by zm . We can easily verify that the
extension takes the closure of Rm onto the closure of R̂m .

LEMMA 4. The map zm is locally Lipschitz on Rm .

Proof. This is immediate from Lemmas 1, 2 and 3. 2

Set now Sm = {x ∈ X : qm(x) = 1}.

LEMMA 5. We have zm+1(Am x) = Âm zm(x) whenever x ∈ Sm .

Proof. Take x ∈ Sm . By (33) we have vm(x) = (1, x/‖x‖). Therefore,

Âm zm(x) = Âm(ûm ◦ Hm ◦ vm)(x) = ( Âm ûm ◦ Hm)

(
1,

x

‖x‖

)
.

By (41) we obtain Hm(1, x/‖x‖) = (1, x/‖x‖), and thus

Âm zm(x) = Âm ûm

(
1,

x

‖x‖

)
=

Âm x

q̂m(x)
. (42)

On the other hand, since qm(x) = 1 we have

vm+1(Am x) = (0, Am x/‖Am x‖).
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Therefore,

zm+1(Am x) = (ûm+1 ◦ Hm+1 ◦ vm+1)(Am x)

= (ûm+1 ◦ Hm+1)

(
0,

Am x

‖Am x‖

)
,

and since

Hm

(
0,

Am x

‖Am x‖

)
=

(
0,

Âm x

‖ Âm x‖

)
,

we obtain

zm+1(Am x) = ûm+1

(
0,

Âm x

‖ Âm x‖

)
=

Âm x

q̂m(x)
. (43)

The desired identity follows from (42) and (43). 2

For each m ∈ Z we now define the map hm : X → X by

hm(x) =

{
Â(m, τm,x )zτm,x (A(τm,x , m)x) if x 6= 0,

0 if x = 0,
(44)

where τ = τm,x is the unique integer for which A(τ, m)x ∈ Rτ .

LEMMA 6. The maps hm satisfy (10).

Proof. It follows from the identity A(τ, m + 1)Am x = A(τ, m)x that τm+1,Am x = τm,x .
Therefore,

hm+1(Am x) = Â(m + 1, τm,x )zτm,x (A(τm,x , m + 1)Am x)

= Â(m + 1, τm,x )zτm,x (A(τm,x , m)x)

= ÂmÂ(m, τm,x )zτm,x (A(τm,x , m)x) = Âmhm(x),

as we wanted to show. 2

LEMMA 7. Each map hm is invertible.

Proof. We will indicate explicitly the inverse of hm . For each m ∈ Z we define the map
gm : X → X by

gm(x) =

{
A(m, τ̂m,x )wτ̂m,x (Â(τ̂m,x , m)x) if x 6= 0,

0 if x = 0,

where wm = um ◦ Gm ◦ û−1
m and where τ̂ = τ̂m,x ∈ Z is the unique integer such that

Â(τ̂ , m)x ∈ R̂τ̂ . (45)

We will show that gm is the inverse of hm . Set τ = τm,gm (x) and τ̂ = τ̂m,x . By the definitions
of gm(x) and τ we have

A(τ, τ̂ )wτ̂ (Â(τ̂ , m)x) ∈ Rτ . (46)
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On the other hand, by the construction of the map zm (see (32)) we have that wm =

z−1
m : R̂m → Rm . By (45) we obtain

wτ̂ (Â(τ̂ , m)x) ∈ Rτ̂ . (47)

Furthermore, in view of the construction of τm,x (see §5.1), for each y = wτ̂ (Â(τ̂ , m)x)

there is a unique integer k ∈ Z such that A(k, τ̂ )y ∈ Rk . But since y ∈ Rτ̂ (see (47)) we
must have k = τ̂ . It follows from (46) that k = τ = τ̂ . We now show that gm is the inverse
of hm . We have

hm(gm(x)) = Â(m, τ )zτ (A(τ, m)gm(x)), (48)

and, since τ = τ̂ ,
A(τ, m)gm(x) = wτ (Â(τ, m)x).

The map wτ is the inverse of zτ , and thus, by (48),

hm(gm(x)) = Â(m, τ )(zτ ◦ wτ )Â(τ, m)x = x .

This completes the proof of the lemma. 2

5.6. Hölder regularity. We now show that the maps hm are locally Hölder, and locally
Lipschitz outside the origin.

LEMMA 8. For each m ∈ Z there exists a constant C > 0 such that ‖hm(x)‖ ≤ C‖x‖
α for

all sufficiently small x, with α as in (11).

Proof. By (27), for a fixed m and x sufficiently close to zero we have τm,x < m, and
τm,x → −∞ when x → 0. Let τ = τm,x and y = zτ (A(τ, m)x). We have q̂τ (y) ≤ 1, and it
follows from (26) that

‖hm(x)‖ ≤ ‖Â(m, τ )‖ · ‖y‖ ≤ ‖Â(m, τ )‖
q̂τ (y)

α
eε|τ |

≤ D
eε|τ |

α
e−a(m−τ)+ε|τ |

≤ D
e2ε|m|

α
e−(a−2ε)(m−τ). (49)

By (28), when x 6= 0 we have

1 < qτ−1(A(τ − 1, m)x) ≤ βeε|τ−1|
‖A(τ − 1, m)x‖.

Using (4) we obtain

1 < β De2ε|τ−1|eb(m−τ+1)+ε|m|
‖x‖

≤ β De2ε+b+3ε|m|e(b+2ε)(m−τ)
‖x‖,

which yields

em−τ
≥

(
1

β De2ε+b+3ε|m|‖x‖

)1/(b+2ε)

.

By (49) we find that

‖hm(x)‖ ≤
D

α
e2ε|m|(β De2ε+b+3ε|m|)(a−2ε)/(b+2ε)

‖x‖
(a−2ε)/(b+2ε).

This completes the proof of the lemma. 2
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LEMMA 9. For each m ∈ Z the function hm is locally Hölder with Hölder exponent as in
(11), and is locally Lipschitz outside zero.

Proof. We first observe that the sets Jn = A(m, n)Rn , n ∈ Z, are pairwise disjoint.
Furthermore, their union is X \ {0}. These are easy consequences of the discussion in §5.1.
Clearly, for each x ∈ Jn we have τm,x = n. Thus, it follows readily from the definition of
hm that

hm |Jn = Â(m, n)zn(A(n, m)x).

In view of Lemma 4, the map hm is locally Lipschitz on each Jn . Furthermore, also by
Lemma 4, hm has a unique continuous extension h̄m to Jn , and this remains Lipschitz.
Thus, to show that hm is locally Lipschitz outside the origin it remains to verify that

h̄m = hm on Jn \ Jn = A(m, n)Sn−1 ⊂ Jn−1.

For x ∈ A(m, n)Sn−1, it follows from Lemma 5 that

Â(m, n)zn(A(n, m)x)

= Â(m, n)zn(An−1A(n − 1, m)x)

= Â(m, n) Ân−1zn−1(A(n − 1, m)x)

= Â(m, n − 1)zn−1(A(n − 1, m)x) = hm(x),

since x ∈ Jn−1. This completes the proof of the Lipschitz property.
It remains to verify that hm is locally Hölder. For x, y ∈ X with x 6= 0 and y = 0

this is the content of Lemma 8. For x, y ∈ X \ {0} the Hölder property is an immediate
consequence of the Lipschitz property. 2

5.7. Proofs of the theorems.

Proof of Theorem 2. It follows from Lemmas 6, 7 and 9 that there exist homeomorphisms
hm satisfying (10). The regularity properties of hm follow also from Lemma 9.
Interchanging in the proofs the roles of the matrices Am and Âm , we find that h−1

m = gm

has the properties in Lemma 9.
To establish Property A assume that Am = A and Âm = Â for every m ∈ Z and some

linear operators A and Â. Choosing the curves γm : [0, 1] → B(X) independent of m, it
follows from (44) that, for x 6= 0,

hm(x) = ( Âm−τ
◦ ûτ ◦ Hτ ◦ vτ ◦ Aτ−m)(x), (50)

where τ = τm,x is determined by Aτ−m x ∈ Rτ . Furthermore, by (37), (41) and (33), the
maps ûτ , Hτ and vτ are independent of τ . By (31), Rτ is also independent of τ , and
thus τ − m = τm,x − τ is independent of m. It follows readily from (50) that hm(x) is
independent of m. 2

Proof of Theorem 6. We first obtain conjugacies separately in the stable and unstable
components. By (21), (22) and Theorem 2, there exist homeomorphisms h−

m : E → E ,
m ∈ Z, such that

h−

m+1 ◦ Bm = B̂m ◦ h−
m, m ∈ Z, (51)
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and homeomorphisms h+
m : F → F , m ∈ Z, such that

h+

m+1 ◦ C−m = Ĉ−m ◦ h+
m, m ∈ Z. (52)

One can easily verify that for each m ∈ Z the map hm : X → X defined by

hm(x, y) = h−
m(x) + h+

−m(y), (x, y) ∈ E × F, (53)

is a homeomorphism. The identities in (10) follow readily from (51) and (52).
Furthermore, again by Theorem 2, for each m ∈ Z the homeomorphisms h−

m and h+

−m
are locally Hölder, and are locally Lipschitz outside zero. The same happens with their
inverses. Using (53) we readily obtain the same properties for hm . This completes the
proof of the theorem. 2
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