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We are concerned with a nonnegative solution to the scalar field equation

Δu + f(u) = 0 in R
N , lim

|x|→∞
u(x) = 0.

A classical existence result by Berestycki and Lions [3] considers only the case when
f is continuous. In this paper, we are interested in the existence of a solution when f
is singular. For a singular nonlinearity f , Gazzola, Serrin and Tang [8] proved an
existence result when f ∈ L1

loc(R) ∩ Liploc(0,∞) with
∫ u
0 f(s) ds < 0 for small u > 0.

Since they use a shooting argument for their proof, they require the property that
f ∈ Liploc(0,∞). In this paper, using a purely variational method, we extend the
previous existence results for f ∈ L1

loc(R) ∩ C(0,∞). We show that a solution
obtained through minimization has the least energy among all radially symmetric
weak solutions. Moreover, we describe a general condition under which a least
energy solution has compact support.

Keywords: Least energy solution; scalar field equation; singular nonlinearity;
compact supported solution

1. Introduction and statement of the main result

In this paper, we are interested in the following scalar field equation:⎧⎪⎨
⎪⎩

Δu+ f(u) = 0 in R
N ,

u � 0 in R
N ,

lim|x|→∞ u(x) = 0.
(1.1)
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Due to its relation with many other problems, there have been extensive studies on
the above scalar field equation. When f ∈ C(R), an almost optimal existence result
for (1.1) was obtained by Berestycki and Lions [3]. In fact, under the following
assumptions:

(F1-1) f : R → R is continuous, f(t) = 0 for t � 0 and −∞ < lim inf
t→0+

f(t)/t �
lim sup

t→0+
f(t)/t < 0;

(F2-1) lim supt→∞ f(t)/tl � 0 for l = (N + 2)/(N − 2);

(F3) there exists T > 0 such that F (T ) > 0, where F (t) =
∫ t

0
f(σ) dσ;

Berestycki and Lions constructed a least energy positive solution in C2 to (1.1) that
is radially symmetric and decays exponentially to 0 at infinity. It is well known that
the condition (F3) is necessary for existence of a solution to (1.1). It is easy to see
that for limt→0+ f(t)/t > 0, there exists no finite energy solution. For a zero mass
case, that is, limt→0 f(t)/t = 0, Berestycki and Lions also obtained a least energy
solution to (1.1) when (F3) and the following (F1-2), (F2-2) hold.

(F1-2) f : [0,∞) → R is continuous, f(t) = 0 for t � 0 and lim supt→0+ f(t)/
t(N+2)/(N−2) � 0;

(F2-2) lim supt→∞ f(t)/t(N+2)/(N−2) = 0.

When f(t) = t− tα with α ∈ (0, 1), the solution obtained by Berestycki and Lions
in [3] has compact support. As a related problem, Gui [10] and Cortazar–Elgueta–
Felmer [6] proved the radial symmetry of a solution for the overdetermined
boundary value problem: ⎧⎪⎨

⎪⎩
Δu+ u− uα = 0 in Ω,
u > 0 in Ω,
u = 0, ∂νu = 0 on ∂Ω,

where ∂ν is the outward normal derivative on ∂Ω and 0 < α < 1. Kaper–Kwong–
Li [11] also studied the symmetry properties when f is the sum of a continuous
nondecreasing function and a Lipschitz continuous function on [0,∞). The following
problem with a more singular nonlinearity was studied by Serrin–Tang [16] and
Davila–Montenegro [7]: ⎧⎪⎨

⎪⎩
Δu+ up − u−q = 0 in Ω,
u > 0 in Ω,
u = 0, ∂νu = 0 on ∂Ω,

where 0 < q < 1, 1 < p < (N + 2)/(N − 2). A general existence result for a non-
negative solution to (1.1) with a singular nonlinearity was obtained by Gazzola–
Serrin–Tang [8]. Their existence result was obtained when f is locally Lipschitz
continuous on (0,∞) and in L1

loc(R) with
∫ u

0
f(s) ds < 0 for small u > 0. They use

a purely ODE argument for the proof in [8]. Chung–Kim–Kwon–Pan [5] recently
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study a one-dimensional case of (1.1) with a discontinuous nonlinearity f(x) at
x = 0. Their result is motivated by the Allee effect in mathematical ecology and
shows that the discontinuity of f represents the very strong Allee effect.

In this paper, by using a variational argument we extend the previous existence
results by assuming only that f ∈ L1

loc(R) ∩ C(0,∞). Moreover, we find a general
condition under which a least positive energy solution has compact support. In fact,
for f ∈ L1

loc(R), we define F (t) =
∫ t

0
f(s)ds for t � 0, F (t) = 0 for t � 0. We assume

that for N > 2,

(f1) f ∈ L1
loc(R) ∩ C(0,∞), f(t) = 0 for t � 0;

(f2) there exists T > 0 such that F (T ) > 0;

(f3) lim supt→0 F (t)/t2N/(N−2) � 0 and lim supt→0 f(t) <∞;

(f4) if there exists no S > T with F (S) = 0, limt→∞ |f(t)|/t(N+2)/(N−2) = 0;

and for N = 2,

(f3-2) lim supt→0 F (t)/t2 = −m < 0 and lim supt→0 f(t) <∞;

(f4-2) if there exists no S > T with F (S) = 0, lim supt→∞ |f(t)|e−ct2 <∞ for
any c > 0.

If there exists S > T with F (S) = 0, we do not require (f4) and (f4-2); then we
assume that F (t) = 0 for t � S. We define a space H = D1,2(RN ) for N � 3 and
H = H1(R2) for N = 2. We say that u ∈ H is a weak solution of (1.1) if f(u) ∈
L1

loc(R
N ) and ∫

RN

∇u · ∇φ− f(u)φdx = 0 for all φ ∈ C∞
0 (RN ).

For u ∈ H, the corresponding energy E(u) is defined by

E(u) ≡ 1
2

∫
RN

|∇u|2 dx−
∫

RN

F (u) dx.

Our main result in this paper is the following.

Theorem 1.1. Assume that (f1)–(f4) hold if N > 2 and, (f1), (f2), (f3-2) and (f4-
2) hold if N = 2. Then there exists a radially symmetric nonzero weak solution u ∈
C1(RN ) ∩ H of problem (1.1), which has the least positive energy among all radially
symmetric nonzero weak solutions of (1.1). Moreover, u ∈ C2({r � 0 | u(r) > 0}),
and u has compact support if

∫ δ

0
dt/
√
F−(t) <∞ for some δ > 0.

Remark 1.2. The similar sufficient conditions for a solution to have compact
support as in Theorem 1.1 are described in [1,13–15,17] for quasilinear equations.

This paper is organized as follows. In Section 2, we prove the main theorem.
In Section 3, we consider a one-dimensional case and we give some remarks about
properties of such solutions.
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2. Proof of the main result

In this section, we assume that (f1)–(f4) hold for N > 2, and (f1), (f2), (f3-2) and
(f4-2) hold for N = 2. For the existence of a solution for N � 2, we follow the
minimization arguments in [2] and [3]. We consider the following minimization
problems:

IN ≡ inf

{∫
RN

|∇w|2 dx

∣∣∣∣∣
∫

RN

F (w) dx = 1, w ∈ D1,2(RN )

}
for N > 2;

I2 ≡ inf

{∫
R2

|∇w|2 dx

∣∣∣∣∣
∫

R2
F (w) dx = 0, w �≡ 0, w ∈ H1(R2)

}
for N = 2.

Proposition 2.1. IN is attained by a radially symmetric minimizer for N � 2.

Proof. Let {vn}n∈N be a minimizing sequence of IN . By Schwartz symmetrization,
we may assume that vn is non-negative, radially symmetric and non-increasing with
respect to r = |x|. When N = 2, we define vt

n(x) ≡ vn(tx) for t > 0. Then, since for
each t > 0, ∫

R2
F (vt

n) dx = 0,
∫

R2
|∇vt

n|2 dx =
∫

R2
|∇vn|2 dx,

we may assume that
∫

R2(vn)2 dx = 1. Thus, we may assume that the minimizing
sequence {vn} is bounded. Now, taking a subsequence if necessary, we may assume
that vn converges weakly to v in D1,2(RN ) for N � 3, in H1(R2) for N = 2 and vn

converges pointwise to v a.e. as n→ ∞.
For any radially symmetric w ∈ D1,2(RN ), N > 2,

|w(r)| =
∣∣∣∣
∫ r

∞
w′(s)ds

∣∣∣∣ �
∣∣∣∣
∫ r

∞
s−(N−1)ds

∣∣∣∣
1/2 ∣∣∣∣

∫ r

∞
sN−1(w′(s))2ds

∣∣∣∣
1/2

.

Thus, there exists C = C(N) > 0 such that for any radially symmetric w ∈
D1,2(RN ), N > 2,

|w(r)| � C

r(N−2)/2

(∫
RN\B(0,r)

|∇w|2 dx

)1/2

. (2.1)

When N = 2, for any radially symmetric w ∈ H1(R2),

− (rw2(r))r = −(w(r))2 − 2rw(r)wr(r) � r(w(r))2 + r(wr(r))2. (2.2)

Then, integrating (2.2) on (r,∞), it follows that

|w(r)| � C√
r
‖w‖H1(R2), r � 1 (2.3)

for some constant C > 0, independent of w ∈ H1(R2). The above inequalities (2.1)
and (2.3) imply that vn(r) converges to 0 uniformly as r → ∞.
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First, we consider the case N > 2. We define F+(t) = max{F (t), 0}, F−(t) =
max{−F (t), 0}. Note that |F (t)| � A(1 + t2N/(N−2)) for some constant A > 0.
Thus, for each R > 0, there exists C(R) > 0 such that

∫
B(0,R)

F+(vn) +
F−(vn) dx � C(R) by the Sobolev inequality. Since {vn} is bounded inH1(B(0, R)),
we see that

lim
n→∞

∫
B(0,R)

F+(vn) dx =
∫

B(0,R)

F+(v) dx.

Note from (f3) that for some δ(R) > 0 with limR→∞ δ(R) = 0,∫
RN\B(0,R)

F+(vn) dx � δ(R)
∫

RN\B(0,R)

v2N/(N−2)
n dx.

Thus, limR→∞
∫

RN\B(0,R)
F+(vn) dx = 0 uniformly for n � 1. This implies that

lim
n→∞

∫
RN

F+(vn) dx =
∫

RN

F+(v) dx.

Since
∫

RN F+(vn) dx = 1 +
∫

RN F−(vn) dx, it follows from Fatou’s lemma that∫
RN

F+(v) dx � 1 +
∫

RN

F−(v) dx.

Now it holds that
∫

RN |∇v|2 dx � IN and
∫

RN F (v) dx � 1. If
∫

RN F (v) dx > 1, there
exists σ > 1 such that for vσ(x) ≡ v(σx),

∫
RN F (vσ) dx = 1. In this case, we have∫

RN

|∇vσ|2 dx = σ2−N

∫
RN

|∇v|2 dx < IN ,

which is a contradiction. This implies that
∫

RN F (v) dx = 1 and v is a radially
symmetric minimizer of IN .

For N = 2, let F1(t) ≡ F (t) +m′t2 for m′ ∈ (0,m). Then, we define

F1+(t) = max{F1(t), 0}, F1−(t) = max{−F1(t), 0}.
Condition (f4-2) implies that for any c > 0, there exists a constant A > 0 such
that |F1(t)| � A(1 + ect2), t ∈ R. Thus, for each R > 0, there exists C(R) > 0 such
that

∫
B(0,R)

|F1(vn)|dx � C(R) by the Trudinger–Moser inequality. Since {vn} is
bounded in H1(B(0, R)), we see that

lim
n→∞

∫
B(0,R)

F1+(vn) dx =
∫

B(0,R)

F1+(v) dx.

We deduce from (f3-2) that for some δ(R) > 0 with limR→∞ δ(R) = 0,∫
R2\B(0,R)

F1+(vn) dx � δ(R)
∫

R2\B(0,R)

v2
n dx � δ(R).

Thus, limR→∞
∫

RN\B(0,R)
F1+(vn)dx = 0 uniformly for n � 1. This implies that

lim
n→∞

∫
R2
F1+(vn) dx =

∫
R2
F1+(v) dx.
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Since
∫

R2 F1+(vn) dx = m′ ∫
R2(vn)2 dx+

∫
R2 F1−(vn) dx, it follows from Fatou’s

lemma that ∫
R2
F1+(v) dx � m′

∫
R2
v2 dx+

∫
R2
F1−(v) dx.

Hence, we have ∫
R2
F1(v) dx � m′

∫
R2
v2 dx > 0.

In particular, v �≡ 0. Also it follows that∫
R2
v2 dx � 1,

∫
R2
F (v) dx � 0 and

∫
R2

|∇v|2 dx � I2.

If
∫

R2 F (v) dx > 0, then there exists λ ∈ (0, 1) such that
∫

R2 F (λv) dx = 0 since
F (t) < 0 near zero. In this case, we have∫

R2
|∇λv|2 dx = λ2

∫
R2

|∇v|2 dx < I2,

which is a contradiction. This implies that
∫

RN F (v) dx = 0 and v is a radially
symmetric minimizer of I2. �

For a minimizer v of IN , let R0 > 0 be a number such that v(r) > 0 for r < R0

and v(r) = 0 for r � R0. If there is no such a finite R0, we define R0 = ∞.

Proposition 2.2. There exists a constant θ > 0 such that
∫

B(0,R0)
∇v · ∇φ−

θf(v)φdx = 0 for any φ ∈ C∞
0 (B(0, R0)).

Proof. We take any R ∈ (0, R0). Then, v(r) � v(R) > 0 for r � R. From (f4) if
N > 2 and from (f4-2) if N = 2, we see that for some constant C > 0,

∣∣∣∣
∫

RN

f(v)φdx
∣∣∣∣ � C

(∫
B(0,R)

|∇φ|2 dx

)1/2

, φ ∈ C∞
0 (B(0, R)).

Thus, there exists w ∈ H1
0 (B(0, R)) such that for any φ ∈ H1

0 (B(0, R)),∫
B(0,R)

∇w · ∇φ− f(v)φdx = 0. (2.4)

For any φ ∈ C∞
0 (B(0, R)), we define

φ1 ≡ φ− w

∫
B(0,R)

∇w · ∇φdx∫
B(0,R)

|∇w|2 dx
, φ2 ≡ φ− φ1.

Then, we see that ∫
B(0,R)

f(v)φ1 dx =
∫

B(0,R)

∇w · ∇φ1 dx = 0. (2.5)
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Choose a test function ψ1 ∈ C∞
0 (B(0, R)) satisfying

∫
RN f(v)ψ1 dx �= 0 and define

g(t, σ) ≡
∫

RN

F (v + tφ1 + σψ1) dx.

Then, we see that

g(0, 0) =

{
1, if N > 2,
0, if N = 2,

and ∂g(0, 0)/∂σ =
∫

RN f(v)ψ1 dx �= 0. By the implicit function theorem, there exist
δ > 0 and a C1-function σ : (−δ, δ) → R such that σ(0) = 0 and

g(t, σ(t)) =

{
1, if N > 2,
0, if N = 2,

for t ∈ (−δ, δ). Note that d/dt|t=0

∫
RN |∇(v + tφ1 + σ(t)ψ1)|2 dx = 0. Since

σ′(0) = 0 by (2.5), it follows that
∫

RN ∇v · ∇φ1 dx = 0. Thus, for any φ ∈
C∞

0 (B(0, R)), ∫
RN

∇v · ∇φ1 dx =
∫

RN

f(v)φ1 dx = 0. (2.6)

Defining

θ ≡
∫

B(0,R)
∇v · ∇w dx∫

B(0,R)
|∇w|2 dx

,

we see from (2.4) and (2.6) that
∫

B(0,R)

∇v · ∇φ− θf(v)φdx =
∫

B(0,R)

∇v · ∇φ2 − θf(v)φ2 dx

=

∫
B(0,R)

∇w · ∇φdx∫
B(0,R)

|∇w|2 dx

∫
B(0,R)

∇v · ∇w − θf(v)w dx

=

∫
B(0,R)

∇w · ∇φdx∫
B(0,R)

|∇w|2 dx

∫
B(0,R)

∇v · ∇w − θ|∇w|2 dx

= 0.

This proves that for any φ ∈ C∞
0 (B(0, R0)),∫

B(0,R0)

∇v · ∇φ− θf(v)φdx = 0.

It remains to show that θ > 0. Obviously θ �= 0. Suppose that θ < 0. Choose a test
function φ ∈ C∞

0 (B(0, R0)) such that
∫

B(0,R0)
f(v)φdx > 0. Then, for small ε > 0,
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it holds that

∫
B(0,R0)

F (v + εφ) dx >
∫

B(0,R0)

F (v) =

{
1, if N > 2,
0, if N = 2.

Since
∫

B(0,R0)
∇v · ∇φdx = θ

∫
B(0,R0)

f(v)φdx < 0, we also get

∫
B(0,R0)

|∇(v + εφ)|2 dx <
∫

B(0,R0)

|∇v|2 dx = IN ,

for small ε > 0.
First, consider s case N > 2. Note that there exists σ = σ(ε) > 1 such that∫

B(0,R0)

F ((v + εφ)(σx)) dx = 1.

Then it follows that∫
B(0,R0)

|∇(v + εφ)(σx)|2 dx = σ2−N

∫
B(0,R0)

|∇(v + εφ)(x)|2 dx < IN ,

which is a contradiction.
If N = 2, we choose λ ∈ (0, 1) such that∫

B(0,R0)

F (λ(v + εφ)(x)) dx = 0.

Then we get∫
B(0,R0)

|∇(λ(v + εφ))(x)|2 dx = λ2

∫
B(0,R0)

|∇(v + εφ)(x)|2 dx < I2,

which is a contradiction. Hence, we conclude that θ > 0. This completes the
proof. �

Proposition 2.3. v ∈ C2(B(0, R0)) and limr→R0 vr(r) = 0.

Proof. First, we show that v ∈ C2(B(0, R0)). Since v satisfies the equation in Propo-
sition 2.2, standard elliptic regularity theory [9] shows that v ∈ C1,α(B(0, R0)).
Note that for r ∈ (0,∞), v satisfies the equation

vrr +
N − 1
r

vr = −θf(v). (2.7)

Thus, it is enough to show that vrr is continuous at 0. Since d/dr(rN−1vr) =
rN−1(vrr + (N − 1)/rvr), integrating (2.7) on (0, r) we get

rN−1vr = −
∫ r

0

sN−1θf(v(s)) ds.
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Letting s = rt, we have

r−1vr = −
∫ 1

0

tN−1θf(v(rt)) dt.

This implies that

vrr(0) = lim
r→0

vr

r
= −θf(v(0))

N
. (2.8)

From (2.7) and (2.8), we also obtain

lim
r→0

vrr = −(N − 1) lim
r→0

vr

r
− θf(v(0)) = −θf(v(0))

N
.

Hence, v ∈ C2(B(0, R0)).
Now we show that limr→R0 vr(r) = 0. If R0 = ∞, it directly follows from the

facts that v > 0, vr � 0 and limr→∞ v(r) = 0. Therefore, we may assume R0 <∞.
First, we note from (2.7) that for any 0 < r1 < r2 < R0,

1
2
((vr(r2))2 − (vr(r1))2) +

∫ r2

r1

N − 1
r

(vr(r))2dr = −θ
∫ v(r2)

v(r1)

f(t)dt.

Then, since v ∈ H1(B(0, R0)) and f ∈ L1
loc(R), we see that vr ∈ L∞ and

limr↑R0 vr(r) exists. To the contrary, suppose that limr↑R0 vr(r) < 0. Then, for
small ε > 0, there exists a constant C0 > 0 such that vr(r) < −C0 < 0 for r ∈
(R0 − ε, R0). We define a function ṽ by

ṽ(r) =

{
v
(

r+(R0−ε)
2

)
, if |R0 − r| < ε,

v(r), otherwise.

We then see that∫
RN

F (ṽ) dx =
∫

B(0,R0−ε)

F (v) dx+ |SN−1|
∫ R0+ε

R0−ε

F (ṽ(r))rN−1 dr

=
∫

B(0,R0−ε)

F (v) dx+ |SN−1|
∫ R0

R0−ε

F (v(r)) (2r − (R0 − ε))N−1 2 dr

=
∫

B(0,R0)

F (v) dx+ |SN−1|

×
∫ R0

R0−ε

F (v(r))
{

2 (2r − (R0 − ε))N−1 − rN−1
}

dr

=

{
1 + a, if N > 2,
a, if N = 2,

where |SN−1| is the volume of the (N − 1)-dimensional unit sphere in R
N and

a = |SN−1|
∫ R0

R0−ε

F (v(r))
{

2 (2r − (R0 − ε))N−1 − rN−1
}

dr.

Note that a = o(ε) since F (0) = 0 and F (v(r)) is continuous on [R0 − ε, R0].
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WhenN > 2, there exists σ = 1 + o(ε) such that for ṽσ ≡ ṽ(σr),
∫

RN F (ṽσ) dx = 1.
Then, we have

∫
RN

|∇ṽσ|2 dx = σ2−N

∫
RN

|∇ṽ|2 dx

= σ2−N

{∫
B(0,R0−ε)

|∇v|2 dx+ |SN−1|
∫ R0+ε

R0−ε

|ṽr(r)|2rN−1 dr

}

= σ2−N

{∫
B(0,R0−ε)

|∇v|2 dx+ |SN−1|
∫ R0

R0−ε

|vr(r)|2 (2r − (R0 − ε))N−1

2
dr

}

= σ2−N

{∫
B(0,R0)

|∇v|2 dx+ |SN−1|

×
∫ R0

R0−ε

|vr(r)|2
(

(2r − (R0 − ε))N−1

2
− rN−1

)
dr

}

= σ2−N

{
IN + |SN−1|

∫ R0

R0−ε

|vr(r)|2
((

2r − (R0 − ε)
21/(N−1)

)N−1

− rN−1

)
dr

}
.

Since there exists a constant C1 > 0, independent of small ε > 0, such that

(
2r − (R0 − ε)

21/(N−1)

)N−1

− rN−1 < −C1 < 0 on (R0 − ε, R0),

it follows that

∫
RN

|∇ṽσ|2 dx � σ2−NIN − σ2−N |SN−1|
∫ R0

R0−ε

C1|vr(r)|2 dr

� (1 + o(ε))IN − σ2−N |SN−1|C2
0C1ε

� IN + o(ε) − Cε,

where C = (|SN−1|C2
0C1)/2. Thus, for such small ε > 0, we have

∫
RN

F (ṽσ) dx = 1 and
∫

RN

|∇ṽσ|2 dx < IN .

This is a contradiction.
Now we consider the remaining case of N = 2. We can choose φ ∈

C∞
0 (B(0, R0)) such that

∫
B(0,R0)

f(v)φdx > 0. Then, there exists t = o(ε) such that
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RN F (ṽ + tφ) dx = 0 since

∫
RN F (ṽ) dx = a = o(ε). Then, it follows that∫

R2
|∇(ṽ + tφ)|2 dx =

∫
R2

|∇ṽ|2 dx+ 2t
∫

R2
∇ṽ · ∇φdx+

∫
R2
t2|∇φ|2 dx

� |S1|
∫ R0+ε

0

|ṽr(r)|2r dr + o(ε) + o(ε2)

�
∫

B(0,R0)

|∇v|2 dx+ |S1|

×
∫ R0

R0−ε

|vr(r)|2
(

(2r − (R0 − ε))
2

− r

)
dr + o(ε)

� I2 − R0|S1|
4

∫ R0

R0−ε

|vr(r)|2 dr + o(ε)

� I2 − Cε+ o(ε)

< I2

for sufficiently small ε > 0, where C = R0|S1|C2
0/4. Thus, for such small ε > 0, we

have ∫
R2
F (ṽ + tφ) dx = 0 and

∫
R2

|∇(ṽ + tφ)|2 dx < I2.

This is a contradiction for N = 2. Thus, limr→R0 v(r) = 0; this completes the proof.
�

Now we prove the Pohozaev identity for a weak solution of (1.1).

Proposition 2.4. Let w ∈ H be a radially symmetric weak solution of (1.1) with
F−(w) ∈ L1(RN ). Then w satisfies the following identity:

N − 2
2

∫
RN

|∇w|2 dx = N

∫
RN

F (w) dx.

Proof. We see from (f3) and (f3-2) that F+(w) ∈ L1 since u ∈ H. Thus we have that
|F (w)| ∈ L1(RN ). Let {Ωi} be the connected components of {x ∈ R

N | w > 0} and
choose an arbitrary component Ω ∈ {Ωi}. Then Ω should be one of three possible
cases, B(0, R1), B(0, R2) \B(0, R3), R

N \B(0, R4). We first prove that for any
i = 1, · · · , 4, limr→Ri

wr(r) = 0.
Note from the equation

wrr +
N − 1
r

wr = −f(w)

that for any r1, r2 ∈ Ω,

1
2
((wr(r2))2 − (wr(r1))2) +

∫ r2

r1

N − 1
r

(wr(r))2 dr = −
∫ w(r2)

w(r1)

f(t) dt.

Since w ∈ H and f ∈ L1
loc(R), we see that for any i = 1, · · · , 4, limr→Ri

wr(r) exists.
As in the proof of Proposition 2.3, we can show that u ∈ C2({x ∈ R

N |w > 0}).

https://doi.org/10.1017/prm.2020.4 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.4


104 Jaeyoung Byeon, Sun-Ho Choi, Yeonho Kim and Sang-Hyuck Moon

Choose a radially symmetric nonnegative function φ ∈ C∞
c (RN ) such that φ > 0

on ∂Ω. We define Ωδ ≡ {x ∈ Ω | dist(x, ∂Ω) > δ}. Then, it follows from Green’s
identity that

∫
Ω

f(w)φdx = lim
δ→0

∫
Ωδ

f(w)φdx = lim
δ→0

∫
Ωδ

(−Δw)φdx

= lim
δ→0

(∫
Ωδ

∇w · ∇φdx−
∫

∂Ωδ

∂w

∂ν
φdx

)

=
∫

Ω

∇w · ∇φdx− lim
δ→0

∫
∂Ωδ

∂w

∂ν
φdx, (2.9)

where ν is the outward normal to ∂Ωδ. Since w(r) = 0 for r ∈ ∂Ω, we see that

lim
δ→0

∫
∂Ωδ

∂w

∂ν
φdx � 0.

Then, we deduce that

∫
RN

f(w)φdx =
∑

i

∫
Ωi

f(w)φdx =
∑

i

∫
Ωi

∇w · ∇φdx−
∑

i

lim
δ→0

∫
∂Ωδ

i

∂w

∂ν
φdx

=
∫

RN

∇w · ∇φdx−
∑

i

lim
δ→0

∫
∂Ωδ

i

∂w

∂ν
φdx.

Since w is a weak solution, we get
∑

i limδ→0

∫
∂Ωδ

i
∂w/∂νφdx = 0. This implies that

as r → ∂Ωi for each i, wr(r) converges to 0.
Now we prove the Pohozaev identity. First, we consider the cases such that Ω =

B(0, R1) or Ω = B(0, R2) \B(0, R3). For each δ > 0, we again use the notation
Ωδ ≡ {x ∈ Ω | dist(x, ∂Ω) > δ}. It follows from integration by parts that

∫
Ωδ

f(w)(x · ∇w) dx = −N
∫

Ωδ

F (w) dx+
∫

∂Ωδ

F (w)(x · ν) dS

and

2
∫

Ωδ

Δw(x · ∇w) dx = (N − 2)
∫

Ωδ

|∇w|2 dx+
∫

∂Ωδ

(
∂w

∂ν

)2

(x · ν) dS.

Thus, since u ∈ C2(Ω) and Δw + f(w) = 0 in Ω, taking δ → 0, we get from the
continuity of F (w), wr on Ω that

(N − 2)
2

∫
Ω

|∇w|2 dx−N

∫
Ω

F (w) dx

= −1
2

∫
∂Ω

(
∂w

∂ν

)2

(x · ν) dS −
∫

∂Ω

F (w)(x · ν) dS = 0.
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Now, consider the remaining case Ω = R
N \B(0, R4). Then, applying the above

argument to B(0, R5) \B(0, R4) with R5 > R4, we see that

∫
B(0,R5)\B(0,R4)

[
N − 2

2
|∇w|2 −NF (w)

]
dx

= −R5

{∫
∂B(0,R5)

[
1
2

(wr)
2 + F (w)

]
dS

}
.

Since

∫
RN

|∇w|2 + |F (w)|dx =
∫ ∞

0

{∫
∂B(0,R)

|∇w|2 + |F (w)|dS
}

dR <∞,

there exists a sequence {R5,n}n such that as n→ ∞,

R5,n → ∞ and R5,n

∫
∂B(0,R5,n)

|∇w|2 + F (w) ds→ 0.

Then, taking the limit n→ ∞, we get the identity

N − 2
2

∫
RN\B(0,R4)

|∇w|2 dx−N

∫
RN\B(0,R4)

F (w) dx = 0.

Thus, adding the identity over Ωi with respect to i, we obtain that

N − 2
2

∫
RN

|∇w|2 dx−N

∫
RN

F (w) dx = 0. �

Then we are ready to prove the main theorem.
Completion of the proof for the main theorem. Let u(x) = v(

√
θx). Then

by Proposition 2.2, we see that for any φ ∈ C∞
0 (B(0, R0/

√
θ)),

∫
B(0,R0/

√
θ)

∇u · ∇φ− f(u)φdx = 0. (2.10)

By Proposition 2.3, we know that u ∈ C2(B(0, R0/
√
θ)) is a classical solution. If

R0 = ∞, there is nothing to prove, so we assume R0 <∞ from now on.
First, we show that f(u) ∈ L1(RN ). Since f ∈ C(0,∞), it is enough to consider

the integrability near R0/
√
θ. By (f3) or (f3-2), there exists a constant M > 0 such

that f+(t) � M near t = 0. Then, for r ∈ (R0/(2
√
θ), R0/

√
θ), we get

urr +
N − 1
r

ur +M � urr +
N − 1
r

ur + f+(u) = f−(u).

Integrating both sides, we can see that f−(u) is L1 near R0/
√
θ since ur is integrable

near R0/
√
θ and limr→R0 ur = 0 exists. Therefore, f(u) ∈ L1(RN ).
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To show that u is a weak solution of (1.1), we have to show that u satisfies (2.10)
on R

N . We deduce from Proposition 2.3 that for any φ ∈ C∞
0 (RN ),∫

RN

∇u · ∇φ− f(u)φdx =
∫

B(0,R0/
√

θ)

∇u · ∇φ− f(u)φdx

=
∫

∂B(0,R0/
√

θ)

urφdS −
∫

B(0,R0/
√

θ)

(Δu+ f(u))φdx

= 0.

Now we want to show that u has the least energy among radially symmetric weak
solutions of (1.1). We see from (f3), (f4) and (f3-2), (f4-2) that for any w ∈ H,∫

Rn F+(w) dx <∞. Thus, if F (w) �∈ L1(RN ), we get F−(w) �∈ L1(RN ). In this case,
we get that

E(w) =
1
2

∫
RN

|∇w|2 dx−
∫

RN

F+(w) dx+
∫

RN

F−(w) dx = ∞.

Hence, we may assume that F (w) ∈ L1(RN ) for a weak solution w of (1.1).
First, we consider a case N > 2. Recall that v is the minimizer of the following

problem:

IN = inf

{∫
RN

|∇w|2 dx

∣∣∣∣∣
∫

RN

F (w) dx = 1, w ∈ D1,2(RN)

}
.

By a change of variables, we see that

E(u) =
1
2
INθ

−(N−2)/2 − θ−(N/2).

Define a function h : (0,∞) → R by h(t) = 1/2IN t−(N−2)/2 − t−(N/2), which has a
maximum at t = 2N/((N − 2)IN ), where the maximum value is

h

(
2N

(N − 2)IN

)
=

2
N − 2

(
2N

(N − 2)IN

)−(N/2)

.

Let w be an arbitrary radial weak solution of (1.1) such that F (w) ∈ L1(RN ). Then
it holds that ∫

RN

|∇w|2 dx = NE(w),
∫

RN

F (w) dx =
N − 2

2
E(w)

by Proposition 2.4. For σ = ((N − 2)/2E(w))1/N , we get∫
RN

F (w(σx)) dx = σ−N

∫
RN

F (w) dx = 1,

∫
RN

|∇w(σx)|2 dx = σ2−N

∫
RN

|∇w|2 dx = NE(w)2/N

(
N − 2

2

)(2−N)/N

.
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Since
∫

RN |∇w(σx)|2 dx � IN , it follows that

E(w) �
(
IN
N

)N/2(
N − 2

2

)(N−2)/2

= h

(
2N

(N − 2)IN

)
.

Therefore, we have

E(w) � h

(
2N

(N − 2)IN

)
� h(θ) = E(u)

since h has a maximum at 2N/((N − 2)IN ).
Second, we consider the case N = 2. Recall that v is the minimizer of the problem

I2 = inf

{∫
R2

|∇w|2 dx

∣∣∣∣∣
∫

R2
F (w) dx = 0, w �≡ 0, w ∈ H1(R2)

}
.

Note that if w is a radial weak solution of (1.1) with F (w) ∈ L1(RN ), then∫
R2 F (w) dx = 0 by Proposition 2.4. Hence, we immediately obtain E(w) � E(v) =
E(u).

Lastly, we prove that if
∫ δ

0
dt/
√
F−(t) <∞ for small δ > 0, then R0 <∞. This

result was proved by many authors for more general type of quasilinear equations
(see for example [1,13–15,17]). For completeness, we write a short proof. To the
contrary, suppose that R0 = ∞. Then, since vr � 0 on R, we see that vrr � −θf(v).
Since limr→∞ vr(r) = 0 and (|vr|2)r � −2θ(F (v))r, we have ((vr)2) � −2θ(F (v)).
Thus,

vr(r) � −
√

2θF−(v(r)). (2.11)

Integrating (2.11) on (r,∞) for large r > 0, we see that∫ v(r)

0

dt√
F−(t)

= −
∫ ∞

r

vr(s)√
F−(v(s))

ds �
√

2θ
∫ ∞

r

ds = ∞.

This is a contradiction, proving that R0 <∞ if
∫ δ

0
dt/(

√
F−(t)) <∞ for small

δ > 0. �

3. A one-dimensional case and concluding remarks

For the one-dimensional case, we can obtain a similar result. For N = 1, we assume
the following conditions:

(f1-1) f ∈ L1
loc(R) ∩ C(0,∞)

(f2-1) there exists T0 ≡ inf{t > 0 : F (t) = 0} <∞ such that T0 > 0 and
f(T0) > 0.

Note that, by (f2-1), F (t) < 0 on (0, T0). Then, we define

R1 ≡
∫ T0

0

ds√−2F (s)
∈ (0,∞].
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Theorem 3.1. If (f1-1), (f2-1) hold, there exists an even solution u of the problem
(1.1) for N = 1. Furthermore, this solution satisfies

(i) u(0) = T0, u
′(x) < 0 on (0, R1) for some R1 ∈ (0,∞] and u(x) = 0 for

x � R1,

(ii) u ∈ C2((−R1, R1)) ∩ C1(R).

Proof. Since F is C1 near T0 and f(T0) > 0, 1/
√−2F (s) is integrable on (x, T0)

for any x ∈ (0, T0). Then, a function

g(t) ≡
∫ T0

t

ds/(
√

−2F (s))

is well-defined and C1 on (0, T0). Let u be the inverse function of g on [0, R1), where
R1 ≡ ∫ T0

0
ds/(

√−2F (s)) ∈ (0,∞]. Then, we extend the function u(x) on (−R1, 0]
so that the extended function is even on (R1, R1). If R1 <∞, we extend u to the
whole real line by setting u(x) = 0 for x ∈ R \ (−R1, R1). Now, by construction, u
satisfies (i).

By direct differentiation, we have

u′(x)√−2F (u(x))
= −1 for x ∈ (−R1, R1). (3.1)

Then, since F ◦ u is in C1((−R1, R1)), we see that u ∈ C2((−R1, R1)). Hence if we
differentiate it again, we obtain

u′(x)(u′′(x) + f(u(x))) = 0.

Since u′(x) �= 0 on (0, R1), u satisfies (1.1). It remains to show that limx↑R1 u
′(x) =

0 when R1 <∞. This immediately follows from (3.1) since limx↑R1 F (u(x)) = 0. �

Remark 3.2. The additional condition lim supt→0 f(t) <∞ in (f3) and (f3-2) was
used only to prove f(u) ∈ L1

loc(R
N ) for a solution u of (1.1). Without the additional

condition, our proof shows that for R0, θ > 0 given in the previous section, there
exists a classical solution of the following overdetermined problem⎧⎪⎨

⎪⎩
Δu+ f(u) = 0 in B(0, R0/

√
θ),

u > 0 in B(0, R0),
u = 0, ∂νu = 0 on ∂B(0, R0/

√
θ).

Remark 3.3. In [4], the authors proved the radial symmetry of a least energy
solution for (1.1) when f ∈ C(R). To apply the symmetry result in [4] to our prob-
lem with a singular nonlinearity f , for any least energy solution u of (1.1), it is
necessary to prove the Pohozaev identity [3,12]

(N − 2)
∫

RN

|∇u|2 dx = 2N
∫

RN

F (u) dx.

For the details, see [4]. On the other hand, when f is not continuous at 0, we do
not know whether or not the Pohozaev identity holds for any least energy solution
of (1.1).
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