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Rivulet flow over a flexible beam
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We study theoretically and experimentally how a thin layer of liquid flows along
a flexible beam. The flow is modelled using lubrication theory and the substrate is
modelled as an elastica which deforms according to the Euler–Bernoulli equation.
A constant flux of liquid is supplied at one end of the beam, which is clamped
horizontally, while the other end of the beam is free. As the liquid film spreads, its
weight causes the beam deflection to increase, which in turn enhances the spreading
rate of the liquid. This feedback mechanism causes the front position σ(t) and the
deflection angle at the front φ(t) to go through a number of different power-law
behaviours. For early times, the liquid spreads like a horizontal gravity current, with
σ(t) ∝ t4/5 and φ(t) ∝ t13/5. For intermediate times, the deflection of the beam leads
to rapid acceleration of the liquid layer, with σ(t) ∝ t4 and φ(t) ∝ t9. Finally, when
the beam has sagged to become almost vertical, the liquid film flows downward with
σ(t) ∝ t and φ(t) ∼ π/2. We demonstrate good agreement between these theoretical
predictions and experimental results.

Key words: capillary flows, gravity currents, thin films

1. Introduction
In the fluid mechanics literature, it is well known that similarity solutions can

describe the time-dependent spreading of thin viscous films, which thus gives this
nonlinear model problem great utility. A similarly instructive problem from the
elasticity literature concerns the bending of a beam due to external forces and
moments, which is described by the Euler–Bernoulli equation and is nonlinear for
large changes in local orientation of the beam. It is then natural to couple these
two classical prototype problems from the mechanics literature to consider how
gravitational forces from a viscous film spreading over a flexible beam can deflect
the beam and so modify the shape and propagation rate of the liquid film. We study
this coupled fluid–elastic dynamics problem using experiments and theory and identify
several distinct limits where there are similarity solutions for the spreading rate and
the beam deformation.

The general topic of elastohydrodynamics concerns problems where fluid flow
is coupled to the deformation of an elastic boundary (Dowson & Ehret 1999;
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Gohar 2001). Examples include the flow-induced deformation of an elastic object
or boundary during collision (Davis, Serayssol & Hinch 1986), droplet generation
in a soft microfluidic device (Pang et al. 2014), and the lift force on a sedimenting
object generated by sliding motions accompanied by elastic deformation (Sekimoto
& Leibler 1993; Skotheim & Mahadevan 2005; Salez & Mahadevan 2015). There
are many natural examples related to a local flow-induced deformation, e.g. ejection
of fungal spores from an ascus (Fritz et al. 2013), biological tribology (articular
cartilage) (Mow, Ratcliffe & Poole 1992), and raindrop impact on a leaf (Gart
et al. 2015; Gilet & Bourouiba 2015). On the other hand, elastohydrodynamics also
describes the movement of a flexible solid object interacting with a surrounding flow,
for example a microswimmer (Wiggins et al. 1998; Tony, Lauga & Hosoi 2006), an
elastic fibre in a microchannel (Wexler et al. 2013), or a flapping flag (Shelley &
Zhang 2011).

Several previous studies have analysed the flow of a rivulet along a prescribed
inclined or curved substrate, for example Duffy & Moffatt (1995, 1997), Wilson
& Duffy (2005), and Leslie, Wilson & Duffy (2013). Here our focus is a situation
where the substrate geometry is unknown in advance, and indeed is strongly coupled
to the flow. In our recent study (Howell, Robinson & Stone 2013), we developed
a two-dimensional model for steady gravity-driven thin-film flow over a flexible
cantilever. In this paper, we analyse the flow of a liquid rivulet along a flexible
narrow beam, extending our previous study to include time dependence and variations
in the shape of the rivulet cross-section. We study theoretically and experimentally the
time dependence of liquid propagation and beam deformation. The flow is modelled
using lubrication theory and the substrate is modelled as an Euler–Bernoulli beam.
The related problem of flow of a layer of viscous fluid below an elastic plate has
been analysed for example by Flitton & King (2004), Lister, Peng & Neufeld (2013),
and Hewitt, Balmforth & De Bruyn (2015), while flow over an elastic membrane
without bending stiffness was studied theoretically and experimentally by Zheng,
Griffiths & Stone (2015).

The paper is organised as follows. In § 2 we present the experimental method and
a large number of results for the beam deflection and rivulet propagation distance
as functions of time. The experiments vary the bending modulus and length, width,
and thickness of the beam, and the flow rate of the liquid. In § 3 we describe the
governing equations and boundary conditions for the beam shape and the liquid
film profile, demonstrating that the problems for the liquid spreading and the beam
deformation are intimately coupled. We find that the dynamics generically falls into
one of two regimes, namely a ‘small-deflection’ regime and a ‘large-deflection’ regime.
We obtain similarity solutions to describe the time-dependent liquid propagation and
the beam deflection for the different regimes. We thus find three different power
laws exhibited by the system during different time periods: (i) at early times when
the liquid just begins to deform the beam; (ii) at intermediate times when the beam
deflection increases rapidly in response to the weight of the liquid film; (iii) at late
times when the beam has sagged close to vertical. We show that the experimental
data collapse under scalings provided by the theoretical similarity solutions, and are
then consistent with the theoretically predicted power laws. Finally, we discuss the
results and draw conclusions in § 4.

2. Experiments
2.1. Experimental setup

We performed experiments for liquid flow over a flexible cantilever. The experimental
setup is shown in figure 1. The end of a thin elastic beam was fixed at a wall and a
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FIGURE 1. (Colour online) Experimental apparatus. (a) Side view: a thin elastic beam of
length L is fixed at the left-hand wall and a constant flow rate q is injected along the
beam. The liquid-wetted length is σ(t) and the deflection angle at the advancing front is
φ(t), where times t0 < t1 < t2 < t3. Also, ψ(s, t) is the local deformation angle, where s is
arc length, while s and n are the unit tangent and normal vectors, respectively. (b) Front
view: the cross-sectional shape of the liquid rivulet on the beam, where 2b and w denote,
respectively, the beam width and thickness; R is the radius of curvature of the liquid–air
interface and 2α is the opening angle. The ẑ-axis is in the direction of the normal n.

constant flow rate was applied by a syringe pump (model: NE-1000, New Era Pump,
USA). In this study, we considered the effects of varying the flow rate q, as well as
the Young’s modulus E of the beam, and the beam shape (i.e. length L, width 2b,
and thickness w, as shown in figure 1). For the liquid, we used glycerol (VWR
International), which has dynamic viscosity µ = 1.0 Pa s, density ρ = 1260 kg m−3,
and surface tension γ = 62.0± 0.5 mN m−1. To clearly observe the liquid propagation
during the experiment, we added a red food dye (Innovating Science) to the liquid.
The physical properties of the final liquid were measured at room temperature
(T = 298 K) with a rheometer (Anton-Paar MCR 301 with the CP 50 geometry) for
the viscosity and with a conventional goniometer (Theta Lite, Biolin Scientific) for
the surface tension.

Polycarbonate (PC) and polyether ether ketone (PEEK) were used as the material
for the beam. To vary the bending stiffness, we prepared various thicknesses (w =
0.076–0.38 mm) and widths (2b = 3–8 mm) of PC and PEEK materials (McMaster-
Carr, NJ, USA). We obtained the Young’s modulus of each material by measuring
the self-deflection of the beam due to its own weight (Crandall et al. 1978). The
Young’s moduli of PEEK and PC were measured as E≈ 2.4 and 3.5 GPa, respectively,
which are consistent with the physical property values of the materials provided by
the vendor. The two materials were initially covered by a protective film; before each
experiment we removed the protective film and the beam was rinsed with distilled
water and dried with nitrogen gas.

The deformation of the beam by the flowing liquid was observed from the side and
top views, as shown in figure 2, using two CMOS colour USB cameras (EO USB
2.0 with Nikon 1 V1 lens) with a frame rate of 1, 10, or 17 f.p.s., and a spatial
resolution of 1280× 1024 pixels. We measured the liquid propagation length σ(t) and
the deflection angle φ(t) at the advancing front, as defined in figure 1(a). To extract
these quantities from the raw images, we performed image- and post-processing by
using Matlab 2014a. We measured the evolution of σ(t) and φ(t) up to the time when
the liquid reached the end of the beam and began to drip.
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FIGURE 2. (Colour online) Examples of side and top views of liquid flow over an
elastic beam. (a) A small beam deflection case with E= 2.4 GPa, q= 1.4× 10−8 m3 s−1,
L = 100 mm, w = 0.51 mm, and 2b = 7 mm. (b) A large beam deflection case with
E= 3.6 GPa, q= 2.2× 10−8 m3 s−1, L= 50 mm, w= 0.076 mm, and 2b= 4 mm.

2.2. Experimental results
We investigated beam deformation and liquid propagation along the flexible beam
while a constant flow rate is applied at the base. Two typical examples of how the
beam deformation and liquid film evolve over time are displayed in figure 2 for two
different values of the bending stiffness Ebw3/6, namely (a) 1.84× 10−4 Pa m4 and
(b) 5.31× 10−7 Pa m4, respectively (see also supplementary movies 1 and 2 available
at http://dx.doi.org/10.1017/jfm.2016.258). In case (a), the relatively stiff beam suffers
only a small deflection, such that the angle φ(t) < π/6 up until the time when the
liquid reaches the end of the beam; this is an example of what we refer to below
as the ‘small-deflection’ regime. Figure 2(b) shows the evolution of a much less stiff
beam, which soon sags until the deflection angle φ(t) approaches π/2 and the liquid
flow is close to vertical. Below we refer to this more dramatic behaviour as the ‘large-
deflection’ regime.

For the small-deflection regime, we summarise experimental conditions and results
as shown in figure 3. The flow rate q, Young’s modulus E, and the beam dimensions
(L, 2b, and w) are all varied, as listed in figure 3(a), while the bending stiffness
in each case is sufficient to keep the deflection angle less than π/6 throughout
an experiment. Figure 3(b,c) shows the time evolution of the liquid propagation
length σ(t) and the deflection angle φ(t). Initially, φ(t) remains close to zero, and
the liquid spreads steadily, with σ(t) apparently close to linear in t. However, the
angle φ(t) then increases rapidly, which in turn causes a rapid acceleration in the
front position σ(t).
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Case Length Flow rate Thickness Width Young’s
modulusL (mm) w (mm) 2b (mm)

E (GPa)
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FIGURE 3. Small-deflection results. (a) Experimental parameters. (b) Time evolution of
the liquid propagation length σ(t) (m). (c) Time evolution of the deflection angle φ(t)
(rad) at the advancing front.

Next, we present experimental results of the large-deflection regime in figure 4.
The flow rate and beam geometry are again varied, as shown in figure 4(a), and
the corresponding time evolutions of σ(t) and φ(t) are shown in figures 4(b) and
4(c), respectively. Compared with the results in figure 3, the beams used here are
thinner such that the deflection angle exceeds π/6 and, indeed, approaches π/2. In
some cases, the beam is initially slightly deformed by its weight, and there is also
an angle-measurement error of approximately 3◦≈ 0.05 rad. Thus, for some cases the
beam deflection angle φ(t) appears to start from a non-zero value at t= 0 s.

In the following section we present a theoretical model that describes the behaviour
shown in figures 2–4 and allows the experimental results to be explained and
quantitatively analysed.

3. Mathematical theory
3.1. Governing equations

We use Cartesian coordinates (x, z) as shown in figure 1, with the z-axis pointing
vertically upwards and the beam clamped at x= 0; the width of the beam lies in the
y-direction. We parametrise the deformation of the beam in the (x, z)-plane using arc
length s and time t, such that

∂x
∂s
= cosψ,

∂z
∂s
=− sinψ, (3.1a,b)
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Case Length Flow rate Thickness Width Young’s
modulusL (mm) w (mm) 2b (mm)
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FIGURE 4. Large-deflection results. (a) Experimental parameters. (b) Time evolution of
the liquid propagation length σ(t) (m). (c) Time evolution of the deflection angle φ(t)
(rad) at the advancing front.

where ψ(s, t) is the local angle made by the beam with the x-axis (see the definitions
in figure 1a).

Let A(s, t) denote the cross-sectional area of a thin liquid film flowing over the top
of the beam. A one-dimensional mass-conservation equation for the liquid is then

∂A
∂t
+ ∂Q
∂s
= 0, (3.2)

where Q(s, t) is the flux of liquid along the beam. We assume that a known constant
flux q is supplied at the upstream end, so that Q(0, t)≡ q.

The tangential and normal components of the external force per unit length exerted
on the beam are denoted by fs and fn. The Euler–Bernoulli equations governing the
beam deformation are then given by

∂T
∂s
+N

∂ψ

∂s
=−fs,

∂N
∂s
− T

∂ψ

∂s
=−fn, EI

∂2ψ

∂s2
=N, (3.3a−c)

where T and N are the tension and shear force in the beam, and

EI = Ebw3

6
(3.4)

is the bending stiffness.
To close the model, we need constitutive relations for the flux Q and the

components of the force/length ( fs, fn) in terms of A and ψ . Our aim in this study is to
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find a tractable model that adequately captures the behaviour observed in experiments
and is amenable to mathematical analysis. To this end, we make a number of
assumptions to obtain relatively simple closed-form constitutive relations. First, we
neglect the contribution of the beam’s own weight to the stress components fs and
fn. In the experiments, the beam does sag somewhat by itself, e.g. see figure 4(c),
but this self-induced deflection is small compared to the subsequent deflection once
the fluid is injected, and we have found that including the weight of the beam in
the theory makes very little difference to the results. We thus obtain the following
expressions for the components of the force/length exerted on the beam by the fluid:

fs = ρgA sinψ − A
∂P
∂s
, fn =−ρgA cosψ, (3.5a,b)

where ρ is the density of the fluid, g is the acceleration due to gravity, and P(s, t) is
the fluid pressure measured at the beam surface.

Constitutive relations relating the pressure P and flux Q to A(s, t) and ψ(s, t) may
be formally derived using lubrication theory in the limit where the fluid layer is
relatively thin. The simplified relations

P(s, t)=
(

3γ
2b3

)
A, Q(s, t)= 9A3

70µb2

(
ρg sinψ − 3γ

2b3

∂A
∂s

)
(3.6a,b)

are derived in appendix A in the asymptotic limit where the fluid layer is relatively
thin and the Bond number, B, is small, i.e.

A
b2
� 1 and B= ρgb2

γ
� 1. (3.7a,b)

It must be acknowledged that neither of these assumptions holds uniformly in the
experiments. For example, based on the experimental conditions, we estimated that
A/b2 ' 1 and 0.4 . B . 3. Nevertheless, we believe that the approximations (3.6) are
qualitatively reasonable and we will use them henceforth.

Combining (3.2), (3.3), (3.5), and (3.6), our final model equations are

∂A
∂t
+ 9

70µb5

∂

∂s

[
A3

(
ρgb3 sinψ − 3γ

2
∂A
∂s

)]
= 0, (3.8a)

∂T
∂s
+N

∂ψ

∂s
+ ρgA sinψ − 3γA

2b3

∂A
∂s
= 0, (3.8b)

∂N
∂s
− T

∂ψ

∂s
− ρgA cosψ = 0, (3.8c)

EI
∂2ψ

∂s2
=N, (3.8d)

which form a closed system for the four unknowns A, ψ , T , and N. The corresponding
boundary conditions are

A3 ∂A
∂s
+ 140µb5q

27γ
=ψ = 0 at s= 0, (3.9a)

A= A3 ∂A
∂s
=N = T = ∂ψ

∂s
= 0 at s= σ(t), (3.9b)
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where s=σ(t) denotes the moving front of the spreading rivulet. The conditions (3.9a)
arise from the prescribed flux q and horizontal clamping at s= 0. The free-boundary
conditions (3.9b) arise from kinematic conditions for the liquid layer and from the
imposition of no applied force or bending moment to the free end of the beam. The
problem is closed by requiring the initial condition σ(0)= 0.

3.2. Small-deflection regime
3.2.1. Normalised problem

While the deflection angle ψ is relatively small, the beam equations may be
linearised and the problem (3.8) is then approximated by

∂A
∂t
+ 9

70µb5

∂

∂s

[
A3

(
ρgb3ψ − 3γ

2
∂A
∂s

)]
= 0, EI

∂3ψ

∂s3
= ρgA, (3.10a,b)

where we have eliminated the force components T and N. The boundary conditions
(3.9b) in terms of A and ψ are

A3 ∂A
∂s
+ 140µb5q

27γ
=ψ = 0 at s= 0, (3.11a)

A= A3 ∂A
∂s
= ∂ψ
∂s
= ∂

2ψ

∂s2
= 0 at s= σ(t). (3.11b)

The simplified problem (3.10)–(3.11) may be normalised by defining the dimen-
sionless variables

Ã=
(

729
9800

)1/8 (
ρ2g2γ 3

µ4q4Eb18w3

)1/16

A, (3.12a)

ψ̃ =
(

2
11 025

)1/8 (
ρ10g10E3b22w9

µ4q4γ 9

)1/16

ψ, (3.12b)

σ̃ =
(

4ρ2g2b2

γEw3

)1/4

σ , s̃=
(

4ρ2g2b2

γEw3

)1/4

s, (3.12c,d)

t̃=
(

1458
1225

)1/8 (
ρ10g10q12

µ4γE5b10w15

)1/16

t. (3.12e)

The rescaled variables satisfy the problem (3.10)–(3.11) with all the coefficients equal
to unity, i.e.

∂Ã
∂ t̃
+ ∂

∂ s̃

[
Ã3

(
ψ̃ − ∂Ã

∂ s̃

)]
= 0,

∂3ψ̃

∂ s̃3
= Ã, (3.13a,b)

Ã3 ∂Ã
∂ s̃
+ 1= ψ̃ = 0 at s̃= 0, (3.13c)

Ã= Ã3 ∂Ã
∂ s̃
= ∂ψ̃
∂ s̃
= ∂

2ψ̃

∂ s̃2
= 0 at s̃= σ̃ (t). (3.13d)

In figure 5, we re-plot the small-deflection experimental results from figure 3 using the
normalised variables (3.12), and demonstrate that there is indeed a reasonable collapse
of the data.
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FIGURE 5. Small-deflection experimental results from figure 3 plotted using the
normalised variables defined in (3.12): (a) σ̃ versus t̃ and (b) φ̃ versus t̃. The asymptotic
solutions in the small- and large-time limits are, respectively, σ̃ ∼ 1.00101t̃4/5 (solid),
σ̃ ∼ 0.0434638t̃4 (dashed), φ̃ ∼ 0.129117t̃13/5 (dash-dotted), and φ̃ ∼ 0.000302834t̃9

(dash-double-dotted).

3.2.2. Small-time limit
As t̃→ 0, we expect ψ̃� |∂Ã/∂ s̃| in (3.13a,b). In this limit, the problem becomes

mathematically equivalent to a classical gravity current on an effectively horizontal
substrate (Huppert 1982b). While a gravity current is driven by hydrostatic pressure
proportional to film height, in the present problem an analogous role is played by
the capillary pressure proportional to the cross-sectional area A. The corresponding
behaviour of the solution to the problem (3.13) is described by a similarity solution
of the form

Ã(s̃, t̃)= t̃1/5f (η), ψ̃(s̃, t̃)= t̃13/5g(η), η= s̃
t̃4/5

, (3.14a,b)

where f satisfies the ordinary differential equation (ODE)

f ′′ + 3( f ′)2

f
+ 4ηf ′

5f 3
− 1

5f 2
= 0 (3.15)

and the boundary conditions

f 3(0)f ′(0)=−1, f (c)= lim
η→c

f 3(η)f ′(η)= 0. (3.16a,b)

The constant c is to be determined as part of the solution, and the position of the
free boundary is then given by σ̃ (t̃)∼ ct̃4/5 as t̃→ 0. The deflection of the beam is
determined a posteriori from

g(η)= 1
2

∫ η

0
f (ξ)ξ 2 dξ + 1

2

∫ c

η

f (ξ)η(2ξ − η) dξ . (3.17)

The numerical shooting technique used to solve this problem is outlined in § B.1,
and the resulting solutions for f (η) and g(η) are plotted in figure 6. The area profile
resembles a classical gravity current (Huppert 1982a,b), with a cube-root singularity at

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

25
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.258


294 P. D. Howell, H. Kim, M. G. Popova and H. A. Stone

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.02

 0.04

0.06

 0.08

0.10

0.12

(a)
(b)

FIGURE 6. (Colour online) Small-t̃ similarity solution of the problem (3.15)–(3.17) for
the normalised cross-sectional area f (η) and the normalised deflection angle g(η).

the moving touch-down location η= c. From these solutions we read off the values c≈
1.00101, f (0)≈ 1.32628, and g(c)≈ 0.129117. Hence, in the small-deflection regime,
for small times the position of the advancing front and the maximum deflection angle
at the front are given asymptotically by

σ̃ (t̃)∼ 1.00101t̃4/5, φ̃(t̃)= ψ̃(σ̃ (t̃), t̃)∼ 0.129117t̃13/5 as t̃→ 0. (3.18a,b)

The predicted power laws (3.18) for σ̃ (t̃) and φ̃(t̃) are shown in figure 5, using solid
and dash-dotted lines, respectively. There appears to be a good fit for the behaviour of
σ̃ , so long as the deflection angle remains small. The fit for φ̃ is also quite good for a
range of intermediate times. The significant departures observed at very small values
of t̃ are due to the small initial deflection of the beam under its own weight, which is
not included in our model, as well as angle-measurement errors, as explained in § 2.2.

3.2.3. Large-time limit
The limiting behaviour (3.18) describes the evolution while the beam deflection

remains small enough to have a negligible influence on the spreading of the liquid.
As t̃ increases, the coupling between liquid flow and beam deformation becomes
important. Eventually, as t̃→∞, the non-dimensional flux term in square brackets
in (3.13) is dominated by Ã3ψ̃ . In this case the limiting behaviour is described by a
similarity solution of the form

Ã(s̃, t̃)= t̃−3f (η), ψ̃(s̃, t̃)= t̃9g(η), η= s̃
t̃4
, (3.19a,b)

where f and g satisfy the ODEs

( f 3g− 4ηf )′ + f = 0, g′′′ − f = 0. (3.20a,b)

The corresponding boundary conditions, including the imposed flux, are

g(η)→ 0, f (η)3g(η)→ 1 as η→ 0, g′(c)= g′′(c)= 0. (3.21a−c)

Again the constant c is to be determined as part of the solution, and the large-t̃
behaviour of the free boundary is then given by σ̃ (t̃) ∼ ct̃4. To close the problem,
we note that a constant liquid flux imposes the net conservation equation∫ c

0
f (η) dη= 1. (3.22)
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FIGURE 7. (Colour online) Large-t similarity solution of the problem (3.20)–(3.23) for
the normalised cross-sectional area f (η) and the normalised deflection angle g(η).

By integrating (3.20a) with respect to η, this integral condition may equivalently be
stated as the boundary condition

f (c)2g(c)= 4c. (3.23)

The boundary-value problem (3.20)–(3.23) is solved using a shooting method
outlined in § B.2, and the resulting solutions for f (η) and g(η) are plotted in figure 7.
We note that f (η) decreases as η increases from zero, attains a minimum value of
approximately 20.3181 at η≈ 0.0179634, and then increases again as η approaches c.
This behaviour reflects well the non-monotonic profiles for the film thickness observed
in the experimental results, as shown in figure 2. However, the problem (3.20)–(3.23)
predicts that f (η) ∼ 3.64271η−1/3 as η → 0, implying that the cross-sectional area
diverges towards the origin; also, we are unable to impose the condition f (c) = 0
corresponding to the condition Ã= 0 at the advancing front. Both of these apparent
difficulties can be resolved by analysing asymptotic boundary layers near s̃ = 0 and
s̃ = σ̃ (t̃), as demonstrated in Howell et al. (2013) for the steady version of the
problem.

From the numerical solutions plotted in figure 7, we read off the values c ≈
0.0434638, f (c)≈ 23.9603, g′(0)≈ 0.0206883, and g(c)≈ 0.000302834. Hence, in the
small-deflection regime, for large times the position of the advancing front and the
maximum deflection angle are given asymptotically by

σ̃ (t̃)∼ 0.0434638t̃4, φ̃(t̃)∼ 0.000302834t̃9 as t̃→∞. (3.24a,b)

The power laws predicted in (3.24) are shown in figure 5, using dashed and
dash-double-dotted lines, respectively. We observe that these power laws do give a
reasonable fit to the dramatic increase in the deflection angle and consequent rapid
movement of the rivulet along the beam.

3.3. Large-deflection regime
3.3.1. Normalised problem

The power laws (3.24) are valid in an intermediate regime where there is significant
feedback between the beam deflection and the liquid flow, but the deflection angle
remains relatively small. However, if the beam is sufficiently long, then the assumption
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that ψ� 1 must eventually fail, so that the nonlinear terms in ψ that were neglected
in the linearised problem (3.10) become significant. However, when ψ = O(1), the
capillary terms involving spatial derivatives of A in the governing equations (3.8)
become negligible compared with the gravitational terms (see Howell et al. 2013),
and the equations may be simplified to

∂A
∂t
+ 9ρg

70µb2

∂

∂s
(A3 sinψ)= 0, (3.25a)

∂T
∂s
+N

∂ψ

∂s
+ ρgA sinψ = 0, (3.25b)

∂N
∂s
− T

∂ψ

∂s
− ρgA cosψ = 0, (3.25c)

EI
∂2ψ

∂s2
=N. (3.25d)

As in Howell et al. (2013), a first integral of (3.25b,c) allows us to write

T = F sinψ, N =−F cosψ, (3.26a,b)

where F is the vertical component of stress in the beam. The leading-order large-
deflection equations (3.25b)–(3.25d) therefore reduce to

∂F
∂s
=−ρgA, EI

∂2ψ

∂s2
=−F cosψ, (3.27a,b)

which, with (3.25a), form a closed system for A, ψ , and F. The boundary conditions
for ψ and F are

ψ = 0 at s= 0, F= ∂ψ
∂s
= 0 at s= σ(t), (3.28a,b)

corresponding to horizontal clamping at s= 0 and zero applied force and moment at
the free end of the beam.

Now that the highest spatial derivatives of A have been neglected, it is impossible
to satisfy exactly the boundary conditions for A at s = 0 and s = σ(t). Instead, we
impose the net flux conditions

9ρgA3 sinψ
70µb2

→ q as s→ 0,
dσ
dt
= 9ρgA2 sinψ

70µb2
at s= σ(t). (3.29a,b)

The full boundary conditions for A may be imposed by analysing asymptotic boundary
layers near s = 0 and s = σ(t), in which the spatial derivatives of A regain their
significance, as shown in Howell et al. (2013).

Now the problem (3.25a), (3.27)–(3.29) may be normalised by introducing the new
dimensionless variables

Â=
(

9ρg
70µqb2

)1/3

A, σ̂ =
(

1680ρ2g2µq
w9bE3

)1/9

σ , (3.30a,b)

ŝ=
(

1680ρ2g2µq
w9bE3

)1/9

s, t̂=
(

4374ρ5g5q7

1225µ2w9b7E3

)1/9

t, (3.30c,d)
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with respect to which the governing equations read

∂Â
∂ t̂
+ ∂

∂ ŝ
(Â3 sinψ)= 0,

∂2ψ

∂ ŝ2
+ cosψ

∫ σ̂

ŝ
Â(s′, t) ds′ = 0 (3.31a,b)

subject to

ψ→ 0, Â3 sinψ→ 1 as ŝ→ 0, (3.32a)
∂ψ

∂ ŝ
= dσ̂

dt̂
− Â2 sinψ = 0 at ŝ= σ̂ (t̂). (3.32b)

Thus, once the fluid layer has progressed so far along the beam that the deflection
angle ψ is O(1), we expect the new scalings (3.30) to collapse the experimental data:
this prediction will be confirmed below.

As t̂→0, the solution of the problem (3.31)–(3.32) may be described by a similarity
solution that is equivalent to the large-t̃ solution (3.19). This result just confirms that
the small- and large-deflection regimes are mutually consistent for intermediate values
of ψ .

3.3.2. Large-time limit
At large values of t̂, assuming that the beam is sufficiently long, the weight of the

fluid causes the beam to sag until it is approximately vertical. To study this limit, we
write ψ = π/2− χ , where 0< χ � 1: it will transpire that χ is exponentially small.
The governing equation (3.31a) for Â thus becomes

∂Â
∂ t̂
+ ∂

∂ ŝ
(Â3)= 0, (3.33a)

which is subject to

Â3→ 1 as ŝ→ 0,
dσ̂
dt̂
= Â2 at ŝ= σ̂ (t̂). (3.33b,c)

The relevant large-t̂ limiting solution of the problem (3.33) is

Â(ŝ, t̂)= 1, σ̂ (t̂)= t̂. (3.34a,b)

With Â given by (3.34), the deflection equation (3.31b) reduces to a form of the
Airy equation for χ :

∂2χ

∂ ŝ2
= (σ̂ − ŝ)χ. (3.35)

Given ∂χ/∂ ŝ= 0 at ŝ= σ̂ , the solution of (3.35) is

χ(ŝ, t̂)= 31/6Γ (2/3)C
2

[Bi(σ̂ − ŝ)+√3Ai(σ̂ − ŝ)], (3.36)

where Ai and Bi denote Airy functions and C(t)= χ(σ̂ , t̂) is an arbitrary integration
function, equal to the value of χ at the advancing front.

To determine C, and thus the deviation of the deflection from vertical, we have to
match with an inner region near ŝ= 0 in which ψ rapidly adjusts from 0 to almost
π/2. In this region, to lowest order the deflection equation (3.31b) reduces to

∂2ψ

∂ ŝ2
+ σ̂ cosψ = 0. (3.37)
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The solution of (3.37) subject to the boundary and matching conditions

ψ = 0 at ŝ= 0, ψ→π/2 as ŝ→∞ (3.38a,b)

is
ψ(ŝ, t̂)= π

2
− 4 tan−1

(
(
√

2− 1)e−ŝ
√
σ̂
)
. (3.39)

Finally, we get an expression for C by matching (3.39) with (3.36):

C= 8
√

π(
√

2− 1)σ̂ 1/4e−2σ̂ 3/2/3

31/6Γ (2/3)
. (3.40)

In conclusion, when the beam sags to a nearly vertical configuration, we predict that
the liquid front should grow linearly with time, i.e. σ̂ (t̂)∼ t̂, and that the deflection
angle and normalised free-boundary position should satisfy the relation

φ ∼ π

2
− 8
√

π(
√

2− 1)σ̂ 1/4e−2σ̂ 3/2/3

31/6Γ (2/3)
. (3.41)

In figure 8(a), we re-plot the large-deflection results for σ from figure 4(b) using the
normalised variables defined in (3.30). We find that the data collapse onto a single
curve, which agrees quite well with the linear behaviour predicted by (3.34), although
with an O(1) disagreement in the prefactor. We discuss this disparity further in § 4. To
test the predicted relation (3.41), in figure 8(b) we plot K − log(π/2− φ) versus σ̂ ,
where K is used as shorthand for the constant

K = log

(
8
√

π(
√

2− 1)
31/6Γ (2/3)

)
≈ 1.284. (3.42)

Again we observe a dramatic collapse of the data in figure 8(b), as well as
approximate convergence towards the asymptotic behaviour

K − log
(π

2
− φ

)
∼ 2

3
σ̂ 3/2 − 1

4
log σ̂ (3.43)

corresponding to (3.41), which is indicated by a dashed curve.

4. Discussion and conclusions
We have studied both experimentally and theoretically the flow of a thin liquid

rivulet along a flexible beam that is fixed at one end. The propagation of the liquid
and the deflection of the beam are intimately coupled: the weight of the liquid causes
the beam to bend, which, in turn, determines the effective body force driving the
spreading of the liquid. Thus, this problem naturally combines two classical nonlinear
mechanics problems in fluid mechanics and elasticity.

In analysing the problem mathematically, two distinct limits for the beam deflection
were identified. In the ‘small-deflection’ limit, the contributions to the liquid flux from
the slope of the beam and of the free surface are comparable, but the beam equations
may be linearised. In the ‘large-deflection’ limit, the full nonlinear beam equations
must be solved, but the liquid flux is dominated by the large beam slope. In either
case, the mathematical model may be simplified and then made parameter free by a
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FIGURE 8. Large-deflection results from figure 4 plotted using the normalised variables
defined in (3.30). (a) σ̂ versus t̂; the power law σ̂ = t̂ predicted by the large-time
asymptotic analysis is indicated using a solid line. (b) K − log(π/2− φ) versus σ̂ , where
K is defined by (3.42); the predicted behaviour (3.43) is indicated by the dashed curve.

suitable normalisation. We demonstrated that the scalings thus predicted by the theory
provide a very good collapse of a wide range of experimental data.

We found three distinct limiting solutions to the mathematical models obtained
in the small- and large-deflection limits. The resulting power-law solutions for the
position of the liquid front and the beam deflection are collected in table 1. The
‘small-time’ solution is valid while the beam deflection is so small as to have a
negligible influence on the liquid, which therefore spreads as if on a horizontal
substrate. The ‘intermediate-time’ solution occurs when the beam deflection is large
enough to dominate the spreading of the liquid, but still small enough for the beam
equations to be linearised. Finally, the ‘large-time’ solution emerges when the liquid
has spread so far as to weigh the beam down almost to the vertical.

By comparison with the time scales used to normalise the problem in (3.12) and
(3.30), we infer that the corresponding ranges for the dimensionless time t are given
by

small time: t� tsmall =
(
µ4γE5b10w15

ρ10g10q12

)1/16

, (4.1a)

intermediate time: tsmall� t� tlarge, (4.1b)

large time: t� tlarge =
(
µ2w9b7E3

ρ5g5q7

)1/9

. (4.1c)

The intermediate-time regime can exist only if the lower bound in (4.1b) is
significantly smaller than the upper bound. The dimensionless ratio of the two
time scales is given by

tsmall

tlarge
= γ 1/16µ1/36q1/36

ρ5/72g5/72b11/72w1/16E1/48
. (4.2)

For the experimental parameter values, we find that tsmall/tlarge is in the range 0.6–0.85,
that is, smaller than one but not very small. This perhaps helps to explain why the
intermediate regime appears to persist only briefly in figure 5.
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Small time Intermediate time Large time

Rivulet length σ ∝ t4/5 ∝ t4 ∝ t
Beam deflection φ ∝ t4 ∝ t9 'π/2

TABLE 1. Asymptotic solutions for liquid propagation along a flexible beam and the
deformation of the beam. In this table, σ and φ represent the length of the advancing
liquid rivulet and the deflection angle of the beam, respectively, and t represents time.

Figures 5 and 8 demonstrate that the power laws listed in table 1 agree quite well
with experimental results. However, there is some discrepancy in the prefactors. This
is probably due to the simplified constitutive relations (3.6) for the liquid pressure
and flux used in our mathematical analysis. The dramatic collapse of the experimental
data and the apparent agreement with the predicted power-law exponents both support
our claim that the relations (3.6) contain the relevant physics and exhibit the right
qualitative behaviour. However, as pointed out in § 3.1, these relations are strictly valid
only if the Bond number B and the ratio A/b2 are both small, neither of which is
universally true in the experiments.

If the Bond number is not assumed to be small, then, under the lubrication
approximation, the free surface of the liquid layer satisfies the Young–Laplace
equation, balancing the capillary and hydrostatic pressures. Provided A/b2 is small,
the relation between the base pressure P and the cross-sectional area A may then in
principle be expressed in terms of hyperbolic functions (as in Paterson, Wilson &
Duffy 2013). On the other hand, if A/b2 is not small, implying that the liquid layer
is not thin, then in general the flux Q can only be found numerically, by solving
Poisson’s equation for the liquid velocity along the beam. In principle, one can
address each of these mathematical complications in a full computational solution
of the problem, but it would seem to preclude any possibility of finding universal
analytical predictions like those listed in table 1.

As shown in appendix A, one can relatively easily calculate the first corrections to
the leading-order constitutive relations (3.6) when A/b2 and B are small but non-zero,
namely

P(s, t) ∼
(

3γ
2b3

)
A
[

1− 27
40

A2

b4
+ 2

5
B cosψ + · · ·

]
, (4.3a)

Q(s, t) ∼ 9A3

70µb2

(
ρg sinψ − ∂P

∂s

) [
1− 2

5
A2

b4
− 1

45
B cosψ + · · ·

]
. (4.3b)

In the small-time regime where ψ→ 0, we therefore find that

Q(s, t)∼− 27γ
140µb5

A3 ∂A
∂s

[
1+ 17

45
B− 97

40
A2

b4

]
. (4.4)

Thus, inclusion of the transverse gravitational term proportional to B increases the
spreading rate, while the geometric correction proportional to A2/b4 decreases the
spreading rate. It is conceivable that the combination of these effects could help to
explain the discrepancy observed in figure 5(a), where the theory appears consistently
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to over-predict the spreading rate by a factor of 2–3. In the large-time regime where
ψ→π/2 and the pressure gradient becomes negligible, we instead have

Q(s, t)∼ 9ρg
70µb2

A3

[
1− 2

5
A2

b4

]
. (4.5)

The leading-order term is equivalent to equation (1) of Wilson & Duffy (2005), and
we observe that the geometric correction always decreases the spreading rate. This
result is consistent with the observation in figure 8(a) that the simplified theory
persistently over-predicts the spreading rate by a factor of around 5–10.

Finally, we note that the wettability of the substrate to the working fluid appears
to give rise to a rather large advancing contact angle. In figure 2, for example, we
observe a blunt free-surface profile and the formation of a noticeable bulge near the
advancing front of the liquid film. Our simplified thin-film model is unlikely to capture
accurately the quantitative behaviour of this localised structure. It may be that capillary
effects near the advancing contact line limit the propagation of the front such that it
lags behind the spreading rate of the thin film, resulting in accumulation of liquid into
the observed bulge near the front.
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Appendix A. Derivation of constitutive relations
Here we sketch the derivation of the constitutive relations (3.6) for the base pressure

P and the flux Q in the rivulet. A schematic of the cross-section of the rivulet is
shown in figure 1(b). The y- and ẑ-axes are parallel and normal respectively to the
upper surface of the beam, which is at ẑ= 0. Note the distinction between ẑ and the
vertical coordinate z defined in figure 1(a); they are related by

z=−
∫ s

0
sinψ ds+ ẑ cosψ. (A 1)

The free surface is denoted by ẑ= h(y), where the parametric dependence upon time
t and arc length s along the beam has been temporarily suppressed.

Under the assumptions of lubrication theory, the pressure in the rivulet is purely
hydrostatic, and the free-surface profile h(y) satisfies the Young–Laplace equation

γ h′′(y)
[1+ h′(y)2]3/2 = ρgh(y) cosψ − P. (A 2)

The solution of (A 2) subject to h′(0)= h(b)= 0 determines h(y) and hence

A=
∫ b

−b
h(y) dy (A 3)

in terms of P and ψ ; inversion of this relation then in principle gives P as a function
of A and ψ .
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The velocity u in the s-direction satisfies Poisson’s equation in the form

µ

(
∂2u
∂y2
+ ∂

2u
∂ ẑ2

)
= ∂P
∂s
− ρg sin φ. (A 4)

The imposition of zero slip at the base and a zero shear stress at the free surface leads
to the boundary conditions

u= 0 at ẑ= 0,
∂u
∂ ẑ
− h′(y)

∂u
∂y
= 0 at ẑ= h(y). (A 5a,b)

The solution of (A 4) subject to (A 5) in principle determines u and hence

Q=
∫ b

−b

∫ h(y)

0
u(y, ẑ) dẑ dy (A 6)

in terms of A, P, and ψ .
To obtain the simplified expressions (3.6), we assume that the rivulet is thin and that

gravity is subdominant to surface tension, so that the cross-sectional Bond number is
small. We formalise these assumptions by non-dimensionalising the above equations
and boundary conditions as follows:

y= bỹ, {ẑ, h} = εb{z̃, h̃}, P=
(εγ

b

)
P̃, u= ε

2b2

µ

(
ρg sin φ − ∂P

∂s

)
ũ, (A 7a−d)

where ε→ 0 in the limit of a thin rivulet. Henceforth the tildes will be dropped to
reduce clutter. We also define

B cos φ = ε2β (A 8)

and suppose that β =O(1) as ε→ 0: this conveniently ensures that gravitational and
geometric corrections enter at the same order.

The Young–Laplace equation (A 2) becomes

h′′(y)
[1+ ε2h′(y)2]3/2 = ε

2βh(y)− P, (A 9)

which is subject to h(±1)= 0. The cross-sectional area is then given by

A
εb2
= 2

∫ 1

0
h(y) dy. (A 10)

We then write h and P as asymptotic expansions in powers of ε2, i.e.

h(y)∼ h0(y)+ ε2h1(y)+ · · · , P∼ P0 + ε2P1 + · · · . (A 11a,b)

Equation (A 9) may be solved successively for h0, h1, . . . , and then the condition
(A 10) determines P0, P1, . . . . After halting this procedure at order ε2 and returning
to dimensional variables, we find the approximation (4.3a) for P. The first term
corresponds to the model (3.6) used in the body of the paper. The following two
terms are the first corrections arising from the nonlinear geometry and from gravity,
respectively.
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Next we solve for the normalised velocity u(y, z), which satisfies the problem

∂2u
∂z2
+ ε2 ∂

2u
∂y2
=−1, (A 12a)

u= 0 at z= 0,
∂u
∂z
= ε2h′(y)

∂u
∂y

at z= h(y). (A 12b,c)

As above, we solve by writing u as an asymptotic expansion in powers of ε2, and
the normalised flux is then given by

Q= 2
∫ 1

0

∫ h(y)

0
u(y, z) dz dy. (A 13)

We truncate the expansion at O(ε2) and return to dimensional variables to obtain the
approximation (4.3b) for Q. Again the leading term gives the model (3.6), and the
subsequent terms give the first corrections in A/b2 and B.

Appendix B. Solution of numerical shooting problems

B.1. Small deflection, small t̃
We have to solve the ODE (3.15) subject to the boundary conditions (3.16). We first
make the problem autonomous via the transformation

η= ce−ξ , f (η)= η2/3F(ξ), (B 1a,b)

so that F(ξ) satisfies the ODE

F′′ + 3F′2

F
− 4F′

5F3
− 13F′

3
+ 10F

9
+ 1

3F2
= 0 (B 2)

and the initial conditions

F(ξ)→ 0, F′(ξ)F(ξ)3→ 0 as ξ→ 0. (B 3a,b)

There is a unique solution of this initial-value problem, with the asymptotic behaviour

F(ξ)∼
(

12ξ
5

)1/3 {
1+ 47ξ

96
+ 8983ξ 2

64 512
+ · · ·

}
as ξ→ 0. (B 4)

We use this behaviour to integrate from a small positive value of ξ . The initial
condition f (0)3f ′(0) = −1 then allows us to determine both c and the value of f (0)
from the far-field behaviour of F(ξ), using

e−2ξ/3F(ξ)→ c−2/3f (0), e−5ξ/3F(ξ)3
(
F′(ξ)− 2

3 F(ξ)
)→ c−5/3 as ξ→∞. (B 5)

We thus obtain the values f (0)≈ 1.32628 and c≈ 1.00101. The normalised deflection
angle g(η) is then determined by the integral (3.17), from which we find that g(0)≈
0.129117.

The numerical solutions thus obtained for the functions f (η) and g(η) are plotted
in figure 6.
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B.2. Small deflection, large t̃

The small-deflection large-t̃ problem from § 3.2 leads to the system of ODEs (3.20)
and boundary conditions (3.21), (3.23) for the similarity solution variables f (η) and
g(η). We now make the problem autonomous by defining

η= ce−ξ , f (η)= η−2/3F(ξ), g(η)= η7/3G(ξ), (B 6a−c)

so that F and G satisfy the ODEs

F′ = F(1+ 3F2G′ − F2G)
3(4− 3F2G)

, G′′′ − 4G′′ + 13
3

G′ − 28
27

G+ F= 0, (B 7a,b)

and boundary conditions

G′(0)= 7
3 G(0), G′′(0)= 49

9 G(0), F(0)= 2G(0)−1/2. (B 8a−c)

The conditions (3.21) at η= 0 transform to the far-field conditions

G(ξ)∼ g′(0)c−4/3e4ξ/3, F(ξ)∼ g′(0)−1/3c1/3e−ξ/3 as ξ→∞. (B 9a,b)

We therefore use G(0) as a shooting parameter to get

G′′(ξ)− 5
3 G′(ξ)+ 4

9 G(ξ)→ 0 as ξ→∞ (B 10)

(corresponding to G(ξ)e7ξ/3→ 0), and then use (B 9) to infer the values of g′(0) and c.
By following this procedure, we obtain the values

G(0)≈ 0.455938, c≈ 0.0434638, g′(0)≈ 0.0206883. (B 11a−c)

The corresponding value of the film area and the normalised angle at the advancing
front are then given by

f (c)= 2c−2/3G(0)−1/2 ≈ 23.9603, g(c)= c7/3G(0)≈ 0.000302834. (B 12a,b)

The resulting numerical solutions for f (η) and g(η) are plotted in figure 7.
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