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Velocity distribution functions which feature extended tails with power-law dependence
have been consistently observed in the solar wind environment and are frequently
modelled by the so-called Kappa distributions. Different forms of Kappa distributions
are commonly employed in analytical studies, and despite their similarities, they
can produce different effects on the dispersion properties that occur in a plasma. We
consider two different and widely used forms of Kappa distributions, in both isotropic
and anisotropic cases, and systematically discuss their effects on the dispersion
relations of Langmuir and ion-sound waves. It is shown that in the case of Langmuir
waves, one of the forms leads to the expression for the Bohm–Gross dispersion
relation, valid for plasmas with Maxwellian velocity distributions, while the other
form of Kappa functions leads to a dispersion relation with significant difference
regarding the Maxwellian case, particularly in the case of small values of the kappa
index. For ion-sound waves, the dispersion relations obtained with the different forms
of Kappa distributions are different among themselves, and also different from the
Maxwellian case, with difference which increases for small values of the kappa
index. Some results obtained from numerical solution of the dispersion relations are
presented, which illustrate the magnitude of the perceived differences. Some results
obtained with relativistic particle-in-cell simulations are also presented, which allow
the comparison between the dispersion relations obtained from analytical calculations
and the frequency–wavelength distribution of wave fluctuations which are observed
in numerical experiments.
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1. Introduction
Observations made in the space environment consistently show plasma particles

with velocity distributions that have non-thermal tails, and frequently with anisotropies
which are not well described by Maxwellian distributions or bi-Maxwellian distribut-
ions. These observed non-thermal features are usually described by distributions
featuring power-law tails, which are generically known as Kappa distributions
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(Olbert 1968; Vasyliunas 1968; Summers & Thorne 1991; Mace & Hellberg 1995;
Leubner & Schupfer 2000, 2001; Leubner 2002, 2004).

It is common knowledge that Kappa distributions have been introduced to describe
non-thermal features of velocity distributions in the pioneering works by Olbert (1968)
and Vasyliunas (1968), but are nowadays written in terms of different mathematical
distributions. Isotropic Kappa distributions are usually written in terms of two
different forms, one which can be found in Summers & Thorne (1991), Mace &
Hellberg (1995), and the other which can be found in Leubner (2002, 2004). These
two different forms of Kappa distributions have been used by the plasma physics
community, and have been the subject of a number of theoretical discussion in
recent years (Hellberg et al. 2009; Hapgood et al. 2011; Livadiotis & McComas
2013; Livadiotis 2015). Anisotropic particle distributions can also have extended
non-thermal features, which are also usually described in terms of two different
forms. In one of these forms, which is known as a bi-Kappa distribution (BK), the
anisotropy is associated with parameters related to the temperature, with a single
kappa index (Leubner & Schupfer 2000, 2001; Lazar & Poedts 2009a,b; Lazar,
Poedts & Schlickeiser 2011; Lazar 2012; Lazar & Poedts 2014). In the second form,
which is known as product-bi-Kappa distribution (PBK), anisotropic kappa indexes
are introduced, in addition to anisotropic temperature parameters (Lazar et al. 2012;
Lazar & Poedts 2014; dos Santos, Ziebell & Gaelzer 2014, 2015, 2016).

In any of the mentioned forms, Kappa distributions are frequently employed in
an empirical way, fitting observed distributions, as in Maksimovic, Pierrard & Riley
(1997). It is also possible to find theoretical studies dedicated to basic fundamental
properties of Kappa distributions (Hellberg & Mace 2002; Mace & Hellberg 2003;
Hau & Fu 2007; Hau, Fu & Chuang 2009; Hellberg et al. 2009; Mace & Hellberg
2009), or to the relationship between Kappa distributions and wave phenomena in
plasmas. Among studies with the latter characteristics, mention can be made of
studies on low-frequency electromagnetic instabilities, dealing with the ion-cyclotron
instability, as in Lazar (2012), Lazar & Poedts (2014), or with the ion firehose
instability, as in Lazar & Poedts (2009a,b), Lazar et al. (2011), or with Langmuir
waves, as in Thorne & Summers (1991), or obliquely propagating generalized
Langmuir waves, as in Mace & Hellberg (2003), or studies based on a quasi-linear
formulation aiming to investigate bursty solar wave emission phenomena, as in Li
& Cairns (2014), or analyses on the effects of superthermal particles on waves in
magnetized plasmas, in space environment (Hellberg, Mace & Cattaert 2006).

As mentioned, the Kappa distributions used in the literature are frequently
represented in different forms, which have in common the power-law dependence
for high values of velocity. In the present paper, we use a generic form of Kappa
distribution, which in particular cases can reproduce the two widely used forms
already mentioned, and consider the isotropic and the anisotropic cases, discussing
in each case the dispersion relations for Langmuir (L) and ion-sound (S) waves in
a systematic way. The description of these waves is obtained from the dispersion
relation for electrostatic (ES) waves, given by εzz = 0, where

εzz = 1− 1
z2

∑
β

ω2
pβ

Ω2∗

1
nβ0

(
I − J(0, 0, 2; fβ)

)
. (1.1)

The J(0, 0, 2; fβ) in (1.1) is a particular case of a generic integral form, which is
valid both for magnetized and unmagnetized environments,

J(n,m, h; fβ)≡ z
∫

d3u
uh
‖u

2(m−1)
⊥ u⊥L( fβ)

z− nrβ − q‖u‖
, (1.2)
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and I is defined as follows

I =
∫

d3u
u‖
u⊥

L( fβ). (1.3)

In these expressions, L and L are differential operators,

L=
(

u‖
∂

∂u⊥
− u⊥

∂

∂u‖

)
(1.4)

L=
[(

1− q‖
z

u‖

)
∂

∂u⊥
+ q‖

z
u⊥

∂

∂u‖

]
(1.5)

and the following dimensionless variables have been introduced

z= ω

Ω∗
, u‖,⊥ = v‖,⊥

v∗
, q‖ = k‖v∗

Ω∗
, rβ = Ωβ

Ω∗
, (1.6a−d)

where ω and k are the wave angular frequency and wavenumber, respectively, Ωβ

is the angular cyclotron frequency for particles of species β, and Ω∗ and v∗ are
some characteristic angular frequency and velocity, respectively. Moreover, ωpβ is
the angular plasma frequency and fβ the velocity distribution function, for particles
of species β. In the present case, for the study of ES waves, it is convenient to
assume Ω∗=ωpe and v∗= ve, the angular electron plasma frequency and the electrons
thermal velocity, respectively. As usual, the thermal velocities for particles of species
β are defined as v2

β = 2Tβ/mβ , where Tβ is a parameter which characterizes the
temperature. Notice that in the present notation the dependence of the velocity
distribution functions appear in the dispersion relation through the integral quantities
(1.2) and (1.3).

The paper is organized as follows. In § 2 we introduce a generic form of Kappa
distribution, considering the isotropic case and also the anisotropic BK and PBK
cases of this generic distribution. Section 2 also presents analytical results for the
dispersion relation of L and S waves, both exact and approximated, obtained with
the use of these generic distributions. In § 3 we consider two particular isotropic
cases of the generic distribution introduced in § 2, and present the corresponding
analytical expressions for the dispersion relation of L and S waves, both exact and
approximated. In § 4 we introduce and discuss anisotropic forms of Kappa distribution
which are particular cases of the generic distribution presented in § 2, and also present
the corresponding exact and approximated forms of the dispersion relations for L and
S waves. In § 5 we present some results obtained from numerical solution of the
dispersion relation obtained for different forms of the velocity distribution, and
also present some results obtained from particle-in-cell (PIC) simulations, regarding
electrostatic fluctuations. Section 6 summarizes the results obtained.

2. Generic forms of isotropic and anisotropic Kappa distributions and the
corresponding dispersion relations for Langmuir and ion-sound waves
Let us assume the following form of isotropic Kappa distribution for ions and

electrons (Gaelzer & Ziebell 2014, 2016),

fβ(v)= nβ0

π3/2κ
3/2
β w3

β,κ

Γ (κβ + αβ)
Γ (κβ + αβ − 3/2)

(
1+ v2

κβw2
β,κ

)−(κβ+αβ )
, (2.1)
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where αβ is a constant and wβ,κ is a parameter with the same physical dimension as
the particle thermal velocity, and which reduces to the Maxwellian thermal velocity
in the limit κβ→∞. The distribution function given by (2.1) is normalized such that∫

d3v fβ = nβ0.
The quantity I in (1.1) vanishes in the case of an isotropic distribution, as is the

case of (2.1). After evaluation of the J(0, 0, 2; fβ) integral for this distribution function
(details can be seen in appendix A), the dispersion relation for ES waves propagating
along a given direction denominated as z axis, with wavenumber k = k‖ ez, can be
written as follows,

1+ 2
∑
β

ω2
pβ

ω2
(ζ 0
β )

2

(
κβ + αβ − 3/2

κβ
+ Γ (κβ + αβ)

κβΓ (κβ)

× Γ (κβ − 1/2)
Γ (κβ + αβ − 3/2)

ζ 0
βZ(αβ )κβ

(ζ 0
β )

)
= 0, (2.2)

where ζ 0
β =ω/(k‖wβ,κ), and where Z(αβ )κβ is obtained from the general definition

Z(m)κ (ξ) = iΓ (κ)Γ (κ +m+ 1/2)
κ1/2Γ (κ − 1/2)Γ (κ +m+ 1)

× 2F1

[
1, 2κ + 2m; κ +m+ 1; 1

2

(
1+ iξ

κ1/2

)]
, (2.3)

valid for κ >−m− 1/2, for m= α.
An approximated form of the dispersion relation of L waves can be obtained

if we take into account that the L waves are waves with large phase velocity,
|ζ 0
β |� 1. Expanding the integrand of the J(0, 0, 2; fβ) integral (details can be seen in

appendix A), the dispersion relation for L waves turns out to be given as follows, in
terms of dimensional quantities,

1−
∑
β

ω2
pβ

ω2

(
1+ 3

2
κβ

κβ + αβ − 5/2
1

(ζ 0
β )

2

)
= 0. (2.4)

In order to obtain an approximated expression to be used for S waves, we consider
the distribution function given by (2.2) and waves satisfying the conditions |ζ 0

e | � 1
and |ζ 0

i |� 1. By expansion of the integrand of the J(n,m, h, fβ) integrals considering
the appropriate limits (details can be seen in appendix A), the dispersion relation for
S waves can be given as follows

1− ω
2
pi

ω2

(
1+ 3

2
κi

κi + αi − 5/2
1

(ζ 0
i )

2

)
+ 2

ω2
pe

ω2

κe + αe − 3/2
κe

(ζ 0
e )

2 = 0. (2.5)

Particular cases of the distribution (2.1), which correspond to forms of Kappa
distributions which are widely used in plasma physics investigations, can be obtained
by suitable choice of the parameters αβ and wβ,κ . These particular cases will be
considered in the sections which follow.

A generic form of BK distribution can also be defined, similar to the distribution
given by (2.1) (Gaelzer, Ziebell & Meneses 2016),

https://doi.org/10.1017/S0022377817000733 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000733


Dispersion relation for electrostatic waves 5

fβ(v)= nβ0

π3/2κ
3/2
β w2

β,κ,⊥wβ,κ,‖

Γ (κβ + αβ)
Γ (κβ + αβ − 3/2)

×
(

1+ v2
‖

κβw2
β,κ,‖
+ v2

⊥
κβw2

β,κ,⊥

)−(κβ+αβ )
, (2.6)

where wβ,κ,⊥ and wβ,κ,‖ are parameters with the same physical dimension as the
particle thermal velocity. The BK distribution is azimuthally symmetric around a
given direction, assumed here to be the z axis, and is in general anisotropic, becoming
isotropic if wβ,κ,‖ =wβ,κ,⊥.

The integrals I and J which are used in the dispersion relation can be evaluated
considering distribution function (2.6) by a procedure similar to that used in
appendix A. As a result, the dispersion relation for ES waves with wavenumber
k= k‖ ez can be written as follows,

1+ 2
∑
β

ω2
pβ

ω2
(ζ 0
β,κ,‖)

2

(
κβ + αβ − 3/2

κβ
+ Γ (κβ + αβ)

κβΓ (κβ)

× Γ (κβ − 1/2)
Γ (κβ + αβ − 3/2)

ζ 0
β,κ,‖Z

(αβ )
κβ
(ζ 0
β,κ,‖)

)
= 0, (2.7)

where ζ 0
β,κ,‖ =ω/(k‖wβ,κ,‖).

For a dispersion relation valid for L waves, we can consider the expanded form
of the dispersion relation, which is obtained taking into account the fact that for L
waves the phase velocity of the waves is much greater than the thermal velocity. The
procedure is similar to that shown in appendix A, and the dispersion relation obtained
is as follows

1−
∑
β

ω2
pβ

ω2

(
1+ 3

2
κβ

κβ + αβ − 5/2
1

(ζ 0
β,κ,‖)2

)
= 0. (2.8)

In order to obtain an approximated expression to be used for S waves in the case
of BK distributions as given by (2.6), we proceed by expansion of the integrand of
the J(n,m, h, fβ) integrals considering the appropriate limits |ζ 0

e,κ,‖|� 1 and |ζ 0
i κ,‖|� 1

(details can be seen in appendix A). The dispersion relation for S waves can therefore
be given as follows

1− ω
2
pi

ω2

(
1+ 3

2
κi

κi + αi − 5/2
1

(ζ 0
i,κ,‖)2

)
+ 2

ω2
pe

ω2

κe + αe − 3/2
κe

(ζ 0
e,κ,‖)

2 = 0. (2.9)

Product-bi-Kappa distributions can also be defined using the parameter αβ , similarly
to what has been done for BK distributions in (2.6),

fβ(v) = nβ0

π3/2κβ⊥κ
1/2
β‖ w2

β,κ⊥wβ,κ‖

Γ (κβ⊥ + αβ)Γ (κβ‖ + αβ)
Γ (κβ⊥ + αβ − 1)Γ (κβ‖ + αβ − 1/2)

×
(

1+ v2
‖

κβ‖w2
β,κ‖

)−(κβ‖+αβ ) (
1+ v2

⊥
κβ⊥w2

β,κ⊥

)−(κβ⊥+αβ )
. (2.10)

PBK distributions are inherently anisotropic, even in the case of wβ κβ‖ =wβ,κ⊥ .
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Upon evaluation of the I and J integrals, considering the distributions given by
(2.10), the dispersion relation for electrostatic waves with wavenumber k= k‖ ez can
be given as follows

1+ 2
∑
β

ω2
pβ

ω2
(ζ 0
β,κ‖)

2

(
κβ‖ + αβ − 1/2

κβ‖
+ Γ (κβ‖ + αβ)

Γ (κβ‖)

× Γ (κβ‖ − 1/2)
Γ (κβ‖ + αβ − 1/2)

κβ‖ + αβ
κβ‖

ζ 0
β,κ‖Z

(αβ+1)
κβ‖ (ζ 0

β,κ‖)

)
= 0, (2.11)

where ζ 0
β,κ‖ =ω/(k‖wβ,κ‖).

Dispersion relations valid for L and S waves for the case of the generic PBK
distribution (2.10) can be obtained by considering the appropriate limits |ζ 0

β,κ‖ | � 1
for L waves,

1−
∑
β

ω2
pβ

ω2

(
1+ 3

2
κβ‖

κβ‖ + αβ − 3/2
1

(ζ 0
β,κ‖)

2

)
= 0, (2.12)

and |ζ 0
i,κ‖ | � 1, |ζ 0

e,κ‖ | � 1, for S waves,

1− ω
2
pi

ω2

(
1+ 3

2
κi‖

κi‖ + αi − 3/2
1

(ζ 0
i,κ‖)

2

)
+ 2

ω2
pe

ω2

κe‖ + αe − 1/2
κe‖

(ζ 0
e,κ‖)

2 = 0. (2.13)

The generic forms of isotropic and anisotropic Kappa distributions, given by (2.1),
(2.6) and (2.10) have also been used in a recent study instabilities in the ion-cyclotron
range (Ziebell & Gaelzer 2017). As far as we are aware, with the exception of (3.3),
the other generic dispersion relations for electrostatic waves which appear in the
present section are original, both in the exact forms and in the approximated forms
valid for L and S waves. In some particular cases, discussed in the following section,
the generic form leads to a form which is already known. These cases will be
acknowledged when they appear.

3. Two particular forms of isotropic Kappa distributions
3.1. The isotropic Kappa distribution as defined by Olbert (1968), Vasyliunas (1968)
With the choice of αβ = 1, equation (2.1) becomes as follows

fβ(v)= nβ0

π3/2κ
3/2
β w3

β,κ

Γ (κβ + 1)
Γ (κβ − 1/2)

(
1+ v2

κβw2
β,κ

)−(κβ+1)

, (3.1)

which corresponds to an isotropic distribution which is widely used in the literature
(Olbert 1968; Vasyliunas 1968; Summers & Thorne 1991; Mace & Hellberg 1995;
Podesta 2015), as long as the quantity wβ,κ appearing in this expression is written as
a κβ-dependent effective thermal velocity, given by

w2
β,κ =

κβ − 3/2
κβ

v2
β, (3.2)
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where vβ = (2Tβ/mβ)
1/2, with Tβ being the temperature of species β (Livadiotis &

McComas 2011). The average value of the squared particle speed is related to the
physical temperature, given by 〈v2〉β = 3v2

β/2. This quantity is independent of the
index κβ , and it is seen that distribution (3.1) corresponds to the isotropic limit of
distributions characterized as ‘case A’ in the work by Lazar, Fichtner & Yoon (2016).
It is interesting to notice that the effective thermal velocity w2

β,κ actually decreases for
small values of κβ and tends to zero for κβ→ 3/2, a feature which is in contrast with
the existence of a significant non-thermal tail in the velocity distribution function.

For reference, we will call the distribution given by (3.1) the isotropic Kappa
distribution of type I. In the case of this distribution, the dispersion relation for ES
waves is a particular case of (2.2), and is given by

1+ 2
∑
β

ω2
β

ω2
(ζ 0
β )

2

(
κβ − 1/2
κβ

+ ζ 0
βZ(1)κβ (ζ

0
β )

)
= 0, (3.3)

where Z(1)κβ is obtained from the general definition (2.3) for m= 1 and for κβ >−3/2.
In the limit κβ→∞, wβ,κ→ vβ , Z(1)κ (ζ

0
β ) tends to the well-known plasma dispersion

function, Z(ζ 0
β ), and the dispersion relation becomes the conventional dispersion

relation for ES waves, usually found in textbooks as obtained considering the case
of isotropic Maxwellian distributions. Equation (3.3) corresponds to the dispersion
relation appearing as equation (27) in Mace (2003).

An approximated form of the dispersion relation for L waves can be obtained as a
particular case of (2.4), and becomes as follows

1−
∑
β

ω2
β

ω2

(
1+ 3

2
κβ

κβ − 3/2
k2
‖w

2
β,κ

ω2

)
= 0. (3.4)

Taking into account the definition of the effective thermal velocities wβ,κ , it is
seen that the dispersion relation obtained is formally the same as the well-known
expanded form of the dispersion relation for L waves, obtained in the case of isotropic
Maxwellian distributions, depending on the thermodynamic temperature Tβ ,

1−
∑
β

ω2
β

ω2

(
1+ 3

2
k2
‖v

2
β

ω2

)
= 0. (3.5)

This coincidence of the form of the dispersion relation obtained in the case of
thermal plasmas and in the case of plasmas described by the Kappa distribution given
by (3.1) is well known, and reported in a recently published paper (Li & Cairns 2014).

The dispersion relation can be further simplified by considering that the L waves
are high-frequency waves, so that it is possible to neglect the effect of the ions in the
dispersion relation. The dispersion relation therefore is approximated as follows

1− ω
2
pe

ω2

(
1+ 3

2
k2
‖v

2
e

ω2

)
= 0, (3.6)

which may become even more familiar if we take into account that ω is not far from
ωpe, and therefore

ω2 'ω2
pe

(
1+ 3

2
k2
‖v

2
e

ω2
pe

)
. (3.7)
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In the limit κβ → ∞, of course, the result is the same, since the expression
obtained does not depend on κ . The dispersion relation as given by (3.7) is frequently
denominated as the Bohm–Gross dispersion relation.

In order to obtain an approximated expression to be used for S waves, we utilize
(2.5) with αβ = 1 and w2

β,κ given by (3.2), obtaining the following

1− ω
2
pi

ω2
+ 2

κe − 1/2
κe

ω2
pe

k2
‖w2

e,κ

= 0, (3.8)

where we have neglected the term with (ζ 0
i )
−2. The dispersion relation obtained can

be written in terms of the thermal velocities vβ by taking into account the definition
of the wβ,κ ,

1− ω
2
pi

ω2
+ 2

κe − 1/2
κe − 3/2

ω2
pe

k2
‖v2

e

= 0. (3.9)

This expression can be cast in a more familiar form by definition of the electron
Debye length λDe and the ion-sound velocity cs

λ2
De =

v2
e

2ω2
pe

, cs =
√

Te

mi
(3.10a,b)

and by assuming ni0 = ne0 and ion charge number Z = 1,

ω2 = k2
‖c

2
sκ

κe − 1/2
κe − 3/2

+ k2
‖λ

2
De

. (3.11)

We notice that, differently to what occurs for the case of L waves, the dispersion
relation obtained does not correspond to the usual dispersion relation obtained for S
waves in the case of Maxwellian distributions. The usual and well-known result is
obtained in the case of κe→∞.

3.2. The isotropic Kappa distribution as defined by Leubner (2002)
With the choices αβ = 0, wβ,κ = vβ , equation (2.1) becomes the isotropic Kappa
distribution which is used, for instance, in equation Leubner (2002, 2004),

fβ(v)= nβ0

π3/2κ
3/2
β v3

β

Γ (κβ)

Γ (κβ − 3/2)

(
1+ v2

κβv
2
β

)−κβ
. (3.12)

This distribution will be denominated the isotropic Kappa distribution of type II. As
is well known and easy to show, the relationship between the parameter vβ and the
thermal velocity spread of the distribution of particles of species β is as follows,

〈v2〉β = 3
2

κβ

κβ − 5/2
v2
β . (3.13)

This thermal velocity spread increases for small κβ , a feature which is consistent
with the occurrence of an extended non-thermal tail in the distribution function.
It is interesting to notice that for large velocities the distribution function given
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by (3.12) features a power-law dependence given by v−2κ , which is reminiscent
of distributions generated by diffusion in a superthermal radiation field (Hasegawa,
Mima & Duongvan 1985), while the distribution function given by (3.1) leads to an
symptotic dependence given by v−2(κ+1). The dependency of the kinetic temperature
on the κβ index characterizes the distribution given by (3.12) as the isotropic limit
of ‘case B’ distributions, according to the denomination used in Lazar et al. (2016).
Moreover, it can also be noticed that the distribution given by (3.12) can be obtained
as a result of the use of a non-extensive statistical mechanics as formulated in Tsallis
(1988), Silva, Plastino & Lima (1998), Leubner (2002), while the distribution function
given by (3.1) results from a modified approach to non-extensive statistical mechanics
which utilizes the so-called escort probability functions (Tsallis, Mendes & Plastino
1998; Livadiotis & McComas 2009).

The dispersion relation for ES waves in the case of an isotropic distribution of type
II is obtained from (2.2) for αβ = 0 and wβ,κ = vβ , and is written as follows,

1+ 2
∑
β

ω2
β

ω2

κβ − 3/2
κβ

(ζ 0
β )

2
(

1+ ζ 0
βZ(0)κβ (ζ

0
β )
)
, (3.14)

where Z(0)κβ is obtained from the general definition (2.3) for m= 0 and for κβ >−1/2.
As in the case discussed in the previous section, in the case κ→∞ this dispersion
relation corresponds to the dispersion relation for ES waves obtained in the case of
isotropic Maxwellian distributions.

The expanded form valid in the case of large phase velocity represents a dispersion
relation for L waves, is similarly obtained as a particular case of (2.4),

1−
∑
β

ω2
β

ω2

(
1+ 3

2
κβ

κβ − 5/2
k2
‖v

2
β

ω2

)
= 0. (3.15)

Differently from the result obtained in the previous section, in the case of finite
value of κβ this dispersion relation does not correspond to the conventional dispersion
for L waves. The difference can become very meaningful, for κβ approaching the
value 5/2.

For completeness we write the approximate form which is obtained by neglecting
the effect of the ions in the dispersion relation, and by considering that ω is not far
from ωpe,

ω2 'ω2
pe

(
1+ 3

2
κe

κe − 5/2
k2
‖v

2
e

ω2
pe

)
(3.16)

which is different from the result obtained in the Maxwellian case, particularly for
small values of κe. In analogy to the case of (3.7), we call (3.16) the Kappa–Bohm–
Gross dispersion relation.

For the dispersion relation appropriated for S waves in the case of distribution
(3.12), we write down the corresponding particular case of (2.5), neglecting the term
with (ζ 0

i )
−2.

1− ω
2
pi

ω2
+ 2

κe − 3/2
κe

ω2
pe

k2
‖v2

e

= 0. (3.17)
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By assuming ni0 = ne0 Z = 1, and using the definitions of Debye length and ion-
sound velocity, equations (3.10a,b), the dispersion relation for S waves in the case of
the Kappa distribution of type II becomes as follows

ω2 = k2
‖c

2
s

κe − 3/2
κe

+ k2
‖λ

2
De

. (3.18)

This expression is different from the dispersion relation obtained in the Maxwellian
case, and also different from (3.11). One notices that the difference between the result
obtained for type II distributions and the result obtained for type I distributions can
become very impressive, for κ approaching the value 3/2.

4. Four particular forms of anisotropic Kappa distributions
4.1. The anisotropic bi-Kappa distribution, similar to the isotropic distribution

defined by Olbert (1968), Vasyliunas (1968)
In the present section we will assume bi-Kappa distributions for ions and electrons
which can be obtained from (2.6) with the choice αβ = 1

fβ(v)= nβ0

π3/2κ
3/2
β w2

β,κ,⊥wβ,κ,‖

Γ (κβ + 1)
Γ (κβ − 1/2)

(
1+ v2

‖
κβw2

β,κ,‖
+ v2

⊥
κβw2

β,κ,⊥

)−(κβ+1)

, (4.1)

and considering

w2
β,κ,‖ =

κβ − 3/2
κβ

v2
β‖, w2

β,κ,⊥ =
κβ − 3/2
κβ

v2
β⊥, (4.2a,b)

with

v2
β‖ =

2Tβ‖
mβ

, v2
β⊥ =

2Tβ⊥
mβ

, (4.3a,b)

where Tβ‖ and Tβ⊥ are the parallel and perpendicular physical temperatures. This
distribution will be denominated the bi-Kappa distribution of type I. The quantities
v2
β‖ and v2

β⊥ are related to the average values of v2
‖ and v2

⊥,

〈v2
‖〉β =

1
2
v2
β‖, 〈v2

⊥〉β = v2
β⊥. (4.4a,b)

The dispersion relation for ES waves in the case of BK distributions of type I is
obtained as a particular case of (2.7), and can be written as follows,

1+ 2
∑
β

ω2
pβ

ω2
(ζ 0
β,κ,‖)

2

(
κβ − 1/2
κβ

+ ζ 0
β,κ,‖Z

(2)
κβ
(ζ 0
β,κ,‖)

)
= 0, (4.5)

where Z(2)κβ is obtained from the general definition (2.3) for m = 2 and for
κβ >−5/2.
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For a dispersion relation valid for L waves, we take the particular case of (2.8)

1−
∑
β

ω2
β

ω2

[
1+ 3

2
κβ

κβ − 3/2
k2
‖w

2
β,κ,‖
ω2

]
= 0, (4.6)

which may also be written in terms of the thermal velocities,

1−
∑
β

ω2
β

ω2

[
1+ 3

2
k2
‖v

2
β‖

ω2

]
= 0. (4.7)

It is interesting to notice that the approximated form given by (4.7) is independent
of κβ , and corresponds to the dispersion relation obtained in the case of a
bi-Maxwellian distribution. Moreover, the more precise form given by (4.5) also
corresponds to the dispersion relation obtained for a bi-Maxwellian distribution, in
the limit κβ→∞.

If the effect of the ions is neglected in the dispersion relation and if we take into
account that ω must be close to ωpe, a simpler form is obtained from (4.7),

ω2 'ω2
pe

(
1+ 3

2
k2
‖v

2
e‖

ω2
pe

)
. (4.8)

The dispersion relation for S waves is obtained as a particular case of (2.9), and
can be given as follows

ω2

(
1+ 2

κe − 1/2
κe

ω2
pe

k2
‖w2

e,κ,‖

)
=ω2

pi (4.9)

which can be rewritten in terms of the thermal velocities by use of the definition of
wβ,κ,‖,

ω2

(
1+ 2

κe − 1/2
κe − 3/2

ω2
pe

k2
‖v

2
e‖

)
=ω2

pi. (4.10)

Introducing a definition for the parallel Debye length, similar to that of (3.10a,b) but
using Tβ‖ instead of Tβ , the corresponding definition of a parallel ion-sound velocity,
we obtain

ω2 = k2
‖c

2
sκ‖

κe − 1/2
κe − 3/2

+ k2
‖λ

2
De‖

. (4.11)

4.2. The anisotropic bi-Kappa distribution, similar to the isotropic distribution
defined by Leubner (2002)

Let us assume bi-Kappa distributions for ions and electrons which are obtained from
(2.6) with the choice αβ = 0, wβ,κ,‖ = vβ‖ and wβ,κ,⊥ = vβ⊥,

fβ(v)= nβ0

π3/2κ
3/2
β v2

β⊥vβ‖

Γ (κβ)

Γ (κβ − 3/2)

(
1+ v2

‖
κβv

2
β‖
+ v2

⊥
κβv

2
β⊥

)−κβ
. (4.12)
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This distribution will be denominated the bi-Kappa distribution of type II. The
velocity spreads along parallel and perpendicular directions can be easily obtained by
averaging over the distribution function,

〈v2
‖〉β =

1
2

κβ

κβ − 5/2
v2
β‖, 〈v2

⊥〉β =
κβ

κβ − 5/2
v2
β⊥. (4.13a,b)

The generic form of the dispersion relation for parallel propagating ES waves in the
case of type II BK distributions is obtained as follows, from (2.7),

1+ 2
∑
β

ω2
β

ω2
(ζ 0
β,κ,‖)

2 κβ − 3/2
κβ

(
1+ ζ 0

β,κ,‖Z
(1)
κβ
(ζ 0
β,κ,‖)

)
= 0, (4.14)

where Z(1)κβ is obtained from the general definition (2.3) for m= 1 and for κβ >−3/2.
An approximate form of the dispersion relation, obtained taking into account waves

whose phase velocity is much greater than the thermal velocities, is obtained as a
particular case from (2.8),

1−
∑
β

ω2
β

ω2

[
1+ 3

2
κβ

κβ − 5/2
k2
‖v

2
β‖

ω2

]
= 0 . (4.15)

It is interesting to notice that in the limit κβ →∞, both forms of the dispersion
relation, the more precise form given by (4.14) and the approximated form given by
(4.15), are independent of κβ and correspond to the dispersion relation obtained for
a bi-Maxwellian distribution. However, for small values of κβ , the dispersion relation
obtained for L waves in a plasma with anisotropic bi-Kappa distribution as given by
(4.12) can be significantly different from the dispersion relation of the Maxwellian
case, regarding the dependence of wavenumber.

If the effect of the ions is neglected in the dispersion relation and if we take into
account that ω must be close to ωpe, a simpler form is obtained from (4.15),

ω2 'ω2
pe

(
1+ 3

2
κe

κe − 5/2
k2
‖v

2
e‖

ω2
pe

)
. (4.16)

The dispersion relation valid for S waves is obtained by considering the pertinent
expansions in the integrand of the J integrals for electrons and ions, and the
contributions of the I integrals, with the distribution function given by (4.12). It
is obtained from (2.9) as follows

ω2

(
1+ 2

κe − 3/2
κe

ω2
pe

k2
‖v

2
e‖

)
=ω2

pi. (4.17)

By taking into account the definitions of cs‖ and λDe‖, the dispersion relation for S
waves, in the case of distribution function (4.12), is written as follows

ω2 = k2
‖c

2
s‖

κe − 3/2
κe

+ k2
‖λ

2
De‖

. (4.18)

This expression is different from the dispersion relation obtained in the case of
a bi-Maxwellian plasma, and also different from the form obtained in the case of
distribution functions given by (4.1). The difference is particularly significant for small
value of the kappa index in the electron distribution, κe.
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4.3. The anisotropic product-bi-Kappa distribution, similar to the isotropic
distribution defined by Olbert (1968), Vasyliunas (1968)

In the present section we will assume product bi-Kappa distributions for ions and
electrons which can be obtained from (2.10) with the choice αβ = 1

fβ(v) = nβ0

π3/2κβ⊥κ
1/2
β‖ w2

β,κ⊥wβ,κ‖

Γ (κβ⊥ + 1)Γ (κβ‖ + 1)
Γ (κβ⊥)Γ (κβ‖ + 1/2)

×
(

1+ v2
‖

κβ‖w2
β,κ‖

)−(κβ‖+1) (
1+ v2

⊥
κβ⊥w2

β,κ⊥

)−(κβ⊥+1)

, (4.19)

and considering

w2
β,κ,‖ =

κβ‖ − 1/2
κβ‖

v2
β‖, w2

β,κ,⊥ =
κβ⊥ − 1
κβ⊥

v2
β⊥, (4.20a,b)

with

v2
β‖ =

2Tβ‖
mβ

, v2
β⊥ =

2Tβ⊥
mβ

. (4.21a,b)

This distribution will be denominated the product-bi-Kappa distribution of type I. The
quantities v2

β‖ and v2
β⊥ are related to the average values of v2

‖ and v2
⊥,

〈v2
‖〉β = 1

2v
2
β‖, 〈v2

⊥〉β = v2
β⊥. (4.22a,b)

The dispersion relation for ES waves in the case of PBK distributions of type I is
obtained as a particular case of (2.11), and can be written as follows,

1+ 2
∑
β

ω2
pβ

ω2
(ζ 0
β,κ‖)

2

(
κβ‖ + 1/2
κβ‖

+ κβ‖ + 1
κβ‖ − 1/2

ζ 0
β,κ‖Z

(2)
κβ‖(ζ

0
β,κ‖)

)
= 0, (4.23)

where Z(2)κβ‖ is obtained from the general definition (2.3) for m = 2 and for
κβ‖ >−5/2.

For a dispersion relation valid for L waves, we take the particular case of (2.12)

1−
∑
β

ω2
β

ω2

[
1+ 3

2
κβ‖

κβ‖ − 1/2
k2
‖w

2
β,κ,‖
ω2

]
= 0, (4.24)

which may also be written in terms of the thermal velocities,

1−
∑
β

ω2
β

ω2

[
1+ 3

2
k2
‖v

2
β‖

ω2

]
= 0. (4.25)

It is interesting to notice that the approximated form given by (4.25) corresponds
to the dispersion relation obtained with a bi-Maxwellian distribution. Moreover, it is
seen that the more precise form given by (4.23) is independent of κβ⊥, and in the
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limit κβ‖→∞ also correspond to the dispersion relation obtained for a bi-Maxwellian
distribution.

If the effect of the ions is neglected in the dispersion relation and if we take into
account that ω must be close to ωpe, a simpler form is obtained from (4.25),

ω2 'ω2
pe

(
1+ 3

2
k2
‖v

2
e‖

ω2
pe

)
. (4.26)

The dispersion relation for S waves is obtained as a particular case of (2.13), and
is given as follows

ω2

(
1+ 2

κe‖ + 1/2
κe‖

ω2
pe

k2
‖w2

e,κ‖

)
=ω2

pi, (4.27)

which can be rewritten in terms of the thermal velocities by use of the definition of
wβ,κ‖,

ω2

(
1+ 2

κe‖ + 1/2
κe‖ − 1/2

ω2
pe

k2
‖v

2
e‖

)
=ω2

pi. (4.28)

Using the definition of the parallel Debye length, we obtain

ω2 = k2
‖C

2
sκ‖

κe‖ + 1/2
κe‖ − 1/2

+ k2
‖λ

2
De‖

. (4.29)

4.4. The anisotropic product-bi-Kappa distribution, similar to the isotropic
distribution defined by Leubner (2002)

Let us assume product bi-Kappa distributions for ions and electrons which are
obtained from (2.10) with the choice αβ = 0, wβ,κ‖ = vβ‖ and wβ,κ⊥ = vβ⊥,

fβ(v)= nβ0

π3/2κβ⊥κ
1/2
β‖ v

2
β⊥vβ‖

Γ (κβ⊥)Γ (κβ‖)
Γ (κβ⊥ − 1)Γ (κβ‖ − 1/2)

×
(

1+ v2
‖

κβ‖v2
β‖

)−κβ‖ (
1+ v2

⊥
κβ⊥v2

β⊥

)−κβ⊥
. (4.30)

This distribution will be denominated the product-bi-Kappa distribution of type II.
The velocity spreads along parallel and perpendicular directions can be easily obtained
by averaging over the distribution function,

〈v2
‖〉β =

1
2

κβ‖
κβ‖ − 3/2

v2
β‖, 〈v2

⊥〉β =
κβ⊥

κβ⊥ − 2
v2
β⊥. (4.31a,b)

The generic form of the dispersion relation for parallel propagating ES waves in the
case of type II PBK distributions is obtained as follows, from (2.11),

1+ 2
∑
β

ω2
β

ω2
(ζ 0
β,κ‖)

2

(
κβ‖ − 1/2
κβ‖

+ ζ 0
β,κ‖Z

(1)
κβ‖(ζ

0
β,κ‖)

)
= 0, (4.32)
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where Z(1)κβ‖ is obtained from the general definition (2.3) for m = 1 and for
κβ‖ >−3/2.

An approximate form of the dispersion relation, obtained taking into account waves
whose phase velocity is much greater than the thermal velocities, is obtained as a
particular case from (2.12),

1−
∑
β

ω2
β

ω2

[
1+ 3

2
κβ‖

κβ‖ − 3/2
k2
‖v

2
β‖

ω2

]
= 0 . (4.33)

It is interesting to notice that both forms of the dispersion relation, the more precise
form given by (4.32) and the approximated form given by (4.33), are independent of
κβ⊥, and in the limit κβ‖→∞ correspond to the dispersion relation obtained for a
bi-Maxwellian distribution. However, for small values of κβ‖, the dispersion relation
obtained for L waves in a plasma with anisotropic product-bi-Kappa distribution as
given by (4.30) can be significantly different from the dispersion relation of the
Maxwellian case, regarding the dependence of wavenumber.

If the effect of the ions is neglected in the dispersion relation and if we take into
account that ω must be close to ωpe, a simpler form is obtained from (4.33),

ω2 'ω2
pe

(
1+ 3

2
κβ‖

κβ‖ − 3/2
k2
‖v

2
e‖

ω2
pe

)
. (4.34)

The dispersion relation valid for S waves is obtained by considering the pertinent
expansions in the integrand of the J integrals for electrons and ions, and the
contributions of the I integrals, with the distribution function given by (4.30). It
is obtained from (2.13) as follows

ω2

(
1+ 2

κe‖ − 1/2
κe‖

ω2
pe

k2
‖v

2
e‖

)
=ω2

pi. (4.35)

By taking into account the definitions of cs‖ and λDe‖, the dispersion relation for S
waves, in the case of distribution function (4.30), is written as follows

ω2 = k2
‖c

2
s‖

κe‖ − 1/2
κe‖

+ k2
‖λ

2
De‖

. (4.36)

This expression is different from the dispersion relation obtained in the case of
a bi-Maxwellian plasma, and also different from the form obtained in the case of
distribution functions given by (4.19). The difference is particularly significant for
small value of the parallel kappa index in the electron distribution, κe‖.

5. Numerical results
In order to illustrate the effects of the different superthermal features associated with

different forms of the Kappa distribution functions on electrostatic waves which can
occur in a plasma, we start by considering the case of isotropic Kappa distributions.

As a first step, we show in figure 1 the plots of Kappa distributions of type I and
type II, for κβ = 3 and κβ = 10. The black lines represent type I distributions, given

https://doi.org/10.1017/S0022377817000733 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000733


16 L. F. Ziebell, R. Gaelzer and F. J. R. Simões Jr

FIGURE 1. Normalized values of isotropic Kappa distributions, versus normalized velocity,
for κ = 3 and κ = 10. Black lines are obtained using (3.1) (type I), and red lines are
obtained using (3.12) (type II). The dashed line represents a Maxwellian distribution.

by (3.1), and red lines represent type II distributions, given by (3.12). A Maxwellian
distribution is also shown for comparison, represented by a dashed line. It is seen
that the population of particles in the small velocity region is above that of the
thermal case, for distributions of type I, and below that of the thermal case, for type
II distributions. Both types of distributions feature superthermal tails, with particle
population above that of the Maxwellian case, but it is seen that for sufficiently large
velocities type II distributions feature more pronounced superthermal populations
than type I distributions. A discussion on possible mechanisms associated with the
generation of these different distributions of particle velocities can be found in
Lazar et al. (2016), where these distributions are denoted as Kappa A and Kappa B,
respectively.

In the sequence, we present the analysis of the dispersion properties, starting with
the dispersion properties of Langmuir (L) waves. Figure 2 shows real and imaginary
parts of the normalized wave frequency as function of the normalized parallel
wavenumber, for the case of plasma particles with isotropic Kappa distributions of
type I, given by (3.1). The results shown in figure 2 are obtained from numerical
solution of (3.3). The wavenumbers are normalized as q‖ = k‖ve/

√
2ωpe. The figure

shows the results obtained in the case of distributions with κe = κi = κ , with κ→∞,
corresponding to results of the usual dispersion relation obtained for the Maxwellian
case, and also shows the values obtained for κ = 20, 15, 10, 05 and 03. It is seen
that the real part of the dispersion relation for L waves is relatively insensitive to
the value of κ , in the region of small wavenumbers (large wavelengths), but becomes
quite different from the conventional relation obtained for Maxwellian plasmas for
values of the normalized wavenumber which are above 0.25, particularly for small
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FIGURE 2. Real and imaginary parts of the wave frequency versus normalized parallel
wavenumber, for Langmuir waves, for different values of the index κ . The results have
been obtained by numerical solution of (3.3), considering electrons and ions described by
isotropic Kappa distribution functions of type I, given by (3.1). The figure also shows
results obtained with the Bohm–Gross form of the dispersion relation, which is (3.7).

values of κ . The effect on the imaginary part of the frequency is not so large,
but it is also significant. For instance, one sees from figure 2 that for κ = 3 there is
significant damping for waves with normalized wavenumber ' 0.3, while the damping
is negligible at these wavenumbers, for κ→∞.

Figure 3 is similar to figure 2, but was obtained considering plasma particles with
velocity distributions given by (3.12), that is, isotropic Kappa distributions of type II,
and by numerical solution of the dispersion relation (3.14). The values of κ (for κe=
κi) which have been considered are the same as those used in the case of figure 2.
A difference when comparing to the case depicted in figure 2 is that figure 3 shows
that for distributions of type II, the real part of the wave frequency is different from
that obtained in the Maxwellian case, in the region of small wavenumbers, with the
difference increasing for small values of κ . It is interesting to notice that the real part
of the frequency is above the Maxwellian result, for normalized wavenumber 6 0.5,
and below the Maxwellian result, for normalized wavenumber above ' 0.5. Regarding
the imaginary part of the frequency, figure 3 shows that the damping of the L waves
is considerably increased, in comparison with the damping in an Maxwellian plasma,
and increases with the decrease of κ .

In figure 4 we investigate the validity of the approximate dispersion relations for
L waves, obtained by expansion of the integrand of velocity integrals which appear
in the components of the dielectric tensor, for different values of κ , for κe = κi. In
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FIGURE 3. Real and imaginary parts of the wave frequency versus normalized parallel
wavenumber, for Langmuir waves, for different values of the index κ . The results have
been obtained by numerical solution of (3.14), considering electrons and ions described
by isotropic Kappa distribution functions of type II, given by (3.12).

order to obtain the results presented in figure 4, which represent the real part of
the normalized wave frequency versus wavenumbers normalized as in figure 2, we
have considered plasma particles with type II distributions, given by (3.12), and
have used the dispersion relation given by (3.14) and the approximated form given
by (3.15). The continuous lines show the values obtained by numerical solution
of (3.14), and the dashed lines show the values obtained using the approximated
dispersion relation given by (3.15). It is seen that for large κ , represented by the line
indicated by κ→∞, the line obtained from the approximated dispersion relation lies
below the continuous line which indicates the numerical solution, for the whole range
of normalized wavenumbers shown in the figure. The exact and the approximated
solutions are very close for small wavenumber, and separate appreciably for larger
wavenumbers. For κ = 15, the behaviour of the solutions is similar to that obtained
for κ→∞, but it is seen that the approximated result become larger than the exact
numerical result, for normalized wavenumber 60.75. For κ = 5, figure 4 shows that
the approximated result is below the exact result, but relatively close, for small
wavenumbers, and is above the exact result for normalized wavenumber above '0.25,
with the difference increasing with the increase in wavenumber. For very small values
of κ , illustrated by the case of κ = 3 in figure 4, the real frequency predicted by the
approximated dispersion relation is already above the exact numerical result even for
moderate wavenumbers (normalized values above q' 0.05), with enormous difference
for larger wavenumbers.
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FIGURE 4. Real part of the wave frequency versus normalized parallel wavenumber, for
Langmuir waves, for different values of the index κ , in the case of electrons and ions
described by isotropic Kappa distribution functions of type II, given by (3.12). For each
value of κ , the continuous line shows the values obtained by numerical solution of (3.14),
and the dashed line shows the values obtained using the approximated dispersion relation
given by (3.15). The figure also shows results obtained with the Kappa–Bohm–Gross form
of the dispersion relation for distributions of type II, which is (3.16).

A figure corresponding to figure 4, but for the case of the isotropic distribution
function of type I, equation (3.1), is not necessary, because a previous figure already
displays the information about the difference between the exact and the approximated
dispersion relation. In figure 2 the solid lines display the results obtained with the use
of the exact dispersion relation given by (3.3) for κ= 3, 5, 10, 15 and 20, and there is
a dashed line displaying the exact result for the Maxwellian limit, while a dot-dashed
curve displays the approximated result, which is given by (3.7) and is independent of
κ .

In the following, we continue with the analysis with the dispersion properties of
ion-sound (S) waves.

Figure 5 shows the real and imaginary parts of the normalized wave frequency for
S waves, obtained from numerical solution of (3.3), as function of the normalized
parallel wave number, for plasma particles with isotropic Kappa distributions of type
I, given by (3.1). The figure shows the case of distributions with κe = κi = κ , with
κ→∞, and depicts results obtained with κ=∞, 20, 15, 10, 5 and 3, as in figure 2. It
is seen that the real part of the dispersion relation for S waves is relatively insensitive
to the value of κ for very small wavenumbers. The difference increases for increasing
value of k‖, and is more significant for small values of κ (κ 6 5.0). The imaginary
part of the frequency, associated with the wave damping, has greater magnitude in
the case of finite κ than in the case of κ→∞, for normalized wavenumber q 6 2.0,
and smaller magnitude for larger wavenumbers.
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FIGURE 5. Real and imaginary parts of the wave frequency versus normalized parallel
wavenumber, for ion-sound waves, for different values of the index κ . The results have
been obtained by numerical solution of equation (3.3), considering electrons and ions
described by isotropic Kappa distribution functions of type I, given by (3.1).

Figure 6 is similar to figure 5, but was obtained considering plasma particles with
velocity distributions given by (3.12), that is, isotropic Kappa distributions of type
II, and therefore numerical solution of (3.14). The values of κ (for κe = κi) which
have been considered are the same as those used in the case of figure 5. In the case
shown in figure 6, the real part of the wave frequency is relatively insensitive to the
value of κ , for small wavenumbers. Significant difference only occurs for normalized
wavenumbers above q ' 2, for small values of κ , smaller than κ ' 5.0. The effect
on the imaginary part of the frequency is much more impressive, starting from small
values of wavenumber, and increases with the decrease of κ .

In figure 7 we compare results obtained with the approximate dispersion relation
for S waves given by (3.8) with results obtained using the exact dispersion relation
(3.3), for isotropic type I distributions, given by (3.1). Figure 7 shows that the exact
dispersion relation and the approximate dispersion relation predict similar results for
the real part of the dispersion relation, for normalized wavenumber q6 1.0. For larger
wavenumbers, figure 7 shows that the approximate dispersion relation converges to a
value of Re (ω)/ωpe' 2.0, independently of the value of κ , while the exact dispersion
relation shows that the value of the real part of the frequency continues to increase for
increasing wavenumber. The results predicted in the case of distributions with finite κ
values lie below the results predicted in the case of Maxwellian distributions (κ→∞),
with the difference increasing for smaller values of κ .
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FIGURE 6. Real and imaginary parts of the wave frequency versus normalized parallel
wavenumber, for ion-sound waves, for different values of the index κ . The results have
been obtained by numerical solution of equation (3.14), considering electrons and ions
described by isotropic Kappa distribution functions of type II, given by (3.12).

Figure 8 is dedicated to an analysis similar to that made in figure 7, but considering
the case of isotropic type II distributions, given by (3.12). That is, figure 8 compare
results obtained with the approximate dispersion relation given by (3.17) with results
obtained using the exact dispersion relation (3.14). The results obtained and appearing
in figure 8 are qualitatively similar to those shown in figure 7, except that in the case
of figure 8 the results predicted by the approximate dispersion relation are close to
those predicted for the Maxwellian case for κ between ∞ and κ = 5.0, and depart
appreciably for very small value of κ , exemplified in figure 8 by κ = 3.0.

As a verification of the theoretical dispersion relations obtained for L waves in the
case of different forms of Kappa distributions, we have carried out some tests with
a particle-in-cell numerical code. The numerical scheme which is utilized is based
on the one-dimensional electromagnetic PIC code KEMPO (Kyoto ElectroMagnetic
Particle Code) (Omura & Matsumoto 1993), but in a modified version to include at
the initial time the Kappa distribution and relativistic effects for particles and fields.

To avoid deleterious effects due to numerical noise in the PIC code we included
relativistic effects. The importance of relativistic effects is particularly important in
the case of small kappa index, κ < 5, for which the particles of suprathermal tails are
accelerated to relativistic velocities in few time steps. It is also necessary to solve the
Poisson’s equation at every time step, in order to eliminate a non-physical force along
the simulation run.
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FIGURE 7. Real part of the wave frequency versus normalized parallel wavenumber,
for ion-sound waves, for different values of the index κ , in the case of electrons and
ions described by isotropic Kappa distribution functions of type I, given by (3.1). For
each value of κ , the continuous line shows the values obtained by numerical solution of
equation (3.3), and the dot-dashed line shows the values obtained using the approximated
dispersion relation given by (3.8).

We have used 8192 spatial grid points with distances normalized by λDe, the grid
spacing being 1x= 2.0λDe, and we have run the simulation for a total of 16 384 time
steps, with 1t = 0.02ω−1

pe , which means that the system evolves until ωpet = 327.68.
The ambient magnetic field is assumed to be zero, the frequencies are normalized by
plasma frequency and the velocities are normalized by c. We have taken into account
only the electron dynamics, assuming thermal velocity ve = 0.0125 c and considering
512 super-particles per grid cell. The ions were included just for charge neutrality.

To start the PIC simulation, we have generated the Kappa distribution using the
OCTAVE free software, that has a statistical package with the function T-student. For
our application, we have exchanged the T-student for a Kappa function, following the
method proposed by Abdul & Mace (2014).

Figure 9 shows the (ω, k) diagram obtained from the x (longitudinal) component of
the electric field by Fourier transforming in space along the x axis and in time, for
different forms of the isotropic Kappa distribution for electrons. Panels (a,c,e) present
the results obtained assuming that the electron distribution is a Kappa distribution of
type I, as given by (3.1), panels (b,d,f ) present the results obtained using a Kappa
distribution of type II, as given by (3.12). Panels (a,b) show the results obtained
considering κ = 3, panels (c,d) show results obtained using κ = 5 and panels (e,f )
show the results from the simulation made with κ = 20. For reference, the panels
display dotted lines which represent the analytical dispersion relation for L waves,
obtained in the case of Maxwellian distribution, and continuous lines which represent
the L wave dispersion obtained in the case of a Kappa distribution. In the case of
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FIGURE 8. Real part of the wave frequency versus normalized parallel wavenumber,
for ion-sound waves, for different values of the index κ , in the case of electrons and
ions described by isotropic Kappa distribution functions of type II, given by (3.12). For
each value of κ , the continuous line shows the values obtained by numerical solution of
equation (3.14), and the dot-dashed line shows the values obtained using the approximated
dispersion relation given by (3.17).

type I distributions, appearing at the left-hand side, the dispersion relations for Kappa
and Maxwellian distributions coincide, given by (3.7), and therefore the continuous
line would coincide with the dotted line. For simplicity, only the dotted line is shown
in this case. In the case of type II distributions, the dotted line is given by (3.7),
and the continuous line is given by (3.16). We have chosen to compare the results
of PIC simulation with approximated forms of the dispersion relation, instead of
the exact expressions, due to the analytical dependency on parallel wavenumber and
on the κ index, featured by the approximate expressions. In the region of relatively
small wavenumbers, where most of the points of PIC simulations are concentrated,
the difference between the approximate solutions and the exact ones is not very
expressive.

Figure 9(a,b) shows the case of κ = 3. It is noticed that the electrostatic fluctuations
in the case of the type II distribution, panel (b) are well concentrated in the region
of small values of k (i.e. kλDe < 0.3), while in the case of type I distribution, panel
(a) the electrostatic fluctuations are significant in a larger region of k space (i.e.
kλDe 6 0.6). However, for both cases the fluctuations follow with good precision the
curve describing the dispersion relation for L waves in the case of Kappa distribution,
particularly in the region of small values of k. Figure 9(c,d) shows the cases of κ = 5.
Panel (d) shows that for this value of κ the dispersion relation for Kappa distribution
is closer to the dispersion relation for Maxwellian distribution, in comparison with
the case of κ = 3 seen in (b). As in (a,b), the fluctuations follow with good precision
the theoretical dispersion relation, both for type I and for type II distributions. Finally,
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 9. ω–k diagram obtained from the time and space evolution of the x (longitudinal)
component of the electric field, Ex, in a PIC simulation code. (a,c,e) Results obtained
with isotropic Kappa distribution of type I; (b,d,f ) results obtained with isotropic Kappa
distribution of type II. The theoretical dispersion relation for L waves in the case of
isotropic Maxwellian distribution is shown by a dotted line. The dispersion relation
obtained for isotropic Kappa distribution of type II is shown at the right-hand side by a
continuous line. In the case of type I isotropic Kappa distributions, the dispersion relation
for L waves coincides with that of a Maxwellian plasma, so that the panels (a,c,e) only
feature the dotted line. (a,b) κ = 3; (c,d) κ = 5; (e,f ) κ = 20.

panels (e,f ) show the case κ = 20. In this case the Kappa distribution is already quite
close to the Maxwellian shape. This similarity is expressed also by the fact that the
theoretical dispersion relations for Kappa distribution and for Maxwellian distribution
become very close in panel ( f ), which shows the case of type II. It is also seen that
the dispersions relations for the type II, in ( f ), approach that which is obtained for
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the case of type I in panel (e). The fluctuations detected at the PIC simulation follow
closely the theoretical dispersion relation, and it is seen that the results of type I and
type II tend to be very similar. This is the expected result, since for very large κ
both type I and type II distributions tend to the Maxwellian distribution.

6. Final remarks
We have evaluated the dispersion relations of Langmuir and ion-sound waves

considering two types of isotropic Kappa distributions, two types of anisotropic
distributions which are known as bi-Kappa distributions, and two types of anisotropic
distributions which are known as product-bi-Kappa distributions. These different
types of Kappa, BK and PBK distributions have been denominated as type I and
type II, for reference in the text. It has been seen that for type I distributions the
kinetic temperature is independent of the κβ index (or indexes, in the PBK case)
of the distribution, which characterizes these distributions in the same category
denominated as ‘case A’ in Lazar et al. (2016). On the other hand, for type II
distributions the kinetic temperature is dependent on the κ index, characterizing them
as ‘case B’, according to Lazar et al. (2016). These different categories of Kappa
distributions have been used by the plasma physics community in the last decades,
and have appeared in Lazar et al. (2016) in the context of a discussion on the
possible physical mechanisms which could lead to these different forms of velocity
distributions. In the present paper, on the other hand, these distributions appeared in
a different context. We have avoided the discussion on their generation, and have
instead focused on the consequences of their use for the analysis of electrostatic
waves. At this point of the paper, we summarize the six different forms of the
dispersion relation which have been obtained for each type of ES waves, considering
two different approaches. For this summary, we emphasize the approximated forms
of the dispersion relations, because these approximated forms show more clearly the
dependencies on wavenumber and on the κ index. The non-approximated forms of
the dispersion relations depend on generalized plasma dispersion functions, requiring
numerical analysis.

One possible approach to the problem is by the definition of a parameter Tβ in the
isotropic case (which is the thermodynamic temperature T for particles of the species
β), or parameters Tβ‖ and Tβ⊥ in the anisotropic case, which lead to the definitions
of the thermal velocities vβ , or vβ‖ and vβ⊥:

For the case of L waves:

(i) Isotropic Kappa distribution of type I:

ω2 'ω2
pe

(
1+ 3

2
k2
‖v

2
e

ω2
pe

)
. (6.1)

(ii) Isotropic Kappa distribution of type II:

ω2 'ω2
pe

(
1+ 3

2
κe

κe − 5/2
k2
‖v

2
e

ω2
pe

)
. (6.2)

(iii) Bi-Kappa distribution of type I:

ω2 'ω2
pe

(
1+ 3

2
k2
‖v

2
e‖

ω2
pe

)
. (6.3)

https://doi.org/10.1017/S0022377817000733 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000733


26 L. F. Ziebell, R. Gaelzer and F. J. R. Simões Jr

(iv) Bi-Kappa distribution of type II:

ω2 'ω2
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pe

)
. (6.4)

(v) Product-bi-Kappa distribution of type I:

ω2 'ω2
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)
. (6.5)

(vi) Product-bi-Kappa distribution of type II:
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For the case of S waves:

(i) Isotropic Kappa distribution of type I:

ω2

(
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κe − 3/2
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pe
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e

)
=ω2
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(ii) Isotropic Kappa distribution of type II:
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pi. (6.8)

(iii) Bi-Kappa distribution of type I:
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(iv) Bi-Kappa distribution of type II:
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(v) Product-bi-Kappa distribution of type I:

ω2

(
1+ 2

κe‖ + 1/2
κe‖ − 1/2

ω2
pe

k2
‖v

2
e‖

)
=ω2

pi. (6.11)

(vi) Product-bi-Kappa distribution of type II:
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It is seen that, given the temperature parameter Tβ , distributions of type I, either
isotropic or anisotropic, lead to the same form of the dispersion relation for Langmuir
waves as the Maxwellian or bi-Maxwellian distributions. Dispersion relations for L
waves obtained with distributions of type II feature a dependence on wavenumber
which is dependent on κβ (or κβ‖), and it is seen that the difference relative to the
Maxwellian case increases for small values of κ .

In the case of S waves, it is seen that both forms of Kappa distributions which have
been considered, type I and type II, lead to dispersion relations which are different
from those obtained in the case of Maxwellian or bi-Maxwellian plasmas.

The second approach to the presentation of the results obtained is by emphasis
on the averaged squared velocity instead of the T parameter. This second approach
seems indicated for comparison with experimental data or with data generated in PIC
simulations, since the average squared velocity of the particles can be directly obtained
from the observations or from the numerical data generated in the simulations. In
terms of the average value of the squared velocity, the dispersion relation which we
have obtained can be written as follows.

For the case of L waves:

(i) Isotropic Kappa distribution of type I:

ω2 'ω2
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)
. (6.13)

(ii) Isotropic Kappa distribution of type II:
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)
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(iii) Bi-Kappa distribution of type I:
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)
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(iv) Bi-Kappa distribution of type II:
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(v) Product-bi-Kappa distribution of type I:
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(vi) Product-bi-Kappa distribution of type II:
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For the case of S waves:

(i) Isotropic Kappa distribution of type I:
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(ii) Isotropic Kappa distribution of type II:

ω2

(
1+ κe − 3/2

κe − 5/2
ω2

pe

k2
‖〈v2
‖〉e

)
=ω2

pi. (6.20)

(iii) Bi-Kappa distribution of type I:

ω2

(
1+ κe − 1/2

κe − 3/2
ω2

pe

k2
‖〈v2
‖〉e

)
=ω2

pi. (6.21)

(iv) Bi-Kappa distribution of type II:
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(v) Product-bi-Kappa distribution of type I:
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(vi) Product-bi-Kappa distribution of type II:
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Both for L waves and for S waves, we have taken into account that for isotropic
distributions 〈v2〉 = 3〈v2

‖〉.
According to this second approach, it is seen that both distributions of type I and

type II lead to behaviour of the dispersion relation for L waves which is similar to that
obtained in the Maxwellian case, with the dependence on wavenumber proportional to
the average kinetic energy along parallel direction, without explicit dependence on the
κ indexes. On the other hand, the dispersion relation for S waves exhibits dependence
of the κ indexes both for type I and type II distributions, in the isotropic as well as
in the anisotropic case. It is noticed that isotropic Kappa distributions and bi-Kappa
distributions of a given type lead to the same form of dispersion relation, but the
dispersion relations obtained for type I distributions are different from those obtained
for type II distributions. However, the product-bi-Kappa distributions which we have
utilized lead to the dispersion relations for S waves which are different for type I
and type II distributions, and also different from the dispersion relations obtained for
isotropic Kappa or bi-Kappa distributions.

In addition to these findings, which can be observed from the approximated
analytical expressions, numerical analysis have shown that the actual and exact
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numerical solutions of the dispersion relation for L waves show significant difference
relative to the approximate analytical solution, and that this difference increases with
the decrease of the kappa indexes. Moreover, the numerical results obtained have
shown that the dispersion relations for L waves are significantly different, for two
different representations of the Kappa distributions which are pervasively used in the
literature in recent years.

The dispersion relations for S waves also are significantly different, for the two
representations of Kappa distributions which have been considered in the analysis.
For the S waves there is also significant difference between the results obtained with
the approximate analytical solution and with the exact dispersion relation. However,
contrary to what is observed for L waves, the difference between the exact and the
expanded dispersion relation for S waves decreases with the decrease of κ .
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Appendix A. Evaluation of the integrals J(n,m, h; fβ) and I in the case of Kappa
distribution functions

Here we present details of the evaluation of the integrals which appear in the
components of the dispersion relation, for the case in which the distribution functions
of plasma particles are given by (2.1). We consider the generic case of a magnetized
plasma, and write (1.2) in terms of dimensionless variables,

J(n,m, h; fβ)= z
∫

d3u
uh
‖u

2(m−1)
⊥ u⊥L( fβ)

z− nrβ − q‖u‖
, (A 1)

where the distribution function is also written in terms of dimensionless variables,
normalized such that

∫
d3u fβ = 1. For simplicity of notation, here we will write κ

and α instead of κβ and αβ .
Using the differential operators,

L( fβ) =
(
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fβ, (A 3)

which leads to

L( fβ)=−2u⊥
u2
β,κ

κ + α
κ

(
1+ u2

κu2
β,κ

)−1

fβ . (A 4)
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Therefore, the integral containing operator L vanishes, and the expression for the
J(n,m, h; fβ) becomes

2ω
u2
β,κv∗k‖

(2π)nβ0

π3/2κ3/2u3
β,κ

κ + α
κ

Γ (κ + α)
Γ (κ + α − 3/2)

∫ ∞
0

du⊥ u2m+1
⊥

×
∫ ∞
−∞

du‖
uh
‖

u‖ − u‖,res

(
1+ u2

‖
κu2

β,κ

+ u2
⊥

κu2
β,κ

)−(κ+α+1)

, (A 5)

where u‖,res = (ω− nΩβ)/(k‖v∗).
By defining α‖ = 1+ u2

‖/(κu2
β,κ), we can write this expression as follows,
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Changing variable in the integrals over u⊥, t = u2
⊥/(α‖κu2

β,κ), the integral over u⊥
becomes

1
2
αm+1
‖ κm+1u2(m+1)

β,κ

∫ ∞
0

dt
tm

(1+ t)κ+α+1
. (A 7)

It is seen that we can use the following integral, with appropriate values of z and w,∫ ∞
0

dt
tz−1

(1+ t)w+z
= Γ (z)Γ (w)
Γ (w+ z)

, (Re z> 0,Re w> 0), (A 8)

which leads to the following for the u⊥ integral,

1
2
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β,κ

Γ (m+ 1)Γ (κ + α −m)
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Using this result,

J(n,m, h; fβ) = z
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(2π)nβ0
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κm−3/2u2m−3+h

β,κ (m!)
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β

(
1+ s2

κ

)m−κ−α
, (A 10)

where s= u‖/uβ,κ and ζ n
β = (z− nrβ)/(q‖uβ,κ).

We now introduce the plasma dispersion function of order m, for Kappa
distributions,

Z(m)κ (ξ)= 1
π1/2

Γ (κ)

κ1/2Γ (κ − 1/2)

∫ ∞
−∞

ds
(s− ξ)(1+ s2/κ)κ+m

, (A 11)
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which can be written in terms of the Gauss hypergeometric function 2F1(a, b, c, z), as
in (2.3), for κ >−m− 1/2.

Let us now consider in some detail the evaluation of J(n, m, h; fβ) in the case of
h= 0,

J(n,m, 0; fβ) = z
q‖

(2π)nβ0

π3/2
κm−3/2u2m−3

β,κ (m!)

× Γ (κ + α −m)
Γ (κ + α − 3/2)

∫ ∞
−∞

ds
1

s− ζ n
β

(
1+ s2

κ

)−(κ+α−m)

. (A 12)

The integrand diverges for κ + 1 − m < 0. For m < κ + 1, the integral can be
evaluated using (A 11) and (2.3), leading to

J(n,m, 0; fβ) = (2)nβ0(κu2
β,κ)

m−1(uβ,κ)0(m!)
× Γ (κ + α −m)Γ (κ − 1/2)

Γ (κ + α − 3/2)Γ (κ)
ζ 0
βZ(α−m)

κ (ζ n
β ), (A 13)

where ζ 0
β = z/(q‖uβ,κ) and ζ n

β = (z− nrβ)/(q‖uβ,κ).
For other values of h the evaluation is similar. For instance, for the cases of h= 1

and h= 2, one obtains

J(n,m, 1; fβ)
= (2)nβ0(κu2

β,κ)
m−1uβ,κ(m!)ζ 0

β

Γ (κ + α −m)Γ (κ − 1/2)
Γ (κ + α − 3/2)Γ (κ)

×
(
Γ (κ)Γ (κ + α −m− 1/2)
Γ (κ − 1/2)Γ (κ + α −m)

+ ζ n
βZ(α−m)

κ (ζ n
β )

)
, (A 14)

J(n,m, 2; fβ)
= (2)nβ0(κu2

β,κ)
m−1u2

β,κ(m!)ζ 0
β ζ

n
β

Γ (κ + α −m)Γ (κ − 1/2)
Γ (κ + α − 3/2)Γ (κ)

×
(
Γ (κ)Γ (κ + α −m− 1/2)
Γ (κ − 1/2)Γ (κ + α −m)

+ ζ n
βZ(α−m)

κ (ζ n
β )

)
. (A 15)

We can obtain approximated expressions which are valid when |ζ n
β |� s in the region

which is relevant for the integration. We proceed from the equation which appears
before (A 11), and then expand the denominator, obtaining

J(n,m, h; fβ) = − z
q‖

(2π)nβ0

π3/2
κm−3/2u2m−3+h

β,κ (m!) Γ (κ + α −m)
Γ (κ + α − 3/2)

1
ζ n
β

×
∫ ∞
−∞

ds sh

(
1+ s

ζ n
β

+ s2

(ζ n
β )

2
+ · · ·

)(
1+ s2

κ

)m−κ−α
. (A 16)

Neglecting terms of order (s/ζ )3, taking into account the parity of the integrands
and using (A 8) with t= s2/κ , we obtain, for the cases h= 0, h= 1 and h= 2,

J(n,m, 0; fβ) = −2nβ0κ
m−1u2m−2

β,κ (m!)

× ζ
0
β

ζ n
β

Γ (κ + α −m− 3/2)
Γ (κ + α − 3/2)

(
κ + α −m− 3

2
+ 1
(ζ n
β )

2

κ

2

)
, (A 17)

https://doi.org/10.1017/S0022377817000733 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000733


32 L. F. Ziebell, R. Gaelzer and F. J. R. Simões Jr

J(n,m, 1; fβ) = −nβ0κ
mu2m−1

β,κ (m!) ζ
0
β

(ζ n
β )

2

Γ (κ + α −m− 3/2)
Γ (κ + α − 3/2)

, (A 18)

J(n,m, 2; fβ) = −nβ0κ
mu2m

β,κ(m!)

× ζ
0
β

ζ n
β

Γ (κ + α −m− 5/2)
Γ (κ + α − 3/2)

(
κ + α −m− 5

2
+ 1
(ζ n
β )

2

3κ
2

)
. (A 19)

An approximation valid for small values of |ζ n
β | can be obtained by the following

expansion of the integrand in the expression which appears before (A 11)

J(n,m, h; fβ) = z
q‖

(2π)nβ0

π3/2
κm−3/2u2m−3+h

β (m!) Γ (κ + α −m)
Γ (κ + α − 3/2)

×
∫ ∞
−∞

ds sh−1

(
1+ s2

κ

)m−κ−α(
1+ ζ̂

n
β

s
+ (ζ̂

n
β )

2

s2
+ · · ·

)
. (A 20)

Neglecting terms of order (ζ/s)3, taking into account the parity of the integrands
and using (A 8) with t= s2/κ , we obtain, for the cases h= 0, h= 1 and h= 2,

J(n,m, 0; fβ) = −(4)nβ0κ
m−2u2m−2

β (m!)Γ (κ + α −m+ 1/2)
Γ (κ + α − 3/2)

ζ 0
β ζ̂

n
β (A 21)

J(n,m, 1; fβ) = (2)nβ0κ
m−1/2u2m−1

β (m!)Γ (κ + α −m− 1/2)
Γ (κ + α − 3/2)

× ζ 0
β

[
1− 2(ζ̂ n

β )
2 (κ + α −m− 1/2)

κ

]
(A 22)

J(n,m, 2; fβ) = (2)nβ0κ
m−1u2m

β (m!)
Γ (κ + α −m− 1/2)
Γ (κ + α − 3/2)

ζ 0
β ζ̂

n
β . (A 23)
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