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Clustering (or preferential concentration) of weakly inertial particles suspended in a
homogeneous isotropic turbulent flow is driven primarily by the smallest eddies at
the so-called Kolmogorov scale. In particle-laden large-eddy simulations (LES), these
small scales are not resolved by the grid and hence their effect on both the resolved
flow scales and the particle motion have to be modelled. In order to predict clustering
in a particle-laden LES, it is crucial that the subgrid model for the particles captures
the mechanism by which the subgrid scales affect the particle motion (Ray & Collins,
J. Fluid Mech., vol. 680, 2011, pp. 488–510). In this paper, we describe novel satellite
particle simulations (SPS), in which we study the clustering and relative velocity
statistics of inertial particles at separation distances well below the Kolmogorov length
scale. SPS is designed to isolate pairwise interactions of particles, and is therefore well
suited for developing two-particle models. We show that the power-law dependence of
the radial distribution function (RDF), a statistical measure of clustering, is predicted
by the SPS in excellent agreement with direct numerical simulations (DNS) for Stokes
numbers up to 3, implying that no explicit information from the inertial range is
required to accurately describe particle clustering. This result further explains our
successful prediction of the RDF power using the drift-diffusion model of Chun
et al. (J. Fluid Mech., vol. 536, 2005, pp. 219–251) for St 6 0.4. We also consider
the second-order longitudinal relative velocity structure function for the particles;
we show that the SPS is able to capture its power-law exponent for St 6 0.5 and
attribute the disagreement at larger St to the effect of the larger scales of motion not
captured by the SPS. Further, the SPS is able to capture the ‘caustic activation’ of the
structure function at zero separation and predict the critical St and rate of activation
in agreement with the DNS (Salazar & Collins, J. Fluid. Mech., vol. 696, 2012, pp.
45–66). We show comparisons between filtered DNS and equivalently filtered SPS, and
the findings are similar to the unfiltered case. Overall, SPS is an efficient and accurate
computational tool for investigating particle pair dynamics at small separations, as well
as an interesting platform for developing LES subgrid models designed to accurately
reproduce particle clustering.
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Inertial particle pair dynamics using satellite particle simulations 193

1. Introduction
Inertial particles in turbulence have been shown to cluster outside of vortices, in the

high-strain regions of the flow, using both numerical simulations (Maxey 1987; Squires
& Eaton 1991; Wang & Maxey 1993; Eaton & Fessler 1994; Sundaram & Collins
1997) and experiments (Fessler, Kulick & Eaton 1994; Salazar et al. 2008; Saw et al.
2008; Gibert, Xu & Bodenschatz 2012). Such clustering can influence a broad range
of aerosol processes, such as particle settling (e.g. Wang & Maxey 1993), evaporation
and condensation (e.g. Shaw et al. 1998) and interparticle collisions (e.g. Sundaram
& Collins 1997). It has been hypothesized that particle clustering plays a crucial role
in the broadening of the droplet size distribution during both condensational growth
and growth by collision and coalescence in warm cumulus clouds (Pinsky & Khain
1997; Shaw et al. 1998; Reade & Collins 2000a,b; Falkovich et al. 2002; Shaw 2003;
Devenish et al. 2012; Grabowski & Wang 2012).

The radial distribution function (RDF) (McQuarrie 1976) has been established as a
measure of particle clustering in isotropic turbulence and is defined as the ratio of the
number of particle pairs found at a given separation distance to the expected number if
the particles were uniformly distributed. The RDF can be computed from a field of M
particles by binning the particles according to their separation distance and calculating

g(ri)= Np,i/1Vi

Np/V
, (1.1)

where Np,i is the average number of particles found in an elemental shell volume 1Vi

at a distance ri from a test particle, V is the total volume and Np = M(M − 1)/2 is
the total number of particle pairs in the flow. Sundaram & Collins (1997) showed that
the RDF evaluated at particle contact precisely corrects the collision kernel for particle
clustering. The average collision frequency for a monodisperse particulate system is
given by

Nc = n2

2
K(σ ), (1.2a)

where σ denotes the particle diameter, n ≡ M/V is the particle number density and
K(σ ) is the collision kernel, defined for a statistically stationary suspension as

K(σ )= 4πσ 2g(σ )
∫ 0

−∞
(−wr)P(wr|σ) dwr. (1.2b)

As can be seen from (1.2b), apart from the RDF, the other statistical input to the
collision kernel is the probability density function (p.d.f.) of the radial component of
the relative velocity, wr, defined as

wr(r)= [v2(x+ r)− v1(x)] · r
|r| , (1.3)

where v1(x) and v2(x + r) are the velocities of two particles located at x and x+ r,
respectively. The effect of inertia on the radial relative velocity statistics has been
investigated in the context of predicting the collision kernel (Wang, Wexler & Zhou
2000; Ayala, Rosa & Wang 2008a; Ayala et al. 2008b; Bec et al. 2010; de Jong
et al. 2010) and also for modelling the particle motion that leads to clustering (Chun
et al. 2005; Zaichik & Alipchenkov 2009; Pan & Padoan 2010). Recently, it has been
hypothesized that inertial particle relative velocities can be multi-valued in the limit of
zero separation owing to the formation of caustics (Falkovich et al. 2002; Wilkinson,
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194 B. Ray and L. R. Collins

Mehlig & Bezuglyy 2006; Falkovich & Pumir 2007; Salazar & Collins 2012), which,
if they exist, would tend to enhance the collision rate.

It is apparent from (1.2b) that the collision kernel for asymptotically small particles
(i.e. σ/η� 1) will depend sensitively on the near-contact concentration and motion of
particle pairs. Direct numerical simulation (DNS) has proven effective for analysing
the behaviour of these statistics as a function of the separation distance for small
separations (i.e. ∆/η� 1, where ∆ is the smallest separation of interest); however,
there are two fundamental challenges with DNS. Firstly, the number of particles
required to achieve statistical convergence at a separation distance ∆ scales like
M ∼ N3 (η/∆)3, where N is the number of grid points in each direction. This scaling
is challenging, given the desire to simultaneously explore higher Reynolds numbers
(i.e. larger N) and smaller separation distances (i.e. larger η/∆). Secondly, the near-
contact motion of the particles will depend in some unknown way on the accuracy
of the interpolation scheme used to obtain the fluid velocity at the particle centre,
particularly at these small separations. There has not been a systematic study of how
errors in spatial interpolation (and even time stepping) manifest in the scaling of these
near-contact statistics.

We present an alternative framework called ‘satellite particle simulations’ (SPS).
With SPS, we simulate a cloud of satellite particles surrounding each primary particle,
assuming that the satellites are sufficiently close to the primary particle that a locally
linear flow assumption can be made. The relative velocity of the fluid is then defined
completely in terms of the fluid velocity gradient along the inertial (primary) particle
trajectory. This quantity is obtained from the DNS. The dynamics of the satellite
particles are therefore the dynamics of particle pairs in the asymptotic limit ∆/η→ 0,
thus overcoming the first concern discussed above. The locally linear flow assumption
also eliminates the interpolation errors, and so SPS can be considered the most
accurate description of near-contact motion of particle pairs possible. However, SPS
has limitations as well. Firstly, because SPS contains no information about the inertial
subrange, it cannot predict the entire behaviour of the position and velocity statistics.
For example, the RDF is known to behave as a power law in the dissipation range
(Reade & Collins 2000a; Kerstein & Krueger 2006) – SPS predicts the power, but
not the prefactor, which depends upon both the dissipation and inertial subranges.
Secondly, we have no precise means for specifying the velocity of incoming satellites
entering the fluid volume. As a first approximation, we assign these particles the
corresponding fluid velocities at their spatial locations. This approximation is exact
in the limit St → 0, and is expected to become less accurate as the particle inertia
increases. These simulations, therefore, allow us to test whether (and how) particle
clustering in the dissipation range (across a wide range of St) is influenced by
information from the larger scales of the flow. More details about the SPS can be
found in §§ 2.2 and 3.1.

In this paper, we compare DNS and SPS predictions of the RDF and the second-
order velocity structure function. The velocity gradient required for the SPS was
obtained from the same DNS, ensuring a fair comparison of the two methods. We
make these comparisons over a wide range of particle Stokes numbers to quantify the
effect of the error associated with the arbitrary boundary condition in the SPS. The
results also shed light on the theoretical framework of Chun et al. (2005), which is
based on the same locally linear flow assumption.

The second goal of the paper is to consider the effect of filtering on sub-
Kolmogorov clustering using the SPS. This is motivated by our previous work (Ray
& Collins 2011), where we used a filtered DNS (FDNS) as an a priori large-eddy
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Inertial particle pair dynamics using satellite particle simulations 195

simulation (LES) (Fede & Simonin 2006) and established the effect of velocity
filtering on the RDF and wr across a wide range of St and r/η. In that paper,
we concluded that, in order to capture particle clustering in an LES, we need to
model the mechanism by which particles cluster at the subgrid scales. Recently, there
has been considerable interest in particle-laden LES (Bini & Jones 2008; Marchioli,
Salvetti & Soldati 2008; Jin, He & Wang 2010; Ray & Collins 2011), and various
models have been put forward to capture the effect of the subgrid scales on particle
motion. Shotorban & Mashayek (2005) and Kuerten (2006) used the approximate
deconvolution method to model the resolved scales exactly, while Shotorban &
Mashayek (2006a,b) considered a generalized Langevin-type model for fluid velocities
‘seen’ by inertial particles. However, these studies focused primarily on one-particle
statistics such as the root mean-square (r.m.s.) velocity and displacement of the
particles. In fact, attempts at predicting clustering via one-particle models (Pozorski
& Apte 2009) suggest that they contain insufficient physics to capture a phenomenon
that is essentially governed by two-particle dynamics. Our SPS provides a natural
framework to investigate pairwise interaction between particles. The feasibility of
using the SPS as a test-bed for two-particle LES models is tested by using a filtered
SPS (FSPS) and comparing it with results from FDNS. We will show that the SPS
indeed provides a valid test-bed for a priori testing of LES models.

This paper is organized as follows. In § 2.1 we describe the details of the numerical
methods used to evolve the isotropic turbulent flow field and track a large number
of inertial particles in it, spanning a wide range of St . Section 2.2 describes the
concept and implementation of the SPS. Section 3 presents the results, beginning
with the effect of the choice of R/η on the SPS in § 3.1. Sections 3.2 and 3.3
then compare the results of the RDF and the longitudinal relative velocity structure
function for unfiltered and filtered DNS (and SPS), respectively. Section 4 provides
some concluding remarks.

2. Numerical simulations
2.1. Direct numerical simulation

In this section, we present details of the DNS used to solve the three-dimensional
time-dependent Navier–Stokes equations for the fluid phase with and without filtering,
and the equations of motion for the inertial particles suspended in the fluid.

2.1.1. Fluid phase
The governing equations for a three-dimensional incompressible flow are the

continuity and the Navier–Stokes equation. In rotational form, the equations are

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ εijkωjuk =−∂(p/ρ +

1
2 u2)

∂xi
+ ν ∂

2ui

∂xj∂xj
, (2.2)

where ui is the velocity vector, u≡√uiui is the magnitude of the velocity vector, ρ is
the fluid density, ν is the kinematic viscosity, εijk is the alternating unit tensor, ωi is the
vorticity and p is the pressure. In order to maintain a statistically stationary isotropic
turbulence, we use a time-dependent deterministic forcing function that injects energy
into the first two wavenumbers in Fourier space (Witkowska, Brasseur & Juvé 1997).
Equations (2.1) and (2.2) are solved using a pseudo-spectral algorithm with de-aliasing
based on a combination of truncation and phase shift (Patterson & Orszag 1971;

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

24
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.24


196 B. Ray and L. R. Collins

Variable DNS FDNS SPS (FSPS)

N 128 128 —
Rλ 95 — 95
κmaxη 1.508 — 1.508

k 1.178 1.080 1.178 (1.080)
ε 0.232 0.085 0.232 (0.085)
η 0.025 — 0.025
τη 0.139 — 0.139
L 1.490 — 1.490
Np 6 000 000 6 000 000 1 152 000
〈Ns〉 — — 300

R — — 0.6η, 2η

TABLE 1. Turbulence parameters for DNS, FDNS and SPS. Here N is the number of
grid points in each of the three dimensions; Rλ is the Reynolds number based on
the Taylor micro-scale; k = ∫ κmax0 E(κ) dκ is the kinetic energy; ε = 2ν

∫ κmax
0 κ2E(κ) dκ

is the dissipation rate; η = ν3/4/ε1/4 is the Kolmogorov length scale; τη = √ν/ε is the
Kolmogorov time scale; L = (3π/2k)

∫ κmax
0 (E(κ)/κ) dκ is the integral length scale; for

FDNS, k and ε are computed by replacing κmax by the cutoff filter scale κc; Np is the total
number of particles (primary particles in the case of SPS); 〈Ns〉 is the average number of
satellite particles per primary particle; and R is the chosen outer sphere radius bounding
the SPS domain.

Zemach 1998; Brucker et al. 2007) on a standard periodic cube of length 2π (in
arbitrary units). We use 128 grid points in each direction, which yields Rλ ≈ 95. This
is smaller than earlier simulations (e.g. Ray & Collins 2011), but this allows us to
achieve excellent convergence in both SPS and DNS at very small separations. This
is especially relevant for SPS, which has the more demanding memory requirements
(as each primary particle has a cloud of several hundred satellite particles that are
tracked). Fortunately, previous studies have shown that at small separations the RDF
and the relative velocity structure function are only weak functions of Rλ (Wang
et al. 2000; Hogan & Cuzzi 2001; Collins & Keswani 2004; Ray & Collins 2011).
Collins & Keswani (2004) analysed this dependence in detail for St 6 1.5 and
found that the sensitivity increased slightly with increasing Stokes number. More
recently, Ray & Collins (2011) found a somewhat stronger dependence of the RDF
on Rλ, but only for St > 2.0 (see figure 2c in that paper). We conclude that the
present simulations at Rλ = 95 are sufficient for the purposes of comparing SPS
and DNS at small separations. The time step for the fluid was chosen so that the
Courant–Friedrichs–Levy (CFL) number is less than 0.5. We evolve the flow field
for about 13 eddy turnover times to reach statistical stationarity. Additional details of
simulation parameters and resolution are given in table 1.

2.1.2. Filtering
We perform low-pass filtering of the DNS velocity field in Fourier space so

that all the Fourier modes of velocity beyond a certain cutoff wavenumber κc are
removed from the flow and only the remaining ‘large scales’ are retained. The filtering
operation we perform is defined below. We apply a sharp spectral filter that removes
all wavenumbers above a critical wavenumber κc, yielding the following definition of
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FIGURE 1. Filter cutoff scale (κcη = 0.2) superimposed on the energy (E(κ)/ηuη2) and
dissipation (2νκ2E(κ)/uη3) spectra. Notice that κcη is within the inertial subrange.

the filtered velocity:

ũ(k, t)=
{
u(k, t) if | k |6 κc,

0 otherwise,
(2.3)

where we use a cutoff wavenumber κcη = 0.2. Figure 1 shows the energy and
dissipation spectra obtained from our DNS as a function of wavenumber. Note that
the cutoff wavenumber (or filter scale) lies within the inertial subrange. The turbulent
kinetic energy and dissipation rate are computed for the filtered velocity field using
the standard definitions shown in table 1, with κmax replaced by κc. In Ray & Collins
(2011), we showed that the statistics of interest vary monotonically as a function of κc

in the inertial range, and therefore any value in that range can be used to evaluate the
effect of filtering. It is worth noting that if we choose the cutoff wavenumber in the
dissipation subrange, the filtering has very little effect on clustering.

2.1.3. Inertial particle motion
We assume a dilute suspension of inertial particles, which allows us to neglect the

feedback of particle motion on the carrier fluid (Sundaram & Collins 1999). We also
consider particles whose radius a is much smaller than the Kolmogorov length scale
η and simulate them as point particles. Furthermore, we assume that the particles are
much denser than the surrounding fluid (ρp/ρf � 1), the particle Reynolds numbers are
small, and collisions and gravitational settling are neglected. Under these assumptions,
the equations of motion for the particles reduce to (Maxey & Riley 1983)

dx(t)
dt
= v(t), (2.4)

dv(t)
dt
= u[x(t)] − v(t)

τp
, (2.5)

where x is the inertial particle position, v is the particle velocity, τp = (2/9)ρpa2/ρfν

is the particle response time and u(x) denotes the fluid velocity at the inertial particle
location. We have used 1 152 000 particles (as primary particles for SPS) divided
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198 B. Ray and L. R. Collins

FIGURE 2. Illustration of the SPS: ‘[p]’ denotes the primary particle, ‘[s]’ denotes a satellite
particle, r̂ is their separation vector and r = R denotes the bounding sphere beyond which we
no longer simulate the satellite particle motion.

equally into 12 different Stokes numbers. Since we need to compare the results from
the SPS to those in the DNS at small separations, we have used 6 000 000 particles
divided into 12 different St for the DNS (and FDNS) to obtain reliable statistics at the
sub-Kolmogorov scales. These particles are introduced into the stationary flow field at
random positions and with the fluid velocity at those locations. Particles are advanced
in time according to (2.4) and (2.5) using an improved numerical scheme that was
recently developed in our group (Ireland et al. 2012). This new algorithm, based on
exponential integrators, is second-order accurate in time and can simulate particles
with arbitrarily small St accurately, allowing us to use the fluid time step (dictated
by the CFL condition) to advance the inertial particles, irrespective of St , thereby
significantly reducing the run times for low-St particles. Fluid velocities at particle
locations are obtained using eighth-order Lagrangian interpolation. We allow sufficient
time (four eddy turnover times) for the particles to equilibrate with the flow before
taking statistics. Particle statistics are averaged over several eddy turnover times. In
order to investigate the effect of filtering, the particles are similarly advanced using the
filtered velocity field.

2.2. Satellite particle simulation

We consider a reference frame moving with an inertial particle (henceforth referred to
as a ‘primary particle’, denoted by a superscript ‘[p]’) and simulate the motion of a
cloud of surrounding particles (henceforth referred to as ‘satellite particles’, denoted
by a superscript ‘[s]’) with respect to the primary particle (see figure 2). Denoting the
relative position and velocity of the satellite particles as r̂ and ŵ, where r̂ = x[s] − x[p]

and ŵ = v[s] − v[p], we use (2.4) and (2.5) to derive the equations of motion of a
satellite particle as

dr̂(t)
dt
= ŵ(t), (2.6)

dŵ(t)
dt
= 1u[r̂(t)] − ŵ(t)

τp
, (2.7)
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where 1u[r̂(t)] ≡ u[x[s]] − u[x[p]], and we have assumed that the primary and satellite
particles have the same response times (i.e. a monodisperse population of particles).
Hereafter in this paper, we deliberately make a distinction between the phase-space
variable r denoting the space of all possible values taken by the separation vector
between particle pairs, and the Lagrangian time-dependent separation vector r̂(t)
between a satellite particle and its primary particle. This will be relevant primarily
in the discussion of the drift-diffusion model based on the theory of Chun et al. (2005)
in § 3.2.

The approach we take is to perform a traditional simulation of a population of
primary particles using (2.4) and (2.5). Simultaneously, we evolve the relative position
and velocity of the satellite particles surrounding each primary particle according to
(2.6) and (2.7). Such a solution requires the relative fluid velocity 1u[r̂(t)]. In general,
this is very difficult to specify in a turbulent flow; however, since we are interested
in separation distances below the Kolmogorov length scale (i.e. r̂/η < 1), we can
approximate the relative fluid velocity based on a locally linear flow assumption, i.e.

1ui[r̂(t)] = Γ [p]ij (t)r̂j, (2.8)

where the Einstein summation convention is implied, and Γ [p]ij (t) = ∂u[p]i (t)/∂xj is the
velocity gradient at the primary particle location at time t. The task of specifying
1u now reduces to calculating Γ

[p]
ij (t) along each primary particle trajectory in the

DNS. We then have the information required to evolve (2.6) and (2.7). Note that
Γ
[p]

ij (t) could be obtained from a model such as the one by Chevillard & Meneveau
(2006), which would eliminate the computational cost of performing the DNS, thereby
drastically reducing the computational time for SPS.

We advance the particles following (2.6) and (2.7) using the second-order accurate
exponential integrator defined in Ireland et al. (2012). However, this reduction in
the phase space of the system generates another issue. Such a locally linear flow is
applicable at small separations, but the satellite particles eventually diffuse beyond
the satellite volume boundary at r = R (see figure 2). To maintain a statistically
stationary sample of particles in the satellite volume, we must provide an equal
source of particles diffusing into the satellite volume. This inward flux is generated
by introducing new satellite particles at the boundary. There is no precise way of
specifying the initial conditions for these particles, so we place them at random on the
bounding surface corresponding to r̂ = R and set the particle velocity to the underlying
fluid velocity at that location (based on the locally linear flow approximation). In
addition, we need to ensure that the velocity of the newly created particle points
inwards, i.e. ŵ · n < 0, where ŵ is the velocity of the newly created particle relative
to the primary particle and n is the outward normal to the surface of the sphere at the
new particle location. We employ the following algorithm to create new (replacement)
particles in an SPS (Ahluwalia 2002; Chun et al. 2005). We define a probability of
creating new particles in a particular trial as

Pcreation = −ŵ ·n
|ŵ ·n|max , (2.9)

where |ŵ · n|max ≈ 2R〈Γ 2
11〉1/2 ≈ 2R/

√
15τη. Then, we generate a uniform random

number X ∈ [0, 1), and at each trial create a new particle only if Pcreation > 0 and
Pcreation > X. We expect the number of satellite particles leaving the bounding sphere at
any instant of time to differ for each primary particle, making it necessary to define
an average number of satellite particles per primary particle. For example, primary

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

24
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.24


200 B. Ray and L. R. Collins

particles lying in regions of high strain rate would be likely to contain more satellite
particles than those lying in regions of high rotation rate. The above rule of thumb
(2.9) generates Pcreation > 1 for 2–3 % of the trials. In those cases, we create a particle
and use the remaining probability Pcreation − 1 to determine whether another particle
should be created. By using the above algorithm, and selecting a fixed number of trials
to create new particles (for each St), we can control the average number of satellite
particles per primary particle. The quantity 〈Ns〉 in table 1 denotes the average number
of satellite particles per primary particle at stationary state. Clearly, this boundary
condition is artificial, and so we will need to determine the impact that this has on the
accuracy of the SPS method. We expect the approximation to be accurate in the limit
St → 0, and to degrade with increasing Stokes number. Additional details on how to
obtain statistics from our SPS are given below.

3. Results and discussion
We perform DNS and SPS in matched turbulent flows and with overlapping

values of the particle Stokes numbers so that detailed comparisons can be made.
In general, the RDF and the second-order longitudinal relative velocity structure
function (S2 = 〈w2

r 〉) behave like power laws in the dissipation range, taking the
form g(r) ≈ c0 (η/r)

c1 (e.g. Reade & Collins 2000a) and S2 ≈ a + b (r/η)ζ2 (Salazar
& Collins 2012). As noted earlier, the prefactors c0 and a, b involve the inertial
subrange as well and hence are not determined quantitatively in the SPS. Therefore
we focus the comparisons on the predicted powers c1 and ζ2, and on the qualitative
behaviour of a(St), which is known as the ‘caustic’ contribution to S2. In an SPS,
we compute particle statistics by directly binning the position of the satellite particles
(which denotes the relative two-particle separation r) and then averaging this over
all primary particles. For example, if the number of satellite particles lying within
radii ri+1/2 and ri−1/2 from a primary particle is Ns,i, and the total number of satellite
particles within its bounding sphere is Ns,T , then the RDF would be computed as
g(ri) = 〈Ns,i/(r3

i+1/2 − r3
i−1/2)〉/〈Ns,T/R3〉, where the average is over all the primary

particles in the system (for a particular St). The results are further averaged over
several Kolmogorov times, after achieving statistical stationarity. With SPS, the radius
of the satellite shell volume, R, is arbitrary, introducing another parameter that we
define as R/η. In addition to the significance of this parameter, which is discussed in
§ 3.1, the bounding surface also introduces some arbitrariness in setting the boundary
conditions for particles entering the satellite volume. We expect the imprecision of
the boundary conditions to contaminate the particle statistics close to the boundary.
Empirically, we find that if we perform a least-squares fit of the RDF or relative
velocity structure function, and limit the range of the fit to r/R 6 0.3, the results are
insensitive to the boundary conditions over the entire range of Stokes numbers in this
study.

3.1. SPS: effect of R/η

To analyse the effect of the satellite volume radius, we performed SPS using
R/η = 0.6 and 2.0. Figure 3(a) compares the RDFs plotted versus r/R for both
values of R/η. Note that the two curves collapse on top of each other, indicating that
the choice of R/η has no effect on the RDF plotted in this coordinate system. This is
verified in figure 3(b), which shows that R/η has no effect on the power c1(St).

We also look at the effect of R/η on S2. Figure 4(a) shows the variation of S2

normalized by u2
η as a function of r/R for the same two R/η. In contrast to the RDF,
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FIGURE 3. (a) Variation of the RDF predicted by the SPS as a function of r/R for four
different St (0.05, 0.10, 0.20 and 0.30) and two different choices of R: solid line indicates
R = 0.6η and dashed line indicates R = 2η. (b) Variation of c1 as a function of St for the two
different choices of R. The error bars correspond to 95 % confidence intervals.
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FIGURE 4. (a) The second-order longitudinal structure function S2 as a function of r/R for
St = 0.05, 0.10, 0.20 and 0.30 as indicated and for R/η = 0.6 (solid line) and 2.0 (dashed
line). (b) Replotted S2 normalized by (R/τη)

2 as a function of r/R for St = 0.05 and 0.30 and
for R/η = 0.6 (lines) and 2.0 (symbols). (c) Variation of ζ2 as a function of St for the two
values of R/η. Error bars correspond to 95 % confidence intervals.
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the structure functions do not collapse in this coordinate. This is not surprising, as
the magnitude of the velocity increases linearly with r and therefore the variance too
should increase with increasing R/η. Taking this into consideration, figure 4(b) shows
S2 for St = 0.05 and 0.3 normalized by the factor (R/τη)

2. The data for both R/η
clearly collapse under this normalization. Furthermore, if we consider the exponent of
the power law ζ2, it is insensitive to R/η, as shown in figure 4(c).

We conclude that there are simple scalings that relate SPS with different R/η, and
predictions of c1 and ζ2 are not affected by the choice of R/η.

3.2. DNS versus SPS: unfiltered turbulence
Now that we have established a basis for comparing DNS and SPS, we focus on
comparisons for unfiltered turbulence. Before we begin, it is useful to review the
theory of Chun et al. (2005), which, based on the same locally linear flow assumption
as made in the SPS, derived the following closed differential equation for the RDF:

∂g(r, t)

∂t
= 1

r2

∂[A(St)r3g(r, t)]
∂r

+ 1
r2

∂

∂r

[
Br4 ∂g(r, t)

∂r

]
, (3.1)

where A(St) and B are the ‘drift’ and ‘diffusion’ coefficients, respectively. The steady-
state solution of (3.1) takes the form g(r/η)= c0 (r/η)

−c1 , where c1 = A(St)/B and, as
with SPS, c0 is an undetermined parameter that depends on a boundary condition in
the inertial subrange. The theory further predicts the mean inward drift velocity (in the
absence of diffusion) to be

〈ŵi(t)|r̂i(t)= ri〉p =−A(St)ri, (3.2)

where the drift coefficient (same as in (3.1)) is given by

A(St)= St

3
(〈S2〉p−〈R2〉p)τη. (3.3)

Note that r̂(t) is a Lagrangian time-dependent variable representing the separation
vector between a satellite particle and its primary particle (distinguishable from the
phase-space variable r, as for example in (3.1)), 〈 · 〉p denotes an average over all
primary particle positions at time t, ŵi(t) is the relative velocity of a satellite particle
with respect to its primary particle, and S (t)2 = Sij(t)Sij(t) and R (t)2 = Rij(t)Rij(t) are
the second invariants of the rate-of-strain and rate-of-rotation tensors at the primary
particle location, respectively. Under statistical stationarity, A(St) is not a function of
time. Based on this drift-diffusion argument, Chun et al. (2005) conclude that particle
pairs obeying the following relation should cluster like inertial particles

dr̂i(t)

dt
=−A(St)r̂i(t)+ Γij(t)r̂j(t). (3.4)

We will analyse this relation as well.
Figure 5(a) compares the variation of the RDF with r/η for the DNS and the

SPS over a range of Stokes numbers. We can see that the qualitative behaviour is
very similar. It should be noted that the value of r/η in an SPS has no physical
meaning when compared to DNS, unless the boundary condition specified at r = R
is exact. We show the comparison in figure 5(a) (and some of the figures to follow)
as a function of r/η for illustration purposes only. It is meaningful, however, to
compare the power c1, as obtained from a nonlinear least-squares fit of the RDF
data for DNS and SPS. Figure 5(b) shows that they are nearly identical, to within
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FIGURE 5. (a) Variation of the RDF as a function of r/η for four different St (0.05, 0.10,
0.20 and 0.30) in the DNS and SPS: solid line indicates DNS and dashed line indicates SPS.
(b) Variation of c1 as a function of St in the DNS and SPS. The error bars correspond to 95 %
confidence intervals.
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FIGURE 6. Variation of c1 as a function of St predicted by the DNS and the model (3.4).

the 95 % confidence intervals for the fits. This remarkable agreement suggests that the
outer flow information coming from the inertial subrange and beyond has very little
to do with the power-law scaling of the RDF within the dissipation range over the
entire range of Stokes numbers considered in this study. This important result supports
theories like those by Chun et al. (2005) and Zaichik & Alipchenkov (2007) that are
based on a similar local assumption.

According to the model shown in (3.4), the satellite particles drift inwards towards
the primary particle with a velocity proportional to their separation, which is
counteracted by a random diffusion term that is assumed to be given by the fluid
velocity at the satellite particle position. We can test this model by advancing an
ensemble of fluid particles as primary particles, each with a population of satellite
particles obeying (3.4). In this model, all the information about particle inertia is
embedded in the drift coefficient A(St) defined in (3.3). The average values of the
second invariants of the strain and rotation rates in A(St) are required as inputs
to the model and are computed from DNS. Figure 6 shows the comparison of c1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

24
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.24


204 B. Ray and L. R. Collins

10–2

10–4

10–6

10–8

10–10
10–1 10010–2 101

Lines: DNS
Symbols: SPS

FIGURE 7. Comparison of longitudinal structure functions of order p= 2, 3, 4 for fluid
particles in DNS (lines) and SPS (symbols).

obtained from the model and DNS. There is very good agreement for St 6 0.4,
supporting the low-Stokes-number analysis in Chun et al. (2005). For St > 0.4, the
model significantly overpredicts the values of c1. This can be explained if we look
at the drift term in (3.4) and how the drift coefficient A(St) depends on St . As St
increases beyond 0.4, 〈S2〉p−〈R2〉p continues to increase until St = 0.6, after which
it decreases, but more slowly than the linear prefactor in (3.3), leading to an overall
increase in A(St) over the range of Stokes numbers considered. This is inconsistent
with the DNS; indeed, the peak c1 in the DNS occurs at St ≈ 0.7 and then decreases
thereafter. Apparently, the drift-diffusion arguments in Chun et al. (2005) are valid
for St 6 0.4, but beyond that exaggerate the value of c1 and hence the degree of
clustering.

Next we consider the behaviour of wr in DNS and SPS. The SPS, by construction,
is accurate in the limit of St → 0, and we can test this by considering longitudinal
structure functions of order p (Sp(r/η, St = 0) = 〈wp

r (r/η, St = 0)〉) for fluid particles.
Figure 7 shows structure functions of order p = 2, 3, 4 for fluid particles obtained
from DNS and SPS. We find excellent quantitative agreement, showing that the SPS
correctly captures the limit of St = 0. Let us now focus on the second-order structure
function S2 for inertial particles. Figure 8(a) shows this quantity for both the DNS and
SPS plotted for four different St as a function of r/η. These St are chosen to span the
entire range examined and illustrate the fact that, although the qualitative behaviour is
very similar, the magnitude of S2 is not captured by the SPS, except for St→ 0. Let us
now consider the form

S2(r/η, St)= a(St)+ b(St) (r/η)ζ2, (3.5)

where we allow S2(r = 0, St) = a(St) to be non-zero owing to inertia-induced caustics
(Salazar & Collins 2012). The rate of formation of caustics has been studied
theoretically (Duncan et al. 2005; Wilkinson et al. 2006) and numerically (Falkovich
& Pumir 2007) and has been predicted to satisfy an Arrhenius-type expression of the
form a(St) = (β2/3) exp(−2α/St). Salazar & Collins (2012) found reasonably good
agreement with this expression, but only for Stokes numbers above a critical value
they defined as Stc.
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FIGURE 8. (a) Variation of S2 normalized by u2
η as a function of r/η for four different

St (0.05, 0.70, 1.00 and 3.00) for DNS and SPS: solid lines indicate DNS and dashed lines
indicate SPS. (b) Variation of ζ2 as a function of St for DNS and SPS. The error bars
correspond to 95 % confidence intervals. (c) Variation of a(St)= S2(r/η = 0, St) as a function
of St , as obtained from a fit of the form (3.5). (d) Comparison of the values of a with the
model a(St)= (β2/3) exp(−2α/St) for DNS and SPS.

We have used nonlinear least squares to compute the coefficients a, b and ζ2 in (3.5).
Figure 8(c) shows the activated behaviour of a(St) in our DNS, where the threshold
Stokes number Stc is in quantitative agreement with previous results (e.g. Salazar
& Collins 2012). More importantly, the SPS captures this activated behaviour and
predicts the correct Stc, further affirming that it can capture the physics of particle
pair interactions at sub-Kolmogorov scales. However, the magnitude of a(St) is not
captured in our SPS, for the reasons discussed previously. In agreement with Salazar &
Collins (2012), we find that the caustic activation occurs somewhere between St of 0.2
and 0.5, and we fit the data to the model using a linear least-squares fit for St > 0.5.
Figure 8(d) shows that both DNS and SPS data fit quite well to the model, with the
predicted values of α and β shown in table 2. We can see that the exponential decay
law (α) is quite well predicted by both DNS and SPS, in agreement with the values
found by Salazar & Collins (2012). Unsurprisingly, the coefficient β representing the
magnitude of a(St) is not captured by the SPS. We could now consider the power-law
exponent ζ2. Figure 8(b) shows the comparison of ζ2 obtained from the DNS and the
SPS, and we observe good agreement between the two up to St ≈ 0.5. For larger St ,
we find that the SPS overpredicts the exponent. We attribute this disagreement to the
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FIGURE 9. (a) Variation of the RDF as a function of r/η for four different St (0.05, 0.10,
0.20 and 0.30) in FDNS and FSPS: solid line indicates FDNS and dashed line indicates FSPS.
(b) Variation of c1 as a function of St in FDNS and FSPS. The error bars correspond to 95 %
confidence intervals.

boundary conditions at r = R, which are accurate only for St→ 0. This shows that the
relative velocity statistics are more sensitive to the effect of the inertial range scales
than the RDF.

3.3. DNS versus SPS: filtered turbulence
Next we consider the effect of filtering on both the DNS (referred to as FDNS) and
SPS (referred to as FSPS). For the FDNS, the fluid velocity is advanced as in an
unfiltered DNS and then filtered at every time step for computing the fluid velocity
that is used to advance the particle field. In this way, errors due to the filtering do
not accumulate in the fluid velocity (we call this a priori LES). For the case of
the FSPS, the primary inertial particles are advanced by the same algorithm as with
the FDNS, the filtered fluid velocity gradient Γ̃ [p]ij (t) is computed along the particle
trajectory, and this gradient is used to advance the satellite particles. The results for
the RDF are given in figure 9. Figure 9(b) compares c1 for the two cases, and we see
that there is excellent agreement for St 6 0.3 and St > 1.0, with reasonable agreement
in between (maximum relative error ∼15 %). This shows that, even though a filtered
DNS is devoid of the small scales, statistics corresponding to those scales (in this case,
the filtered velocity gradient following a primary particle) is sufficient to predict c1.
Furthermore, this demonstrates the utility of the SPS framework for developing and a
priori testing of LES subgrid models for inertial particles.

We compare the effect of filtering on S2 in FDNS and FSPS in figure 10. Similar
to the unfiltered case, we again observe in figure 10(a) that the magnitude of S2

is not well predicted by the FSPS, except for St → 0. Figure 10(c) compares the
caustic contribution a(St) (see (3.5)) for DNS, SPS, FDNS and FSPS. We find, quite
interestingly, that the caustic activation appears to be delayed as a result of filtering
up to St = 0.4 as compared to St = 0.2 in the DNS. The caustic contribution to
the relative velocity can be explained by the ‘sling effect’ argument of Falkovich
& Pumir (2007), whereby energetic uncorrelated vortices in the flow centrifuge out
particles with a high velocity that, owing to their inertia, can eventually overlap in
space with a finite difference in their velocities. Therefore, caustics are governed
by the tails of the p.d.f. of wr, which are known to be attenuated as a result of
filtering (Ray & Collins 2011). Also, the filtered velocity field is devoid of the
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Run α β/uη

DNS 1.2 1.9
SPS 1.1 0.1
FDNS 1.6 1.6
FSPS 1.4 0.1
Salazar & Collins (2012) (Rλ = 60) 1.5 2.8
Salazar & Collins (2012) (Rλ = 120) 1.2 2.2

TABLE 2. Results from the least-squares fit to a(St)= (β2/3) exp(−2α/St) for our DNS
(Rλ = 95), SPS, FDNS and FSPS, together with values from Salazar & Collins (2012).
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FIGURE 10. (a) Variation of S2 normalized by u2
η as a function of r/η for four different

St (0.05, 0.70, 1.00 and 3.00) for FDNS and FSPS: solid lines indicate FDNS and dashed
lines indicate FSPS. (b) Variation of ζ2 as a function of St for FDNS and FSPS. The error
bars correspond to 95 % confidence intervals. (c) Variation of the a(St) = S2(r/η = 0, St) as
a function of St , as obtained from a fit of the form (3.5) for DNS, SPS, FDNS and FSPS.
(d) Comparison of the values of a with the model a(St)= (β2/3) exp(−2α/St) for FDNS and
FSPS.

most intense vortices (vortex tubes having a core of characteristic length η) that are
present in the unfiltered flow, leading to a weaker sling effect and a consequent
delay in the caustic activation. Again, FSPS is able to capture this feature very well.
As we did with the unfiltered case, we can compare a(St) with the Arrhenius-type
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model a(St) = (β2/3) exp(−2α/St), and figure 10(d) shows that it fits the data well.
Table 2 shows the fitted coefficients α and β, indicating that the decay-law α is quite
well predicted by FSPS. If we now look at the exponent ζ2, shown in figure 10(b),
we see good agreement between FDNS and FSPS for St 6 0.5, beyond which the
FDNS curve drops off more quickly with St . As mentioned previously, we attribute
this discrepancy to the inability of the boundary conditions at r = R in SPS to capture
the effect of larger scales on the velocity of newly created satellite particles entering
the solution domain.

4. Conclusions

In this paper, we have investigated the behaviour of the radial distribution function
(RDF) and the second-order longitudinal velocity structure function S2 of inertial
particles in homogeneous isotropic turbulence using novel satellite particle simulations
(SPS). The SPS provides a natural framework for simulating pairwise interaction of
particles at the sub-Kolmogorov scales of turbulence, which are essential for predicting
the particle collision rates, and very expensive in the framework of a direct numerical
simulation (DNS). We have described the concept and implementation of an SPS.
We have considered the effect of varying the bounding sphere radius R, and have
shown that variations in R/η can be accounted for through simple scaling relations.
The SPS, in its current implementation, does not contain any information regarding
the larger scales of motion, and consequently cannot predict the magnitude of the
RDF. However, it predicts the power-law c1 of the RDF, in excellent agreement
with DNS for St up to 3, indicating that c1 is determined solely by the small
scales. SPS accurately predicts the statistics of wr in the limit of St → 0, but shows
quantitative disagreements at moderate to high St . Specifically, the exponent ζ2 of S2

is predicted accurately for St 6 0.5. We attribute the disagreement at larger St to the
absence of information from the larger scales of motion on the newly created satellite
particles entering the simulation domain. The SPS seems to be able to capture the
qualitative behaviour of S2(r/η = 0, St), which is known as the caustic contribution to
the relative velocity and predicts the rate of ‘caustic activation’ accurately. We have
also considered the effect of filtering and compared FDNS and FSPS, and the findings
are very similar to the unfiltered case. We note that the ‘caustic activation’ seems to be
delayed in the filtered velocity field, and attribute this to the attenuation of the tails of
the p.d.f. of wr as a result of filtering. The FSPS predicts c1 in agreement with FDNS,
showing that the SPS can be used to test two-particle LES models for inertial particles
designed to recover clustering.
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