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Abstract

We obtain a complete description of anisotropic scaling limits of the random grain
model on the plane with heavy-tailed grain area distribution. The scaling limits have
either independent or completely dependent increments along one or both coordinate
axes and include stable, Gaussian, and ‘intermediate’ infinitely divisible random fields.
The asymptotic form of the covariance function of the random grain model is obtained.
Application to superimposed network traffic is included.
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1. Introduction

Itis well known that many random fields (RFs) exhibit different scaling behaviors in different
directions. Important examples of RFs with such a behavior are the fractional Brownian
sheet (FBS) and various classes of stochastic partial differential equations driven by FBS;
see, e.g. [2] and the references therein. For a stationary RF Y = {Y(¢,s), (f,5) € R?},
the simplest form of anisotropic scaling is obtained by taking partial integrals S;, , (x,y) =
f(O,Ax]X(O,AV)r]Y(t’ s) dt ds over rectangles (0, Ax] x (0, AYy] C Ri whose sides grow with
A — oo at different rate O(A) and O(AY) (provided y # 1). Throughout this paper, we
have Ry := (0, o0) and R%r = (0, 00)2. The (large-scale) behavior of Y is reflected in the
scaling limit

;)8 (x, ) > Vy(x,y) ask — oo, (1.1)

where a;,, — 00 is a normalization and ‘2 denotes weak convergence of finite-dimensional
distributions. Moreover, if a;, ,, is regularly varying at oo with exponent H (y) > 0, the limit
RF V), in (1.1) has stationary rectangular increments and satisfies the self-similarity property

V, (x, AV y) = A1V, (x,y)  foreach & > 0,

where ‘2’ denotes equality in finite-dimensional distributions; see [21], which is a particular
case of the operator scaling RF property introduced in Biermé et al. [4].

Puplinskaité and Surgailis [21] observed that for many RFs Y on Z? or R?, (nontrivial)
scaling limits in (1.1) exist for any y > 0, resulting in a one-dimensional family {V,,, y > 0}
of scaling limits termed the scaling diagram of Y below. Since scaling limits characterize the
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dependence structure and large-scale properties of the underlying random process, the scaling
diagram provides a more complete ‘large-scale summary of ¥’ compared to the (isotropic or
anisotropic) scaling with fixed y > 0 discussed in [1], [2], [5], [6], [12], [14], [22], [23],
and elsewhere. Scaling diagrams of some classes of long-range dependent (LRD) Gaussian
and aggregated nearest-neighbor autoregressive RFs on Z? were identified in [20] and [21]. It
turned out that for these RFs, there exists a unique point yg > 0 such that the scaling limits

Vy Z V. do not depend on y for y < yp, ¥y > y, and V+7DEV_. In [21] this phenomenon was
termed the scaling transition (at y = yp). The scaling transition also arises under joint temporal
and contemporaneous aggregation of independent LRD processes in telecommunication and
economics, see [9], [10], [16], [17], [19]; see also ([21, Remark 2.3]. In this paper we obtain
a different kind of scaling diagram (see Figure 1) with rwo change-points y_ < y4 of scaling
limits which shows that this concept might be more complex requiring further study.

In this paper we study the scaling limits (scaling diagram) of the random grain model

X(t,5) =Y 1{((t —x)/R’. (s —y)/R; ") e B},  (t.5) € R?, (1.2)

where B C R? (‘generic grain’) is a measurable bounded set of finite Lebesgue measure
Leb(B) < 00,0 < p < 1 is a shape parameter, {(x;, ¥;), R;} is a Poisson point process on
R? x R, with intensity dx dyF(dr), and 1 is the indicator function. We assume that F is a
probability distribution on R having a density function f such that

fr) ~cpr™7 asr — oo, (1.3)

for some 1 < @ < 2,cy > 0. The sum in (1.2) counts the number of uniformly scattered and
randomly dilated grains (x;, y;) + RiPB containing (¢, s), where RP B := {(RPx, R'"Py): (x,
y) € B} C R? is the dilation of B by factors R” and R!~7 in the horizontal and vertical
directions, respectively. The p = 1/2 case corresponds to uniform or isotropic dilation.
Note that the area Leb(R” B) = Leb(B)R of a generic randomly dilated grain is propor-
tional to R and does not depend on p and has a heavy-tailed distribution with finite mean
ELeb(R”B) < oo and infinite second moment ELeb(R” B)> = oo according to (1.3).
Condition (1.3) also guarantees that the covariance of the random grain model is not integrable,
i.e. fR2 | cov(X (0, 0), X(¢, s))| dt ds = oo, see Section 3; hence, (1.2) is an LRD RF. Examples
of the grain set B are the unit ball and the unit square, leading respectively to the random ellipses
model
X(t,5) =Y 1 —x)?/R + (s —y)%/RI7 < 1)
L

and the random rectangles model

X(t,s):Zl{xi <t§xi+Rip,y,~ <s§yi+Rl.l_p},

1

Note that for p # % the ratio R”?/R'~P = R?P~! of the sides of a generic rectangle tends
to 0 or co as R — oo implying that large rectangles are ‘elongated’ or ‘flat’ and resulting in a
strong anisotropy of the random rectangles model. A similar observation applies to the general
random grain model in (1.2).

Our main results are summarized in Figure 1 in which we show a panorama of scaling
limits V), in (1.1) of the centered random grain model Y (¢,s) = X(¢t,5) — EX(¢,5) as y
changes between 0 and co. Precise formulations pertaining to Figure 1 and the terminology
therein are given in Section 2. Below we explain the most important facts about this diagram.
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‘Intermediate Poisson_’ ‘Intermediate Poisson.’
«o_-stable Lévy slide, «-stable Lévy sheet, a-stable Lévy slide,
l<a<l+p l<a<?2 l<a<2-—p
0 V- Y+ o
1 1
FBS(5.H-). FBS(Hi.5).
Il+p<a<?2 2—-p<a<?

FIGURE 1: Scaling diagram of a random grain model.

First, note that, due to the symmetry of the random grain model in (1.2), the scaling limits
in (1.1) are symmetric under simultaneous exchange x <> y,y < 1/y,p < 1 — p, and a
reflection transformation of B. This symmetry is reflected in Figure 1, where the left region
0 < y < y_ and therightregion y; < y < oo including the change points of the scaling limits

1-— o
P ye =, (1.4)

Y- = —,
a—(1-p) p

are symmetric with respect to the above transformations. The middle region y_ < y < y4 in
Figure 1 corresponds to an a-stable Lévy sheet defined as a stochastic integral over (0, x]x (0, y]
with respect to an o-stable random measure on ]Ri. According to Figure 1, for y > yy the
scaling limits in (1.1) exhibit a dichotomy depending on parameters «, p, featuring a Gaussian
(FBS) limit for 2 — p < @ < 2, and an a-stable limit for | < o < 2 — p with stability
parameter

a—p
=1,

o >« (1.5)
larger than the parameter o. The terminology o4 -stable Lévy slide refers to a RF of the
form xL(y) or yL_(x) ‘sliding’ linearly to O along one of the coordinate axes, where L
are a-stable Lévy processes (see Section 2 for the definition). Finally, the ‘intermediate
Poisson’ limits in Figure 1 at y = y4 are not stable although infinitely divisible RFs given
by stochastic integrals with respect to a Poisson random measure on R? x R, with intensity
measure ¢ ; du dvr~17% dr.

The results of this paper are related to those in, for example, [3], [7], [9]-[11], [16], [17],
and [19]-[21] in which different scaling regimes occur for various classes of LRD models, in
particular, heavy-tailed duration models. Isotropic scaling limits (y = 1 case) of the random
grain and random balls models in arbitrary dimension were discussed in Kaj ez al. [11] and
Biermé er al. [3]. Lifshits [15] provided a nice discussion of limit behavior of heavy-tailed
duration models whose spatial version is the random grain model in (1.2). From an application
viewpoint, probably the most interesting is the study of different scaling regimes of superposed
network traffic models [7], [9], [10], [16]. In these studies, it is assumed that traffic is generated
by independent sources and the problem concerns the limit distribution of the aggregated traffic
as the time scale 7' and the number of sources M both tend to oo, possibly at different rates.
In this paper we extend the above-mentioned work, by considering the limit behavior of the
aggregated workload process

Tx
Ay k(Tx) = Wy k (¢)dt, (1.6)
0
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TABLE 1: Limit distribution of the workload process in (1.6) with M = TV, K = T# at slow connection
rate 0 < y < y4.

Parameter region Limit process

(I4+y)d—-p)<ap <00 l<a<?2 a-stable Lévy process

l<a<2p (ae/ p)-stable Lévy process

O<af <d+yd-p) Iv2p<a<?2 Brownian motion

TABLE 2: Limit distribution of the workload process in (1.6) with M = TV, K = T# at fast connection
rate yy <y < 0Q.

Parameter region Limit process
O<oayB <ys l<a<2p Fractional Brownian motion, H = (3 — («¢/p))/2
Iv2p<a<?2 Brownian motion
Yy <oagf <y l<a<2—p Gaussian line

y <aypf < oo o -stable line
Yt <apf <00 2—p<a<?2 Fractional Brownian motion, H = 2 —« + p)/2p

where Wy g (t) = Zi(Rilfp AKY{x; <t <x;i+ Rip, 0<yi <M}, t>0,and {(x;, yi),
R;} is the same Poisson point process as in (1.2). The quantity Wy x () in (1.6) can be
interpreted as the active workload at time ¢ from sources arriving at x; with 0 < y; < M
and transmitting at rate Rl.l_p A K during time interval (x;, x; + RP]. Thus, the transmission
rate in (1.6) is a (deterministic) function (R?)1=P)/P A K of the transmission duration R?
depending on parameter 0 < p < 1, with 0 < K < oo playing the role of the maximal rate
bound. The limiting case p = 1 in (1.6) corresponds to a constant rate workload from the
stationary M/G/oo queue. In Theorems 4.1 and 4.2 we obtain the limit distributions of the
centered and properly normalized process {A, x (Tx), x > 0} with heavy-tailed distribution
of R in (1.3) when the time scale T, the source intensity M, and the maximal source rate
K tend jointly to co soas M = T?7,K = TP forsome 0 < y < 00,0 < 8 < oco. The
results of Theorems 4.1 and 4.2 are summarized in Tables 1 and 2, respectively. The workload
process in (1.6) featuring a power-law dependence between transmission rate and duration is
closely related to the random rectangles model with B = (0, 1]?, the last fact being reflected
in Tables 1 and 2, where most (but not all) of the limit processes can be linked to the scaling
limits in Figure 1 and where y, o are the same as in (1.4) and (1.5).

The rest of the paper is organized as follows. Section 2 contains rigorous formulations
(Theorems 2.1-2.5) of the asymptotic results pertaining to Figure 1. In Section 3 we discuss
the LRD properties and asymptotics of the covariance function of the random grain model.
In Section 4 we obtain limit distributions of the aggregated workload process in (1.6). All proofs
are relegated to Section 5.

Throughout, C stands for a generic positive constant which may assume different values at
various locations and whose precise value has no importance.

2. Scaling limits of the random grain model

We can write (1.2) as the stochastic integral

X(t,s) :/Rz . 1{((t —w)/r?, (s —v)/r'=P) € B}N(dudvdr), (t,s) e R? (2.1)
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with respect to a Poisson random measure N (du dvdr) on R? x R, with intensity measure
EN(dudvdr) = dudvF(dr). The integral in (2.1) is well defined and follows a Poisson
distribution with mean EX (¢, s) = Leb(B) fooo rF(dr). The RF X in (2.1) is stationary with
finite variance and covariance function

cov(X(0,0), X(t, 5))
= / Yu/rP, v/r'=P) e B, ((u —1)/r?, (v —s)/r'"P) € Bydu dvF(dr). (2.2)
RZxR4

Let
Ax  pAVy
Spy (X, ) :=/0 /0 (X(t,5) —EX(z,s)) dr ds 2.3)

AX Ay
:/ {/ / }1{((t—u)/r1’,(s—v)/r1—p) eB}dtds}ﬁ(dudvdr)
RZxR,; LJO 0

for (x, y) € R2, where ]V(du dvdr) = N(dudvdr) — EN(du dv dr) is the centered Poisson
random measure in (2.1). Recall the definition of y4, i.e.

1—p o |
V- = Y+ =——L
a—(1—p) p
In Theorems 2.1-2.5 we specify the limit RFs V,, and normalizations a;,, in (1.1) forall y > 0
and @ € (1,2), p € (0, 1) in Figure 1. Throughout this paper we assume that B is a bounded
Borel set whose boundary d B has zero Lebesgue measure, i.e. Leb(d B) = 0.
2.1. The y_ < y < y; case

For 1 < o < 2, we introduce an «-stable Lévy sheet
Lo(x,y) == Zo((0, x] x (0, yD, (x,y) eRY (2.4)

as a stochastic integral with respect to an a-stable random measure Z, (du dv) on R? with
control measure 0% du dv and skewness parameter 1, where the constant o is given in (5.5)
below. Thus, Eexp{ifZ,(A)} = exp{— Leb(A)a*|0|¥(1 —isgn(h)tan(wrx/2))}, 6 € R, for
any Borel set A C R? of finite Lebesgue measure Leb(A) < oo. Note EZ,(A) = 0.

Theorem 2.1. Lety_ <y < y4,l <a < 2. Then
AHO S (6, y) > Lo(x,y) ash — oo, (2.5)
where H(y) .= (1 + y)/a and L, is an a-stable Lévy sheet defined in (2.4).

22. They >y, 1<a<2—p,andy <y_,1 <a <1+ p, cases
Forl <o <2—-—pand1 < o < 1+ p we introduce the totally skewed stable Lévy
processes {L(y), y > 0} and {L_(x), x > 0} with respective stability indices a+ € (1,2)

defined as
o—p _a—1l+p

1-p ' p

and characteristic functions

Eexp{i0Ly (1)} = exp{—a("i|9|o‘i (1 — isgn(0) tan(m;i>> }, 0 € R, (2.6)

where 0%+ is given in (5.10) and 0%~ can be found by symmetry; see (5.1) below.
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Theorem 2.2. (i) Lety > y4+, | <a <2 — p. Then

)»_H(V)S)L,y(x, y) 2 xLi(y) as) — oo, 2.7
where H(y) =1+ y/ay and L is the a-stable Lévy process defined by (2.6).
(i) LetO <y <y_, 1l <a <14 p. Then

AW, L (x,y) 2 yL_(x) asi— oo,

where H(y) .=y + 1/a_ and L_ is the a_-stable Lévy process defined by (2.6).

23. They > y;,2—p<a<2andy <y_,1+ p <a <2,cases

A (standard) FBS By, n, with Hurst indices 0 < Hj, Hy < 1 is defined as a Gaussian
process with zero mean and covariance

EBHl,Hz(xla yl)BHl,Hz(xZa }’2)

2H; 2H;

2H, 2H
= 2O ™ = g — PO+ 93—y = P,

(xi,vi) € R%2, i = 1,2. The constants o and &, appearing in Theorems 2.3(i) and 2.4(i)
are defined in (5.14) and (5.16), respectively. The corresponding constants o_ and 6_ in
Theorems 2.3(ii) and 2.4(ii) can be found by symmetry (see (5.1)).

Theorem 2.3. (i) Lety > y4+,2 — p <o < 2. Then
)FH(V)SM,(x, y) Y o4 By, 12(x,y) asi— o0, (2.8)

where H(y) = Hy +vy/2,Hy =1/p—y1/2=Q2 —a+ p)/2p € (%, 1), and By, 12 is
an FBS with parameters (H, %).

(i) Lety <y—,1+p <a <2 Then
AiH(y)S}»,y(xa y) > o_Bipu_(x,y) asi— o0,

where H(y) = yH_ + %, H =1/0-p+{0—-p—a)/2(l —p) € (%, 1), and B1y2,1_
is an FBS with parameters (%, H_).

Theorem 2.4. (i) Lety > y4, o =2 — p. Then
AT og 1) TV28, , (x, y) &> G4 Brija(x, y) ash — oo, (2.9)

where H(y) = 1+ y /2, By,1,2 is an FBS with parameters (1, %).

(i) Lety <y_,a =1+ p. Then
AN log 1) 7V28, , (x, y) > G_Bijpi(x,y) ask — oo,

where H(y) =y + % and Bi21 is an FBS with parameters (%, 1).

https://doi.org/10.1017/jpr.2016.45 Published online by Cambridge University Press


https://doi.org/10.1017/jpr.2016.45

Anisotropic scaling of the random grain model 863

2.4. The y = p4 cases
Define ‘intermediate Poisson’ RFs I+ = {I+(x, y), (x,y) € Ri} as stochastic integrals

L(x,y) = / M (du dv dr) 1{((t —w)/r?,s/r'=P) € B}drds, (2.10)
Rx(0,y]xR4 0,x]xR

I_(x,y) = / M (du dvdr) 1{(t/r?, (s —v)/r'~P) € B}drds
(0,x]xRxR4 Rx(0,y]

with respect to the centered Poisson random measure M (dudvdr) = M(dudvdr)—EM (du dv
dr) on R? x R, with intensity measure EM (du dvdr) = crdu dor— 1+ gp,

Proposition 2.1. (i) The RF 14 in (2.10) is well defined for 1 < a < 2,0 < p < 1, and
E|IL(x, y)|? < ooforany0 < g < ayA2. Moreover, if2—p < a < 2thenE|I(x, y)|* < 00
and

EL (x1, y) I+ (x2, y2) = 01 EBy, 12(x1, y1) B, 12 (x2, y2), (i, y) eRE,i=1,2,
(2.11)
where o4, H are the same as in Theorem 2.3(i).

(ii) The RF 1_ in (2.10) is well defined for 1 <a < 2,0 < p < 1, and E|I_(x, y)|? < oo for
any 0 < g < a_ A 2. Moreover, if 1 + p < a < 2 then E|I_(x, y)|* < 00 and

E1_(x1, yDI-(x2, y2) = O'EEBl/Z,H,(xlv y)Bi, a_(x2, ¥2), (xi, yi) € Ri,i =12,
where o_, H_ are the same as in Theorem 2.3(ii).

Theorem 2.5. (i) Lety = y+, 1 < a < 2. Then
)L_H(V)Sk’y(x, y) > I4(x,y) asi— oo, (2.12)

where H(y) = 1/p and RF 1, is defined in (2.10).
(i) Lety =y_,1 <a < 2. Then

)»*H(V)S,\,y(x, y) Y I_(x,y) asi— o0,
where H(y) := y_/(1 — p) and RF 1_ is defined in (2.10).

Remark 2.1. The normalizing exponent H(y) = H(y, «, p) in Theorems 2.1-2.5 is a jointly
continuous (albeit nonanalytic) function of (y, &, p) € (0, co) x (1,2) x (0, 1).

Remark 2.2. Restriction « < 2 is crucial for our results. Indeed, if @ > 2 then for any
y > 0, p € (0, 1) the normalized integrals A’(”V)/sz,y(x, y) goBl/z,l/z(x, y) tend to a
classical Brownian sheet with variance 02 = Leb(B)? fooo r2 F(dr). We omit the proof of the
last result which follows a general scheme of the proofs in Section 5.

3. LRD properties of the random grain model

One of the most common definitions of the LRD property pertains to stationary random pro-
cesses with a nonsummable (nonintegrable) autocovariance function. In the case of anisotropic
RFs, the autocovariance function may decay at different rates in different directions, motivating
a more detailed classification of LRD as in Definition 3.1 below. In this section we also verify
these LRD properties for the random grain model in (1.2) and (1.3) and relate them to the
change of the scaling limits or the dichotomies in Figure 1; see Remark 3.1 below.
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Definition 3.1. Let Y = {Y(z,s), (t,s) € R?} be a stationary RF with finite variance and
nonnegative covariance function py (¢, s) := cov(Y (0, 0), Y (¢, s)) > 0. We say that:

(1) Y has a short-range dependence (SRD) property if fR2 oy (¢, s)dr ds < oo; otherwise we
say that Y has a long-range dependence (LRD) property;

(i1) Y has a vertical SRD property if ka’Q]Xpr (t,s)dtds < oo forany 0 < Q < oo;
otherwise we say that Y has a vertical LRD property;

(iii) Y has a horizontal SRD property if fo[—Q 01PY (t,s)dtds < ooforany 0 < Q < o0;
otherwise we say that Y has a horizontal LRD property.

The main result of this section is Theorem 3.1 providing the asymptotics of the covariance
function of the random grain model in (1.2) and (1.3) as |¢| + |s| — oo and enabling the
verification of its integrability properties in Definition 3.1. Let

w = (|t|VP 4 |s|VA=PYP  for (¢, 5) € R2.

For p = %, w is the Euclidean norm and (w, arccos(z /w)) are the polar coordinates of (¢, s) €
R2, s > 0. Introduce a function b(z), z € [—1, 1] by

00 o=
b =cr | Leb<3m(3+(rip,(l'rﬁ'#>>>r—adr, G.1)

playing the role of the ‘angular function’ in the asymptotics (3.2). For the random balls model
with p = % and B = {x + y% < 1}, b(z) is a constant function independent of z.

Theorem 3.1. Letl <o <2,0<p < 1.
(1) The function b(z) in (3.1) is bounded, continuous, and strictly positive on [—1, 1].
(ii) The covariance function p(t,s) = cov(X(0,0), X(¢,s)) in (2.2) has the following
asymptotics:

t
o(t,s) ~ b(m)w(“l)/” as |t| + |s| — oo. (3.2)
w

Theorem 3.1 implies the following bound for covariance function p(z, s) = cov(X (0, 0),
X(t,s)) of the random grain model: there exist Q > 0 and strictly positive constants 0 <
C_ < C4 < oo such that, for any [¢| + |s| > O,

C_(jt|MP 4 |s| /A== < (2, 5) < C(Jt]1/P 4 |5/ APy 1=e, (3.3)

The bounds in (3.3) together with the easy integrability properties of the function (J¢|!/? +
|s|/A=P)1=¢ on {|¢| 4 |s| > Q} imply the following corollary.

Corollary 3.1. The random grain model in (1.2) and (1.3) has
(i) the LRD property forany 1l <a <2, 0 < p < 1;

(i1) thevertical LRD propertyfor1 < a < 2— p andvertical SRD propertyfor2—p < a <2
andany 0 < p < 1;

(iii) the horizontal LRD property for 1 < a < 1+ p and horizontal SRD property for
l+p<a<2andany0 < p < 1.
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Remark 3.1. The above corollary indicates that the dichotomy at « = 2 — p in Figure 1,
region y > y, is related to the change from the vertical LRD to the vertical SRD property in
the random grain model. Similarly, the dichotomy at « = 1 + p in Figure 1, region y < yy is
related to the change from the horizontal LRD to the horizontal SRD property.

Puplinskaité and Surgailis [21] introduced a type-I distributional LRD property for a RF Y
with two-dimensional ‘time’ in terms of dependence properties of rectangular increments of V,,,
y > 0. TheincrementofaRFV = {V (x, y), (x,y) € Ri}onrectangleK = (u,x]x(,y] C
Ri is defined as the double difference V(K) = V(x,y) — V(u,y) — V(x,v) + V(u, v).
Let ¢ C R? be a line, (0, 0) € £. According to [21, Definition 2.2], a RF

V ={V(x,y), (x,y) e R}}
is said to have

(i) independent rectangular increments in direction £ if V(K) and V (K’) are independent
for any two rectangles K, K’ C R%r which are separated by an orthogonal line ¢’ L ¢;

(i) invariant rectangular increments in direction £ if V(K) = V(K') for any two rectangles
K, K’ such that K’ = (x, y) + K for some (x, y) € ¢;

(iii) properly dependent rectangular increments if V has neither independent nor invariant
increments in arbitrary direction £.

Further on, a stationary RF Y on 72 is said to have type-I distributional LRD [21, Defi-
nition 2.4] if there exists a unique point yp > 0 such that its scaling limit V,, has properly
dependent rectangular increments while all other scaling limits V),, ¥ # yo have either inde-
pendent or invariant rectangular increments in some direction £ = £(y). The above definition
trivially extends to a RF ¥ on R?.

We end this section with the observation that all scaling limits of the random grain model
in (1.2) and (1.3) in Theorems 2.1-2.5 have either independent or invariant rectangular
increments in the direction of one or both coordinate axes. This last fact is immediate
from stochastic integral representations in (2.4), (2.10), the covariance function of FBS with
Hurst indices Hy, Hy equal to 1 or % (see also [21, Example 2.3]) and the limit RFs in (2.7).
‘We conclude that the random grain model in (1.2) and (1.3) does not have type-I distributional
LRD in contrast to Gaussian and other classes of LRD RFs discussed in [21] and [20]. This last
conclusion is not surprising since similar facts about scaling limits of heavy-tailed duration
models with one-dimensional time are well known; see, e.g. [13].

4. Limit distributions of an aggregated workload process

We write the accumulated workload in (1.6) as the integral

Tx
Ay k(Tx) = f {(rl_p A K)/ Tu<t<u +rp}dt}N(du dvdr), (4.1)
0

Rx(0,M]xR4

where N (du dv dr) is the same Poisson random measure on R? x R4 with intensity EN (du
dvdr) = dudvF(dr) as in (1.2). We assume that F'(dr) has a density f(r) satisfying (1.3)
with 1 < @ < 2 asin Section 2. We let p € (0, 1] in (4.1) and, thus, the parameter may take
value p = 1 as well. We assume that K and M grow with T in such a way that

M=TY, K=T1"F forsome 0 <y <00, 0 < B < 0.
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We are interested in the limit distribution
b;l(AM,K(Tx) —EAy xk(Tx)) 2 A(x) asT — oo, 4.2)

where by = b7, g — 00 is a normalization.
Recall from (1.4) and (1.5) the definitions

o o —p
Y+ =——1 o = .
P l—p
For p = 1, let o4 = oco. By assumption (1.3), transmission durations Rip,i € Z have a

heavy-tailed distribution with tail parameter «/p > 1. Following the terminology in [7], [9],
[10], and [16], the regions y < y4+ and y > y4 will be respectively referred to as the slow
connection rate and the fast connection rate. For each of these ‘regimes’, Theorems 4.1 and 4.2
detail the limit processes and normalizations in (4.2) depending on parameters $, o, p.

The RFs defined in Section 2 reappear in Theorems 4.1 and 4.2 for the certain grain set;
namely, the unit square B = (0, 172. Recall that a homogeneous Lévy process {L(x), x > 0}
is completely specified by its characteristic function Eexp{if@L(1)}, 6 € R. A (standard) frac-
tional Brownian motion with Hurst parameter H € (0, 1] is a Gaussian process { By (x), x > 0}
with zero mean and covariance function (%)(sz +y2H —x —y2Hy x, y > 0.

Theorem 4.1. (Slow connection rate.) Let 0 < y < y4. The convergence in (4.2) holds with
the limit A and normalization by = T? specified in (1)—(iii) below.

1) Let (1 +y)(1 —p) <af <oo. Then # = (1 + y)/a and A = {Ly(x, 1), x > 0} is
an «a-stable Lévy process defined by (2.4).

() LetO < af < (1 +py)(I —p)and 1 < o < 2p. Then # =B+ (1 + y)p/a and
A = {Lg/p(x), x > 0} is an (a/p)-stable Lévy process with characteristic function
given by (5.20).

(i) Let O <aB < (1 +y)d —p)and 1 V2p < o < 2. Then H = (%)(1 +y+ 82—
a)/(1 — p)) and A := {o1B(x), x > 0} is a Brownian motion with variance 012 given
by (5.21).

Theorem 4.2. (Fast connection rate.) Let v+ < y < 00. The convergence in (4.2) holds with
the limit A and normalization by = T specified in (1)—(v) below.

(1) Let0 < ayB <yrandl <o <2p. Then H .= H+B+y/2and A = {02 By (x), x >
0} is a fractional Brownian motion with H = (3 — «/p)/2 and variance 0'22 given by
(5.22).

(i) Let 0 < a4B < yrand 1 vV2p < o < 2. Then H and A are the same as in
Theorem 4.1(iii).

(iii) Letyy <ayB <yandl <o <2—p. Then H = 1+(%)()/ +BR—a—p)/(1—p))
and A = {xZ, x > 0} is a Gaussian line with random slope Z ~ N (0, 032) and 632
given in (5.23).

(iv) Lety <ayf <oocandl <a <2—p. Then # = 1+y/asr and A = {xLi(1), x >
0} is an a4 -stable line with random slope L (1) having o -stable distribution defined
by (2.6).
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V) Let yy < a4 <ocand2 —p < o < 2. Then # = Hy + y/2 and A =
{0+ By, 1/2(x, 1), x > 0} is a fractional Brownian motion with H = H, = 2 —a +
p)/2p and variance 0_% given by (5.14).

Remark 4.1. For y = y; we have (1 + y)(1 — p)/a = y4+/ay = (1 — p)/p. A complete
description of limit workload processes in (4.2) for all values 1 < o < 2,0 < p < 1 and
0 <y < 00,0 < B < ooincluding the case of intermediate connection rate y = y4 can be
found in the extended version of this paper [18]. Apart from the classical Gaussian and stable
limit processes given in Theorems 4.1 and 4.2, this description includes some ‘intermediate’
infinitely divisible processes given by stochastic integrals with respect to Poisson or Gaussian
random measures, in particular, the intermediate process discussed in [8] and [9].

Remark 4.2. Note that p = 1 implies that y; = o — 1. In this case, Theorem 4.1 reduces
to the «-stable limit in (i), whereas Theorem 4.2 reduces to the fractional Brownian motion
limit in (v) discussed in [16] and other papers. A similar dichotomy appears for 8 close
to 0 and 1 < « < 2p with the difference that o is now replaced by «/p. Intuitively, it
can be explained as follows. For small § > 0, the workload process Wy x (¢) in (1.6) be-
haves like a constant rate process K y ., 1{x; <t < x; + Rf , 0 < y; < M} with transmission
lengths Rip that are independent and identically distributed and follow the same distribution
IP’(Rip >r)=P(R; > ri/P) ~ (cf/a)r_(“/p), r — oo with tail parameter 1 < «a/p < 2.
Therefore, for small 8 our results agree with [16], including the Gaussian limit in Theo-
rems 4.1(iii) and 4.2(ii) arising when the Rf have finite variance.

Remark 4.3. As it follows from the proof, the random line limits in Theorem 4.2(iii) and 4.2(iv)
are caused by extremely long sessions starting in the past at times x; < O and lasting Rip =
O(T*PIv+), vy, < ayf < y or Rip = O(TY/"™), yy < y < agp, respectively, so that
typically these sessions end at times x; + Rip >T.

5. Proofs

5.1. Proofs of Sections 2 and 3
Let

X*(t,s) = / 1{((t —w)/r'=P, (s —v)/rP) € B*}N(dudvdr), (t,5) € R?,
RZxR4

be a ‘reflected’ version of (2.1), with B replaced by B* = {(u,v) € R?: (v,u) € B}, p
replaced by 1 — p and the same Poisson random measure N (du dvdr) as in (2.1). Let

Aex pALEy
o= [ [T @y B e, e e

be the corresponding partial integral in (2.3). If A,, y, arerelatedto X, y as k., =AY,y = 1/y
then

S5 (X)) Z S, (x. ) (.1)

holds by the symmetry property of the Poisson random measure. As noted in the introduction,
(5.1) allows us to reduce the limits of S ,(x,y) as A — oo and y < y_ to the limits of
SL’V* (y,x) as Ay — oo and yx > vy = /(1 — p) — 1. As a consequence, the proofs of
parts (ii) of Theorems 2.2-2.5 can be omitted since they can be deduced from parts (i) of the
corresponding statements.
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The convergence of normalized partial integrals in (1.1) is equivalent to the convergence of
characteristic functions, i.e.

m

m
]Eexp{ia;; ZG,‘S)L,V()C,‘, yi)} — Eexp{izei Vy (xi, yi)} as A — 00 (5.2)
i=1

i=1

forallm =1,2,...,(x;, yi) € Ri, 0; e R,i =1,...,m. We restrict the proof of (5.2) to a
one-dimensional convergence form = 1, (x, y) € Ri only. The general case of (5.2) follows
analogously. We have

Wiy (0) =log Eexplifa; ), S , (x, y)}

0 Ax o pAYy
_ / qf(— / f 1 — )/ (s — v)/r'=P)
R2xRy ary Jo 0

€ B}dr ds) du dvf(r)dr, (5.3)

where W (z) := exp(iz) — 1 — iz, z € R. We shall use the following inequality:

Z2
[W(z)| < rnin<2|z|, 7), zeR. (5.4)
Proof of Theorem 2.1. In the integrals on the right-hand side of (5.3) we change the vari-
ables, i.e.
t p— —
! — 1, i — S, u— Au, v—>)»”v, r_>)\H()/)r_
rp rl=p

This yields W, ,, (6) = fooo gr(r) f.(r) dr, where
Fulr) = AHOHO) pGHM =0 3 o
according to (1.3), and
g (r) = /Rz W(@h)(u,v,r))dudv,

hy(u,v,r) = r/ 1{0<u+2""Pr<x,0<v+Ar"%2r7P5 < y}drds,
B

where the exponents §; ;=1 —H(y)p = (4 —y)/(A1+y.) >0,8 =y —H(y)(1—p) =
(y —y-)/(d+y-) > 0. Clearly,

hy(u,v,r) > Leb(B)r1{0 <u <x,0<v <y}, A — 00
for any fixed (u, v,r) € R? x Ri,u ¢ {0, x},v & {0, y}, implying
g.(r) — xyW (@ Leb(B)r) foranyr > 0.

Since we have fRz hy(u, v, r)dudv= xyr Leb(B) and h, (u, v, r) <Cr,the dominating bound
|g,.(r)| < C min(r, r?) follows by (5.4). Whence and from Lemma 5.1, we conclude that

o0
Wiy (0) — W, (0) = xycff (exp(i6 Leb(B)r) — 1 — i Leb(B)r)r— 1+ dr.
0
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It remains to verify that

W, (0) = —xya“|0|°‘(l — isgn(@)tan(?)) = logEexp{if Ly (x, ¥)},

Where Leb(B)* H)I'2
o ¢y Leb(B)* cos(ma/2)I'( Ot)' 5.5)
a(l —a)
This proves the one-dimensional convergence in (2.5) and Theorem 2.1, too. U

Proof of Theorem 2.2. In (5.3), change the variables as follows:

t — At, s —v — AU=pr/e=pg

u — APv/e=nry v — AV, F— AY/@p)y, (5.6)
This yields W, ,, (8) = fooo g, (r) fo.(r)dr, where
fo(r) = A0Fv/@=p) g r/@=plpy oo pm(F) 5 s o0 (5.7)

and g, (r) = [g2 W(Ohy(u, v, r)) dudv with
s (u, v, r) :=/ dt/ 1{(A —u)/rP,s/r'"P) € BY1{0 < v+ 27%5 < y}ds, (5.8)
0 R

where §; = py/(a —p)—1 = (y —y)/v+ > 0and &, = y(a — )/(e — p) > 0.
Let B(u) = {v € R: (u, v) € B} and write Leb; (A) for the Lebesgue measure of aset A C R.
By the dominated convergence theorem,

hy(u, v, r) = h(u,v,r)

=x1{0<v < y}/ 1{(—u/rP,s/r'=P) € B}ds (5.9)
R

=x1{0 <v < y}r' 7P Leb, <B<_—Z>>
,

for any (u,v,r) € R? x R4, v € {0, y}, implying
a(r) — gr) = / W Oh(u,v,r))dudv = yrp/ W (@xr'~P Leby (B(u))) du
R? R
forany r > 0. Indeed, since B is bounded, for fixed r > 0 the function (u, v) — hj (u, v, r) has
a bounded support uniformly in A > 1. Therefore, it is easy to verify the domination criterion
for the above convergence. Combining 4, (1, v,r) < Crl=P with fRZ hy(u,v,r)dudv =

xyr Leb(B) gives |g,(r)| < C min(r, r>~7) by (5.4). Hence, and by Lemma 5.1, W, (0) —
W,(0) =cy f0°° g(ryr~ 4+ dp. By a change of variable, the last integral can be written as

o0
W, () = cryx®+(1—p)~! / Leb; (Bu))*+ du/ (exp(ifw) — 1 — iBw)w~1+*+) dw
R 0

= —(yx)o 9|+ (1 —isgn(0) tan(m;_ ))

= log Eexp{ifx Ly (y)},

https://doi.org/10.1017/jpr.2016.45 Published online by Cambridge University Press


https://doi.org/10.1017/jpr.2016.45

870 V. PILIPAUSKAITE AND D. SURGAILIS

where re ) cos( 2)
o = & @) cosar/2) [ 4 By du, (5.10)
(d=pod—ay) Jr
thus completing the proof of the one-dimensional convergence in (2.7). |

Proof of Theorem 2.3. In (5.3), change the variables as follows:
t — Af, s —v— APl u— A, v— AV, r— AYPr (5.11)

We have W;_,, (0) = [5° g,.(r) f.(r) dr, where f;.(r) i= 2(0+@/P £ 1Py,
§.(r) = / AHO=UD g PV P=H (0, 7)) du dv, (5.12)
RZ

with

ha(u, v, r) = /x dzf 1{0 < v+ 17% < y}1{((t —w)/r?,s/r'"P) € B}ds
0 R

—-1{0<v <y}/)C dt/ 1{((t —w)/r?, s/r'=P) € B}ds
0 R

X [ —
=1{0<v< y}rlfp/ Leb1<B< u)) dr
0 rp

=:h(u,v,r) asi— o0 (5.13)

forall (u, v,r) € RZXR+, v ¢ {0, y},sinceé := 1+y—(1/p) > 0.Notethat2(H(y)—1/p) =
y — v+ > 0 and, hence,

2

B2HO=P g 03,0/ =HO (0 0. 1)) > — (9

7>h2(u,v,r), A — 0.

Next, by the dominated convergence theorem
92
) — glr) = —?/ h*(u,v,r)dudv forany r > 0.
R2

Using fR2 hy(u,v,r)dudv = xyLeb(B)r and h) (u, v,r) < Cmin(r'=7,r) similarly as in
the proof of Theorem 2.2, we obtain |g, (r)| < CfRZ hi(u, v,r)dudv < Cmin(r> 7, r?).
Then, by Lemma 5.1,

00 92
Wiy (0) = W, (0) = Cf/ g(ryr~ I dr = —(7>642rx2H+y,
0

o 1 t—u 2
ol = cffRdufo (/0 Leb1<B< — )) dt) rl=e=2rdr, (5.14)

where the last integral converges. (Indeed, since u +— Lebi(B(u)) = f 1{(u,v) € B}dv
is a bounded function with compact support, the inner integral in (5.14) does not exceed
C( A rP)1{jul < K(1+rP)} for some C,K > 0 implying o < C [;°(1 A rP)?(1 +
rP)rl=@=2Pdr < oo since 2 — p < a < 2.) This ends the proof of the one-dimensional
convergence in (2.8). Theorem 2.3 is proved. ]

where
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Proof of Theorem 2.4. After the same change of variables as in (5.6), i.e.
t — At, s —v— A%, u — APv2=py, v— A, r— A=)y
we obtain W, ,,(6) = fooo g, (r) fo.(r) dr with f,(r) as in (5.7), and

g.(r) = /Rz WO ogr) " 2h; (u, v, r)) dudv,

where

hy(u, v, r) = /OX dt/Rl{((,\—alz —u)/rP,s/r'7P) € B}1{0 < v+ A"%s < y}ds,
81 =py/2(1—p)—1=(y —y4)/y+ > 0,and 62 := y /2 > 0 are the same as in (5.8). Then

hy(u,v,r) = h(u,v,r) =x1{0<v < y}/Rl{(—u/rp,s/rlfp) € B} ds;

see (5.9). Below we prove that the main contribution to the limit of W), , () comes from the
interval A "%/P < < 1; namely, that W), ,, () — Wf’y(e) — 0, where

1
Wy (6) = / g (r) fr(r) dr (5.15)
A81/p
N—ﬁ °f /l dr / hz(u,v,r)dudv
2 logk A01/p r3=p R2
92 2 2 1 : 1
= —— J Leby (B d —d
ey /R( eby(B())) ulogk/rs]/pr r
02 _
:—?af_)ﬁy
=: W, (),

where
~2 . Cf(V —¥+)
0y = —F———
2(1 - p)
and where we used the fact that

Leb(B N (B + (0, u))) du, (5.16)
R

/ W, v, r)dudv = x?yr?=? / Leb; (B(u))?> du = x2yr*>~P / Leb(BN(B+(0, u))) du.
R2 R R

Accordingly, write W, ,, (6) = W)?! y(9) + W): v ) + WI y (0), where

A%1/p 00
Wi, ©) = /O g (N fu(rydr and Wi (6) = /1 81(r) fu(r)dr

are the remainder terms. Indeed, using (5.4),

/hx(u,v,r)dudvzxereb(B), and hy(u,v,r) < CAOr) AriTP, (5.17)
RZ
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it follows that

W (0)] < ¢ v hy (u, v, r)dudv = O((log1)~'7%) = 0(1).
Ay
’ (10 1 R2

gk)l/z r3-r
Similarly,
C}\.dl Ao1/p
IW;y(0)| < 1 / rfx(r)dr/ h)(u,v,r)dudv
’ ogX Jo R2
C)JS‘ Ao1/p
< [ Proa
0
C Ar
- Alog X /0 rfrdr
= 0((log)™")
= o(1),

since §1 = py/2(1 — p) — 1.
Consider the main term W)?’ y(G) in (5.15). Let

- 92 1
Wi, (0) = — d h2(u, v, r)dudv.
2,y (0) 2logk/ﬁ|/p fa(r) V/Rz s(u,v,r)dudv

Then using (5.17) and | ¥ (z) + z2/2| < |z|/6, we obtain
1

~ C

wo @) =W, ,(0)] < ————

W3y ) = Wiy O] = o /M/p
C

1
- 3-2p
= og )2 /H./p r L dr

1
< _c f r Pdr
= (log1)32 Jo

= O((logn)™/?)
=o0(1).

2720 £ () dr / o e, v, 1) du do
RZ

Finally, it remains to estimate the difference |VAI7M, ©) — W, (0)] < C(J, + J)), where

1 1
J = / fk(r)dr/ |h2 (u, v, r) — h*(u, v, )| du dv,
log A J;-s1/p R2

1 1
JI / r2P I fu(r) — cprP T3 dr

rT log A J;—-s1/p
Let
ho(u, v, r) = x/ 1{(—u/r?,s/r'"P) € B}1{0 < v+ 1"%5 < y}ds.
R

Then J; < J;, + J;,, where

1
J = (logk)_lj fk(r)drf \h2 (u, v, r) — h3(u, v, r)| du dv
A—61/p R2
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and .
I, = (1ogx)*‘/ f,\(r)dr/ |h2 (u, v, r) — h%(u, v, r)] du dv.
A01/p R2

Using the fact that B is a bounded set with Leb(d B) = 0, we obtain
/ |hy(u, v, r) — E;L(u, v, r)|dudv
R2
X
< yr/ dt/ | 1{(x"%¢/rP —u,s) € B} —1{(—u, s) € B}|duds
0 R?

1
<re .
N ()\’SIrp>

yhere €(z), z = 0 is a bounded function with lim,_,o e(z) = 0. We also have &, (1, v,r) +
hy(u,v,r) < Cr'=P as in (5.17). Using these bounds together with f3(r) < CrP=3,r >
A79/P we obtain

1 1
1
/ —1 _ —1 _
Jylogh < C/ 8<)L51r1’>r dr = C/)\ e(z)z7 dz =o(logl),

A%1/p =31

proving J;; — 0 as A — oo. In a similar way, using
/|E;L(u,v,r)—h(u,v,r)|dudv
R2
< xr/ 1{(—u,s) e B}|1{0 < v R vy} —1{0 <v < y}|dudvds
R3
< Cr¥ryh,

we obtain J;, log A < Ccr % fol r P dr = O(L"%), proving J;, — 0 and, hence, J; — 0.
Finally,
o
Ji' = (log 1)~ /1/ r2PIF(r) —cprP 3 dr — 0
Al/p
follows from (1.3). This proves the limit lim; . Wy, (0) = W, (0) = —(92/2)5erx2y for
any 6 € R, or one-dimensional convergence in (2.9). Theorem 2.4 is proved. |

Proof of Proposition 2.1. (i) We use well-known properties of Poisson stochastic integrals
and [17, Equation (3.3)]. Accordingly, I (x, y) is well defined and satisfies E|/4 (x, y)|? <
2J4(x,y) (1 < g < 2) provided that

o0
Jg(x,y) = cf/ p (140 dr/ dudv
0 Rx(0,y]

oo
:ny/ pa=p)=(+e) dr[ du
0 R

< Q.

q

/ 1{((t —u)/r?,s/r'"P) € B}drds
(0,x]xR

Leb;( B dr
0 rp

Split J, (x, y) = ny[fo1 dr + floo] <o-dr =t cyy[J' 4+ J"]. Then

o0 oo
J' < C/ rd(d=p)=(+o) dr/l {lul < CrP}du < c/ pd1=P=(+a+p gr < 00
1 1
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provided that ¢ < (@ — p)/(1 — p). Similarly,

1 q 1
J < C/ pa(=p)=(1+a) g, < C/ 1= =+ +ap g~ o
0 0

/1{|t| < CrP}de

provided that « < ¢g. Note that ¢ < (¢ — p)/(1 — p) < 2forl < @ < 2 — p and
(¢ —p)/(1—p)>2for2 — p < a < 2. Equation (2.11) follows from (2.8) and J>(x, y) =
o2 yx2H+ by a change of variables.

(i1) The proof is analogous. ]

Proof of Theorem 2.5. Using the change of variables as in (5.11), we obtain Wy ,, (0) =
fooo g, (r) fo.(r) dr with the same f,(r), g»(r) as in (5.12) and &, (u, v, r) satisfying (5.13).
(Note that H(y) = H(y+) = 1/p; hence, A )=01/P) = 1 in the definition of g, (r) in
(5.12).) In particular, ¥ (6h, (4, v,r)) = V(@h(u,v,r)) for any (4, v,r) € RZx R ,v ¢
{0, y}. Then g) (r) — g(r) := fRZ W(Oh(u, v, r)) du dv follows by the dominated convergence
theorem. Using fRz hy(u,v,r)dudv = xyr Leb(B) and h (u, v, r) < Cr weobtain |g, (r)| <
C min(r, r2) and, hence,

o0
WM,(O)—>/ g(r)r 19 dr = logEexp{if 1, (x, y)},
0

proving the one-dimensional convergence in (2.12). (|

Proof of Theorem 3.1. (i) Write D, (x,y) = {(u,v) € R2: (u — 024+ (v — y)2 < rz}
for a ball in R? centered at (x, y) and having radius r. Recall that B is bounded. Note that
inf,e—1.1)(|zl/rP + (1 — |z|V/P=)I=P/p1=P) > comin(r—P, r~(1=P)) for some constant
co > 0. Therefore, there exists ro > 0 such that for all 0 < r < rp the intersection B, , =
BN (B+ (z/r?, (1 — |z|]//P)!=P/r1=P)) = @ in (3.1). Hence, b(z) < C < 0o uniformly in
ze[-1,1].

Let (x,y) € B\ dB. Then Dy.(x,y) C B for all r < rg and some ro > 0. If we
translate B by distance ro at most, the translated set still contains the ball D,,(x, y). Since
sup,cr—1 1y(zl/r? + (1 — 1z|1/PY1=P /p1=P) < 2max(r—P, r~1=P)), there exists r; > 0 for
which inf, ., Leb(B; ) > nrg, proving inf;¢[—1,116(z) > 0. The continuity of b(z) follows
from the above argument and the continuity of the mapping z — Leb(B;,): [-1,1] - R4
for each r > 0.

(i) Let s > 0. In the integral (2.2) we change the variables, i.e. u — rfu,v — r1=Py, and
r — wl/Pr. Then

oo
p(t,s) =w @D/ fo Leb(Bt/u,r) fu(r)r dr,
where f,, (r) = w1TO/P f(w!/Pry — cpr=1+® 1y — oco. Then (3.2) follows by Lemma 5.1

and the aforementioned properties of Leb(B; /). O

In this paper we often use the following lemma which is a version of [11, Lemma 2] or [3,
Lemma 2.4]. The proof of Lemma 5.1 can be found in the extended version of this paper [18].

Lemma 5.1. Let F be a probability distribution that has a density function f satisfying (1.3).
Set f,.(r) == A f(Ar) for . > 1. Assume that g and g, are measurable functions on R
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such that g, (r) — g(r) as . — oo for all r > 0 and such that |g, (r)| < C(rPv A rP2) holds
forallr > 0 and some 0 < By < a < Bo, where C does not depend on r, . Then

o] o
/ o) falr)dr — Cf/ gr 19 dr gsx — oo
0 0
5.2. Proofs of Section 4
Proof of Theorem 4.1. We have
Wr,y.p0) = IOgEeXp{iQT_’;((AM,K(Tx) —EAp k(Tx))}

Tx
= TV/ \p(eT—"’(rl—P A Tﬁ)f Mu<t<u+ r”}dt) duf(r)dr,
RxR, 0
(5.18)
where W(z) = exp(iz) — 1 — iz, z € R as in Section 5.1.
@ Let0O<p<1,61=8—0+y)—p)/a>0,8:=1—(1+y)p/a > 0. Using the

change of variables (t — u)/r? — t,u — Tu,and r — TUH7)/%r in (5.18), we obtain

Wry.p0) = /0 gr(r) fr(r)dr, (5.19)

where fr(r) = TUFTOU+V)/e ppU+y)/epy and

gr(r) :=f WOFP ATY)rPhy(u, r))) du,
R

where '
hr(u,r) ::/ 1{0 < u+ T7%2rPr < x}dt — 1{0 < u < x}
0
for fixed (u,7) € R x Ry, u & {0,x}. Hence, gr(r) — g(r) := xW(6r) follows by
the dominated convergence theorem. The bound |g7(r)| < C min(r, r2) follows from
(5.4) and thT(u, r)du = x with hy(u, r) < 1. Finally, by Lemma 5.1, Wr ,, s(0) —

xer [oo WOr)r~ 11 dr = log Eexpl{if Ly (x, 1)}, proving (i) for 0 < p < 1. The
p = 1 case follows similarly.

(ii) By the same change of variables as in (i), we obtain W7z ,, g(6) as in (5.19), where

gr(r) = / WOT ") A DrPhy (u, 1)) du,
R
where &1, fr(r), and hr(u, r) are the same as in (5.19) except that now §; < 0. Next,
gr(r) — xW(6r?) by the dominated convergence theorem, while g7 ()| < C min(r?,
r?P) follows by (5.4) and [ min(hy (u, r), h%(u,r))du < C. Then
o
Wr.y.50) — W, (0) = xcf/ W(@rPyr~1F® gr
0

follows by Lemma 5.1. To finish the proof of (ii) it suffices to check that

re- ) o .
W, 4(0) = —xﬁ cos(%)lm /P<1 —1sgn(9)tan<%>> (5.20)

=: logEexp{if Ly, p(x)}.
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(iii)) Denote 61 :=14+y —aB/(1—p) > 0and §; := 1 — pB/(1 — p) > 0. Then by a change
of variables, i.e. (t —u)/r? — t,u —> Tu,r — TA/A=P)y we write Wr,y.p(0) as in
(5.19), where

fT(r) = T(l"rol)ﬂ/(l—p)f(Tﬁ/(l_p)r)
g1 = ./ T @OT V2 =P A )rPhy(u, 1)) du
R

with hr (u, r) = fol 1{0 < u+ T %2rPt < x}dt - 1{0 < u < x}. Then

92
gr(r) — —E(rl_p A 1D2r2Px

by the dominated convergence theorem using the bounds |W(z)| < z%/2, z € R, and
hr(u,r) <1{—rP < u < x}. Moreover, |g7(r)| < C min(r??, r?) holds in view of

/ hzT(u,r)du < C.
R

Using Lemma 5.1, we obtain

92 o0 92
Wr.p 50) — —<7>xcf/ (rlfp A D224 g —<?>012x,
0

where 2(1
012 — _2esd-p) (5.21)
2 —a)(@—2p)
since max(1,2p) < o < 2.
This proves (iii) and Theorem 4.1, too. O

Proof of Theorem 4.2. (i) Denote §; =14y —a/p=y —y+ >0anddr :=(1—p)/p—
B > 0. By changing the variables in (5.3), i.e.t — Tt,u — Tu,r — TYPr, we write
Wr,y.5(0) asin (5.19), where fr(r) == T/ £(T1/Pr) and

gr(r) = / T OT V(TP Py A Dh(u, r)) du
R

with h(u, r) = f(;‘ 1{u <t <u+rP}dt. The dominated convergence gr(r) — g(r) =
—(62/2) [ h*(u, ) du follows by (5.4). The latter combined with

/ W (u, r)du < Cmin(l,r”)/ h(u, r)du < Cmin(r?, r?P)
R R

gives the bound |gr(r)| < C min(r?, r2P). Finally, by Lemma 5.1, W7, g(6) —
—(6%/2)03x*" | where

1 2
dud
a%::q%lé R(f() 1{u<t<u+r‘"}dt> :L_:
X

_ 2¢s , (5.22)
a2 —a/p)B—a/p)a/p—1)

proving (i).
(i1) The proof is the same as that of Theorem 4.1(iii).
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(iii) Let 6; == y —a4B > 0 and 6, = a4+ B/y+ — 1 > 0. By a change of variables, i.e.
t — Tt,u — TPP/A=Py r — TA/(A=P)r we obtain (5.19) with

fr(r) = T(1+Ol)ﬂ/(1*1?)f(Tﬁ/(lfp)r)

and
gr(r) ::/ TOw@OT 120" =P A Dy (u, r)) du,
R

with by (u, r) = fg 1{0 < (T7%t —u)/r? < 1}dt — h(u,r) = x 1{—rP < u < 0}. Then
(5.4) and hzT(u, r) < x1{—r? < u < 1} justify the dominated convergence

92
gr(r) — —?(rl_p A 1)2rpx2.

By (5.4) and
/haT(u,r)du < C/th(u,r)du < Crb,

we have |g7 ()| < C min(r?, r>=P). Finally, by Lemma 5.1

92 0 92
Wr.yp(0) — —(j)xch/o TP A2 PO g = —(7)x2032

with
,_ 2,(-p)

= , 5.23
BT 2 p—w@-p 629

proving (iii).
@iv) Denote §; == B — y /a4 > 0 and 62 := y/y+ — 1 > 0. By a change of variables, i.e.
t —> Tt,u — TV/Vvu, r — TY/V+Pr we obtain (5.19) with
fr@r) =TIl f(TrIvePe) () = / WO P AT by (u, 1)) du,
R
where

X
hr(u,r) :=/ 1{u<T 2 <u+rP}dt = h(u,r) =x1{—r" <u <0}
0

Then

er(r) — g(r) ::/ W Oxr' P 1{—r? <u < 0})du,
R
o0
Wry5(6) — ¢ / 2=+ dr — log Eexpli6x L, (1)}
0

similarly to the proof of Theorem 2.2(ii).

(v) We follow the proof of (i). By the same change of variables, we obtain (5.19) with

gr(r) :=/ TOw@OT 21" A T2 h(u, r)) du,
R
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and the same h(u,r), 51 > 0,8, < 0 and fr(r) as in (i). Then

2
gr(r) — gr) = —(9—> / rz(l_p)h2(u, r)du
2 ) Jr

00 92
Wr,y.p0) — Cf/ g(rr 1+ qp = —<?)Uix2H+
0

similarly to the proof of Theorem 2.3(i). The proof of Theorem 4.2 is complete. (]
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