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In unbounded cylindrical domains, new Phragmén–Lindelöf theorems ‘at infinity’ are
established for solutions of Dirichlet problems for elliptic equations whose operators
belong to a large class to which the existing literature does not apply.

1. Introduction

Theorems of Phragmén–Lindelöf type usually yield the asymptotic behaviour of
solutions of boundary-value problems for second-order elliptic or parabolic opera-
tors at points of the boundary of the domain or at points at infinity. (Examples of
other types of ‘Phragmén–Lindelöf’ articles (e.g. [10,16,17]) certainly occur in the
literature.) For fixed positive integers N , m and n = N +m, we assume throughout
this paper that Ω is an unbounded open subset of R

n such that, for some fixed
M > 0, Ω is contained in the cylinder

Cm
M =

{
X = (x1, . . . , xn) ∈ R

n

∣∣∣∣
m∑

k=1

x2
k+N < M2

}
.

Our goal is to obtain a general Phragmén–Lindelöf theorem at infinity for domains
contained in such cylinders.

We consider operators of the form

Qu(X) =
n∑

i,j=1

ai,j(X, u(X), Du(X))Diju(X) + b(X, u(X), Du(X)), (1.1)

where (ai,j(X, t, P )) is a positive semi-definite matrix in which each entry is in
C0(Ω × R × R

n) and b is a function in C0(Ω × R × R
n). For φ ∈ C0(Rn), we will

consider the Dirichlet problem

Qf = 0 in Ω and f = φ on ∂Ω. (1.2)

We first prove a Phragmén–Lindelöf theorem at infinity for operators Q with
b ≡ 0 satisfying (2.1) and (2.5) and solutions f ∈ C2(Ω) ∩ C0(Ω̄) of (1.2) (see
theorem 2.3). We then prove a Phragmén–Lindelöf theorem for bounded solutions
f ∈ C2(Ω) ∩ C0(Ω̄) of (1.2) when Q satisfies (2.1) and (2.5) and some conditions at
infinity (see theorem 2.7). The proofs of these results use barrier functions related
to those constructed in [11–15] to obtain Phragmén–Lindelöf theorems. The results
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of [12–14] (see also [15]) deal with solutions defined in slabs

SM = {X = (x1, . . . , xn) ∈ R
n | |xn| < M};

the primary difference between these papers and the present one involves the
hypotheses on the top-order coefficients of the operator. In particular, [12, eqn (14)]
and [13, eqn (2.6)] require an,n to have a positive lower bound while (2.5) requires∑m

k,l=1 νkνlak+N,l+N and (2.16) requires
∑m

k=1 ak+N,k+N to have a positive lower
bound; this allows us to handle degenerate operators in which an,n can be zero
(e.g. example 3.4). Even when m = 1, and so Cm

M = SM , the difference between
corollaries 3.2 and 4.2 of [12] illustrate that different (but related) classes of oper-
ators are involved (see example 3.3).

In certain areas of, for example, elasticity theory (e.g. [5–7]), domains contained in
cylinders occupy a special place based on their occurrence in applications (e.g. [2,3,
8,19]). In the study of anti-plane shear deformations of nonlinearly elastic materials
contained in cylinders, the convergence of solutions to specified limiting values
(e.g. 0) may be one of the assumptions in the problem (e.g. [9]); our examples in
§ 3 illustrate that, for second-order elliptic operators, obtaining Phragmén–Lindelöf
conclusions (and, perhaps, later obtaining ‘spatial decay’ estimates) may require
new theorems such as ours.

2. Main results

We will now assume that the coefficients of Q have been normalized so that
n∑

i=1

ai,i(X, z, P ) = 1 for (X, z, P ) ∈ R
n × R × R

n. (2.1)

We will write elements X = (x1, . . . , xn) as (x,y), where x = (x1, . . . , xN ) and y =
(xN+1, . . . , xn). We shall set yk = xk+N for k = 1, . . . , m, so that y = (y1, . . . , ym).

We shall assume the following hypothesis on the behaviour of the boundary
data φ.

Assumption 2.1. There is a function Φ ∈ C0(SN−1) such that φ(rω, y) → Φ(ω)
as r → ∞ uniformly for ω ∈ SN−1 and |y| � M .

The assumptions on the operator Q will be described by the behaviour of the
following functions.

Definition 2.2. For an operator Q in (1.1) satisfying (2.1), let

ε(X, z, P ) = ε(x,y, z, P ) =
n∑

i,j=1

ai,j(X, z, P )PiPj (2.2)

and

γ(X, z, P ) =
m∑

k=1

ak+N,k+N (X, z, P ) (2.3)

for X, P ∈ R
n, z ∈ R. For each ν ∈ Sm−1, x,p ∈ R

N and z, t, q ∈ R, let

ε#ν (x, z, t,p, q) =

∑m
k,l=1 νkνlak+N,l+N

1 + ε −
∑m

k=1 ak+N,k+N + 4q−2
∑N

i=1
∑m

k=1 piνkai,k+N

, (2.4)
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where

ai,j = ai,j

(
x, tν, z,−p

q
,
ν

q

)
, 1 � i, j � n, and ε = ε

(
x, tν, z,−p

q
,
ν

q

)
.

Theorem 2.3. Let Ω ⊂ Cm
M . Suppose that:

(1) f ∈ C2(Ω) ∩ C0(Ω̄) satisfies (1.2);

(2) Q satisfies (2.1) and b ≡ 0;

(3) there exist L > 0, and a positive continuous function σ on [1,∞) such that,
for each ν ∈ Sm−1,

ε#ν (x, z, t,p, q) � σ(|p|2 + |q|2) (2.5)

whenever x,p ∈ R
N and z, t, q ∈ R with |x| � L, |p|2 + |q|2 � 1, |t| � M and

|q| > 0;

(4) φ satisfies assumption 2.1.

Then
lim

j→∞
f(xj ,yj) = Φ(ω) (2.6)

uniformly for ω ∈ SN−1 and sequences {(xj ,yj)} in Ω̄ such that |xj | → ∞ and
xj/|xj | → ω as j → ∞.

Let T (Ω) represent the set of directions η ∈ Sn−1 at infinity of Ω; i.e.

T (Ω) =
∞⋂

L=1

⋃
r�L

{η ∈ Sn−1 : rη ∈ Ω} ⊂ SN−1 × {0}. (2.7)

Let B(M) = {y ∈ R
m : |y| � M}. For the direction η = (ω,0) ∈ T (Ω), let Bη(Ω)

denote the set of y ∈ B(M) for which there exists a sequence {xi} in R
N which

satisfies

lim
i→∞

|xi| = ∞, lim
i→∞

xi

|xi|
= ω, (xi,y) ∈ Ω̄ for i = 1, 2, . . . ,

and let B0
η(Ω) denote its interior; if, for example, Ω = U×V with U ⊂ R

N , V ⊂ R
m

and ω ∈ T (U), then Bη(Ω) = V̄ and B0
η(Ω) = V .

For η = (ω,0) ∈ T (Ω), ω ∈ SN−1, consider the following assumptions.

Assumption 2.4. For some open subset O of SN−1 with ω ∈ O, there exist

Ak,l ∈ C0(O × Bη(Ω) × R
m+1) and E ∈ C0(O × Bη(Ω) × R

m+1)

such that Ak,l((x/|x|),y, z, q) is independent of z, E((x/|x|),y, z, q) is non-increas-
ing in z,

ak+N,l+N (x,y, z,p, q)
γ(x,y, z,p, q)

→ Ak,l(ν,y, z, q) (2.8)

https://doi.org/10.1017/S0308210500003954 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500003954


442 H. Almefleh and K. Lancaster

and

b(x,y, z,p, q)
γ(x,y, z,p, q)

→ E(ν,y, z, q) (2.9)

as |x| → ∞ with x/|x| → ν and |p| → 0 uniformly for y ∈ Bη(Ω), ν ∈ O, z ∈ R

and q ∈ R
m when 1 � k, l � m.

Let Q∞ denote the operator defined on C2(B0
η(Ω)) by

Q∞u(y) =
m∑

k,l=1

Ak,l(ω, y, u, Dyu)
∂2u

∂yk∂yl
+ E(ω, y, u, Dyu). (2.10)

Assumption 2.5. There exists a function k : Bη(Ω) × T (Ω) → R with k(·, ω) ∈
C2(B0

η(Ω)) ∩ C0(Bη(Ω)) such that

φ(x,y) → k(y, ω) (2.11)

uniformly as |x| → ∞ and x/|x| → ω for (x,y) ∈ ∂Ω and

Q∞(k(·, ω)) = 0 in B0
η(Ω).

Assumption 2.6. For each α > 0, there exist δ = δα,ω > 0 and functions k1 and
k2 in C1(Bη(Ω)) ∩ C2(B0

η(Ω)) such that

|k1(y) − k(y, ω)| � α, y ∈ Bη(Ω), (2.12)
|k2(y) − k(y, ω)| � α, y ∈ Bη(Ω), (2.13)

Q∞(k1)(y) � δ, y ∈ B0
η(Ω), (2.14)

and

Q∞(k2)(y) � −δ, y ∈ B0
η(Ω). (2.15)

Theorem 2.7. Let Ω ⊂ Cm
M and η = (ω,0) ∈ T (Ω). Suppose that

(1) f ∈ C2(Ω) ∩ C0(Ω̄) ∩ L∞(Ω) satisfies (1.2);

(2) assumptions 2.4, 2.5 and 2.6 are satisfied for η;

(3) there exist L � 0 and a positive continuous function σ on [1,∞) such that

γ(x,y, z,p, q) � σ(|p|2 + |q|2) (2.16)

whenever x,p ∈ R
N , z ∈ R, y, q ∈ R

m with |x| � L and y ∈ B0
η(Ω);

(4) Q satisfies (2.1).

Then
lim

j→∞
|f(xj ,yj) − k(yj , ω)| = 0 (2.17)

uniformly for sequences {(xj ,yj)} in Ω̄ with |xj | → ∞ and xj/|xj | → ω as j → ∞.
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3. Operators and examples

Let Q be an operator given by (1.1) and satisfying (2.1). We will say that Q is in
our class of operators, denoted C, if there exist L > 0 and a positive continuous
function σ on [1,∞) such that (2.5) holds for each ν ∈ Sm−1, x,p ∈ R

N and
z, t, q ∈ R with |x| � L, |p|2 + |q|2 � 1, |t| � M and |q| > 0.

Let us define a new operator Q̃ associated with Q by setting

Q̃u(X) =
n∑

i,j=1

ãi,j(X, u, Du)Diju,

where ãi,j = −ai,j if 1 � i � N and N + 1 � j � n (or N + 1 � i � n and
1 � j � N) and ãi,j = ai,j otherwise. We shall require the following definition.

Definition 3.1 (Bernstein [1]; Serrin [18, p. 425]). Equation (1.1) has genre λ if
and only if it satisfies (2.1) and there are positive constants µ1 and µ2 such that,
for |P | � 1, X ∈ Ω, t ∈ R, P ∈ Rn,

µ1|P |2−λ � ε(X, t, P ) � µ2|P |2−λ. (3.1)

We recall that uniformly elliptic operators have genre 0, while prescribed mean
curvature operators have genre 2. Denote by C1 the set of operators Q given by
(1.1) which satisfy (2.1) and the conditions that Q̃ has genre greater than or equal
to 2 and there exist L � 0 and a positive continuous function σ1 on [1,∞) such
that

m∑
k,l=1

νkνlak+N,l+N

(
x, tν, z,−p

q
,
ν

q

)
� σ1(|p|2 + |q|2) (3.2)

holds whenever x,p ∈ R
N , z, t, q ∈ R, |x| � L, |p|2 + q2 � 1, 0 � t � M and

|q| > 0. Now

ε#ν (x, z, t,p, q) =

∑m
k,l=1 νkνlak+N,l+N

1 + ε̃ −
∑m

k=1 ak+N,k+N
,

where

ai,j = ai,j

(
x, tν, z,−p

q
,
ν

q

)
, 1 � i, j � n

and ε̃ = ε̃(x, tν, z,−p/q, ν/q) is the ε-invariant for Q̃. Since Q̃ has genre γ � 2, there
exist µ1 and µ2 with 0 < µ1 � µ2 such that µ1|P |2−γ � ε̃(X, z, P ) � µ2|P |2−γ for
|P | � 1. Then the proof of [12, corollary 4.2] shows C1 ⊂ C. Theorem 2.3 can be
applied to operators in C1 to yield the following corollary.

Corollary 3.2. Suppose Q ∈ C1, φ satisfies assumption 2.1 and f ∈ C2(Ω) ∩
C0(Ω̄) satisfies Qf = 0 in Ω and f = φ on ∂Ω. Then

lim sup
|x|→∞,(x,y)∈Ω

∣∣∣∣f(x,y) − Φ

(
x

|x|

)∣∣∣∣ = 0.

Example 3.3. Let m = N = 1, n = 2, Ω = (−1, 1) × (0,∞) and Q be the ‘false
minimal surface operator’ (e.g. [18, § 11]), normalized so (2.1) holds. Then Q̃ is the
minimal surface operator and so Q ∈ C1. From corollary 3.2, we see, for example,
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that if υ is any real constant and f ∈ C2(Ω) ∩ C0(Ω̄) satisfies Qf = 0 in the strip
Ω and f(x,±1) → υ as x → ∞, then, without any a priori assumptions about the
growth of f(x, y) as x → ∞, we have f(x, y) → υ as x → ∞, uniformly for |y| � 1.

Example 3.4. Let N = 1, m = 2, M = 3,

UA = {(x2, x3) ∈ R
2 : 1 < x2

2 + x2
3 < 9},

UB = {(x2, x3) ∈ UA : x2 > 0, 1√
3x2 < x3 <

√
3x2}

and

UC = UA \ ŪB .

Let U be one of these three sets and define Ω = R×U . Let Q be the operator given
by

Qu(X) def=
3∑

i,j=1

ai,j(X, Du(X))Di,ju(X),

where

a1,1(X, P ) =
1 + p2

2 + p2
3

2 + 2|P |2 , a1,2(X, P ) =
p1p2

2 + 2|P |2 ,

a2,2(X, P ) =
x2

2/(x2
2 + x2

3) + p2
1 + p2

3

2 + 2|P |2 , a3,3(X, P ) =
x2

3/(x2
2 + x2

3) + p2
1 + p2

2

2 + 2|P |2 ,

a1,3(X, P ) =
p1p3

2 + 2|P |2 , a2,3(X, P ) =
x2x3/(x2

2 + x2
3) − p2p3

2 + 2|P |2 ,

for X = (x1, x2, x3) ∈ Ω̄ and P = (p1, p2, p3) ∈ R
3. Note that Q is a quasi-linear

operator which is degenerate elliptic (e.g. a3,3(x1,±2, 0, 0, 0, p3) = 0). Note also
that

ε(X, z, P ) =
(x2p2 + x3p3)2/(x2

2 + x2
3) + p2

1 + 4p2
1p

2
2 + 4p2

1p
2
3

2 + 2|P |2 ,

ε#ν (x, z, t,p, q) =
p2
1 + q2

2 + p2
1 + q2 , γ(X, z, P ) =

1 + 2p2
1 + p2

2 + p2
3

2 + 2|P |2

and

Q∞u =
2∑

k,l=1

Ak,l(y, u, Dyu)
∂2u

∂yk∂yl
,

where

A1,1(y, z, q) =
y2
1/(y2

1 + y2
2) + q2

2

1 + q2
1 + q2

2
,

A1,2(y, z, q) =
y1y2/(y2

1 + y2
2) − q1q2

1 + q2
1 + q2

2
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and

A2,2(y, z, q) =
y2
2/(y2

1 + y2
2) + q2

1

1 + q2
1 + q2

2
.

Suppose firstly that υ ∈ R, φ ∈ C0(∂Ω) with limx1→+∞ φ(x1, y1, y2) = υ when
(x1, y1, y2) ∈ ∂Ω and f ∈ C0(Ω̄) ∩ C2(Ω) is any function satisfying Qf = 0 in Ω
and f = φ on ∂Ω. Then theorem 2.3 implies that

lim
x1→+∞

f(x1, y1, y2) = υ when (y1, y2) ∈ Ū .

Suppose next that Ω = R × UC and limx1→+∞ φ(x1, y1, y2) = k(y1, y2), where
k(y1, y2) = arg(y1+iy2) ∈ ( 1

4π, 9
4π). Let f ∈ C0(Ω̄) ∩ C2(Ω) be a bounded function

satisfying Qf = 0 in Ω and f = φ on ∂Ω. Then theorem 2.7 implies that

lim
x1→+∞

f(x1, y1, y2) = k(y1, y2) when (y1, y2) ∈ ŪC .

(The graph of k(y1, y2) is a piece of a helicoid and Q∞k = 0. The functions k1(y) =
k(y) + λ|y|2 and k2(y) = k(y) − λ|y|2 for λ > 0 sufficiently small satisfy assump-
tion 2.6.)

Suppose finally that Ω = R × UB and limx1→+∞ φ(x1, y1, y2) = k(y1, y2), where
k(y1, y2) = ln(y1)−ln(y2). Let f ∈ C0(Ω̄) ∩ C2(Ω) be a bounded function satisfying
Qf = 0 in Ω and f = φ on ∂Ω. Then theorem 2.7 implies that

lim
x1→+∞

f(x1, y1, y2) = k(y1, y2) when (y1, y2) ∈ ŪB .

(Note that Q∞k = 0 and the functions k1(y) = k(y) + λ|y|2 and k2(y) = k(y) −
λ|y|2 for λ > 0 sufficiently small satisfy assumption 2.6.)

The conclusions in example 3.4 do not follow from existing results in the liter-
ature, to the best of our knowledge. Even though Q is degenerate, it has a spe-
cial structure for which a ‘strong’ (i.e. without a priori growth or boundedness
hypotheses) Phragmén–Lindelöf theorem in a cylinder holds. This type of limiting
behaviour of solutions does not always hold, even for ‘better’ (i.e. non-degenerate)
elliptic operators, as the following example illustrates.

Example 3.5. Let υ ∈ R and consider the bounded solutions g ≡ υ and

h(x1, x2, x3) =
(

1 +
2

lnx1

)
cos x2 cos x3 + υ

of Dirichlet problems for the elliptic linear operator L,

Lu(x1, x2, x3) =
(x1 lnx1)2

2 + (x1 lnx1)2
D11u +

1
2 + (x1 lnx1)2

(D22u + D33u),

in the domain U = {(x1, x2, x3) : x1 > e, |x2| < 1
2π, |x3| < 1

2π} with φ = υ on ∂U ∩
{(x1, x2, x3) : x1 > e}. Clearly, Lg = 0 = Lh in U , g = φ = h on ∂U ∩ {x1 > e}
and yet

lim
x1→+∞

h(x1, x2, x3) = υ + cos x2 cos x3 �= υ = lim
x1→+∞

g(x1, x2, x3)

for max{|x2|, |x3|} < 1
2π.
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Example 3.6. Let N0 � 1, N = N0 +1, m = 2, n = N +2, M > 0, U = {(y1, y2) ∈
R

2 : y2
1 + y2

2 < M2}, and Ω = {(t, x,y) ∈ R
n : y ∈ U, |x| < 1} ⊂ Cm

M . Let T be a
quasi-linear elliptic second-order operator on C2(RN0) with trace 1 and let Q be
the parabolic operator defined by

Qu(X) =
1
2

(
T (u) + cos2(u)

∂2u

∂y2
1

+ sin2(u)
∂2u

∂y2
2

− ∂u

∂t
− u

)

for X = (t, x1, . . . , xN0 , y1, y2) ∈ Ω̄, where T (u)(X) means T (u(t, ·, . . . , ·,y))(x).
Note that γ(X, z, P ) = 1

2 and

Q∞u = cos2(u)
∂2u

∂y2
1

+ sin2(u)
∂2u

∂y2
2

− u.

Let k(y) = cosh(y1 + y2) and assume limt→+∞ φ(t, x,y) = k(y) when (t, x,y) ∈
∂Ω, uniformly for x satisfying |x| � 1 and y ∈ Ū . Let f ∈ C0(Ω̄) ∩ C2(Ω) be a
bounded function satisfying Qf = 0 in Ω and f = φ on ∂Ω. Then theorem 2.7
implies that

lim
t→+∞

f(t, x,y) = k(y) when y ∈ Ū .

(Note that Q∞k = 0 and the functions k1(y) = k(y) + λ|y|2 and k2(y) = k(y) −
λ|y|2 for λ > 0 sufficiently small satisfy assumption 2.6.)

4. Barrier functions

Assume throughout the next two sections that b ≡ 0 in (1.1). Let us define ξ = ξ(t)
as a continuous decreasing function from [1,∞) into (0, 1] satisfying

lim
t→∞

ξ(t) = 0 and 0 < ξ(t) < σ(t).

We will construct upper barriers ua,x0,γ,H and lower barriers va,x0,γ,H for the
Dirichlet problem (1.2) using ideas from [12, §§ 7 and 9]. Specifically, we claim
that there exist functions A(t) > 0 and χ(t) > 0 and a domain Ωa,x0,H such that
if K � 0, γ ∈ R, a = A(H) and x0 ∈ R

N with |x0| � L + aeχ(H), then there exist
u = ua,x0,γ,H and v = va,x0,γ,H in C0(Ω̄a,x0,H) ∩ C1(Ωa,x0,H) ∩ C2(Ω0

a,x0,H) such
that, for any constant ζ,

Q(u + ζ) < 0 and Q(v + ζ) > 0 in Ω0
a,x0,H (4.1)

u � γ and v � γ on Ω̄a,x0,H , (4.2)
∂u

∂n
= +∞ and

∂v

∂n
= −∞ on Ω ∩ ∂Ωa,x0,H , (4.3)

u(x0,y) � γ +
M

H
and v(x0,y) � γ − M

H
for |y| � M, (4.4)

lim
t→0

∂2u

∂y2
k

(x, tek) = −∞, 1 � k � m, (4.5)

lim
t→0

∂2v

∂y2
k

(x, tek) = +∞, 1 � k � m, (4.6)
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where Ω0
a,x0,H = {(x,y) ∈ Ωa,x0,H : |y| > 0} and ek is the unit vector in the posi-

tive yk-direction.
Before beginning our construction, let us introduce a new operator. Correspond-

ing to the operator Q and to ν ∈ Sm−1, we define an operator Q#
ν by

Q#
ν v(x, z) =

N+1∑
i,j=1

Aν
ij(x, z, v, Dv)Dijv + Bν(x, z, v, Dv) (4.7)

for v = v(x, z) ∈ C2(RN+1) with ∂v/∂z �= 0, where

Aν
i,j(x, z, t,p, q) = q2ai,j

(
x, νt, z,−p

q
,
ν

q

)
, 1 � i, j � N,

Aν
i,N+1(x, z, t,p, q) = −q

m∑
k=1

νkai,k+N

(
x, νt, z,−p

q
,
ν

q

)

− q
N∑

j=1

pjai,j

(
x, νt, z,−p

q
,
ν

q

)
, 1 � i � N,

Aν
N+1,N+1(x, z, t,p, q) =

N∑
i,j=1

pipjai,j

(
x, νt, z,−p

q
,
ν

q

)

+ 2
N∑

j=1

m∑
k=1

νkpjaj,k+N

(
x, νt, z,−p

q
,
ν

q

)

+
m∑

k,l=1

νkνlak+N,l+N

(
x, νt, z,−p

q
,
ν

q

)

and

Bν(x, z, t,p, q) = −q2

t

m∑
k,l=1

νkνlak+N,l+N

(
x, νt, z,−p

q
,
ν

q

)

+
q2

t

m∑
k=1

ak+N,k+N

(
x, νt, z,−p

q
,
ν

q

)
.

Note that Q and Q#
ν are related in the following manner.

If u(x,y) = w(x, M − |y|), w = w(x, t) is in C2(RN+1), g = g(x, z) is in
C2(RN+1), gz �= 0 and g(x, w(x, t)) = t for 0 � t � M , then

Qu(x,y) = −
(

∂g

∂z
(x, z)

)−3

Q#
ν g(x, z) if y �= 0, ν =

y

|y| , z = u(x,y). (4.8)

Note that

ε#ν (x, z, t,p, q) =

∑N
i,j=1 Aν

i,jpipj + 2
∑N

i=1 Aν
i,N+1piq + Aν

N+1,N+1q
2

∑N+1
i=1 Aν

i,i

(4.9)

https://doi.org/10.1017/S0308210500003954 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500003954


448 H. Almefleh and K. Lancaster

for q �= 0, where Aν
i,j = Aν

i,j(x, z, t,p, q) for 1 � i, j � N + 1 were given previously,
and x,p ∈ R

N , z, t, q ∈ R. (ε is the ε-invariant for Q given in [18, p. 425]; ε#ν is the
equivalent invariant for Q#

ν .)

4.1. The construction

Let ν represent an element of Sm−1 = {y ∈ R
m : |y| = 1}. Define Ψ ∈ C0([1,∞))

by Ψ(ρ) = 1/ξ(ρ2). Then ∫ ∞

1

1
ρ3Ψ(ρ)

dρ < ∞

and
ε#ν (x, z, t,p, q)Ψ(

√
|p|2 + q2) � 1 (4.10)

for x,p ∈ R
n−1, q ∈ R with |x| � L, |p|2 + q2 � 1, |t| � M and |q| > 0. Define Ψ1

by setting Ψ1(ρ) = ρ−2 if 0 < ρ < 1 and Ψ1(ρ) = Ψ(ρ) if 1 � ρ. Define χ by

χ(α) =
∫ ∞

α

dρ

ρ3Ψ1(ρ)

for α > 0. Then it is clear that χ(α) is a decreasing function with range (0,∞). Let
η be the inverse of χ. Then η is a positive, decreasing function with range (0,∞).

Let H � 1. Since η(χ(H)) = H and η is decreasing, we have η(β) > H for
0 < β < χ(H). For each a > 0, define ha = ha,H by

ha(r) =
∫ aeχ(H)

r

η

(
ln

t

a

)
dt for a � r � aeχ(H). (4.11)

Then ha(aeχ(H)) = 0 and ha(a) = ah1(1). Recalling Ω ⊂ {(x,y) : |y| � M}, we
define a function A(H) by

A(H) = M

(∫ eχ(H)

1
η(ln t) dt

)−1

. (4.12)

Let a = A(H) and observe that ha(a) = M . Furthermore, for a < r � aeχ(H),

h′
a(r) = −η

(
ln

r

a

)
< 0, |h′

a(r)| > H,

and

h′′
a(r) =

1
r

(
η

(
ln

r

a

))3

Ψ1

(
η

(
ln

r

a

))
> 0.

Thus, for a < r � aeχ(H),

h′′
a(r)

(h′
a(r))2

= −h′
a(r)
r

Ψ1(−h′
a(r)). (4.13)

Consider x0 ∈ R
N with |x0| � L + aeχ(H) and a constant Γ ∈ R. Now we define a

function g = ga,x0,Γ,H by

ga,x0,Γ,H(x, z) = ha(
√

|x − x0|2 + (z − Γ )2) (4.14)

for a2 � |x − x0|2 + (z − Γ )2 � a2e2χ(H).
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Then, for

r =
√

|x − x0|2 + (z − Γ )2, a < r � aeχ(H), 1 � i, j � N,

∂g

∂xi
=

xi − x0i

r
h′

a(r),

∂g

∂z
=

z − Γ

r
h′

a(r),

∂2g

∂z2 = h′′
a(r)

(z − Γ )2

r2 − h′
a(r)

(z − Γ )2

r3 + h′
a(r)

1
r
,

∂2g

∂xi∂z
= h′′

a(r)
(xi − x0i)(z − Γ )

r2 − h′
a(r)

(xi − x0i)(z − Γ )
r3 ,

∂2g

∂xi∂xj
= h′′

a(r)
(xi − x0i)(xj − x0j)

r2 − h′
a(r)

(xi − x0i)(xj − x0j)
r3 + δi,jh

′
a(r)

1
r
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.15)
where δi,j is the Kronecker delta. Note that

∂g

∂z
(x, z) > 0 if z < Γ

∂g

∂z
(x, z) < 0 if z > Γ.

It is clear that, for any ν ∈ Sm−1 and (x, z) satisfying

a <
√

|x − x0|2 + (z − Γ )2 � aeχ(H),

P νg(x, z) def=
N+1∑
i,j=1

Aν
i,j(x, z, g, Dg)Dijg

=
[

h′′
a(r)

(h′
a(r))2

ε#ν (x, z, g, Dg) +
1
r
h′

a(r) − 1
rh′

a(r)
ε#ν (x, z, g, Dg)

]

×
N+1∑
i=1

Aν
i,i(x, z, g, Dg)

�
(N+1∑

i=1

Aν
i,i(x, z, g, Dg)

)(
ε#ν (x, z, g, Dg)

h′′
a(r)

(h′
a(r))2

+
h′

a(r)
r

)

=
(N+1∑

i=1

Aν
i,i(x, z, g, Dg)

)(
−h′

a(r)
r

Ψ1(−h′
a(r))ε#ν (x, z, g, Dg) +

h′
a(r)
r

)

=
(N+1∑

i=1

Aν
i,i(x, z, g, Dg)

)
h′

a(r)
r

(1 − Ψ1(|Dg|)ε#ν (x, z, g, Dg))

> 0;
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here we have used the definition of ε#ν (x, z, g, Dg) and the fact that, if a < r <
aeχ(H), then h′

a(r) < 0, |Dg| = |h′
a(r)| � H � 1, and

Ψ(|Dg|)ε#ν (x, z, g, Dg) > 1 when |Dg| � 1.

Note that Bν(x, z, t,p, q) � 0 for all x,p ∈ R
N , z, q ∈ R and 0 < |t| � M , and so

Q#
ν g(x, z) = P νg(x, z) + Bν(x, z, g, Dg) > 0 (4.16)

for (x, z) ∈ R
N+1 satisfying a <

√
|x − x0|2 + (z − Γ )2 � aeχ(H) and |x − x0|2 �

L1(|x − x0|2 + (z − Γ )2).
Note that the functions w+ = w+

a,x0,Γ,H and w− = w−
a,x0,Γ,H defined by

w+
a,x0,Γ,H(x, t) = Γ −

√
(h−1

a (t))2 − |x − x0|2 (4.17)

and

w−
a,x0,Γ,H(x, t) = Γ +

√
(h−1

a (t))2 − |x − x0|2 (4.18)

satisfy the equation
ga,x0,Γ,H(x, w±

a,x0,Γ,H(x, t)) = t. (4.19)

Set Γ+ = γ + aeχ(H) and Γ− = γ − aeχ(H). Let us define u = ua,x0,γ,H and v =
va,x0,γ,H by

ua,x0,γ,H(x,y) = w+
a,x0,Γ+,H(x, M − |y|)

and

va,x0,γ,H(x,y) = w−
a,x0,Γ −,H(x, |y|);

then

ua,x0,γ,H(x,y) = γ + aeχ(H) −
√

(h−1
a (M − |y|))2 − |x − x0|2 (4.20)

and

va,x0,γ,H(x,y) = γ − aeχ(H) +
√

(h−1
a (|y|))2 − |x − x0|2 (4.21)

for (x,y) ∈ Ω̄a,x0,H , where

Ωa,x0,H = {(x,y) ∈ R
N × R

m : |y| < M, |x − x0| < h−1
a (M − |y|)}. (4.22)

Set
Ω0

a,x0,H = {(x,y) ∈ Ωa,x0,H : |y| > 0} (4.23)

and observe that u, v ∈ C2(Ω0
a,x0,H). Since w+(x, z) < Γ+ and w−(x, z) > Γ−, we

see from (4.8) that, for any constant ζ,

Q(ua,x0,γ,H + ζ) < 0 and Q(va,x0,γ,H + ζ) > 0 on Ω0
a,x0,H .

We will verify properties (4.1)–(4.5) for u. Now

Du(x,y) =
1√

(h−1
a (M − |y|))2 − |x − x0|2

(
x − x0,

h−1
a (M − |y|)

h′
a(h−1

a (M − |y|))
y

|y|

)
.
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Recall that

lim
|y|→0

h−1
a (M − |y|) = h−1

a (M) = a, h′
a(r) = −η(ln(r/a)) and lim

t→0+
η(t) = +∞

and note that, when |x − x0| < a,

lim
|y|→0

Du(x,y) =
1√

a2 − |x − x0|2
(x − x0,0).

In particular, this shows that u ∈ C1(Ωa,x0,H) and

Du(x,0) =
(

x − x0√
a2 − |x − x0|2

,0
)

.

Furthermore,

∂2u

∂xi∂xj
(x,y) =

δij [(h−1
a (M − |y|))2 − |x − x0|2] + (xi − x0i)(xj − x0j)

((h−1
a (M − |y|))2 − |x − x0|2)3/2

and

∂2u

∂xi∂yk
(x,y) =

yk(xi − x0i)h−1
a (M − |y|)

|y|h′
a(h−1

a (M − |y|))((h−1
a (M − |y|))2 − |x − x0|2)3/2

;

hence

∂2u

∂xi∂xj
,

∂2u

∂xi∂yk
∈ C0(Ωa,x0,H) for 1 � k � m, 1 � i, j � N.

Let us abbreviate our notation by setting

S =
√

(h−1
a (M − |y|))2 − |x − x0|2, T = h−1

a (M − |y|),

U = Ψ1(η(ln(h−1
a (M − |y|)/a))) and V = h′

a(h−1
a (M − |y|)).

Then

∂2u

∂yk∂yl
(x,y) = − ykyl

|y|2V 2S
+

(δk,l − (ykyl/|y|2))T
|y|V S

− ykylTU

|y|2S +
ykylT

2

|y|2V 2S3 .

Since limt→∞ Ψ1(t) = +∞, lim|y|→0 U = +∞. In particular, note that

∂2u

∂y2
k

(x, ykek) = − 1
V 2S

− TU

S
+

T 2

V 2S3

(with ek the unit ykth-coordinate vector) and so

lim
yk→0

∂2u

∂y2
k

(x, ykek) = −∞ (4.24)

if 1 � k � m and |x − x0| < a. Hence (4.5) holds.
To verify (4.2), we use the fact that u(x,y) � Γ − h−1

a (M − |y|). Since ha(r) is
a decreasing function, h−1

a is also a decreasing function. Thus

h−1
a (M − |y|) � h−1

a (0) = aeχ(H) for |y| � M.
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Hence
u(x,y) � Γ − h−1

a (0) = γ + aeχ(H) − aeχ(H) = γ.

To verify (4.3), note that Ω ∩ ∂Ωa,x0,H is (a portion of) the M -level surface
ha(|x−x0|)+ |y| = M and its outer unit normal at (x,y) ∈ Ω ∩∂Ωa,x0,H is (recall
h′

a < 0)

n(x,y) =
−1√

1 + (h′
a(h−1

a (M − |y|)))2

(
h′

a(h−1
a (M − |y|)) x − x0

|x − x0|
,

y

|y|

)

=
−1√

1 + (h′
a(|x − x0|))2

(
h′

a(|x − x0|)
x − x0

|x − x0|
,

y

|y|

)
.

Consider (x,y) ∈ Ω ∩ ∂Ωa,x0,H and note that, if (xc,yc) satisfies h−1
a (M − |yc|) >

|xc − x0|, then, with n = n(x,y),

Du(xc,yc) · n

=
−1√

(h−1
a (M − |yc|))2 − |xc − x0|2

√
1 + (h′

a(|x − x0|))2

×
(

(xc − x0) · (x − x0)
|x − x0|

h′
a(|x − x0|) +

yc · y

|yc||y|
h−1

a (M − |yc|)
h′

a(h−1
a (M − |yc|))

)
;

by letting (xc,yc) → (x,y), so that h−1
a (M − |yc|) → |x − x0|, we see that

∂u

∂n
= +∞ on Ω ∩ ∂Ωa,x0,H . (4.25)

Similarly, we see that
∂v

∂n
= −∞ on Ω ∩ ∂Ωa,x0,H .

To verify (4.4), recall that u(x0,y) = Γ+ − h−1
a (M − |y|) and so, for 1 � k � m,

∂u

∂yk
(x0,y) =

yk

|y|h′
a(h−1

a (M − |y|))
=

−yk

|y|η(ln(a−1h−1
a (M − |y|)))

.

Using the fact that h−1
a (r) is a decreasing function again, we have

ln
h−1

a (M − |y|)
a

� ln eχ(H) = χ(H) for |y| � M.

Since η is also decreasing, we have

| ∂u

∂yk
(x0,y)| � 1

η(χ(H))
=

1
H

for |y| � M, 1 � k � m.

Then (4.4) follows from this and the fact that, if |y| = M , then

u(x0,y) = Γ − h−1
a (0) = Γ − aeχ(H) = γ.

Properties (4.1)–(4.4) and (4.6) of va,x0,γ,H can be established in a similar manner.
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Remark 4.1. Before continuing, it seems advisable to compare the techniques,
proofs and conclusions in this paper with those of [12–14]. Here the discussion
involving equation (4.8), which leads us to the use of barriers of the form u(x,y) =
w(x, M−|y|) with x ∈ R

N = R
n−m, y ∈ R

m and |y| � M , is crucial to theorem 2.3.
Now theorem 2.3 is related to [12, theorem 2.4], and corollary 3.2 is related to the
results in [12, § 4] (see also [15]). However, the results of [12] follow from the use
of barriers of the form u(x, y) = w(x, y) with x ∈ R

n−1, y ∈ R and |y| � M , for
which the discussion involving [12, eqn (2.6)] is crucial. The proof of theorem 2.3 will
involve one additional case (when y = 0) not present in [12]. The set of operators
Q to which both corollary 3.2 and [12, corollary 4.2], apply is probably empty, even
when m = 1 and Cm

M = SM .
Theorem 2.7 is related primarily to [13, theorem 2.2] and [14, theorem 2.6],

and secondarily to [12, theorem 2.5]. The results of [13, 14] require an,n in [13]
or mink=1,...,m an,n

k in [14] to have a positive lower bound (e.g. [13, eqn (14)], [14,
eqn (2.6)]), while theorem 2.7 requires only the weaker condition (2.16); when m = 1
(so that Cm

M = SM ), theorem 2.7 and [13, theorem 2.2] are essentially the same. The
proof of theorem 2.7 represents a refinement of that in [13] in which an inessential
dependence of the barrier function on y is eliminated.

5. Proof of theorem 2.3

For any ε > 0, by the assumption on φ(x, y) and the continuity of Φ(ω), there exist
δ > 0 and R > 0 such that, if (x,y) ∈ ∂Ω, |x| � R, |y| � M , ω ∈ SN−1 and
|x/|x| − ω| < δ, we have

|φ(x,y) − Φ(ω)| < ε. (5.1)

Fix ω ∈ SN−1 and set γ = Φ(ω)+ 2ε. We choose H such that H � 1 and M/H < ε
and set a = A(H). Let u(x,y) = ua,x0,γ,H(x,y) be the upper barrier given by (4.20)
with properties (4.1)–(4.5). We choose a large number R1 > R + L + A(H)eχ(H)

and a small number 0 < δ1 < δ such that, if |x| > R1, |x/|x| − ω| < δ1, we have∣∣∣∣ v

|v| − ω

∣∣∣∣ < δ for all v with |v − x| � A(H)eχ(H).

Now u is defined on the domain Ωa,x0,H ; we shall compare the functions f and u
on the domain Ω1 ≡ Ωa,x0,H ∩ Ω.

Set

W =
{

x

∣∣∣∣ |x| > R1,

∣∣∣∣ x

|x| − ω

∣∣∣∣ < δ1

}
.

We claim that, if (x0,y) ∈ Ω̄ and x0 ∈ W , then

f(x0,y) < Φ(ω) + 3ε. (5.2)

If (x,y) ∈ ∂Ω ∩ ∂Ω1, from the definition of W , (4.2) and (5.1), we have

f(x,y) = φ(x,y) < Φ(ω) + 2ε = γ � u(x,y). (5.3)

Thus,
f − u < 0 on ∂Ω ∩ ∂Ω1. (5.4)
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Note also that
∂u

∂n
= +∞ and

∂v

∂n
= −∞ on Ω ∩ ∂Ω1. (5.5)

We claim that
f(x,y) − u(x,y) < 0 on Ω1. (5.6)

Suppose that (5.6) is not true. Then there exists a ζ � 0 such that

f � u + ζ on Ω1 and f(x1,y1) = u(x1,y1) + ζ for some (x1,y1) ∈ Ω1. (5.7)

Note that Df(x1,y1) = Du(x1,y1).
Suppose first that y1 = 0. Consider the path σ(t) = (x1, t, 0, . . . , 0) in Ω1 and the

functions α(t) = f(σ(t)) and β(t) = u(σ(t))+ ζ. Note that α(t) � β(t), α(·), β(·) ∈
C1, α(0) = β(0), α′(0) = β′(0) = 0 and, since f ∈ C2(Ω), α(·) ∈ C2. From (4.24),
we see that limt→0 β′′(t) = −∞. Simple integration shows that, for every c > 0,
there exists δ > 0 such that β(t) � β(0) − 1

2ct2 if |t| � δ. By choosing c sufficiently
large (e.g. c = 1 + max|t|�δ |α′′(t)|), we obtain β(t) < α(t) for 0 < |t| � δ, in
contradiction of (5.7). Hence y1 �= 0.

The remainder of the argument required to establish (5.6) is standard; we shall
present it for the sake of completeness. Suppose next that (x1,y1) ∈ Ω0

a,x0,H . Now,
from (4.1) we have

n∑
i,j=1

ai,j(x,y, u(x,y) + ζ, Du(x,y))Diju(x,y) < 0 for (x,y) ∈ Ω1 ∩ Ω0
a,x0,H .

In particular,
n∑

i,j=1

ai,j(x1,y1, f(x1, y1), Df(x1,y1))Diju(x1, y1) < 0.

A standard argument (e.g. the proof of [4, theorem 3.1]) yields a contradiction; hence
(x1,y1) /∈ Ω0

a,x0,H . Consider the last two cases, in which (x1,y1) is in ∂Ω ∩ ∂Ω1
or Ω ∩ ∂Ω1. Note that (5.4) rules out the first of these cases. In the second of
these cases, (5.5) rules out the possibility that ζ > 0 and the only possibilities
which remain are that ζ = 0 and (x1,y1) ∈ Ω ∩ ∂Ω1 or that (5.7) is impossible.
Suppose (x1,y1) ∈ Ω ∩ ∂Ω1. Then a standard argument using (5.5) shows that
f(σ(t)) > u(σ(t)) + ζ for t > 0 small if σ(t) = (x1,y1) − tη ∈ Ω1, in contradiction
of (5.7). Thus (x1,y1) /∈ Ω ∩ ∂Ω1. Hence (5.6) holds.

Now, from (5.6), we have f(x0,y) � u(x0,y) for (x0,y) in Ω1. Thus (4.4) and
the choices of γ and H yield

f(x0,y) � γ +
M

H
� Φ(ω) + 3ε for (x0,y) ∈ Ω1.

Since (x0,y) ∈ Ω1 implies (x0,y) ∈ Ω (from the definition of Ωa,x0,H), the claim
(5.2) is proven. A similar argument using our lower bounds shows that f(x0,y) >
Φ(ω) − 3ε.

From this, we can conclude that |f(x0,y) − Φ(ω)| � 3ε for (x0,y) ∈ Ω. Since
x0 ∈ W is arbitrary, we finally have

|f(x,y) − Φ(ω)| � 3ε for (x,y) ∈ Ω with x ∈ W. (5.8)
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Now if xj/|xj | → ω as j → ∞, there exists L > 0 such that xj ∈ W when j � L.
Then from (5.8), for (xj ,yj) ∈ Ω, we have

|f(xj ,yj) − Φ(ω)| � 3ε if j � L.

Since ε > 0 is arbitrary, (2.6) follows.

6. Proof of theorem 2.7

We may assume that the set O mentioned in assumption 2.4 is all of SN−1. Let
ω ∈ T , ε > 0 and α = ε. Let δ = δα,ω, k1 and k2 be as given in assumption 2.6.
From assumption 2.5 and the continuity of k(y, ω), we see that there exist δ1 > 0
and R1 such that, if (x,y) ∈ ∂Ω, |x| � R1, |y| � M , and |x/|x| −ω| < δ1, we have

|φ(x,y) − k(y, ω)| < ε. (6.1)

Assumption 2.4 implies there exist δ2 > 0 and R2 such that∣∣∣∣ak+N,l+N (x,y, z,p, q)
γ(x,y, z,p, q)

− Ak,l(ω, y, z, q)
∣∣∣∣ � δ

4m2‖D2
yk2‖∞

(6.2)

for 1 � k, l � m and ∣∣∣∣ b(x,y, z,p, q)
γ(x,y, z,p, q)

− E(ω, y, z, q)
∣∣∣∣ � 1

4δ (6.3)

for z ∈ R, y, q ∈ R
m with |y| � M if |x| � R2, |p| � δ2 and |x/|x| − ω| � 2δ2.

Consider the compact set

K = {(p, q) ∈ R
n : |p|2 + |q|2 � 1 + ‖Dyk2‖2

∞}.

From (2.16), we see that there exists µ(K) > 0 such that

γ(x,y, z,p, q) � µ(K)

if (p, q) ∈ K, x ∈ R
N , y ∈ R

m and z ∈ R with |y| � M . Set µ = µ(K),
J = ‖f − k2‖∞ and δ0 = min{1, 1

2δ1,
1
2δ2}.

Choose a > min{1, J, 2/µδ} so that

(2a − J)J < min
{

δ2
0

1 + δ2
0
a2, a2 −

(
2a2

µδ

)2/3}

and pick H > 0 such that

(2a − J)J < H2 < min
{

δ2
0

1 + δ2
0
a2, a2 −

(
2a2

µδ

)2/3}
.

Note that

H√
a2 − H2

< δ0, a −
√

a2 − H2 > J,
a2

(a2 − H2)3/2 <
µδ

2
. (6.4)

There exists R3 > 0 such that, if |x0| � R3, |x − x0| � H and |x0/|x0| − ω| < δ0,
then |x/|x| − ω| < 2δ0. Set R0 = max{R1, R2, R3} + H.
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Now define

W =
{

x ∈ R
N

∣∣∣∣ |x| > R0,

∣∣∣∣ x

|x| − ω

∣∣∣∣ < δ0

}
.

We claim that if (x0,y) ∈ Ω̄ and x0 ∈ W , then

f(x0,y) < k(y, ω) + 2ε. (6.5)

Throughout the remainder of this proof, let x0 represent a point in W such that
(x0,y) ∈ Ω̄ for some y ∈ B(M). Let

w(x) = wa,x0(x) = a −
√

a2 − |x − x0|2 + 2ε

and note that w � 2ε. Now set

Ω1 = {(x,y) ∈ Ωa,x0,H ∩ Ω : |x − x0| < H} (6.6)

and define u2 ∈ C1(Ω1) ∩ C2(Ω1) by

u2(x,y) = w(x) + k2(y).

Note that, if (x,y) ∈ Ω1, then |x| � max{R1, R2, R3} and |x/|x| − ω| < 2δ0.
Let ζ � 0. We claim that

Q(u2 + ζ) < 0 in Ω1. (6.7)

Note that
∂w

∂xi
(x) =

xi − x
(0)
i√

a2 − |x − x0|2
for 1 � i � N

and

∂2w

∂xi∂xj
(x) =

δij(a2 − |x − x0|2) + (xi − x
(0)
i )(xj − x

(0)
j )

(a2 − |x − x0|2)3/2 for 1 � i, j � N,

where x0 = (x(0)
1 , . . . , x

(0)
n−1). If we set

ξi =
xi − x

(0)
i√

a2 − |x − x0|2
for 1 � i � N

and ξ = (ξ1, . . . , ξN ), then

N∑
i,j=1

ai,jDijw(x) =
1√

a2 − |x − x0|2

( N∑
i=1

ai,i +
N∑

i,j=1

ai,jξiξj

)

� 1√
a2 − |x − x0|2

(1 + |ξ|2) � 1√
a2 − H2

(
1 +

H2

a2 − H2

)

=
a2

(a2 − H2)3/2

< 1
2µδ,

where ai,j = ai,j(x,y, u2 + ζ, Du2), 1 � i, j � N .
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Since

|Du2(x,y)|2 = |Dw(x)|2 + |Dk2(y)|2 < δ2
0 + |Dk2(y)|2 � 1 + ‖Dyk2‖2

∞

when (x,y) ∈ Ω1, we have Du2(x,y) ∈ K and so γ(x,y, u2 + ζ, Du2) � µ(K) if
(x,y) ∈ Ω1. Note that, for 1 � k, l � N ,

Ak,l(ω, y, u2 + ζ, q) = Ak,l(ω, y, u2, q) = Ak,l(ω, y, k2, q) (6.8)

and
E(ω, y, u2 + ζ, q) � E(ω, y, u2, q) � E(ω, y, k2, q) (6.9)

for all y ∈ B(M) and q ∈ R
m, since ζ � 0 and u2 = w + k2 � 2ε + k2 > k2. Using

(6.2), (6.3), (6.8) and (6.9), we find

Q(u2 + ζ) =
N∑

i,j=1

ai,jDijw +
N∑

k,l=1

ak+N,l+N
∂2k2

∂yk∂yl
+ b

< 1
2µδ +

( m∑
k,l=1

ak+N,l+N

γ

∂2k2

∂yk∂yl
+

b

γ

)
γ

= 1
2µδ +

[
b

γ
− E(u2 + ζ, Dyu2) + E(u2 + ζ, Dyu2)

− E(k2, Dyu2) + E(k2, Dyk2)

+
m∑

k,l=1

Ak,l(k2, Dyk2)
∂2k2

∂yk∂yl

−
m∑

k,l=1

Ak,l(k2, Dyk2)
∂2k2

∂yk∂yl

+
m∑

k,l=1

Ak,l(u2 + ζ, Dyu2)
∂2k2

∂yk∂yl

−
m∑

k,l=1

(
Ak,l(u2 + ζ, Dyu2) +

ak+N,l+N

γ

)
∂2k2

∂yk∂yl

]
γ

� 1
2µδ + [ 14δ + 0 − δ + 0 + 1

4δ]γ

� 1
2µδ − 1

2µδ

= 0,

where γ = γ(x,y, u2 +ζ, Du2), ak+N,l+N = ak+N,l+N (x,y, u2 +ζ, Du2) (1 � k, l �
m), b = b(x,y, u2 + ζ, Du2), E(u2 + ζ, Dyu2) = E(u2 + ζ, Dyk2) = E(ω, y, u2 +
ζ, Dyk2), E(k2, Dyk2) = E(ω, y, k2, Dyk2), Ak,l(u2 + ζ, Dyu2) = Ak,l(ω, y, u2 +
ζ, Dyu2) and Ak,l(k2, Dyk2) = Ak,l(ω, y, k2, Dyk2). (Note that Dyu2 = Dyk2.)

If (x, y) ∈ ∂Ω ∩ ∂Ω1, from (6.1) we have

f(x,y) = φ(x,y) < k(y, ω) + ε � k2(y) + 2ε � w(x,y) + k2(y).

Thus
f(x,y) − u2(x,y) < 0 on ∂Ω ∩ ∂Ω1.
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If (x,y) ∈ Ω ∩ ∂Ω1, then |x − x0| = H and so (6.4) implies that

w(x,y) = a −
√

a2 − H2 + 2ε > J.

Hence
f(x,y) − k2(y) � ‖f − k2‖∞ = J < w(x,y)

and so f(x, y) < u2(x, y) for (x, y) ∈ Ω ∩ ∂Ω1.
Let U0 = {(x,y) ∈ Ω1 : f(x,y) > u2(x,y)}. Since f < u2 on ∂Ω1, U0 is a

relatively compact subset of Ω1 and f = u2 on Ω1 ∩ ∂U0. Now define

Ru(x,y) =
n∑

ij=1

āi,j(x,y, Du)Diju(x,y) + b̄(x,y, Du)

by setting āi,j(x,y, q) = ai,j(x,y, f(x,y), q) and b̄(x,y, q) = b(x,y, f(x,y), q).
Let (x1,y1) be an arbitrary point in U0 and set ζ = f(x1,y1) − u2(x1,y1) > 0.
Since Q(u2 + ζ) < 0 on Ω1, we have

Ru2(x1,y1) = Q(u2 + ζ)(x1,y1) < 0.

Since (x1,y1) is an arbitrary point in U0, we have Ru2 < 0 in U0. Recalling that
the ellipticity of R is not needed in [4, theorem 10.1] (as noted in the proof of [4,
theorem 3.1]), we see that f � u2 on U0. Hence U0 = ∅ and so

f(x,y) � u2(x,y) on Ω1.

Therefore,

f(x0,y) � w(x0,y) + k2(y) � 2M

H
+ k2(y) < 2ε + k(y, ω)

or f(x0,y) − k(y, ω) < 2ε.
Together with a similar argument using lower barriers and k1(y) (i.e. u1(x,y) =

la(x,y) + k1(y) with Ψ(ρ) = 1), we then find that

|f(x0,y) − k(y, ω)| < 2ε.

Since x0 ∈ W is arbitrary, we finally have

|f(x,y) − k(y, ω)| � 2ε for (x,y) ∈ Ω with x ∈ W. (6.10)

Now, if xj/|xj | → ω as j → ∞, there exists N > 0 such that xj ∈ W when
j � N . Then from (6.10), for (xj ,yj) ∈ Ω, we have

|f(xj ,yj) − k(yj , ω)| � 2ε if j � N.

Since ε > 0 is arbitrary, the conclusion of theorem 2.7 follows.
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10 J.-F. Hwang. Phragmén–Lindelöf theorem for the minimal surface equation. Proc. Am.
Math. Soc. 104 (1988), 825–828.

11 Z. Jin and K. Lancaster. Theorems of Phragmén–Lindelöf type for quasilinear elliptic equa-
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14 K. Lancaster. Phragmén–Lindelöf theorems in slabs for some systems of non-hyperbolic
second-order quasilinear equations. Proc. R. Soc. Edinb. A133 (2003), 1155–1173.

15 K. Lancaster and J. Stanley. On the asymptotic behavior of solutions of quasilinear elliptic
equations. Annli Univ. Ferrara Sci. Mat. 49 (2003), 85–125.

16 L. Payne and P. Schaefer. Some Phragmén–Lindelöf-type results for the biharmonic equa-
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