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In this paper, we study the asymptotic decay properties in both spatial and temporal
variables for a class of weak and strong solutions, by constructing the weak and
strong solutions in corresponding weighted spaces. It is shown that, for the strong
solution, the rate of temporal decay depends on the rate of spatial decay of the initial
data. Such rates of decay are optimal.

1. Introduction

We consider the decay properties of solutions to the non-stationary Navier—Stokes
equations in R3 x [0, +00):

2_1; —vAu+ (u-V)u=—~Vp, inR?x (0,00),
divu = 0, in R? x (0, 00), (1.1)
u—0, as |r| — +oo,

u(z,0) = a(x), in R3.

Here u = u(x,t) = (u1,us2,us) and p = p(z,t) denote the unknown velocity vector
and the pressure of the fluid at point (z,t) € R3 x (0,00) respectively, while v > 0
is the viscosity and a(x) is a given initial velocity vector field. For simplicity, let
v=1.

Since Leray [25] constructed the weak solutions for (1.1) in R3, and posed the
question about the decay properties of his weak solution, there is large literature
discussing the decay properties of weak solutions and strong solutions to the non-
stationary Navier—Stokes equations [1-4,7,8,10,11,14-20,22,23,26-34,40,42]. The
L? decay properties have been extensively studied and the decay rates, similar to
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that of heat equation, are also obtained. Their results show: for each a € J2(R3),
subspace of L%(R3) consisting of all solenoidal vector fields, there exists a weak
solution u such that

i u(t)z = 0. (12)
If a € L"(R3)(1 < r < 2), then
lu(t)ll2 < Ct=@/r=3/2)/2, (1.3)
Here and after, || - ||, denotes the norm in L7(R3). Furthermore, if a € J2(R3) N
L'(R®), then
lu(®)l» < C(1+ )= E=3/72 (1.4)
for 1 <r <2 and
i u()l = 0. (15)

If [[e*4al; < C(141t)~" for some 8 > 0 with A being the Stokes operator, then
lu(®)llr < C(+)=C=2/0/2, 5 = min{1, 2}, (1.6)

for 1 < r < 2. See [2-4,19,26,27,29,31-33,41]. Schonbek gave the estimates of upper
and the lower bound of decay rates for weak solutions in a series of works [32-34].
Moreover, the decay rates of high-order derivatives have been studied in [22,23]
for weak solutions after sufficient large time. Recently, Miyakawa studied the decay
rates in Hardy space and established the decay results for weak solutions in some
‘L"-like space’” with 7 < 1. For details, see [29,30] and references therein. The
time-decay properties are therefore well understood. However, there are few results
on the spatial decay properties. Farwing and Sohr [11] showed a class of weighted
(|x]*) weak solutions with second derivatives about spatial various and one order
derivatives about time variable in L*(0,+00; L?) for 1 < ¢ < 3/2, 1 < s < 2 and
0<3/q+2/s—4 < a<min{1/2,3 —3/q}, in the case of exterior domain. In [10],
they also showed that there exists a class of weak solutions satisfying

. Cla, f,a) fo<a<i,
IEREA +/ I2|*/?Vu|2dr < { Cla, f, o/, a)t/27H4 if L <a<al <1,
0 Cla, f)E/* +1/2)  ifa=1.
(1.7)
While in [15], a class of weak solutions

(1 + |z|?)Y*u € L>®(0, +o0; LP(R?)) (1.8)

was constructed for 6/5 < p < 3/2, which satisfies (1.7)3 for f = 0.

The first purpose of this paper is to construct weak solutions in weighted spaces.
We show that, if a € L'(R?) N J2(R3) and |z|a € L2(R3), there exists a class of
weak solution u satisfying

t
10+ o) a1+ [ 10+ o) /27u(r) B < .
0
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which improves the corresponding local weighted estimate as (1.7)3 in [15]. The
interpolation inequality implies that u satisfies

(1 4 |z)*u(t) € L°°(0, 4-00; LP(R?))

for1 < p < 2and a = 2(p—1)/p, which also improves estimate (1.8). Furthermore, if
|z|>/2a € L?(R?), then we show that there exists a class of weak solutions satisfying

t
(1 + |2|%)*/2u(t)|I3 +/ (1 +|2[*)*2Vu(r)[|3dr < C(1 +1log(1+¢)), Vt=0,
0

(1.9)
for 0 < o < 3. If |le=*al|y < C(1 +¢)77 for some v > 0, then the right-hand side
of (1.9) can be replaced by a constant independent of ¢. It should be noted that
Schonbek and Schonbek [35] studied the decay properties of the moment estimate
l12]%/?u||3 for smooth solutions.

The second purpose of this paper is to establish the estimates of decay rate of
weighted norm for strong solutions in LP(R?). For the existence and decay properties
of strong solutions, there are many results, see [1,5-9,12-18,20,21,28,40,42]. In
particular, Heywood showed the existence and decay properties of strong solutions
as |la|| g1 is small in [17]. Miyakawa [28] improved Heywood’s results by a different
method. On the other hand, many results about the existence and decay properties
of strong solution have been obtained in space LP(0,T; L4(R™)) for ¢ > n > 3 and
1/p+n/2¢g <1/2in[1,6-9,12,14,16,18,20,21,42]. In particular,let BC(0,T)(T > 0)
denote the set of bounded and continuous functions defined in (0, T"), Kato [20] first
obtains the following decay rates for strong solutions in L”(R")

tA=n/D/2y ¢ BC([0, +00; LI(R™)) vn
t1=n/0/241/2gy ¢ BO([0, +-00; LY(R™)) vn

< g < 400, (1.10)
< g < +0oo (1.11)

provided that a € L™(R™) and |la||, is small. In the case that a € L"(R") N
LP(R™)(1 < p < n), then

tB/p=n/a)/2,, BC([1, +o00; LY(R™)) Vp
t(n/p=n/0)/241/2Gy ¢ BO([1,+00; LY(R™)) vp

400, (1.12)

<¢qg< 1.1
< g < +oo (1.13)
provided the exponent of ¢ in (1.12) and (1.13) is smaller than 1; otherwise, (1.12)
and (1.13) are valid for any positive number less than 1 as the exponent of ¢ is
bigger than 1. By adding a correction term, Carpio [7] showed that, for initial
data a satisfying (i) ||a|l,(n > 3) is small; (ii) a € LP(R™) N L™ (R™)(1 < p < n),
the solution to the Navier—Stokes equations behaves like the solutions of the heat
equations taking the same initial data. Thus Carpio [7] removes Kato’s restriction
on exponent of ¢ and extends the decay estimate to reach the case p = 1. So this
problem is also well understood. While for the spatial decay properties at large
distance, a class of weighted strong solutions was constructed, which satisfies that
(1 + |z|?)u € L>=(0, +00; L2(R3)) and t1/2Vu € L>(0, +oo; L2(R?)), if ||all2 + [|al,
small for some 1 < p < 2 in [15], and similar results for exterior domains in [16].
Recently, Takahashi [39] showed that if u is a smooth solution, then

tP)z|u(z,t)] < C for |x| + t large (1.14)

https://doi.org/10.1017/50308210500001013 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500001013

600 C. He and Z. Xin

for all @« > 0 and 8 > 0 such that o + 28 < 3. Meanwhile, Miyakawa [30] pointed
out that if @ = 9b/0x1, then

suple " a| ~ Clz|™"" and suple *a| ~ Ct= (/2
t>0 T

as |z| — oo and t — oo. Thus he conjectured that if u is a smooth solution, then u
should satisfy that

lu(z,t)| ~ Clz| =t as |z| +t — oo, (1.15)

for all @ = 0 and 8 = 0 such that o +28 =n+ 1.
In this paper, we show that, with the hypothesis that ||al|; + ||a||> is small, there
exists a unique strong solution u such that

P+ |2) )|, < C fort >0 (1.16)

and
2 (14 2?2 Vu(@), < O for >0 (1-17)

with @« = 3 —3/pg, 8 = (3/po —3/p)/2 for 1 < pp < p < 400 and 3 < p. So
a + 28 = 3 — 3/p. Therefore, if p = oo, our results improve (1.14). Moreover, the
time decay rates of weighted norm of the solutions also improve the results of Kato’s
in the sense that there is no restriction on exponent of ¢ and pg can be taken to
be 1. If a = 9b/dx; for some i = 1,2, 3, we show that, if ||a||; + ||a||2 small, there
exists a unique strong solution u, which satisfies

2 (14 [af?)* ()], < € for ¢ > 0. (1.18)

In the special case p = 00, our result (1.18) shows that Miyakawa’s conjecture
(1.15) is right. Finally, it should be noted that in order to obtain the global strong
solutions, we assume the smallness of the initial data, i.e. ||al|1 + ||a|l2 < §, which
is different from any previous known small assumptions.

The paper is organized as follows. In § 2, we state our main results. A new class
of approximate solutions is constructed and then the integral representations are
delivered in §3. In §§4 and 5, we establish the main weighted estimates for weak
and strong solutions.

We conclude this introduction by listing some notation used in the rest of the
paper.

Let LP(R?), 1 < p < 400, represent the usual Lebesgue space of scalar functions
as well as that of vector-valued functions with norm denoted by || -||,,. Let C§% (R?)
denote the set of all C* real vector-valued functions ¢ = (¢1, ¢2, ¢3) with compact
support in R3, such that dive = 0. J?(R?), 1 < p < oo, is the closure of 5% (R?)
with respect to || - ||,. H™(R?) denotes the usual Sobolev Space. Finally, given a
Banach space X with norm ||-|| x, we denote by LP(0,T; X), 1 < p < 400, the set of
function f(t) defined on (0,7") with values in X such that [ [ f(t)[% dt < +oo. Let
P be the Helmholtz projection from LP(R?) to JP(R?’) Then the Stokes operator
A is defined by A = —PA with D(A) = H2(R3) N J2(R3). Let

83
Z’ Ox;0x; - Ox;0x;0xy |

and D3 =
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At last, we denote a generic constant by C, the value of which is inessential to our
aims, and which may change from line to line.
2. The main results
We first give the definitions of weak and strong solutions.
DEFINITION 2.1. u is called a weak solution to the Cauchy problem (1.1) if
(i) w € L*>(0,T; L*(R3)) N L*(0,T; H'(R?)) for any T > 0;

(ii) u satisfies the equations (1.1) in the sense of distribution, i.e.

/(]OO/H@(_%“‘FVU'V(b—!—(u-V)u-q&) dach:/]RS #(x,0)a(z)

for every ¢ € Cg%, (R x R?).

(iii) dive = 0 in the sense of distribution, i.e.
/ u(z, t)Vip(z) =0
R3

for every 1 € C§°(R3).

DEFINITION 2.2. u is called a strong solution to the Cauchy problem (1.1) if u €
L>(0,T; LP(R3)) for 3 < p < +o0o and any T > 0, and (ii) and (iii) in definition 2.1
hold for w.

The main results in this paper are described in the following theorems. Our first
result concerns the existence and global estimates of weak solutions in a weighted
L2-space.

THEOREM 2.3. Let a € L*(R3) N J2(R3) and (1 + |z|?)/%2a € L2(R3). Then there
exists a weak solution u in L°(0,+o00; L2(R?)) to (1.1) such that

t
I3+ [ 19utr)3ar < ajal3 2.1)
0
and .
1L+ ) 2l +/ 1L+ [2*)2Vull3 a7 < C 4, (2.2)
0
for any t > 0. Moreover, fort > 0,
lu(®)]2 < ON (L +1)72/ (2:3)
and
lu@)l < CB. (2.4)
Here

2
Ay =l ()(1+ ) 2al|3 + N?),
N = |lally + llal|? + llall2 + [lall3,
B = all1 + [lal[2N.
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In the case that the initial velocity field possesses higher-order moments, we have
the following estimates.

THEOREM 2.4. Let a € L2(R3) N J2(R®) and |z|3/2a € L2(R3), then there exists a
weak solution u in L>(0,+o00; L2(R®)) to (1.1), which satisfies that

¢
/(1—|—|x|2)3/2u2dx+/ / (14 2]?)%/?|Vu|? dz dr < C(Ay+B?/2N*/3log(1+t))
R3 0o JR3

(2.5)
for any t >0, (2.1)-(2.4) are valid for u. Moreover, if |e"*all; < C(14+t)~7 for
some v > 0, then

t
/ (1—|—|x|2)3/2u2dx—|—/ / (14 |2]?)%/?|Vul|? de dr < C(As + B¥3N*/3) (2.6)
R3 o Jr3

for any t = 0 with Ay = Ai’/Q(||a||g/4N?’/4 + Nllallg/ﬁ)-

Next, the weighted norm (both in time and in space) estimates of strong solutions
are established in the following theorem.

THEOREM 2.5. Leta € LY(R*)NJ2(R3), (14|2[2)/2a € LA(R3) and (1+]x[?)*/2a €
LPO(R3) for 1 < pg < +o0o and o = 3 — 3/py. Then there exists a constant
A > 0, such that if ||a|l1 + |lalla < A, then there exists a unique strong solution
u € L®(0, +o0; LP(R?)) for 3 < p < 400, which satisfies the estimate

149 (1 + () 2ull, + [[£/2F0 (1 + |2]*)*2Vul|,
<O+ |2*)* ally, + N? + AY?B¥? 4 BY24,N) (2.7)

for anyt >0 and 8= (3/po — 3/p)/2.

Finally, for a class of special initial data, the results in theorem 2.5 can be
improved by the following theorem.

THEOREM 2.6. Let a € L'(R3) N J2(R3) and (1 + |x|?)"/2a € L3(R3). Let a =
ob/dx; for some i = 1,2,3 with b € LY (R?) and (1 + |z[>)*/?b € LP(R3) for
1 <po <400 and a =3 —3/pg. Then there exists a constant A\g > 0, such that if
llalli+]lall2 < Xo, then there exists a unique strong solution u € L (0, +o00; LP(R3))
for 3 < p < +o0, which satisfies the estimate

117248 (14 2122 2ull, < OO+ |212)/ 20l + ([0l + N2+ AT B3/ 4+ B2 4, N)
(2.8)
for anyt >0 and 8= (3/po — 3/p)/2.

REMARK 2.7.

(i) By the interpolation inequality, (2.3) and (2.4) imply that the solution w,
obtained in theorems 2.3 and 2.4, satisfies the decay property (1.4), which for
weak solutions has already been obtained in, for example, [3,19]. However,
(1.5) is not a consequence.
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(ii) The weak solution u, obtained in theorem 2.3, also satisfies that
(14 |z|)*u € L*°(0, +oo; LP(R?))

for 1 < p < 2and o = 2(p — 1)/p, which also improves the corresponding
results in [10,11,15].

(iii) Schonbek and Schonbek [35] studied the decay properties of the moment esti-
mate |||z|*ull2 for 0 < o < 3/2, when u is a smooth solution. While we get
estimates (2.5) and (2.6) for the weak solution. Moreover, the weak solution
u, obtained in theorem 2.4, satisfies that, for any 0 < o < 3,

¢
/|x|o‘|u|2dx—|—// |z|%| Vu|? dz dr
R3 0o JR3

can be dominated by the terms on the right-hand sides of (2.5) or (2.6),
respectively.

(iv) In theorem 2.4, the assumption [le~*4al|; < C(1 + )~ holds for some v > 0,
if a = A7b for some b € L*(R3).

(v) In theorem 2.5, o + 28 = 3 — 3/p. When p = +o0, our result improves
Takahashi’s result. Moreover, we obtain the decay rate similar to that of
Kato, for weighted norm. At same time, we remove the restriction on the
exponent of ¢ and extend the decay rate to reach to the case pg = 1. By
adding a correction term, Carpio [7] have showed the solution to the Navier—
Stokes equations behaves like the solution of the heat equation, with the same
initial data, in LY(R™)(n > 3) for q > p, as initial data a satisfying (i) ||al|,
is small, (ii) a € LP(R™)NL"(R") for 1 < p < n. But our results are different
from that in [7].

(vi) Taking p = oo in theorem 2.6, then estimate (2.8) yields (1.15), which gives
an assertive answer to Miyakawa’s conjecture.

(vii) Let po = 1 and p = oo in theorem 2.6, then
lu(®)lloe = O(™),

which has been proved by Miyakawa under different assumptions on initial
data a. See theorem 1.9(i) in [30].

Applying the weighted estimates obtained in §§ 4 and 5, the proof of theorems 2.3~
2.6 are standard. So we will only deduce the necessary weighted estimates, and omit
the details of the procedure of the proof.

3. The approximation solutions and their integral representations

In this section, we construct a sequence of approximate solutions by using the
linearized Navier-Stokes equations in R®, and derive the integral representations
of the approximate solutions. First, let a € J?(R?) N J4(R3) (1 < p, ¢ < +00). We
select a* € C§% (R?), such that

a* —a in JP(R®) N J9(R?) strongly
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and
la* [, < 2[|allp, lla*lq < 2llall,- (3.1)

The approximate solutions are defined as follows: let (u°, p®) solve the Cauchy
problem of the Stokes equations,

o 0
8_ut — Au® = —Vp°, in R3 x (0, 00),
divu® =0, in R? x (0, 00), (3.2)
u’ — 0, as |x| — +o0,

u’(z,0) = a’(z), in R,

and (u*,p*) (k > 1) solve the Cauchy problem for the linearized Navier-Stokes

equations
ouk E k—1 k koo 3
27— At (@ V)t = =Vt in R x(0,00),
div uf =0, in R? x (0,00), (3.3)
uF — 0, as |z| — +o0,

uf(x,0) = a®(z), in R3,
for k > 1. Tt is well known (cf. [24]) that there exists a unique solution u* (k > 0)
to (3.2) and (3.3) satisfying
ouF ouF 0%k op*
ot ’ 8331 ’ 83318.1‘J ’ 8.1'1
fori,j=1,2,3, k>0 and any T > 0.

In order to derive an integral expression for u*, one can use the singular integral
expression of the projection operator P : L?(R3) — J?(R3), that is,

Po=¢+ %Vdiv/ 40

R3 |x—y|

€ L?(0,T; L*(R?)) (3.4)

dy (3.5)

for any ¢ € L%(R3) (cf. [24]). Applying the fundamental solution of the heat equa-
tion, we can rewrite the solution to the Cauchy problem for the Stokes equations,

% —Av=—-Vp+ f,
dive = 0,
v(z,0) =0,
as .
v; :/0 /RS Vile —y,t — 1) f(y,7)dydr, 1=1,2,3, (3.6)
where

, .1 _ 0 I'(z — z,t) ,
Viz,t) =I'(z,t)e' + —V / —————~dz= P(I'e"),
() () A7 Ox; Jps || (e’ (3.7)

I(x,t) = (drt) =3/ 21217 /4t,
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and e’ is the unit vector along z;-axis. It is easy to see that
Vi(z,t) = curl(curlw?) = —Aw’ 4+ Vdivw’, 1=1,2,3

with

, 1 I'(x —z,t ,
w'(z,t) = —/ Mdzel,
A Jgs ||

O(x,t) = ! /H@Mdz.

ar B

(3.8)

For the detailed derivation of (3.7) and (3.8), see Ladyzhenskaya [24].

For simplicity, we drop the right upper label k of the solution u* of (3.3) and use
b to denote u*~!. Let y and 7 denote the variables in equations (3.3). We multiply
both sides of (3.3) by Vi(x — y,t — 7), then integrate for y € R3 and 7 € [0,t — €]
for arbitrary 0 < € < ¢, to get

t—e
/ / (a—u—Au)(y,T)Vi(x—y,t—T)dydT
0 R3 87'

:/ _E/ (=Vyp— (b V)u)(y, ")V (z —y,t — 7)dydr.
0 R3

Since (—9/01 — A,)V* =0 and V' = P(I'e"), it follows that

| wtt—avie -yt [ awvie-vnay
RS RS

t—e
= —/ / (b-Vu(y, 7)\Vi(x —y,t — 7)dydr.
0 R3
Since u is divergence free, so it follows, by the structure of V¢(x — y,t — 7), that
lim u(y,t—E)Vi(x—y,s) dy: ui(x7t)a
e—0 R3

where u; denotes the ith component of the vector u. Thus,

w==[ [ eV nVie-yi-naydr [ amvie-ynwp
o Jr? R?

Substituting (3.7) into above equation, we get that

t
uiz—/ / (b-V)u(y,T)F(x—y,t—T)eidydT
0 Jm3

t
— / / b-Vu(y, 'V 0 O(x —y,t —7)dydr
o Jre 0Y;

+ /RS a(y)l(x —y,t)e'dy. (3.9)
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By integration by parts, we arrive at the desired integral representation form:

t
:// ijui(y,T)iF(x—y,t—T)dydT (3.10)
0o Jr* dy;
o L Z sy
biug(y, 1) m———F—0(x —y,t — 7)dydr 3.11
R“lkllky )aylayzayk( Y ) dy ( )
+/ a(y)l(x —y,t)e’ dy. (3.12)
R3
Let
it~ [l re - v,
t/2 _
= [ [ W (T 1D e - e 13)
= / |t 19+ D)~ g~ 7y
t/2 Jr3
Thus

[u(z,t)| < CIF + Iy 4 IF). (3.14)
For I' and @, direct calculations show that

D™ I (x,1)] < nﬂxP+w‘“”®”}

_ - (3.15)
[D™0(x,1)] < Cpn(J2f* + ) =072,

for m € N.

4. Weighted estimates for the approximate solutions I

In this section, we establish some a priori estimates for the approximate solutions
constructed in §3, which result in theorems 2.3 and 2.4 by standard compactness
argument. First, standard energy estimates yield the following.

LEMMA 4.1. Let a € J2(R®). Then the estimates,

@l < 2l Ve >0,
|19 @) 3 ds < alal,
0

hold uniformly for k >0

The next lemma follows from (3.12)—(3.15), (4.1) and standard convolution esti-
mates.

LEMMA 4.2. Let a € L'(R3) N J2(R?). Then we have

[u*(t)]ls < ONE=3/* (4.2)
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and
[u*(t)], < CB (4.3)

holds uniformly for k > 0 and t > 0. Furthermore, if ||e~*4al; < C(1 +1)~7 for
some v > 0, then

lu* (@)l < O34 /2, (4.4)
for y1 = min{1,2v}, where N = ||all1 + [lal[} + [lall2 + [[all3 and B = ||a]l1 + ||all2NV.
We now turn to the main weighted norm estimates in theorems 2.3 and 2.4.

LEMMA 4.3. Let a € L (R®) and (1 + |z|?)*/2a € L?(R3). Then
t
I+ a3+ [0+ ) A arar < oA (4
0

for any k>0 and t > 0 with A; = Cllelz(||(1 + |2[2)Y/2aj2 + N2).

Proof. Taking the divergence of the first equations of (3.3) yields

3

82
gt =Y (). 4.
V=2 o ) (4.6)

ij=1
Then the standard Calder6n—Zygmund estimate gives
"Ml < Cllu=larl[u®[lar

for 1 <r < +o0.
If (1 + [z]?)Y/2ub=1 € L2 (0,00; L*(R?)), we can show that (1 + |z|?)Y/2u* €

L (0, 00; L2(R?)), by (3.12)-(3.15). By induction,

loc

t
/(1—|—|x|2)|uk|2dx and //(1—|—|x|2)|Vuk|2dxdT
R o JR®

3

are well defined. Multiplying the first equation in (3.3) by (1 4 |z|?)u* and inte-
grating over R?, we obtain

3

d
G+ P 2+ [ (s faP)Va P da

< Ol 13+ ClI L+ ) 2ab o lla a4

_ 1/4 — 3/4 3/4
< 20[ub 12+ Ol (L + [2]?) 2k (ol a5 k54 Vb= 374 w3
<L+ 22212 Vb= Yol Vb (|2 + Cllu®13

+ Ol o l[ub |2 + [|VaF =2 o ]| Vo (4.7)
Now (4.5) follows from (4.1), (4.2) and (4.7), by Gronwall’s inequality. O

The higher-order moments are estimated as follows.

https://doi.org/10.1017/50308210500001013 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500001013

608 C. He and Z. Xin
LEMMA 4.4. Let a € LY(R3) N J2(R3) and |x|3/2a € L%(R3). Then

¢
/(1—|—|x|2)3/2|uk|2dx—|—/ / (1 + |22 Vu* |2 de dr
o Jr3

R3

< CAy 4+ BY2N*3log(1+t) (4.8)

hold uniformly for k >0 and t > 0 with Ay = Ai/2(||a||g/4N3/4 + ||a||g/6N).
Moreover, if |[e""aly < C(141)77, then

t
/(1+|ac|2)‘°’/2|u"|2dac+/0 /ﬂ{3(1+|x|2)3/2|Vuk|2dxdT<0A2+N2(%) (4.9)

RS
hold uniformly for k >0 and t > 0.
Proof. Applying estimate (3.15) and the inequality
(14 [2)? <292((1 + |y)>)¥? + | — y|*) for a >0, (4.10)
we can show by using (3.12)-(3.14) and lengthy calculation that
(1+ |z]?)3/*u* € L§2, (0, +00; L*(R?))

loc

and
(1+ |2[*)*/*|Vub| € L}, (0, +00; L*(R?))

as long as (1 + |=|?)3/4uF—1 € LS

(0, +00; L2(R?)). By induction,

¢
/(1—|—|x|2)3/2|uk|2dx and //(1+|x|2)3/2|Vuk|2dxdT
o JR3

R3

are well defined.
We now multiply both sides of (3.3) by (1 + |z|?)%/?u* and integrate over R? to
get

1d
——/ (1+ |x|2)3/2|uk|2dx—|—/ (1 + |z?)*/ | VuF ? de
2dt Jps R3
<3/ (1—|—|x|2)|uk|Vuk|dx+3/ (1 + Jf2) | ju 2 da
R3 R

3

+3/ (1 + |2 [ub | [p* . (4.11)
RS

Employing the weighted estimates on singular integral operators (cf. [36]), we
deduce from (4.6) that

1L+ 122)Y2p" |2 < O+ )21 -
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Thus

/3(1 + [z ) p* [uf] de < (1 + |2 ) 2ut o[l + |2 ) 2"
R

< O+ [22)2aF ol (1 + 2f2) 2t b
2/3 1/3 —
< O+ [22) 2 ol (L + 22 a2 [ e e

2/3 1/3 —
< CAIVL( A+ [R5 55 uF = a7

3/2 1/2 —1113/2
< L+ 12l 4V 13+ CAY b 32, a2,

1/3 _
+ CAL[(+ Ja) Ao |35 1" 24 7
3/2 3/16 —1119/16 5/16 —1115/16
< I+ |2 AVuR (|3 + CAY P P13 a5 O vk |5 VL |5
+ CAY PP 5P B Vb 152 Va5

3

where we have used lemma 4.3 and the inequality,
3/8 5/8
lullaayr < Jall3 | Vull3’®.

By (4.1) and (4.2), we obtain

t
| [ e azar
0 JR3
t
1
<3 / 1L+ |2V 13 dr + CAYA (N Hjall5™ + Nllall3%). (4.12)
0

Similarly,

t
//(1+|x|2)|uk_1||uk|2dxd7'
0 JR3
t
1
<7 / 1L+ 21> 49 u¥ |3 dr + CAY2 (N4 all 3 + Nllall3®). (4.13)
0

Finally, we estimate the first term on the right-hand side of (4.11). By Holder’s
inequality we get

[ Pt 190t = [ ) 9 0+ ) e
R3 R3

<+ PPVl + o)

< B+ )T B+ €+ ),
Since

1L+ |2*) 4t = /3(1 + [z )2 PR de
R

2/3 4/3
<+ 2P 45 )5

2/3 4/3
< IV + 2P At ),

< el + lel)P 4Vt I3 + 51 (L + )Y 413 + Clla® (132,
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for some ¢ > 0. Thus,
2/3 4/3
(1 + 2|2V 4" 3 < 2¢)| (1 + |22 4k |12 + Ol (1772 1" (15,

Taking 2¢ = 1/8 yields
[t PVt de < I 2T + OB, (414)
R.

Substituting (4.1)-(4.14) into (4.11), we obtain estimates (4.8) and (4.9), by
lemma 4.2. O

5. Weighted estimates for approximate solutions II

In this section, we establish the decay rates estimates of weighted norms for approx-
imate solutions in LP(R3) (p > 3), which are used to show the existence of corre-
sponding strong solutions. To this end, we first recall some basic estimates on I”
and . Applying the inequality 7%e~¢7 < C®e™! for a > 0, we can verify directly
that

> T|l, < Ct/2=G=3/p)/2,
1
el VL, < Clo=D/2=G=3/mr2, oy
for 1 < p < 400 and a = 0. By the weighted estimates about the singular integrals
(cf. [36— 38}) and (3.8), we have
[z[* D38|, < Cll|z|*T|l, < Cre/2=B/DA=1/p), (5.2)
l2[* D6l < Clll]*| VL[], < CleD/2mE/R0=1/p), '

for 1 <p< +4ooand —1/p < a<3-3/p.
Now we can deduce the main estimates needed for theorems 2.5 and 2.6.

LEMMA 5.1. Let
ae L'RHNJAR?), (1+]z*)Y%ae L?(R?) and (1+ |z[>)*/%a € L7 (R?)

for 1 < pg < 400 and a =3 — 3/py. Then there exists a constant A > 0, such that
if N <\, then, for 8= (3/pg — 3/p)/2, the estimate

19+ fe )2t ], < OO+ [e)* ally, + N2 + 477 + BV AN) - (5.3)
holds uniformly for k > 0 and for 3 < p < +00.

Proof. By (3.14) and Minkowski inequality, we obtain

3
(1 + [, < O DN+ |al?) 2 IE ] (5.4)

=1
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By the Minkowski inequality, (4.10) and the basic LP-estimates for convolutions,
we have, for 3 < p < +00,

I+ P22t < o [+ WP e - v ay

p

0| [ ey re - vy
R3 p
(1 + |x|2)a/2a||pot—(3/2)(1/po—1/p) + C|al||yt=3/2+3/p)+a/2

C
Clllally + 11 + |22 2allpy ¢~ /22010, (5.5)

NN

where we have used the estimates (5.1) (if p = oo, we use (3.15) to estimate the
second term of the first step in (5.5)).
By (4.10) and the Minkowski inequality, we can get, for 3 < p < +00,

11+ |22 I3,

t/2 B
<ol [ [P s 9+ D) = gt = ) ayar
0 R3

P
t/2 B
+c]/ [ e~ i (9T 1D .t~ 7) dyar
0o Jms »
A
= C(||I§1||p + ||I§2||p)- (5.6)
Similarly,
1@+ al2)o 225,
t
<ol [ [ sl 1w + 1) - gt - ) ayar
t/2 Jrs »
t
vl [ [ b bl =y (VT D) — gt — ) dydr
t/2 Jrs »
A
A (Il + 12 ). (5.7)

Let JJ 2 (1 + |z|?)*/2uk||,. In order to estimate I§ and I%, we discuss three
separated cases: (i) p = +o00 and 1 < po < +00; (ii) 1 <po < p < o0 and p > 3;
(iii) 3 < po = p < 0.

Case I. p=+4oco and 1 < pg < +0.

In order to establish the uniform estimates on t°(|(1 + |z]?)*/?u*||o with 8 =
3/(2pg), the singular factor t=# will later appear in the integral. So it seems nec-
essary to treat two cases: pp > 3/2 and 1 < pg < 3/2. Similarly, to establish the
uniform estimates on t'/2+8||(1 + |z[2)*/2VuF|| o, the singular factor ¢+—1/278 will
appear in this procedure, we need to distinguish three cases: pg > 3, 3/2 < pg < 3
and 1 < pg < 3.
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First, it follows from (5.1), (5.2) and lemma 4.2, that

t/2 )
Byl <€ [ It a5 N9+ 0% s
0
/2
< C/ |k ||loJE 1t — 7) =5/ % dr
0
/2
< CN/ JEYA 1) T34 — 1) A dr (5.8)
0

which yields the desired estimate for pp > 3. If 1 < pg < 3/2, then o < 1 and
1< B <3/2. By (3.15), we get, with the help of lemmas 4.2 and 4.3, that

t/2
Biloe <€ [ I liall (1 )20 3 = )2 dr
0

t/2
<eal [ A - ) dr
0

t/2
< OA§/331/3N2/3/ (JEDBA+ )2t —7) 2 dr (5.9)
0

If 3/2 < pg < 3,then @« — 1 € (0,1] and 1/2 < 8 < 1. By (3.15), we obtain, with
the aid of lemmas 4.2 and 4.3, that

t/2
(175 || oo < CA*;’/?’B/ (JEOHY3 (¢ — 1)~ 2dr, (5.10)
0

where we have used the inequality
1L+ L) Pally < Mlullgll (2 + |212) 2ull2 (5.11)
for 1 < g <p<2andy =2(p—q)/P?2—q)), which follows from the Holder

inequality.
The |1, || oo can be estimated as

t/2
A e e A R

< [ Wl e - 9720 24
CNQ/ (14 7) 732t — r)=1/273/Cro) 47
0
< ON?=173/@po) (5.12)

where one has used (3.15).
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Next, we estimate I5. By (5.1) and (5.2), we have

t
e <€ [ 10+t b e~ 7 ar
t/2
t
<o [ MY - )T
t/2

t
< ch/Q/ JEH I (L4 7)) dr (5.13)
t/2
Note that in the estimate of I%,, the singular factor (¢t — 7)~2+%/2 will appear in
the integral with & = 3 — 3/po. In order to control this singularity, we will separate
two cases: pg > 3 and 1 < pg < 3.

If po > 3, it follows from the estimate (3.15) that

Il <0 [ Il e = )23/ a7 < O )
t/2
If 1 < po < 3, using (5.1) and (5.2), we can get
Il <€ [ Iy £ 1) 25RO 15
t/2
If 5/3 < pp < 3, then (3pg +1)/(3pg — 2) < 2. By lemma 4.2, we get

B b 20D Gt Do b/ G

< J
< Jk—lB(Bpo—5)/(3po+1)N6/(3po+1)(1 + 7-)—9/(62004'2).
(5.16)

Hu® =™ 3po+1)/ 3po—2)

If 1 < pp < 5/3, then (3pg +1)/(3pg — 2) > 2. Then,

= ¥l 3pot1)/3p0—2)
< TR (8 Y(5=30)/ (po-+1) | 2BP0=2)/ Gpo )
. Jk—l(Jk )(5_3p0)/(3p0+1)N2(3p0_2)/(3p0+1)(1 1 7_)—3(3;00—2)/(2(3;004—1)).

(5.17)

Case II. 1 < pg < p < 400 and 3 < p.

This can be achieved in a similar way as case I with slight modification. Indeed,
we deal with three cases for pg. For pg > 3, (5.1), (5.2) and lemma 4.2 then imply
that

/2 )
2y <C [ Il 9T+ 1Dl ar
0
/2
< C/ ||uk||2J;f_1(t — )4 dr
0

t/2
< ON/ T L+ )t — 1) ar (5.18)
0
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If 1 < pg < 3/2, then o < 1. It now follows from (5.1), (5.2) and lemmas 4.2 and
4.3 that

t/2
il <€ [ Ty 0+ ) 225200 — 7) 2490
0
t/2
< C’Aiﬂ/ IIu"IIg”_Q)/(Q”)IIu’“||§p+2)/(2p)(J§_1)1/2(t _ 7.)—2+3/(2:D) dr
0
< CAV2Br=2)/(p) N2/ (20)

/2
[ s e (s)
0

If 3/2 < pp < 3, then a — 1 € (0,1]. By (5.1) and (5.2), we obtain, with the help of
lemmas 4.2 and 4.3 and inequality (5.11), that

1/2 a—
12l < € [ 1 )2 I+ D 5

X (JETIVR(E — )28/ g
1o t/2
<cay /0 P o [P R R D It A
/2
<CAY?B / (JETHM2(t — 1) 723/ g, (5.20)
0
Applying (5.1) and (5.1), we can estimate the ||I5,]], as
/2
1l <€ [ ol ol — ) 2500 dr < ON%P (521)
0
Now we estimate I¥. Let » = 6(p — 1)/(p + 1). By (5.1) and (5.2), we have
¢
[PEAPES C/t/2 I+ 122) 2 = ¥ gy (£ = 7) 7273 G dr

t
< C/ Jg—l(J;‘)P(r—Q)/(r(p—Q))||uk||§(p—r)/(r(p—2))(t _ 7_)—1/2—3/(27,) ar

t
< ON®-3)/Br-1) / JE1 (k)P G D)
/2

X (14 7)" =3/ @P=0) (4 — 7)=1/2=3/Cr) g7,
(5.22)

For the estimate on I%,, We also consider two cases. If pg > 3, we have, by (5.1)
and (5.2),

t
11311, < 0/ [u*Hlal[u¥ 2 (t = 7) /2P dr < CNZTHP (5.23)
/2
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By Young’s inequality and estimates (5.1) and (5.2), we get

¢
Il < € [ A= bl = )2 om0
/2
for 1/l=1/p+ (3po —2)/(Bpo + 1). If 5/3 < pp < 3, by lemma 4.2,
¢
||I§2||p < C// J!j—l||uk||(3po+1)/(3po_2)(t — T)—1/2—3/(2P0(3P0+1)) dr
t/2
t
s 0/ L L L I A
/2

t
< CBBPo—5)/Bpo+1) N6/ (3po+1) / JEL (1L 4 7)o/ CGpot)

t/2
X (t — )" Y/273/(2poBrot1) g7
(5.24)
If 1 < pp < 5/3, then
t
||I§2||p < C/t/2 J,’f_l||uk||(3p0+1)/(3p0_2) (t— T)—1/2—3/(2P0(3;l70+1)) dr
t
< [ g e e e )
t/2
X (t — 1)~ 1/273/CpoBrot)) g
t
< O N23ro=2)/(Bpo+1) //2 Jg—l(J;é)(5—3po)/(3po+1)
t
X (1 + 7)~3Bpo=2)/QCBro+1)) (f — £)=1/2=3/(2poBpot1)) 47
(5.25)

Case III. 3 <py =p < +00.

The estimates of ||15]|, and ||I},[|, in this case are same as (5.18) and (5.22).
So we only give the estimate of |15, |, and ||I5,. Applying (3.15) and the theory of
singular integral operator (cf. [37]), we get

1251l + 125211, < C’

t
[ ke = g1 = o2 + 0= ) dyar
0

p
t

<o) [ Wbl =l aydr

0 P

t
<O [ Iy ar

0
< CllalloNt~/4, (5.26)

Summarizing the above estimates, it is obvious that, if ¢ J;f_l < C, then tﬂJ;f <
C, by the Gronwall inequality. Therefore, it holds that tﬂJ;f € L2 (0,400), by

loc

https://doi.org/10.1017/50308210500001013 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500001013

616 C. He and Z. Xin

induction. Thus
075 < O(Jlall + 12+ 21 allpy + N2(1 1)

+ NV 1) P ma (1075 (#75)1?)

0<t< oo
C(NA+t)7" max (t°J5 N + N2 (1 +1)71),
t€[0,00] >
as pg > 3;

C(AYPB(L+10)71429/8 max (1778113
t€[0,00] >

1 BBPo—5)/(Bpo+1) N6/(Bpot1) o (tﬂJk—1)>
t€[0,00] > ’
as 3 < po < 3;

+ 1 (AP B oyt ma (195"
te|0,00

+ N2Bro=2)/Gpo+l) ax (BJE- 1P gk )(5—3po)/(3po+1)>
te[0,00] > > ’
as 3 <py < 3
C(BYBAYPN3(1 4 1)=3/2420/% max (19757111
t€[0,00] >

+ N2Bro=2)/Gpo+1) ax (B g1 P gk )(5—3po)/(3po+1)>
te[0,00] > > ’

as 1 <po < 3.
By Young’s inequality, we deduce that

Bk < 1 2va/2 N2 4N B k=1 2)
i (775) < C(llally+ 11+ ) allp, + N+ N max (17757)

C(N max (t7J571) 4 N2>, as po > 3;
t€[0,00]

C’(A?/?’B max (tﬂJfo_l)l/?’

t€[0,00]
1 BBPo—5)/(po+1) N6/ (3po+1) 1o (tﬂJk—1)>
t€[0,00] > ’
as 2 < po < 3;

C’(A?/?’B max (tﬂJfo_l)l/?’
+ t€[0,00]

N max (tﬂJk—l)<3po+1>/<2<3po—2>>)
te[0,00] > ’
as 3 <po < 3;

C’(Bl/?’A?/?’NQ/3 max (tﬂJfo_l)l/?’
te[0,00]

+ N max (tﬂJk—l)<3po+1>/<2(3po—2>>>
t€[0,00] > J

oo

as 1 < pp <
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Therefore, if IV is suitably small, then

max(t?J5) < C(lall + (1 + |21*)*/%allp, + N2 + A72B¥2 + B/, N),

which yields the desired estimate for the case p = co. The argument for 3 < p < oo
is similar. O

By a lengthy but similar calculation, we can show the following lemma.

LEMMA 5.2. Assume the conditions in lemma 5.1 are satisfied. Then if N < A, the
estimates, fort >0,

129U, < Ofllalls + 11+ 2)all,, + N 4+ AY2B%2 + BY2ALN)
hold uniformly for k > 0 and 3 < p < 400.

If a = (9b)/(0x;) for some i = 1,2,3, we can show, by similar discussion, the
following.

LEMMA 5.3. Assume the conditions in lemma 5.1 hold. If a = (0b)/(0x;) for some
i=1,2,3 with b € L*(R3) and (1 + |z|?)*/% € LP°(R3), then there exists a constant
Ao > 0 such that if N < A, the estimate

/250, < OBl + 11 + |2[2)%/2b]|p, + N2 + A3°B32 + BY2A,N),
t € [0,00)

holds uniformly for k > 0 and 3 < p < +00.
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