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Three-dimensional Navier–Stokes simulations of viscously unstable, miscible Hele-
Shaw displacements are discussed. Quasisteady fingers are observed whose tip velocity
increases with the Péclet number and the unfavourable viscosity ratio. These fingers
are widest near the tip, and become progressively narrower towards the root. The film
of resident fluid left behind on the wall decreases in thickness towards the finger tip.
The simulations reveal the detailed mechanism by which the initial spanwise vorticity
of the base flow, when perturbed, gives rise to the cross-gap vorticity that drives the
fingering instability in the classical Darcy sense. Cross-sections at constant streamwise
locations reveal the existence of a streamwise vorticity quadrupole along the length of
the finger. This streamwise vorticity convects resident fluid from the wall towards the
centre of the gap in the cross-gap symmetry plane of the finger, while it transports
injected fluid laterally away from the finger centre within the mid-gap plane. In this
way, it results in the emergence of a longitudinal, inner splitting phenomenon some
distance behind the tip that has not been reported previously. This inner splitting
mechanism, which leaves the tip largely intact, is fundamentally different from the
familiar tip-splitting mechanism. Since the inner splitting owes its existence to the
presence of streamwise vorticity and cross-gap velocity, it cannot be captured by
gap-averaged equations. It is furthermore observed that the role of the Péclet number
in miscible displacements differs in some ways from that of the capillary number
in immiscible flows. Specifically, larger Péclet numbers result in wider fingers, while
immiscible flows display narrower fingers for larger capillary numbers. Furthermore,
while higher capillary numbers are known to promote tip-splitting, inner splitting is
delayed for larger Péclet numbers.

Key words: fingering instability, Hele-Shaw flows

1. Introduction
The formation of viscous fingers in Hele-Shaw displacements has been an active

research area for over half a century, following the pioneering studies by Hill (1952),
Saffman & Taylor (1958) and Chuoke, van Meurs & van der Poel (1959); see the
review by Homsy (1987). This classical instability phenomenon is of importance in
numerous application areas, including oil recovery processes, hydrology, small-scale
MEMS devices, and pattern formation.

† Email address for correspondence: meiburg@engineering.ucsb.edu
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Initially, the majority of investigations addressed immiscible displacements, and their
dependence on the capillary number. It was perhaps tacitly assumed that miscible
displacements behaved in a qualitatively similar fashion, with the Péclet number
playing a role comparable to that of the capillary number in immiscible flows. Among
the first to focus explicitly on the effects of miscibility and diffusion was the study
by Wooding (1969). The author pointed out the existence of an initial, diffusion-
dominated phase, followed by a subsequent convection-dominated regime. More recent
investigations found that the dominant wavelength of well-developed, nonlinear fingers
is typically of the order of three (microgravity experiments, Aubertin et al. 2009),
four (radial displacements, Paterson 1985) or five (vertical Hele-Shaw cell with density
difference, Lajeunesse et al. 1997) times the gap width of the Hele-Shaw cell.

Traditionally, Darcy’s law has been employed to explore the fundamental dynamics
of these fingering instabilities. However, in recent years a number of alternative
approaches have led to interesting comparisons with Darcy-based predictions.
Rakotomalala, Salin & Watzky (1997a,b) use BGK lattice gas simulations to calculate
the two-dimensional dynamics of miscible displacement fronts within the gap of Hele-
Shaw cells, as a function of the Péclet number and mobility ratio.

In the linear regime, Fernandez et al. (2002) experimentally determined dispersion
relations for miscible Rayleigh–Taylor instabilities in vertical Hele-Shaw cells. The
corresponding linear stability analysis by Graf, Meiburg & Härtel (2002), based on the
three-dimensional Stokes equations, observes good agreement with the experimental
growth rates across five orders of magnitude in the Rayleigh number. These authors
also compare the Stokes-based dispersion relations with corresponding results derived
from a gap-averaged Darcy approach, and they find reasonable agreement only for
moderate Rayleigh numbers. For large values of this parameter, the three-dimensional
flow structure within the gap becomes important, so that averaging across the gap can
no longer capture the dominant physical mechanisms. The same problem was also
investigated by Martin, Rakotomalala & Salin (2002), who employed a gap-averaged
Navier–Stokes–Darcy equation to obtain dispersion relations for the Rayleigh–Taylor
instability that compare favourably to three-dimensional lattice BGK simulations.
Along similar lines, Zeng, Yortsos & Salin (2003) considered a modification of
the Brinkman correction to Darcy’s equation for gravitationally and pressure-driven
displacements. Additional Stokes-based linear stability results for chemically reacting
and variable viscosity Hele-Shaw displacements were discussed by Demuth & Meiburg
(2003), Goyal & Meiburg (2004, 2006), Schafroth, Goyal & Meiburg (2007) and
Goyal, Pichler & Meiburg (2007), showing similar discrepancies between Stokes-based
and gap-averaged results.

It is clear that the Darcy-based modelling approach has been very successful in
reproducing several important phenomena that had been observed experimentally
for miscible Hele-Shaw displacements. For example, the early linear stability
investigations by Tan & Homsy (1986) show that increasing unfavourable viscosity
ratios result in larger growth rates and shorter wavelengths of the most unstable mode,
which is consistent with experimental data. The subsequent nonlinear simulations
by Tan & Homsy (1988) were able to reproduce the tip-splitting phenomenon, and
they explained the physical mechanism responsible for it. Nevertheless, the above
observations in the context of more recent, Stokes-based linear stability analyses hint
at the limitations of analysing instability phenomena in Hele-Shaw flows based on
Darcy’s law. Conversely, they raise the question of how accurately Darcy-type porous
media displacements can be modelled by corresponding Hele-Shaw flows. The present
investigation intends to shed some light on these issues in the nonlinear regime, by
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focusing on the evolution of quasisteady fingers and their subsequent instabilities. In
particular, we will focus on the role of the cross-gap velocity and the streamwise
vorticity component, neither one of which can be captured by gap-averaged equations.
It will be seen that in miscible displacements both of these quantities are important,
and that they lead to a fundamentally new finger-splitting phenomenon that had not
been identified previously.

As a second focus, the present investigation will compare the role of the Péclet
number in miscible displacements to that of the capillary number in their immiscible
counterparts. We will see that with regard to some flow features, these parameters
play corresponding roles. However, in other respects, their influence can be opposite in
nature.

The remainder of this paper is organized as follows. Section 2 describes the
physical problem and formulates the governing equations, while § 3 presents the
details of the direct numerical simulation (DNS) approach. It also briefly discusses
the parallelization of the computational code, along with validation results. Section 4
focuses on the nonlinear evolution of viscous fingers, on their quasisteady shapes, and
on potential subsequent instabilities, as functions of the Péclet number and viscosity
ratio. A novel ‘inner splitting’ phenomenon is identified, which is subsequently
addressed in more detail in § 5. Here, the mechanism behind this new instability
will be explored, and particular attention will be drawn to the roles of the cross-gap
velocity and streamwise vorticity in this regard. Section 6 will focus specifically on the
vorticity dynamics of the flow. It will identify the mechanisms by which the purely
spanwise vorticity of the Poiseuille-type base flow, when perturbed, partially reorients
itself through tilting and viscous reconnection. In this way, it leads to emergence of
the cross-gap vorticity that drives the fingering instability in the classical, gap-averaged
Darcy sense. Sections 7 and 8, focus on comparisons of miscible versus immiscible
displacements, and of Navier–Stokes versus Darcy results, respectively. Section 9
summarizes the main findings of the present investigation.

2. Physical problem
We consider two miscible fluids of different viscosities confined between two

horizontal parallel plates separated by a gap of width b (see figure 1). The less
viscous fluid with viscosity µ1 displaces the more viscous fluid with viscosity µ2,
giving rise to fingering instabilities. We will analyse these instabilities via numerical
simulations of the three-dimensional, incompressible Navier–Stokes equations coupled
to a convection–diffusion equation for the concentration field. Consistent with previous
authors (e.g. Tan & Homsy 1986; Goyal & Meiburg 2006) we assume the constitutive
relation between viscosity and concentration to be of exponential form:

µ= µ1eMc, M = ln
µ2

µ1
. (2.1)

Here, c denotes the relative concentration of the more viscous fluid, and M is the
viscosity ratio. To render the variables in a dimensionless form, we scale lengths by
the gap width b, viscosities by the smaller viscosity µ1, and velocities by the gap-
averaged inflow velocity U. The characteristic time is b/U, and the characteristic
pressure is defined as µ1U/b. Thus, our governing equations in terms of non-
dimensional variables read

∂uk

∂xk
= 0, (2.2)
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FIGURE 1. Schematic figure showing the geometry of the problem. The less viscous fluid
with viscosity µ1 displaces a more viscous fluid with viscosity µ2, in a Hele-Shaw cell of gap
width b.

∂ui

∂t
+ uk

∂ui

∂xk
= 1

Re

[
∂

∂xk
µ

(
∂ui

∂xk
+ ∂uk

∂xi

)
− ∂p

∂xi

]
, (2.3)

∂c

∂t
+ uk

∂c

∂xk
= 1

Pe

∂

∂xk

∂c

∂xk
. (2.4)

Index notation is employed for the above set of equations, which represent
the conservation of mass, momentum and species, respectively, with ui = (u, v,w)
indicating the flow velocity; p denotes pressure, and t time. A traditional Cartesian
coordinate system xk = (x, y, z) is used, with x denoting the streamwise direction,
while y and z indicate the spanwise and cross-gap directions, respectively.

We have three main dimensionless parameters governing the dynamics, namely the
viscosity ratio M, the Reynolds number Re, and the Péclet number Pe. The latter two
are defined by

Re= ρUb

µ1
, Pe= Ub

D
, (2.5)

and indicate the relative strength of convective-to-diffusive transport in the momentum
and species conservation equations, respectively. The simulations to be described
below will address the low-Reynolds-number regime, and consequently we will
employ Re = 1 throughout. We will primarily analyse the influence of M and Pe
on the growth of quasisteady fingers, and on any subsequent instabilities of these
fingers.

3. Numerical approach
We follow Rai & Moin (1991) and use finite differences in a three-step

hybrid Runge–Kutta/Crank–Nicolson discretization to solve (2.2)–(2.4). The approach
employs an explicit Runge–Kutta (RK) method for the convective terms, along with
an implicit Crank–Nicolson method for the viscous terms. The discretization is second-
order accurate in time for the viscous terms and third-order for the convective terms,
the overall accuracy being second-order in time. The fractional step method employed
takes advantage of a projection method that makes use of old values of the pressure
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gradient in the momentum equations to solve for the corrector term in each step of
the RK iteration. In addition, the divergence-free condition is not solved directly, but is
combined with the corrector step to obtain a Poisson equation for φ, a scalar related
to pressure. A factorization approximation is used when solving the linear system
resultant of the diffusive integration, which reduces the memory requirements, and
allows us to solve three tridiagonal systems instead of inverting a large sparse matrix
(Kim & Moin 1985).

The above discretization uses second-order central differences on a uniform
staggered grid to compute the viscous terms, the divergence of the velocity field, and
the gradients of pressure and φ. The derivatives of the convective terms are calculated
using the fifth-order Hamilton–Jacobi weighted essentially non-oscillatory (HJ WENO)
scheme of Jiang & Peng (2000), as described by Osher & Fedkiw (2003).

The Poisson equation is solved using transform methods, as suggested by Kim
& Moin (1985). Following those authors, we take the cosine transform of φ in
both directions perpendicular to the flow direction, use the orthogonality property of
cosines, and obtain a second-order ordinary differential equation for the transformed
variable, which is discretized using central differences and solved in parallel via
Gaussian elimination (Qin & Nguyen 1998). The solution φ is then readily obtained
by taking the inverse transform. The implementation of the transform methods is
straightforward using an open implementation of fast Fourier transforms sequentially
in both the y- and z-directions. Once φ is obtained, the last step of the fractional step
methods is performed to obtain the corrected velocity. The last stage in each step of
the RK iteration is to update the pressure gradient field in terms of the scalar φ and
old values of the pressure gradient. The code is parallelized using message passing
interface (Pacheco 1997) through a domain decomposition along the flow direction.
This requires communicating data across a total of six layers of ghost nodes at the
upstream and downstream boundaries of each subdomain.

At the walls, we require all velocity components and the normal derivative of the
concentration to vanish. At the spanwise boundaries, Neumann symmetry conditions
are enforced in these four variables. The Navier–Stokes equations require no a priori
boundary conditions on the pressure, since boundary conditions applied to the
momentum equations suffice to allow for the determination of both velocity and
pressure (Gresho & Sani 1987). For the staggered grid configuration employed here,
the no-slip condition at the walls implies that the normal pressure gradient also vanish
at the walls. The choice of a cosine transform to solve the Poisson equation for φ is
consistent with this condition.

The initial condition specifies a Poiseuille inflow for the u-velocity on the left end
of the domain, while the initial concentration profile is described by an error function
centred around the initial streamwise front location x0:

c0 = 1
2
+ 1

2
erf

(
x− x0

δ

)
. (3.1)

As the quasisteady tip shape of the two-dimensional displacement front is independent
of its initial thickness (Goyal & Meiburg 2006), we set δ = 0.1. A convective outflow
boundary condition

∂Φ

∂t
+ Umax

∂Φ

∂x
= 0 (3.2)

is used on ghost nodes at the outflow boundary of the domain, where Φ = (u, v,w, c),
and Umax is the maximum u-velocity within the plane of the outflow boundary.
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FIGURE 2. Evolution of a quasisteady displacement front for M = 3 and Pe = 1000. The
concentration contours c = 0.1, 0.5 and 0.9 are plotted at times t = 0, 0.5, 1.5 and 3.0. The
front thickness d is defined as the distance between the c= 0.1 and c= 0.9 contours along the
cell centre (y= z= 0).

To avoid potential problems caused by pressure perturbations being reflected off
the outflow boundary back into the interior of the domain, inflow and outflow
flow rates are computed and global conservation of mass is imposed when the
corrector velocities are calculated (Ferziger & Perić 2002). Additional details on the
implementation and parallelization algorithms can be found on Oliveira (2012).

3.1. Validation
With the initial conditions specified above, i.e. a Poiseuille inflow for ui and an error
function profile for c, the flow remains effectively two-dimensional in the x, z-plane,
since three-dimensional numerical perturbations do not get amplified appreciably over
the course of a simulation. Consequently, we can compare the present simulation
results with the two-dimensional findings of Goyal & Meiburg (2006) regarding
the evolution of the quasisteady displacement front. We remark that the simulations
performed by Goyal & Meiburg (2006) solve the Stokes equations, rather than the full
Navier–Stokes equations. However, for the present low Reynolds number of Re = 1,
we expect to find close agreement between the two sets of results.

At the start of the flow, the velocity field immediately deforms the concentration
profile near the centre of the cell, while deformations near the walls are mostly due to
shear. These changes in the concentration field modify the viscosity field and result in
the formation of a well-defined displacement front which propagates along the centre
of the cell. The tip of this front reaches a quasisteady configuration, in a moving
reference frame, characterized by constant thickness and propagation velocity: see
figure 2.

The front thickness d is defined (see figure 2) as the x-distance between the c = 0.1
and c = 0.9 contours at z = 0. It is calculated using cubic spline interpolation of the
concentration data. After a transient period, the front thickness reaches a quasisteady
value d0. We compared our measurements of d0 for M = 2 and M = 3 and increasing
Pe values against those reported in figure 5 of Goyal & Meiburg (2006), and found
that the discrepancy typically lies in the range of 1 % to 4 %. For the same set of
parameters, the dependence of the tip velocity, utip, on Pe was also investigated. The
results from the present Navier–Stokes simulations differ from the Stokes calculations
by 0.06–1.2 %. This good overall agreement for tip velocity and quasisteady front
thickness indicates that the spatial resolution employed in the above calculations is
sufficient.

After the base flow is fully developed, we add at time t = 2 a small-amplitude
perturbation of the most unstable wavelength λm, as predicted by the linear stability
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M = 2, Pe = 1000

M = 3, Pe = 500
M = 3, Pe = 1000
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FIGURE 3. Comparison between Navier–Stokes simulations with a small perturbation added
to the concentration field, and the linear stability growth rate results of Goyal & Meiburg
(2006). The continuous lines show the evolution of the maximum v-velocity for a given set
(M,Pe), while the dashed lines represent the corresponding linear fits.

M Pe DNS
calculation

Linear growth
rate

Error (%)

2 1000 0.323 0.32 1.0
3 500 0.698 0.68 2.7
3 1000 0.792 0.74 7.0

TABLE 1. Comparison between the growth rates obtained by the linear stability analysis
based on the Stokes equations of Goyal & Meiburg (2006) and the current direct numerical
simulations (see figure 3).

analysis of Goyal & Meiburg (2006). Note that in all of the simulations to be
discussed in the following, the spanwise extent of the computational domain was taken
equal to the respective value of λm. The imposed perturbation shifts the concentration
values according to

c(x, y, z)→ c

(
x+ A cos

(
2π
λm

y

)
, y, z

)
, (3.3)

where A = 1 × 10−3. We then compare the evolution of the maximum value of the
v-velocity with linear growth rate predictions. Results for three sets of parameters are
shown in figure 3. The dashed lines represent a linear fit of the data. Table 1 compares
the slopes of the linear fit for the DNS calculations with linear growth rate results,
showing that the perturbation grows according to the linear prediction for the most
amplified wavelength.

4. Quasisteady finger shape
For a constant value of Re = 1, we focus on the evolution of the flow for

M = 2, 3, 4, and 5, and Pe = 500, 1000, 2000 and 5000. As mentioned in § 3, the
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FIGURE 4. Three-dimensional shapes of the c= 0.3 (a) and 0.5 (b) concentration isosurfaces
for M = 3 and Pe = 1000 at t = 22. In the spanwise direction, the domain extends over one
wavelength λm, from −1.45 to 1.45.

initial condition specifies a one-dimensional error-function concentration profile in the
streamwise direction, along with a Poiseuille flow velocity field. The effectively two-
dimensional simulations described in § 3 showed that this velocity field immediately
deforms the concentration distribution in the interior of the gap. After the flow reaches
a quasisteady state in the tip region around t = 2, we add one wavelength of a wavy
displacement to the concentration field, with the wavenumber of the linearly most
unstable mode and an amplitude of 0.1. The domain extends from −λm/2 to λm/2 in
the spanwise direction, and the phase of the concentration displacement is chosen such
that the front is most advanced at the spanwise centre of the computational domain,
i.e. at y = 0. From this time on, the simulations become fully three-dimensional.
Figure 4 shows perspective views of the concentration isosurfaces c = 0.3 and 0.5 for
M = 3 and Pe = 1000 at t = 22, when the tip velocity and shape are quasisteady. The
c = 0.5 contour displays a long, smooth finger, similar to corresponding observations
for immiscible displacements by other authors: see Homsy (1987) and references
therein. The features of the c = 0.3 isosurface, and specifically the hole that has
opened up behind the finger tip, will be discussed below.

As we did for the earlier, two-dimensional simulations, we define the finger tip
position xtip as the location where c = 0.5 along y = z = 0. Figure 5(a) indicates
that for all parameter combinations investigated here, the tip advances at a nearly
constant rate for an extended time interval. Figure 5(b) displays the dependence of
this quasisteady tip velocity utip = dxtip/dt on Pe and M. We find that the tip velocity
generally increases for larger viscosity contrasts and lower diffusivities. Figure 5(b)
also compares the quasisteady tip velocities of the three-dimensional fingers with the
corresponding front velocities of the two-dimensional base flows. The dependence of
the front velocity on Pe and M is seen to be more pronounced for three-dimensional
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M = 2
M = 3
M = 4
M = 5
Pe = 500
Pe = 1000
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Pe = 5000
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M = 3
M = 4
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3D
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2.1
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FIGURE 5. (a) Finger tip location xtip as function of time, for various Péclet numbers and
viscosity contrasts. For all parameter combinations investigated, the finger tip advances
with a nearly steady velocity over an extended time interval. (b) Quasisteady tip velocity
utip as function of Pe for different M. The continuous curves show the tip velocities of
three-dimensional (3D) fingers, while the dashed lines represent the corresponding results for
the two-dimensional (2D) base states. Generally, the tip advances faster for larger viscosity
contrasts and for larger Péclet numbers in both situations. However, the influence of M is
more pronounced for three-dimensional flows than for the two-dimensional base states.

t
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Pe = 500
Pe = 1000
Pe = 2000
Pe = 5000
utip

1.6

1.7

1.8

1.9

2.0

0 4 8 12 16 20

FIGURE 6. The fluid velocity uf at the finger tip location. After an initial period of growth, uf
decreases and drops below the quasisteady tip velocity (indicated by the triangles on the right
vertical axis). For increasing Pe, the difference between uf and utip is seen to diminish.

displacements. This reflects the fact that the mobility ratio has a strong effect on the
effective width of the finger, and on the layer of resident fluid left behind on the walls
of the Hele-Shaw cell.

Figure 6 displays the u-velocity uf of the fluid at the tip location xtip as function
of time, for various combinations of the governing parameters. For comparison, the
quasisteady tip velocity utip is also shown. We find that, after an initial transient period
of growth, the fluid velocity uf at the tip decays with time and drops below the tip
velocity utip. In other words, the c= 0.5 concentration contour advances faster than the
fluid particle at its location. Hence, elements of the resident fluid continuously cross
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(a)

(b)

(c)

(d )

1.0

0

–1.0

y
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–0.5

z

1.0

0
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y

0.5

0

–0.5

z

0 5 10 15 20 25
x

30 35 40 45

FIGURE 7. Two-dimensional concentration contours c = 0.3 (a, b), and 0.5 (c, d) in the two
central symmetry planes, z = 0 and y = 0, respectively. (Pe,M) = (1000, 3) and the times
shown are t = 0, 2, . . . , 22. The closed loop emerging behind the finger tip in (a) and the
corresponding pinch-off shown in (b) are related to the hole visible in the perspective view
of the c = 0.3 contour in figure 4(a). (c) The intersecting c = 0.5 contours in the z = 0
plane define straight lines, which indicate that the finger achieves a quasisteady width ζ . On
the other hand, (d) demonstrates that the finger does not have a constant thickness in the
cross-gap direction.

the boundary of the finger (defined by the c = 0.5 contour) at the tip from outside the
finger to the inside, while their concentration changes from c> 0.5 to c< 0.5. We will
return to this point below when discussing the corresponding streamline patterns. As
we increase Pe, thus reducing diffusive effects, uf approaches the quasisteady value of
utip, so that the flux of fluid elements across the c= 0.5 contour is diminished.

Figure 7 displays the c = 0.3 and 0.5 concentration contours along the two central
symmetry planes z = 0 and y = 0, respectively, for (Pe,M) = (1000, 3) at times t = 0,
2, . . . , 22. The intersecting c = 0.5 contours in the z = 0 plane (see figure 7c) define
straight lines which indicate that the finger achieves a quasisteady width ζ . On the
other hand, figure 7(d) demonstrates that the finger does not have a constant thickness
in the cross-gap direction. Hence, the film of displaced fluid left behind on the wall
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FIGURE 8. Concentration contours c = 0.5 at time t = 18.8 within the centre plane z = 0
for (a) Pe = 1000 and increasing viscosity ratios M = 2, 3 and 4, and (b) M = 3 and
increasing Péclet numbers Pe = 500, 1000, 2000 and 5000. Larger viscosity contrasts and
lower diffusion result in longer fingers with wider tips. Note that the contours have been
shifted so that the finger tips are in identical locations. ζ1 (ζ2) indicates the minimum
(maximum) finger width of (M,Pe)= (4, 1000).

of the Hele-Shaw cell does not have a constant thickness either. The closed loop
emerging behind the finger tip in the c = 0.3 contour of figure 7(a), along with the
corresponding pinch-off shown in figure 7(b), are related to the hole visible in the
perspective view of the c= 0.3 contour in figure 4(a). These features will be discussed
in detail below.

Figure 7 suggests that the width of the finger can be suitably characterized by a
single parameter m, defined by

m= ζ

λm
, (4.1)

where ζ is evaluated by means of the c = 0.5 contour within the centre plane z = 0.
However, simulations for other values of M and Pe show that for most fingers the
width varies significantly in the streamwise direction. The influence of the viscosity
ratio on the finger shape can be assessed in figure 8(a). Here, the Péclet number is
kept fixed at Pe = 1000, and c = 0.5 contours for M = 2, 3 and 4 are superimposed.
Similarly, figure 8(b) displays c = 0.5 contours for M = 3 and increasing Péclet
numbers. Larger viscosity contrasts and lower diffusivities are seen to result in
longer fingers with wider tips. In light of the above observations, we employ both
the minimum width m1 = ζ1/λm and the maximum width m2 = ζ2/λm in order to
characterize the finger shape.

Figure 9(a) shows the variation of m1 and m2 with time for Pe = 1000 and M = 2,
3 and 4. Note that for larger viscosity contrasts, minimum and maximum widths
emerge earlier in time, indicating that the finger width becomes non-monotonic more
rapidly. Subsequently, the difference between m1 and m2 increases with time for all
simulations, and most quickly for large values of M. Only for (M,Pe) = (3, 1000)
does m1 reach a steady state. Figure 9(b) shows the influence of Pe on m1 and m2
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FIGURE 9. (a) The time-dependent width parameters for Pe = 1000 and increasing viscosity
ratios. For larger values of M, minimum and maximum width values form earlier in time. The
difference between m1 and m2 subsequently grows with time, most rapidly for large viscosity
contrasts. (b) The time-dependent width parameters for M = 3 and increasing values of Pe.
Larger Péclet numbers are seen to result in wider fingers. The finger width parameters depend
much more weakly on the Péclet number than on the viscosity contrast.
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FIGURE 10. Minimum and maximum film thicknesses along the centre of the finger for
(M,Pe)= (3, 1000) and c= 0.3, 0.5, and 0.7.

for M = 3. Lower diffusivities generally lead to wider fingers. The emergence of a
minimum and maximum width is seen to depend much more weakly on the Péclet
number than on the viscosity contrast.

In complete analogy to the above finger width parameters in the spanwise direction,
we can define η1 (η2) as the minimum (maximum) finger thickness in the z-direction
within the y= 0 plane. Figure 10 shows the evolution of η1 and η2 for c= 0.3, 0.5 and
0.7. All thickness values decrease in time, indicating that the c-contours move from
the top and bottom walls toward the centre plane. The pinch-off seen in figure 7(b) is
clearly visible in figure 10 around t = 20.

Based on the above analysis of the concentration field in the spanwise and
cross-gap directions, we can now proceed towards a discussion of the one-
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FIGURE 11. Cross-section-averaged concentration profiles for (M,Pe) = (3, 1000) at times
t = 0, 2, . . . , 20 comparing (a) the evolution of the base state with (b) full three-dimensional
simulations displaying instability growth. The instability grows after a perturbation is
introduced at t = 2. The plateau near cavg,3D = 0.5 and the subsequent steep concentration
gradient indicate the location of the root of the finger and its shoulders.

dimensional cavg(x)-profiles obtained by averaging across the entire y, z-cross-section.
For (M,Pe) = (3, 1000), figure 11 compares such cross-sectional averages for the
two-dimensional, unperturbed base flow and the three-dimensional finger case. The
times t = 0, 2, . . . , 20 are shown. The first two profiles are identical in both cases,
the first one being the imposed error function at t = 0. For the two-dimensional case
shown in figure 11(a), the existence of minimum (η1) and maximum (η2) thickness
values discussed earlier is reflected in the streamwise non-monotonicity of cavg. In
figure 11(b), the spanwise instability begins to grow after the perturbation is imposed
at t = 2. Subsequently, the concentration profile advances more rapidly than for the
two-dimensional base case. The spanwise instability further results in the formation
of a ‘shoulder’ or plateau in the profile with cavg ≈ 0.5. This shoulder extends to
the root of the finger, i.e. to the valley that connects two neighbouring fingers.
Since the emerging finger occupies only a fraction of the spanwise domain width,
the cavg-values are larger in the region of the finger, and typically lie in the range
0.6–0.7. The existence of minimum and maximum width and thickness values for the
finger, discussed earlier, result in the streamwise non-monotonicity of the averaged
concentration profiles.

Figure 12 shows the gap-averaged concentration field for (Pe,M) = (1000, 3) at
t = 20. Here, darker regions correspond to less viscous fluid, and the contour lines
represent c = 0.1, 0.2, . . . , 0.9. Different contour levels have very different shapes.
Small concentration values (0.3 < c < 0.5) display two-fingered patterns, while large
concentration values (0.7 < c < 0.9) exhibit single finger structures with contour lines
placed closer together. The c= 0.6 contour represents the transition between these two
regimes, as it shows a ‘hole’ some distance behind the front.

Figure 13 shows the temporal evolution of the three gap-averaged concentration
contours (a) c = 0.5, (b) c = 0.6, and (c) c = 0.7, for the same set of parameters
as figure 12. Successive contours correspond to times t = 0, 2, . . . , 20. Figure 13(a)
indicates that the c = 0.5 contour evolves in a very complex fashion. A ‘hole’ opens
up some distance behind the front and subsequently grows in time. It catches up with
the front and has almost reached it by t = 12 (indicated by lighter, grey contours).
At t = 14, it has reached the front and caused it to split into two elongated fingers,
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FIGURE 12. Gap-averaged concentration field for M = 3, Pe = 1000 at t = 20. Darker
regions are associated with smaller viscosities. The contour lines correspond to the values
c= 0.1, 0.2, . . . , 0.9.
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FIGURE 13. Gap-averaged profiles for M = 3, Pe= 1000 at t = 0, 2, . . . , 20 for
concentration levels (a) c= 0.5, (b) c= 0.6 and (c) c= 0.7.

an event that we term ‘inner splitting’, in contrast to the tip-splitting described by Tan
& Homsy (1988) for miscible flows. A short time later, at t = 16, two ‘droplets’ have
detached from the tips of these fingers. For t = 18 and 20, we observe two fingers with
sharp tips. Also, note the deep indentations on the sides of these two central fingers
near | y |= 1, which effectively give rise to the existence of a third, shorter finger along
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FIGURE 14. Concentration contours (dark) and velocity vectors in the laboratory reference
frame (light) in the y = 0 (a) and z = 0 (b) symmetry planes at t = 10.8. The concentration
levels correspond to c = 0.1, 0.5 and 0.9. Resident fluid is being convected from the walls
towards the centre of the gap, while the injected fluid moves laterally away from the centre of
the finger.

the spanwise boundary of the Hele-Shaw cell. Section 5 will address the mechanisms
behind the formation of these features.

The c = 0.6 contour, shown in figure 13(b), follows a similar evolution, albeit more
slowly. The ‘hole’ behind the front does not form until t = 14, and by t = 20 it has not
quite caught up with the front. In contrast, the c = 0.7 gap-averaged contour, depicted
in figure 13(c), is still fully intact at t = 20. A hole has not yet formed, and there is no
indication of the deep indentations on the sides of the central finger that we had seen
for c= 0.5 and 0.6.

5. Inner splitting mechanism
We now address the mechanism responsible for the inner splitting phenomenon

described above. Towards this end, we focus on the displacement with M = 3 and
Pe = 1000 shown in figure 4, which had served as the basis for much of the above
discussion. Specifically, we will demonstrate the important role played by the cross-
gap velocity and the streamwise vorticity, neither one of which can be captured by a
gap-averaged Darcy approach.

Figure 14 shows the concentration contours in the y= 0 (a) and z= 0 (b) symmetry
planes at time t = 10.8. Figure 14(a) indicates that along the entire length of the
finger, the cross-gap velocity in the y = 0 symmetry plane is directed from the walls
towards the centreline, thereby transporting the resident fluid towards the centre of the
gap. This inflow of resident fluid from the walls, when combined with the effects of
diffusion, causes the pinch-off of the c = 0.1 contour visible in the figure. Similarly,
figure 14(b) demonstrates that within the z = 0 symmetry plane, over much of the
length of the finger the injected fluid is transported laterally away from the centreline
of the finger.

Further insight can be gained by analysing the flow field within x= const. cross-cuts
at various streamwise locations. Figure 15 shows concentration contours along with the
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FIGURE 15. (a) Concentration contours (black) and velocity vectors (grey) in the plane z= 0
for M = 3 and Pe = 1000 at time 42. (b–d) show cross-sections at x = 75.5, 54 and 30,
respectively. In these cross-sections, the black arrows show the direction of the velocity field
in the y, z-plane, while the grey shading represents the concentration field. Some distance
behind the tip, we recognize the existence of a streamwise vorticity quadrupole that convects
resident fluid from the walls to the cell centre near y = 0, and injected fluid laterally away
from the cell centre near z= 0. This streamwise vorticity quadrupole causes the finger to split
longitudinally. (e) Streamwise vorticity contours (black lines) and c-contours (grey shading)
at x= 30. Continuous (dashed) contour lines represent positive (negative) vorticity values.
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FIGURE 16. Experimental evidence of inner splitting instability can be found in preliminary
experiments by Tony Maxworthy (personal communication) designed in order to visualize
this phenomenon. Here, a lighter band of displaced fluid bisects the centre of the dark, less
viscous finger along the centreline.

v- and w-velocity components for cross-sections near the tip (b), through the finger (c),
and upstream of the shoulder (d). We recognize that near the tip the displaced fluid
is being pushed away in all directions. Some distance behind the tip, a quadrupole
structure of streamwise vorticity emerges that transports resident fluid from the wall
to the centre of the gap near y = 0, while injected fluid is transported laterally away
from the finger’s centre along z= 0. This is consistent with the longitudinal cross-cuts
shown in figure 14, and it explains the pinch-off of the concentration contours along
the centreline of the flow. Further back along the finger, upstream of the shoulder
region, additional secondary streamwise vortices exist that transport resident fluid
towards the centreline near y = ±1, thereby leading to the strong indentations visible
in figure 13(a,b).

We note that the tendency of the v-velocity to widen the front laterally can already
be observed during the linear stages: see the eigenfunctions shown by Goyal &
Meiburg (2006) in their figure 13. In a reference frame moving with the front, those
authors show that the growth of the instability gives rise to counter-rotating vortices in
the x, y-plane, which accelerate and widen the front.

5.1. Experimental evidence
Figure 16 shows preliminary experimental results by Tony Maxworthy (personal
communication) on the problem under consideration. It shows a long diffusive dark
finger displacing the resident more viscous fluid. Along the centre of the finger, the
lighter band bisecting the finger is an indication of the inner splitting mechanism.

We remark that a similar phenomenon of longitudinal finger splitting was
observed by Petitjeans & Maxworthy (1996) (see figure 17) in a miscible
horizontal displacement of glycerine by a glycerine–water mixture in a capillary
tube. Those authors suggested that this splitting might be driven by gravity, and
represent a miscible version of the classical Rayleigh–Taylor instability. Corresponding
axisymmetric Stokes simulations in the companion paper by Chen & Meiburg (1996)
showed good overall agreement with the experimental observations of Petitjeans &
Maxworthy (1996), both regarding the finger width and the formation of a protrusion
at the finger tip. However, two-dimensional simulations within a transverse cross-
section were unable to reproduce the experimentally observed longitudinal splitting
phenomenon. Vanaparthy & Meiburg (2008) went one step further and performed
three-dimensional Stokes simulations that included gravitational forces. Still, these
simulations did not reproduce the longitudinal finger-splitting phenomenon observed
by Petitjeans & Maxworthy (1996). Based on the findings of the present investigation,
we hypothesize that the longitudinal splitting observed by Petitjeans & Maxworthy
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FIGURE 17. The longitudinal finger-splitting phenomenon observed by Petitjeans &
Maxworthy (1996) in miscible displacements in capillary tubes shows features similar to
the inner splitting discussed here, e.g. figure 13(a).

(1996) may be due to a mechanism similar to the one described here, and unrelated to
gravitational forces. The simulations by Vanaparthy & Meiburg (2008) most likely did
not reproduce this phenomenon because they were not run for a sufficiently long time.

Further experimental evidence for longitudinal finger splitting can be found in the
miscible Hele-Shaw experiments of Wooding (1969). The figures in plates 1 and
3 (plate 3 is reproduced in figure 18) of his paper show very elongated, upward-
propagating light-coloured finger structures, some of which are longitudinally bisected
by narrow dark regions. We have to keep in mind, however, that the flows investigated
by Wooding (1969) were gravitationally driven, with negligible viscosity differences
between the fluids. It will hence be interesting to extend the current investigation
to miscible fluids of different densities, in order to evaluate the importance of inner
splitting in such flows.

5.2. Influence of the Péclet number
To assess the influence of the Péclet number on the inner splitting mechanism, we
conducted a simulation for (M,Pe) = (3, 500). Again, the spanwise width of the
computational domain was taken to be equal to the linearly most unstable wavelength.
Upon perturbing the flow at t = 2, a finger forms and subsequently develops an inner
splitting, as seen before for Pe = 1000: see figure 19 at t = 22. However, diffusion is
sufficiently strong for the fingers to subsequently merge again, as can be seen from
the c = 0.5 contour at t = 70. We conclude that the role of the Péclet number in the
evolution of the inner splitting is subtle. A certain amount of diffusion is required
for the splitting to develop, but too much diffusion can overwhelm the convective
transport that causes the fingers to separate. Hence, for very large Pe, it may take very
long for the splitting to appear, while in flows with Péclet numbers that are too low,
the tendency towards splitting may not be strong enough to overcome the effects of
diffusion.

6. Vorticity dynamics
We now focus on the mechanisms behind the generation of streamwise vorticity,

and specifically on the formation of the quadrupole structure. For inviscid or nearly
inviscid flows, such mechanisms can frequently be analysed in a straightforward
fashion, based on the tilting and stretching terms in the streamwise vorticity equation,
and the fact that vortex tubes maintain their identity. For the present case of
very low Reynolds numbers, on the other hand, the interpretation of the physical
processes governing the formation of streamwise vorticity becomes more difficult, as
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FIGURE 18. Evidence of inner splitting in the gravity-driven, miscible instability
experiments by Wooding (1969). Some of the very elongated, upward-propagating light finger
structures are longitudinally bisected by narrow dark regions.

the vorticity equation is dominated by the viscous terms. Furthermore, vortex lines
are subject to viscous reconnection, so that they lose their identity. Nevertheless, a
vorticity-based analysis of the flow can provide considerable insight into the governing
mechanisms.

Far upstream of the finger, where the flow is of plane Poiseuille type, only spanwise
vorticity exists. This vorticity has the form of two plane layers of opposite signs,
whose strength decays from a maximum at the wall to zero at the centreline.
For z > 0 (z < 0), this spanwise vorticity points in the −y-direction (+y-direction).
As these two vorticity layers are convected towards the root of the finger, they
undergo a deformation. In the central section near y = 0 the fluid accelerates as it
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FIGURE 19. Three-dimensional profile of the c = 0.5 concentration isosurface for M = 3,
Re = 1 and Pe = 500 at times t = 22 (a) and 70 (b). Diffusion is sufficiently strong for the
fingers to merge again, after having split earlier.

enters the finger, while the flow velocity is reduced near the finger’s shoulders at
the spanwise boundaries. Hence, inviscid arguments suggest that the initially purely
spanwise vorticity is tilted into the streamwise direction in the following fashion: the
negative spanwise vorticity within the region z > 0 will be tilted so that it points in
the +x-direction for y > 0, and in the −x-direction for y < 0. The initially positive
spanwise vorticity in the region z< 0 acquires the opposite streamwise direction, i.e. it
will point in the −x-direction for y > 0, and in the +x-direction for y < 0. This
tilting of the initially spanwise vorticity into the streamwise direction in the vicinity of
the finger’s root represents the main mechanism responsible for the formation of the
quadrupole structure of the streamwise vorticity. This strongly elongated quadrupole is
clearly visible in figure 20, in the region 6< x< 25.

However, as the figure shows, this tilting mechanism does not exist in isolation, and
a more compact quadrupole structure of the opposite sign exists right at the finger’s
shoulders. This quadrupole owes its existence to a fundamentally different mechanism,
as will be explained now. As the injected fluid approaches the root of the finger from
upstream and slows down near the spanwise boundaries, it acquires a small spanwise
velocity component that drives it from the spanwise boundaries towards the central
region near y = 0, where it subsequently enters the finger. This can be clearly seen,
for example, in figure 21. As a result of this fluid flow from the spanwise boundaries
towards the central y = 0 region, the two Poiseuille flow layers of spanwise vorticity
move from the walls towards the z= 0 plane near the spanwise boundaries, while they
are pushed towards the walls at y = 0. This results in the vortex line configurations
shown in figures 22 and 23. We recognize that already near x = 2 opposite-signed
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FIGURE 20. Perspective view of the c = 0.5 concentration isosurface (light grey), along
with the | Ωx = 1 | contours. Positive (negative) streamwise vorticity is shown in dark grey
(transparent) at time t = 17 for (M,Pe)= (3, 1000).
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FIGURE 21. Crosscut at x = 8.7 and t = 6 for the flow shown in figure 22. The grey shading
depicts the concentration field, while the arrows show the (v,w)-velocity field carrying fluid
from the spanwise boundaries towards the centre.

vortex lines from the two Poiseuille layers approach each other near the spanwise
boundaries. Near x = 8.15, these vortex lines are seen to reconnect near y = ±1.1,
thereby forming closed vortex loops that extend from y = 1 to y = −1. There are two
inviscid mechanisms that can potentially contribute to the acceleration of the fluid in
the regions of viscous reconnection near y = ±1. First of all, as mentioned above, the
two opposite-signed Poiseuille flow vorticity layers approach each other in this region,
thereby inducing a larger streamwise velocity upon each other. Secondly, the newly
formed closed vortex loops possess strong curvature in the reconnection region, which
should also contribute to their streamwise acceleration. The overall effect is that near
x = 8.15 the sections of the vortex lines near y = 0 trail behind the sections closer to
the finger’s shoulder, as can be seen clearly in the top view of figure 22. Consequently,
the streamwise vorticity in this region is opposite in sign to that of the elongated
quadrupole.

The viscous vortex reconnection process described above results in the formation
of a gap-wise vorticity component pointing in the z-direction. It is this z-vorticity
component that drives the viscous fingering instability in the classical gap-averaged,
Darcy sense. As seen in figure 24, it forms elongated layers along the sides of the
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FIGURE 22. Perspective and top view of finger at time t = 6 showing the c = 0.5
concentration isosurface in light grey, and the | Ωx |= 1.2 contours in dark grey (positive)
and transparent (negative). In addition, vortex lines near x= 2, 8.15, and 10.8 are also shown.

finger. These layers accelerate the fluid within the finger, while slowing down the fluid
near the spanwise boundaries.

As the high-speed fluid within the central finger is surrounded by low-speed fluid
both at the walls and near the spanwise boundaries, we expect the fluid within the
finger to be encapsulated by closed vortex loops. This is confirmed by the perspective
and top views of the vortex lines near x = 10.8 in figure 22, as well as by the
corresponding streamwise view in figure 23. These views show that in the finger
region the vorticity field is primarily aligned in the azimuthal y- and z-directions,
while the streamwise x-component that gives rise to the quadrupole structure is
comparatively weak.

7. Comparison with immiscible fingering
We now discuss a few of the similarities and differences, respectively, between

miscible and immiscible displacements, along with the roles of the Péclet and capillary
numbers in these flows. Of particular interest is the question as to whether increasing
Pe-values influence miscible displacements in the same way as increasing capillary
numbers affect immiscible displacements.
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FIGURE 23. Streamwise view of the vortex lines plotted in figure 22. From top to bottom,
these lines are located near x= 2, 8.15, and 10.8.

McLean & Saffman (1981) employ Darcy’s law to calculate the dimensionless
finger width m = w/D as a function of the capillary number Ca = µU/T . Here w
denotes the dimensional finger width, while D represents the width of the Hele-Shaw
apparatus. µ indicates the viscosity of the driven fluid, U the tip velocity of the
finger, and T the interfacial tension. In their calculation, the authors assume that
the viscosity ratio is infinite, and that the resident fluid is completely expelled from
the gap by the advancing finger. Their results show qualitative agreement with the
experimental results of Pitts (1980) and Saffman & Taylor (1958). The incorporation
of a constant film thickness η left behind on the walls of the cell improves the
quantitative agreement only slightly, and the authors suggest that η 6= const. may have
to be considered to obtain further improved agreement.

Both experiments and analysis show a tendency for immiscible fingers to propagate
faster for larger Ca. The present investigation shows a corresponding trend for
larger Pe: see figure 5(b). Regarding the finger width, the comparison is not as
straightforward. Immiscible Hele-Shaw experiments at moderate capillary numbers
typically show a finger width that is nearly constant along the length of the finger.
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FIGURE 24. Perspective view at time t = 6 showing the c = 0.5 concentration isosurface in
light grey, along with the |Ωz| = 3.5 contours. The dark grey surface represents the positive
value, while the transparent plots the negative one.

t M Pe m2

20 3 500 0.6719
20 3 1000 0.7699
20 3 2000 0.7797
20 3 5000 0.7708
10 4 500 0.7344
10 4 1000 0.7365
10 4 2000 0.7489
10 4 5000 0.7526

TABLE 2. Maximum width of the c= 0.5 contour across the cell centre at t = 20 for
M = 3, 4 and Pe= 500, 1000, 2000, and 5000.

In contrast, the present simulations indicate that for miscible flows, the finger width
varies in the streamwise direction. While the finger width reaches a maximum value
m2 near the head, it becomes increasingly narrow towards its root, as a result of
lateral diffusion. Nevertheless, table 2 shows a tendency towards larger values of m2,
i.e. wider fingers, for larger Pe. This is in contrast to observations for immiscible
flows, which show narrower fingers for increasing Ca. Hence, while smaller surface
tension results in narrower fingers, lower diffusivity produces wider fingers, as it
prevents the diffusion of displaced fluid into the finger. In this context we note that
there are, of course, other equally justifiable ways to define the finger width, e.g.
via integral measures. Such alternative diagnostics have not been explored within the
current investigation.

We never saw fingers emerge with m2 < 0.5, which is consistent with immiscible
observations (with the exception of the findings by Kopf-Sill & Homsy 1987,
Meiburg & Homsy 1988 and a few other authors). We need to keep in mind,
however, a fundamental difference: all of the simulations reported here employed a
spanwise domain width equal to the linearly most unstable wavelength, whereas in
the immiscible experiments performed by the above authors the ratio of spanwise
domain width to most unstable wavelength was not restricted. Clearly, the present

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

36
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.367


Miscible displacements in Hele-Shaw cells 455

y

20 22 24 26 28 30 32 34 36 38
x

–1

0

1

y

–1

0

1

y

–1

0

1

(a)

(b)

(c)

FIGURE 25. Comparison of the c= 0.5 contour at t = 20 (black) at the cell centre for M = 3
and (a) Pe= 1000, (b) 2000 and (c) 5000, with Pitts’ relation (grey). For larger Péclet values,
the miscible finger tip shape approaches Pitts’ result.

simulation-based research will have to be extended to other domain widths in future,
in order to explore the influence of this parameter. Using domain widths larger than
the most unstable wavelength may promote a tip-splitting mechanism such as the one
observed by Tan & Homsy (1988) for Darcy flows. While tip-splitting in miscible
(immiscible) flows becomes more prominent for larger Péclet (capillary) numbers, this
is not the case for the longitudinal, inner splitting observed here. For large Pe, the
diffusive transport of resident fluid from the wall to the cell centre occurs more slowly,
thereby delaying the inner splitting. We remark that it is not clear whether or not the
inner splitting can also appear in immiscible flows. To our knowledge, it has not been
observed yet, which may indicate that surface tension will always prevent the transport
of resident, more viscous fluid to the cell centre.

Pitts (1980) provides an empirical relation for the finger tip shape, which gives very
good agreement with experimental data for immiscible flows:

exp
(
πx

2m

)
cos

(
πy

2m

)
= 1. (7.1)

Here m indicates the constant dimensionless finger width. Figures 25 and 26 compare
the finger tip shape obtained from the present Navier–Stokes simulations with Pitts’
analytical relation. For the sake of this comparison, m in his relation is set equal
to the m2-value discussed above. For increasing Péclet numbers and viscosity ratios,
the finger tip is seen to become less bulbous and increasingly similar to the shape
provided by Pitts’ relation. We remark that if we evaluate the overall finger shape
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FIGURE 26. Comparison of the c = 0.5 contour at t = 20 (black) at the cell centre for
Pe = 1000 and (a) M = 3 and (b) M = 4 with Pitts’ relation. As the viscosity contrast
increases, the miscible finger shape becomes increasingly similar to Pitts’ relation.

based on gap-averaged concentration profiles rather than cell centre ones, the above
qualitative observations remain valid.

8. Comparison with Darcy’s law
To date, most computational investigations of Hele-Shaw displacements have been

based on the gap-averaged Darcy’s law (Bear 1972; Homsy 1987). Very recently,
however, linear stability analyses based on the three-dimensional Stokes equations
have begun to investigate the range of validity of Darcy’s law for miscible
displacement processes in Hele-Shaw cells. Specifically, the work by Goyal & Meiburg
(2006) indicates that Darcy-based dispersion relations agree with their Stokes-based
counterparts only for moderate values of Pe and M. Here, we will explore how well
nonlinear processes can be captured by Darcy’s law. Towards this end, we will focus
on the displacement for (M,Pe) = (3, 1000) at t = 20. A perspective view of the
resulting finger is shown in figure 4.

Darcy’s law is strictly valid for Hele-Shaw flows only if both the viscosity and the
density are constant, and if inertial effects are negligible. Under these conditions, the
flow is parallel to the walls everywhere and of Poiseuille type, so the flow direction
is independent of the z-coordinate. The two-dimensional, gap-averaged velocity field is
then governed by

(u, v)=− 1
12µ

(
∂p

∂x
,
∂p

∂y

)
. (8.1)

Due to the two-dimensional nature of the gap-averaged velocity field, only the
z-component of the vorticity is non-zero, whereas both the streamwise and the
spanwise vorticity components vanish. As we saw earlier in § 5, a streamwise
vorticity quadrupole structure plays an important role in promoting the inner splitting
mechanism, so that it does not come as a surprise that this phenomenon had not been
observed in Darcy-based simulations.
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FIGURE 27. Lines tangential to the u, v-velocity field (black) in the reference frame moving
with the finger tip. Shown are different z-levels: (a) the centre symmetry plane z = 0,
(b) z = 0.25, (c) one grid spacing away from the wall. The grey lines indicate the c = 0.3,
0.5 and 0.7 contour levels. The direction of the velocity field is seen to vary strongly with z.
(d) Streamlines showing the direction of the gap-averaged u, v-velocity field. The grey gap-
averaged concentration contours correspond to the levels c= 0.3, 0.5 and 0.7.

Figure 27 indicates the direction of the u, v-velocity field in black, in the reference
frame moving with the finger tip, at three different z-levels. Superimposed in grey
are the c = 0.3, 0.5 and 0.7 concentration contours. Figure 27(a) demonstrates the
effect discussed above, namely streamlines coming from the right crossing the c = 0.5
interface at the finger tip, thereby transporting resident fluid into the finger. By
comparing figures 27(a), 27(b) and 27(c), we recognize a strong dependence of
the velocity direction field on the z-coordinate, indicating that the flow is far from
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FIGURE 28. Velocity field in a moving reference frame as predicted by Darcy’s law, along
with gap-averaged concentration contours in continuous grey shading.

Poiseuille in nature. The streamlines of the gap-averaged velocity field, shown for
comparison in figure 27(d), are qualitatively different from the directional fields of
figure 27(a–c).

Figure 28 shows the velocity field calculated from Darcy’s law in a moving
reference frame in black along with continuous grey shading of the gap-averaged
concentration contours. This velocity field was calculated by gap-averaging the
pressure and viscosity fields of the DNS solution and using (8.1).

9. Conclusions
To our knowledge, the current investigation represents the first analysis of miscible

Hele-Shaw displacements based on three-dimensional Navier–Stokes simulations. Our
study primarily focuses on the properties of the quasisteady fingers as a function
of the Péclet number and viscosity ratio, and on the subsequent instability of such
fingers. The simulations show that the quasisteady tip velocity increases for larger
values of the Péclet number and higher viscosity ratios. In general, the spanwise finger
width varies along the streamwise direction, and attains its maximum value near the
tip. Similarly, the finger thickness in the gap direction varies along the streamwise
direction as well, so that the film of resident fluid left behind on the wall decreases in
thickness towards the finger tip.

Along the entire length of the finger, resident fluid is convected from the wall
towards the centre of the gap in the cross-gap symmetry plane of the finger, while
injected fluid is transported laterally away from the finger centre within the mid-gap
plane. These convective mechanisms owe their existence to a streamwise vorticity
quadrupole along the length of the finger. Eventually, they result in the emergence of
a longitudinal, inner splitting phenomenon some distance behind the tip that had not
been reported previously. This inner splitting mechanism, which leaves the tip largely
intact, is fundamentally different from the tip-splitting mechanism that has been known
for some time (Tan & Homsy 1988). Since the cross-gap velocity and streamwise
vorticity represent integral components of the inner splitting mechanism, it is believed
that the inner splitting phenomenon cannot be reproduced on the basis of gap-averaged
equations. Furthermore, the Navier–Stokes simulations show that the flow direction
varies significantly in the cross-gap direction, which is at odds with the assumption of
local Poiseuille flow. These observations draw attention to the limitations of Darcy’s
law when it comes to modelling Hele-Shaw displacements.

It was furthermore observed that the role of the Péclet number in miscible
displacements does not correspond in all respects to that of the capillary number
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in immiscible flows. The increase in the tip velocity for larger Péclet numbers
corresponds to the trend for larger capillary numbers in immiscible flows. However,
the increase in width observed for larger Péclet numbers is in contrast to immiscible
flows, which display narrower fingers for larger capillary numbers. Similarly, while
larger Péclet numbers delay inner splitting events, higher capillary numbers are known
to promote tip-splitting. Interestingly, larger Péclet numbers have been found to result
in earlier tip-splitting in miscible displacements, so that the Pe-value influences
tip-splitting and inner splitting in opposite ways. Hence we expect the potential
competition between inner and tip-splitting in wider Hele-Shaw cells to depend
strongly on the value of this parameter.

There is some experimental evidence for the inner splitting mechanism observed
here, both in the gravitationally driven Hele-Shaw flows of Wooding (1969) and
in the capillary tube experiments of Petitjeans & Maxworthy (1996), as well as
in preliminary unstable Hele-Shaw displacements by Tony Maxworthy (personal
communication). Nevertheless, there is a clear need for further experiments and/or
simulations before direct, quantitative comparisons can be undertaken.
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