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We consider a class of variational equations with exponential nonlinearities on a
compact Riemannian surface, describing the mean-field equation of the equilibrium
turbulence with arbitrarily signed vortices. For the first time, we consider the
problem with both supercritical parameters and we give an existence result by using
variational methods. In doing so, we present a new Moser–Trudinger-type inequality
under suitable conditions on the centre of mass and the scale of concentration of both
eu and e−u, where u is the unknown function in the equation.

1. Introduction

We consider the equation

−∆gu = ρ1

(
h1(x)eu∫

Σ
h1(x)eu dVg

− 1
|Σ|

)
− ρ2

(
h2(x)e−u∫

Σ
h2(x)e−u dVg

− 1
|Σ|

)
on Σ, (1.1)

where ρ1, ρ2 are two non-negative parameters, h1, h2 : Σ → R are two smooth
positive functions and Σ is a compact orientable surface without boundary with
Riemannian metric g and volume |Σ|.

This equation arises in mathematical physics as a mean-field equation of the
equilibrium turbulence with arbitrarily signed vortices, and was obtained by Joyce
and Montgomery [10] and by Pointin and Lundgren [17] from different statistical
arguments. Later, many authors worked on this model; see, for example, [3,11,14,16]
and the references therein.

Equation (1.1) has a variational structure, and solutions can be found as critical
points of the functional

Iρ1,ρ2(u) = 1
2

∫
Σ

|∇gu|2 dVg − ρ1 log
∫

Σ

h1(x)eu dVg − ρ2 log
∫

Σ

h2(x)e−u dVg

+ ρ1

∫
Σ

u dVg − ρ2

∫
Σ

u dVg, u ∈ H1(Σ), (1.2)

where we have normalized the volume |Σ| of Σ by |Σ| = 1. The structure of the func-
tional Iρ1,ρ2 strongly depends on the parameters ρ1, ρ2. A Moser–Trudinger-type
inequality relative to this functional was proved in [16], and one has that

log
∫

Σ

eu−ū dVg + log
∫

Σ

e−u+ū dVg � 1
16π

∫
Σ

|∇gu|2 dVg + CΣ ,
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where ū denotes the average of u. By the above inequality, if we consider the case
(ρ1, ρ2) ∈ (0, 8π)×(0, 8π), the functional Iρ1,ρ2 is bounded from below and coercive;
hence, solutions can be found as global minima.

The value 8π, or more generally 8πN, is critical and the existence problem
becomes subtler due to a loss of compactness. Even in the case ρ2 = 0, namely,
the Liouville-type problem

−∆gu = ρ

(
h(x)eu∫

Σ
h(x)eu dVg

− 1
|Σ|

)
on Σ, (1.3)

the existence problem is a difficult one (see [1, 4, 15]). To solve (1.1) (or (1.3)) in
this critical case, one always needs geometry conditions (see [4, 20]). For example,
for (1.1), with ρ1 = 8π and ρ2 ∈ (0, 8π], in [20] Zhou gave an existence result under
suitable conditions on the Gaussian curvature K(x) of Σ, namely, K(x) should
satisfy

8π − ρ2 − 2K(x) > 0 for x ∈ Σ.

If ρi > 8π for some i = 1, 2, then Iρ1,ρ2 is unbounded from below and a minimization
technique is no longer possible. In general, one needs to apply variational methods
to obtain the existence of critical points (generally of saddle type) for Iρ1,ρ2 .

The case with ρ2 = 0 (for instance (1.3)) has been much studied in the literature.
Again, the problem has a variational structure and the associated functional is given
by

Iρ(u) = 1
2

∫
Σ

|∇gu|2 dVg + ρ

∫
Σ

u dVg − ρ log
∫

Σ

h(x)eu dVg.

There are by now many results regarding existence, compactness of solutions, bub-
bling behaviour, etc. (see [5,6,12,19]). In particular, we have the existence of solu-
tions for (1.3) for ρ ∈ (8kπ, 8(k + 1)π), with k � 1 (see, for example, [12]). This
existence result is based on a detailed study of the topology of large negative sub-
levels of the functional Iρ. It is indeed possible to find a homotopy equivalence
between these sublevels and the so-called space of formal baricentres Σk, namely,
the family of elements

k∑
i=1

tiδxi with (xi)i ⊂ Σ and
k∑

i=1

ti = 1, ti � 0.

Exploiting the fact that the set Σk is non-contractible, it is then possible to intro-
duce a min–max scheme based on this set.

On the other hand, in the case when ρ2 �= 0 and ρi > 8π for some i = 1, 2
there are very few results. We point some of them out here. The first is given
in [9] and concerns the case ρ1 ∈ (8π, 16π) and ρ2 < 8π. Via a blow-up analy-
sis Jost et al . proved the existence of solutions for (1.1) on a smooth, bounded,
non-simply connected domain Σ in R

2 with homogeneous Dirichlet boundary con-
dition. Later, in [21], Zhou generalized this result to any compact surface without
boundary by using analogous variational methods to those employed in the study
of (1.3). In a certain sense, one can describe the topology of negative sublevels of
the functional Iρ1,ρ2 using the behaviour of the function eu.

The general blow-up behaviour of solutions of (1.1) is not yet fully developed.
However, as in the case for ρ2 = 0, in [9] Jost et al . exhibited a volume quantization.
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More precisely, they proved that the blow-up values are multiples of 8π (see the
proof of theorem 2.1 for the definition of the blow-up value). In a similar way, by
using a local quantization proved in [16], in § 2 we deduce a global blow-up value
for the case when ρ1, ρ2 ∈ (8π, 16π).

We then turn to the existence issue, and via a min–max scheme we obtain a
positive result without any geometry and topology conditions. Our main theorem
is the following.

Theorem 1.1. Assume that ρ1, ρ2 ∈ (8π, 16π). It follows that there exists a solu-
tion to (1.1).

The method to prove this existence result relies on a min–max scheme introduced
by Malchiodi and Ruiz in [13] for the study of Toda systems. Such a scheme is based
on study of the topological properties of the low sublevels of Iρ1,ρ2 .

We shall see that on low sublevels of Iρ1,ρ2 at least one of the functions eu or
e−u is very concentrated around some point of Σ. Moreover, both eu and e−u can
concentrate at two points that could eventually coincide, but in this case the scale
of concentration must be different. Roughly speaking, if eu and e−u concentrate
around the same point at the same rate, then Iρ1,ρ2 is bounded from below. We
next make this statement more formal.

First, following the argument in [13], we define a continuous rate of concentration
σ = σ(f) of a positive function f ∈ Σ, normalized in L1. Somehow, the smaller σ is,
the higher the rate of concentration of f . Moreover, we define a continuous centre
of mass β = β(f) ∈ Σ. This can be done when σ � δ for some fixed δ; therefore,
we have a map ψ : H1(Σ) → Σ̄δ,

ψ(u) = (β(f1), σ(f1)), ψ(−u) = (β(f2), σ(f2)),

where we have set

f1 =
eu∫

Σ
eu dVg

, f2 =
e−u∫

Σ
e−u dVg

.

Here Σ̄δ is the topological cone over Σ, where we make the identification to a point
when σ � δ for some δ > 0 fixed (see (2.1)).

The improvement of the Moser–Trudinger inequality discussed above is made
rigorous in the following way: if ψ(f1) = ψ(f2), then Iρ1,ρ2(u) is bounded from below
(see proposition 3.6). The proof is based on local versions of the Moser–Trudinger
inequality on small balls and on annuli with small internal radius. We point out
that our improved inequality is scaling invariant, as opposed to those proved by
Chen and Li [2] and Zhou [21].

Using this fact, for L > 0 large we can introduce a continuous map

I−L
ρ1,ρ2

(ψ,ψ)−−−→ X := (Σ̄δ × Σ̄δ) \ D̄,

where D̄ is the diagonal of Σ̄δ × Σ̄δ and I−L
ρ1,ρ2

= {u ∈ H1(Σ) : Iρ1,ρ2(u) < −L}. On
the other hand, it is also possible to do the converse, namely, to map (a retraction
of) the set X into appropriate sublevels of Iρ1,ρ2 . In § 4 we construct a family of
new test functions parametrized on (a suitable subset of) X, on which Iρ1,ρ2 attains
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arbitrarily low values; see proposition 4.4. Letting

X
φ−→ I−L

ρ1,ρ2

be the corresponding map, it turns out that the composition of these two maps is
homotopic to the identity on X; see proposition 4.7.

Exploiting the fact that X is non-contractible, we can introduce a min–max
argument to find a critical point of Iρ1,ρ2 . In this framework, an essential point is
to use the ‘monotonicity argument’ introduced by Struwe in [18] together with the
compactness result of solutions proved in § 2, since it is not known whether the
Palais–Smale condition holds or not.

2. Notation and preliminaries

In this section we fix our notation and recall some useful preliminary facts. Through-
out the paper, Σ stands for a compact orientable surface without boundary with
metric g. For simplicity, we normalize the volume |Σ| of Σ by |Σ| = 1. We state, in
particular, some variants and improvements of the Moser–Trudinger-type inequality
and some of their consequences.

We write d(x, y) to denote the distance between two points x, y ∈ Σ. In the same
way, for any p ∈ Σ and Ω, Ω′ ⊆ Σ, we define

d(p, Ω) = inf{d(p, x) : x ∈ Ω}, d(Ω, Ω′) = inf{d(x, y) : x ∈ Ω, y ∈ Ω′}.

Moreover, Bp(r) denotes the open metric ball of radius r and centre p, while Ap(r, R)
stands for the open annulus of radii r and R, r < R. The complement of a set Ω in
Σ will be denoted by Ωc.

Recalling that we are assuming that |Σ| = 1, given a function u ∈ L1(Σ), we
denote its average as

ū =
∫

Σ

u dVg.

Given δ > 0, we define the topological cone

Σ̄δ = (Σ × (0, +∞))/(Σ × [δ, +∞)), (2.1)

where the equivalence relation identifies Σ × [δ, +∞) to a single point.
Throughout the paper we denote by C large constants that are allowed to vary

between different formulae or even within lines. When we want to stress the depend-
ence of the constants on some parameter(s), we add subscripts to C (e.g. Cδ, etc.).
Also, constants with subscripts are allowed to vary. Moreover, sometimes we shall
write oα(1) to denote quantities that tend to 0 as α → 0 or α → +∞, depending
on the case. We shall similarly use the symbol Oα(1) for bounded quantities.

We begin with a compactness result that is deduced from the blow-up theorem
in [16].

Theorem 2.1. Suppose that un satisfies

−∆gun = ρ1,n

(
h1(x)eun∫

Σ
h1(x)eun dVg

− 1
|Σ|

)
− ρ2,n

(
h2(x)e−un∫

Σ
h2(x)e−un dVg

− 1
|Σ|

)
on Σ.
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The mean-field equation on compact surfaces 1025

Assume that ρ1,n, ρ2,n ∈ (8π, 16π) for any n ∈ N and that ρ1,n → ρ1 ∈ (8π, 16π)
and ρ2,n → ρ2 ∈ (8π, 16π). The solution sequence (un)n (up to adding suitable
constants) is then uniformly bounded in L∞(Σ) and there exist u and a subsequence
(unk

)k such that
unk

→ u,

where this u is a solution to (1.1) for these ρ1 and ρ2.

Proof. Since Iρ1,ρ2 is invariant under translation by constants in the argument, we
can restrict ourselves to considering the subspace of H1(Σ) of functions with zero
average.

Consider the blow-up sets of the sequence (un)n given by

S1 = {x ∈ Σ : ∃xn → x such that un(xn) → +∞},

S2 = {x ∈ Σ : ∃xn → x such that un(xn) → −∞}.

From the blow-up theorem in [16], it is sufficient to show that S1 ∩ S2 = ∅. We
argue by contradiction. Assume that x0 ∈ S1 ∩ S2. Define the blow-up values at x0
by

m1(x0) = lim
r→0

lim
n→+∞

∫
Br(x0)

ρ1,nh1(x)eun∫
Σ

h1(x)eun dVg
dVg,

m2(x0) = lim
r→0

lim
n→+∞

∫
Br(x0)

ρ2,nh2(x)e−un∫
Σ

h2(x)e−un dVg
dVg.

Since ρ1,n, ρ2,n ∈ (8π, 16π), from the blow-up theorem in [16], we have that

4π � m1(x0) < 16π, 4π � m2(x0) < 16π, (2.2)

and
(m1(x0) − m2(x0))2 = 8π(m1(x0) + m2(x0)). (2.3)

By the last equality we derive

m1(x0) = m2(x0) + 4π ± 4
√

πm2(x0) + π2.

First, we consider the case m1(x0) = m2(x0) + 4π + 4
√

πm2(x0) + π2. Using the
fact that 4π � m2(x0), we derive that m1(x0) � 16π, which contradicts the first
estimate in (2.2).

If, instead, we consider the case m1(x0) = m2(x0) + 4π − 4
√

πm2(x0) + π2, the
estimate 4π � m2(x0) < 16π implies that m1(x0) < 12π. By interchanging the
roles of m1(x0) and m2(x0), we obtain the same inequality for m2(x0). Therefore,
we have that

4π � m1(x0) < 12π, 4π � m2(x0) < 12π. (2.4)

On the other hand, using (2.3) together with the fact that mi(x0) � 4π, i = 1, 2,
we deduce that

|m1(x0) − m2(x0)| � 8π,

which contradicts (2.4).
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Next, we recall some Moser–Trudinger-type inequalities by starting with the stan-
dard one, i.e. for u ∈ H1(Σ) it holds that

log
∫

Σ

eu−ū dVg � 1
16π

∫
Σ

|∇gu|2 dVg + CΣ . (2.5)

As observed in § 1, (1.1) is the Euler–Lagrange equation of the functional Iρ1,ρ2

given in (1.2). Consider the space

H̄1(Σ) =
{

u ∈ H1(Σ) :
∫

Σ

u dVg = 0
}

,

for which the following result was proved by Ohtsuka and Suzuki in [16].

Theorem 2.2. The functional Iρ1,ρ2 is bounded from below on H̄1(Σ) if and only
if ρi � 8π, i = 1, 2.

In view of this result, similarly to inequality (2.5), it is possible to also obtain
a Moser–Trudinger inequality with eu and e−u simultaneously. Namely, for u ∈
H1(Σ) it holds that

log
∫

Σ

eu−ū dVg + log
∫

Σ

e−u+ū dVg � 1
16π

∫
Σ

|∇gu|2 dVg + CΣ . (2.6)

It is well known that an improved inequality will hold if eu has an integral bounded
from below on different regions of Σ of positive mutual distance.

Proposition 2.3 (Zhou [21]). For a fixed integer l, let Ω1, . . . , Ωl be subsets of Σ
satisfying d(Ωi, Ωj) � δ0 for i �= j, where δ0 is a positive real number, and let
γ0 ∈ (0, 1/l). Then, for any ε > 0 there exists a constant C = C(Σ, l, ε, δ0, γ0) such
that

l log
∫

Σ

eu−ū dVg + log
∫

Σ

e−u+ū dVg � 1
16π − ε

∫
Σ

|∇gu|2 dVg + C

for all the functions u ∈ H1(Σ) satisfying∫
Ωi

eu dVg∫
Σ

eu dVg
� γ0 ∀i ∈ {1, . . . , l}.

We next state a result that is a local version of (2.6), which will be of use later
on.

Proposition 2.4. Fix δ > 0, and let Ω1 ⊂ Ω2 ⊂ Σ be such that d(Ω1, ∂Ω2) � δ.
Then, for any ε > 0 there exists a constant C = C(ε, δ) such that, for all u ∈
H1(Σ),

log
∫

Ω1

eu dVg + log
∫

Ω1

e−u dVg � 1
16π − ε

∫
Ω2

|∇gu|2 dVg + C.

Proof. The proof is developed exactly as in [13, proposition 2.3], with obvious
modifications. Here, we just sketch the proof for the reader’s convenience. First, we
consider a spectral decomposition of the Laplacian on Ω2 (with Neumann boundary
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conditions), in order to write u as u = v + w, with v ∈ L∞(Ω2) and w ∈ H1(Ω2).
We next consider a smooth cut-off function χ with values into [0, 1], satisfying

χ(x) =

{
1, x ∈ Ω1,

0, d(x, Ω) > δ/2,

and then define w̃(x) = χ(x)w(x). We now apply the Moser–Trudinger inequal-
ity (2.6) to w̃ to deduce the desired inequality.

We now give a criterion that is a first step in studying the properties of the low
sublevels of Iρ1,ρ2 . We first state a lemma concerning a covering argument, which
is a particular case of a more general setting in [13, lemma 2.5].

Lemma 2.5. Let δ0 > 0, γ0 > 0 be fixed, and let Ωi,j ⊆ Σ, i, j = 1, 2, satisfy
d(Ωi,j , Ωi,k) � δ0 for j �= k. Suppose that u ∈ H1(Σ) is a function verifying∫

Ω1,j
eu dVg∫

Σ
eu dVg

� γ0,

∫
Ω2,j

e−u dVg∫
Σ

e−u dVg
� γ0, j = 1, 2.

There then exist positive constants γ̃0, δ̃0, depending only on γ0, δ0, and two sets
Ω̃1, Ω̃2 ⊆ Σ, depending also on u, such that

d(Ω̃1, Ω̃2) � δ̃0,

∫
Ω̃i

eu dVg∫
Σ

eu dVg
� γ̃0,

∫
Ω̃i

e−u dVg∫
Σ

e−u dVg
� γ̃0, i = 1, 2.

Using this result it is indeed possible to obtain an improvement of the constant
in the Moser–Trudinger inequality (2.6).

Proposition 2.6. Let u ∈ H1(Σ) be a function satisfying the assumptions of
lemma 2.5 for some positive constants δ0, γ0. Then, for any ε > 0 there exists
C = C(ε) > 0, depending on ε, δ0 and γ0 such that

log
∫

Σ

eu−ū dVg + log
∫

Σ

e−u+ū dVg � 1
32π − ε

∫
Σ

|∇gu|2 dVg + C.

Proof. To obtain the thesis we can argue exactly as in [13, proposition 2.6]. First
we set δ̃0, γ̃0 and Ω̃1, Ω̃2 as in lemma 2.5. We then apply proposition 2.4 with Ω̃i

and Ui = {x ∈ Ω : d(x, Ω̃i) < δ̃0/2} for i = 1, 2. Observing that

log
∫

Ω̃i

eu dVg � log
( ∫

Σ

eu dVg

)
+ log γ̃0,

log
∫

Ω̃i

e−u dVg � log
( ∫

Σ

e−u dVg

)
+ log γ̃0

for i = 1, 2, and that U1 ∩ U2 = ∅, we deduce the thesis.

Proposition 2.6 implies that on low sublevels of the functional Iρ1,ρ2 , at least
one of the components of the couple (eu, e−u) must be very concentrated around a
certain point. In the following we present a more detailed description of the topology
of low sublevels.
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3. Improved inequality

Following the ideas presented by Malchiodi and Ruiz in [13], in this section we
exhibit an improved Moser–Trudinger inequality under suitable conditions of con-
centration of the involved function.

First, we give continuous definitions of the centre of mass and scale of concen-
tration of positive functions normalized in L1. We consider the set

A =
{

f ∈ L1(Σ) : f > 0 almost everywhere and
∫

Σ

f dVg = 1
}

,

endowed with the topology inherited from L1(Σ). We then have the following result.

Proposition 3.1 (Malchiodi and Ruiz [13]). We fix a constant R > 1. There then
exist δ = δ(R) > 0 and a continuous map

ψ : A → Σ̄δ, ψ(f) = (β, σ),

satisfying that for any f ∈ A there exists p ∈ Σ such that the following hold:

(a) d(p, β) � C ′σ for C ′ = max{3R + 1, δ−1 diam(Σ)},

(b) ∫
Bp(σ)

f dVg > τ,

∫
Bp(Rσ)c

f dVg > τ,

where τ > 0 depends only on R and Σ.

This result is obtained in several steps, which we summarize in the following.
The explicit definition of the map ψ(f) = (β, σ) is given below.

First, take R0 = 3R, and define σ : A × Σ → (0, +∞) such that∫
Bx(σ(x,f))

f dVg =
∫

Bx(R0σ(x,f))c
f dVg. (3.1)

The map σ(x, f) is clearly uniquely determined and continuous. Moreover, we have
the following lemma.

Lemma 3.2 (Malchiodi and Ruiz [13]). The map σ satisfies

d(x, y) � R0 max{σ(x, f), σ(y, f)} + min{σ(x, f), σ(y, f)}. (3.2)

We now define

T : A × Σ → R, T (x, f) =
∫

Bx(σ(x,f))
f dVg.

Lemma 3.3 (Malchiodi and Ruiz [13]). If x0 ∈ Σ exists such that

T (x0, f) = max
y∈Σ

T (y, f),

then we have that σ(x0, f) < 3σ(x, f) for any other x ∈ Σ.

As a consequence of the previous lemma, one can obtain the following.
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Lemma 3.4 (Malchiodi and Ruiz [13]). There exists a fixed τ > 0 such that

max
x∈Σ

T (x, f) > τ > 0 for all f ∈ A.

We define
σ : A → R, σ(f) = 3 min{σ(x, f) : x ∈ Σ},

which is obviously a continuous function. Given τ as in lemma 3.4, consider the set

S(f) = {x ∈ Σ : T (x, f) > τ, σ(x, f) < σ(f)}, (3.3)

which is a non-empty open set for any f ∈ A, by lemmas 3.3 and 3.4. Moreover,
from (3.2), we have that

diam(S(f)) � (R0 + 1)σ(f). (3.4)

By the Nash embedding theorem, we can assume that Σ ⊂ R
N isometrically, N ∈ N.

Take an open tubular neighbourhood Σ ⊂ U ⊂ R
N of Σ, and take δ > 0 small

enough that
co[Bx((R0 + 1)δ) ∩ Σ] ⊂ U ∀x ∈ Σ, (3.5)

where ‘co’ denotes the convex hull in R
N .

We now define

η(f) =

∫
Σ

(T (x, f) − τ)+(σ(f) − σ(x, f))+xdVg∫
Σ

(T (x, f) − τ)+(σ(f) − σ(x, f))+ dVg
∈ R

N .

The map η defines a sort of centre of mass in R
N . Observe that the integrands

become non-zero only on the set S(f). Moreover, whenever σ(f) � δ, (3.4) and (3.5)
imply that η(f) ∈ U , and so we can define

β : {f ∈ A : σ(f) � δ} → Σ, β(f) = P ◦ η(f),

where P : U → Σ is the orthogonal projection.
The map ψ(f) = (β(f), σ(f)) then satisfies the conditions given by proposi-

tion 3.1. If σ(f) � δ, β is not defined. Observe that (a) is then satisfied for any
β ∈ Σ.

Remark 3.5. The above map ψ(f) = (β, σ) gives us a centre of mass of f and its
scale of concentration around that point. The identification in Σ̄δ is somehow nat-
ural, indeed, if σ exceeds a certain positive constant, we do not have concentration
at a point and so β cannot be defined.

We next state an improved Moser–Trudinger inequality for functions u ∈ H1(Σ)
such that both eu and e−u are concentrated at the same point with the same rate
of concentration. In terms of proposition 3.1, we have the following result.

Proposition 3.6. Given any ε > 0, there exist R = R(ε) > 1 and ψ as given in
proposition 3.1, such that, for any u ∈ H1(Σ) with

ψ

(
eu∫

Σ
eu dVg

)
= ψ

(
e−u∫

Σ
e−u dVg

)
,
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the following inequality holds:

log
∫

Σ

eu−ū dVg + log
∫

Σ

e−u+ū dVg � 1
32π − ε

∫
Σ

|∇gu|2 dVg + C

for some C = C(ε).

Before proving the proposition, we need some preliminary lemmas concerning
the Moser–Trudinger-type inequality for small balls, and also for annuli with small
internal radius. The former are obtained simply by using a dilation argument.

Lemma 3.7. For any ε > 0 there exists C = C(ε) > 0 such that

log
∫

Bp(s/2)
eu dVg + log

∫
Bp(s/2)

e−u dVg � 1
16π − ε

∫
Bp(s)

|∇gu|2 dVg + 4 log s + C

for any u ∈ H1(Σ), p ∈ Σ, s > 0 small.

Proof. Note that, as s → 0, we consider quantities defined on smaller and smaller
geodesic balls Bp(ξ) on Σ. By considering normal geodesic coordinates at p, gra-
dients, averages and the volume element will almost correspond to the Euclidean
ones. If we assume that near p the metric of Σ is flat, we get negligible error terms,
which will be omitted.

We just perform a convenient dilation of u given by

v(x) = u(sx + p).

We have the following equalities:∫
Bp(s)

|∇gu|2 dVg =
∫

B0(1)
|∇gv|2 dVg,

∫
Bp(s/2)

eu dVg = s2
∫

B0(1/2)
ev dVg.

We then apply proposition 2.4 to the function v to deduce the desired inequality.

Remark 3.8. Observe that in lemma 3.7 and in the results presented in the fol-
lowing there is no explicit dependence of the average of u, due to the fact that the
average of u is cancelled by the average of −u.

We next deduce a Moser–Trudinger-type inequality on thick annuli. In order to
do this, we use the Kelvin transform to exploit the geometric properties of the
problem.

Lemma 3.9. Given ε > 0, there exists a fixed r0 > 0 (depending only on Σ
and ε) satisfying the following property: for any r ∈ (0, r0) fixed, there exists
C = C(r, ε) > 0 such that, for any u ∈ H1(Σ) with u = c ∈ R in ∂Bp(2r),

log
∫

Ap(s,r)
eu dVg + log

∫
Ap(s,r)

e−u dVg

� 1
16π − ε

∫
Ap(s/2,2r)

|∇gu|2 dVg − 4 log s + C,

with p ∈ Σ, s ∈ (0, r).
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Proof. As in the proof of lemma 3.7, by taking r0 small enough, here the metric
also becomes close to the Euclidean one. We can then assume that the metric is
flat around p.

We consider the Kelvin transform K : Ap(s/2, 2r) → Ap(s/2, 2r) given by

K(x) = p + rs
x − p

|x − p|2 .

Observe that K maps the interior boundary of Ap(s/2, 2r) onto the exterior one
and vice versa. We next define the function ũ ∈ H1(Bp(2r)) as

ũ(x) =

{
u(K(x)) if |x − p| � s/2,

c if |x − p| � s/2.

Our goal is to apply the local Moser–Trudinger inequality, given by proposition 2.4,
to ũ. First of all, observe that

∫
Ap(s,r)

eũ dVg =
∫

Ap(s,r)
eu(K(x)) dVg =

∫
Ap(s,r)

eu(x) |x − p|4
s2r2 dVg, (3.6)

since the Jacobian of K is J(K(x)) = −r2s2|x − p|−4. Moreover, for |x − p| � s/2,
we have that

|∇gũ(x)|2 = |∇gu(K(x))|2 s2r2

|x − p|4 . (3.7)

Therefore,

log
∫

Ap(s,r)
eu dVg + log

∫
Ap(s,r)

e−u dVg + 4 log s

= log
∫

Ap(s,r)
eus2 dVg + log

∫
Ap(s,r)

e−us2 dVg

� log
∫

Ap(s,r)
eu s2

r2 dVg + log
∫

Ap(s,r)
e−u s2

r2 dVg + C

� log
∫

Ap(s,r)
eu |x − p|4

r2s2 dVg + log
∫

Ap(s,r)
e−u |x − p|4

r2s2 dVg + C,

where we have used the trivial inequality s � |x−p| for x ∈ Ap(s, r). By using (3.6),
applying proposition 2.4 to ũ and then using (3.7), we have that

log
∫

Ap(s,r)
eu |x − p|4

r2s2 dVg + log
∫

Ap(s,r)
e−u |x − p|4

r2s2 dVg + C

= log
∫

Ap(s,r)
eu(K(x)) dVg + log

∫
Ap(s,r)

e−u(K(x)) dVg + C

� 1
16π − ε

∫
Bp(2r)

|∇gũ|2 dVg + C
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=
1

16π − ε

∫
Ap(s/2,2r)

|∇gũ|2 dVg + C

=
1

16π − ε

∫
Ap(s/2,2r)

|∇gu(K(x))|2 r2s2

|x − p|4 dVg + C

=
1

16π − ε

∫
Ap(s/2,2r)

|∇gu|2 dVg + C.

This concludes the proof of the lemma.

Remark 3.10. We are now able to prove the improved inequality given in proposi-
tion 3.6. The basis of the proof is to jointly use lemmas 3.7 and 3.9. Indeed, assume
that eu and e−u concentrate around the same point at the same rate (in the sense of
proposition 3.1). If we sum the inequalities given by lemmas 3.7 and 3.9, the extra
term 4 log s cancels and we can deduce the improved inequality of proposition 3.6.

We have to manage the fact that when

ψ

(
eu∫

Σ
eu dVg

)
= ψ

(
e−u∫

Σ
e−u dVg

)

we do not really have concentration around the same point. Moreover, the property
in lemma 3.9 of u being constant on the boundary of a ball need not be satisfied.

Proof of proposition 3.6. Fix ε > 0, take R > 1 (depending only on ε), let ψ be the
continuous map given by proposition 3.1 and fix δ > 0 small.

Let u ∈ H1(Σ) be a function with
∫

Σ
u dVg = 0, such that

ψ

(
eu∫

Σ
eu dVg

)
= ψ

(
e−u∫

Σ
e−u dVg

)
= (β, σ) ∈ Σ̄δ.

If σ � δ/R2, then, applying proposition 2.6, we get the result. Therefore, assume
that σ < δ/R2. Proposition 3.1 implies the existence of τ > 0, p1, p2 ∈ Σ satisfying∫

Bp1 (σ)
eu dVg � τ

∫
Σ

eu dVg,

∫
Bp2 (σ)

e−u dVg � τ

∫
Σ

e−u dVg (3.8)

and ∫
Bp1 (Rσ)c

eu dVg � τ

∫
Σ

eu dVg,

∫
Bp2 (Rσ)c

e−u dVg � τ

∫
Σ

e−u dVg, (3.9)

with d(p1, p2) � (6R + 2)σ. We divide the proof into two cases.

Case 1. Assume that∫
Ap1 (Rσ,δ)

eu dVg � τ

2

∫
Σ

eu dVg,

∫
Ap2 (Rσ,δ)

e−u dVg � τ

2

∫
Σ

e−u dVg. (3.10)

In order to satisfy the hypothesis of lemma 3.9, we need to modify our function
outside a certain ball. Via a dyadic decomposition, choose k ∈ N, k � 2ε−1, such
that ∫

Ap1 (2k−1δ,2k+1δ)
|∇u|2 dVg � ε

∫
Σ

|∇u|2 dVg.
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We define ũ ∈ H1(Σ) by

ũ(x) = u(x), x ∈ Bp1(2
kδ),

∆ũ(x) = 0, x ∈ Ap1(2
kδ, 2k+1δ),

ũ(x) = c, x /∈ Bp1(2
k+1δ),

where c ∈ R. Moreover, since we want to apply lemma 3.9 to ũ, we have to choose
δ small enough that 23ε−1

δ < r0, where r0 is given by said lemma.
We have that∫

Ap1 (2k−1δ,2k+1δ)
|∇ũ|2 dVg � C

∫
Ap1 (2k−1δ,2k+1δ)

|∇u|2 dVg � Cε

∫
Σ

|∇u|2 dVg

(3.11)

for some universal constant C > 0.

Case 1.1. Suppose that d(p1, p2) � R1/2σ.
We first apply lemma 3.7 to u for p = p1 and s = 2(R1/2 + 1)σ, and take into

account (3.8), to obtain that

1
16π − ε

∫
Bp(s)

|∇u|2 dVg � log
∫

Bp(s/2)
eu dVg + log

∫
Bp(s/2)

e−u dVg − 4 log σ − C

� log
∫

Σ

eu dVg + log
∫

Σ

e−u dVg − 4 log σ − C. (3.12)

We next apply lemma 3.9 to ũ for p = p1, s′ = 4(R1/2 + 1)σ and r = 2k+1δ:

1
16π − ε

∫
Ap(s′/2,2r)

|∇gũ|2 dVg

� log
∫

Ap(s′,r)
eũ dVg + log

∫
Ap(s′,r)

e−ũ dVg + 4 log σ − C. (3.13)

Using the estimate (3.9), we get that

1
16π − ε

∫
Ap(s′/2,2r)

|∇gũ|2 dVg � log
∫

Σ

eu dVg + log
∫

Σ

e−u dVg + 4 log σ − C.

(3.14)
Finally, combining (3.12), (3.14) and (3.11) we obtain our thesis (after conveniently
renaming ε).

Case 1.2. Suppose that d(p1, p2) � R1/2σ and∫
Bp1 (R1/3σ)

e−u dVg � τ

4

∫
Σ

e−u dVg.

Here we argue as in case 1.1. First, we apply lemma 3.7 to u for p = p1 and
s = 2(R1/3 + 1)σ. Then, we use lemma 3.9 with ũ for p = p1, s′ = 4(R1/3 + 1)σ
and r = 2k+1δ.
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Case 1.3. Suppose that d(p1, p2) � R1/2σ and∫
Bp2 (R1/3σ)

eu dVg � τ

4

∫
Σ

eu dVg.

This case can be treated as in case 1.2, just by interchanging the indices.

Case 1.4. Suppose that d(p1, p2) � R1/2σ and∫
Bp2 (R1/3σ)

eu dVg � τ

4

∫
Σ

eu dVg,

∫
Bp1 (R1/3σ)

e−u dVg � τ

4

∫
Σ

e−u dVg.

Take n ∈ N, n � 2ε−1, such that
2∑

i=1

∫
Api

(2n−1σ,2n+1σ)
|∇u|2 dVg � ε

∫
Σ

|∇u|2 dVg,

where we have chosen R such that 23ε−1
< R1/3. We now define the function

v ∈ H1(Σ) by

v(x) = u(x), x ∈ Bp1(2
nσ) ∪ Bp2(2

nσ),

∆v(x) = 0, x ∈ Ap1(2
nσ, 2n+1σ) ∪ Ap2(2

nσ, 2n+1σ),

v(x) = 0, x /∈ Bp1(2
n+1σ) ∪ Bp2(2

n+1σ).

As before, we have that
2∑

i=1

∫
Api

(2nσ,2n+1σ)
|∇v|2 dVg � C

2∑
i=1

∫
Api

(2n−1σ,2n+1σ)
|∇u|2 dVg

� Cε

∫
Σ

|∇u|2 dVg,

where C > 0 is a universal constant.
Taking into account (3.8), we now apply lemma 3.7 to v with p = p1 and s =

4(6R + 2)σ to give

1
16π − ε

∫
Bp1 (2nσ)∪Bp2 (2nσ)

|∇u|2 dVg + Cε

∫
Σ

|∇u|2 dVg

� 1
16π − ε

∫
Bp(s)

|∇v|2 dVg

� log
∫

Bp(s/2)
ev dVg + log

∫
Bp(s/2)

e−v dVg − 4 log σ − C

� log
∫

Σ

eu dVg + log
∫

Σ

e−u dVg − 4 log σ − C. (3.15)

Next, we define w ∈ H1(Σ) by

w(x) = 0, x ∈ Bp1(2
nσ) ∪ Bp2(2

nσ),

∆w(x) = 0, x ∈ Ap1(2
nσ, 2n+1σ) ∪ Ap2(2

nσ, 2n+1σ),

w(x) = ũ(x), x /∈ Bp1(2
n+1σ) ∪ Bp2(2

n+1σ).
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Again we have that

2∑
i=1

∫
Api

(2nσ,2n+1σ)
|∇w|2 dVg � C

2∑
i=1

∫
Api

(2n−1σ,2n+1σ)
|∇u|2 dVg

� Cε

∫
Σ

|∇u|2 dVg,

where here C is also a universal constant.
We apply lemma 3.9 to w for any point p′ such that d(p′, p1) = 1

2R1/3σ, s′ = σ
and r = 2k+1δ, to obtain that

1
16π − ε

∫
(Bp1 (2n+1σ)∪Bp2 (2n+1σ))c

|∇u|2 dVg + Cε

∫
Σ

|∇u|2 dVg

� 1
16π − ε

∫
Ap′ (s′/2,2r)

|∇w|2 dVg

� log
∫

Ap′ (s′,r)
ew dVg + log

∫
Ap′ (s′,r)

e−w dVg + 4 log σ − C.

We now use (3.10) and the hypothesis of case 1.4 to conclude that

1
16π − ε

∫
(Bp1 (2nσ)∪Bp2 (2nσ))c

|∇u|2 dVg + Cε

∫
Σ

|∇u|2 dVg

� log
∫

Σ

eu dVg + log
∫

Σ

e−u dVg + 4 log σ − C. (3.16)

The inequality (3.16) together with (3.15) implies our result (after properly renam-
ing ε).

Case 2. Assume that∫
Bp1 (δ)c

eu dVg � τ

2

∫
Σ

eu dVg or
∫

Bp2 (δ)c
e−u dVg � τ

2

∫
Σ

e−u dVg.

Without loss of generality, suppose that the first alternative holds true. Now let
δ′ = δ/23/ε. Moreover, if∫

Bp2 (δ′)c
e−u dVg � τ

2

∫
Σ

e−u dVg,

then we can apply proposition 2.6 to deduce the thesis. Therefore, we can assume
that ∫

Ap2 (Rσ,δ′)
e−u dVg � τ

2

∫
Σ

e−u dVg. (3.17)

We can apply the whole procedure of case 1 to u, just replacing δ with δ′. In fact,
as in case 1.1, we would get the inequalities (3.12) and (3.13). However, in this case
we have to manage the fact that we do not know whether∫

Ap(s′,r)
eu dVg � α

∫
Σ

eu dVg
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holds for some fixed α > 0. This property is needed in (3.13) to get the estimate

log
∫

Ap(s′,r)
eũ dVg � log

∫
Σ

eu dVg − C,

which allows us to deduce (3.14). To do this, we first apply both the Jensen and
Poincaré–Wirtinger inequalities, to obtain

log
∫

Ap(s′,r)
eũ dVg � log

∫
Ap(r/8,r/4)

eu dVg

� log −
∫

Ap1 (r/8,r/4)
eu dVg − C

� −
∫

Ap1 (r/8,r/4)
u dVg − C

� −ε

∫
Σ

|∇u|2 dVg − C.

Therefore, taking into account (3.17) and the last inequality, from (3.13) we obtain
(after properly renaming ε) that

1
16π − ε

∫
Ap(s′/2,2r)

|∇ũ|2 dVg � log
∫

Σ

eu dVg + 4 log σ − C. (3.18)

Next, we apply proposition 2.4, to get that

1
16π − ε

∫
Bp1 (δ/2)c

|∇u|2 dVg � log
∫

Bp1 (δ)c
eu dVg + log

∫
Bp1 (δ)c

e−u dVg.

Reasoning as above and using the hypothesis of case 2, we can deduce that

1
16π − ε

∫
Bp1 (δ)c

|∇u|2 dVg � log
∫

Σ

eu dVg + 4 log σ − C. (3.19)

Finally, we obtain our result by combining (3.19), (3.18) and (3.12).
If we are under the conditions of cases 1.2–1.4, the thesis follows by arguing in

the same way.

Remark 3.11. Our goal is to use proposition 3.6 to obtain a lower bound of the
functional Iρ1,ρ2 under suitable conditions. The presence of the two functions h1
and h2 in Iρ1,ρ2 is not so relevant because of the estimates

log
∫

Σ

h1(x)eu dVg � log
∫

Σ

eu dVg + log ‖h1‖∞,

log
∫

Σ

h2(x)e−u dVg � log
∫

Σ

e−u dVg + log ‖h2‖∞.

4. Min–max scheme

Let Σ̄δ be the topological cone over Σ defined in (2.1), and set

D̄δ = diag(Σ̄δ × Σ̄δ) = {(ϑ1, ϑ2) ∈ Σ̄δ × Σ̄δ : ϑ1 = ϑ2},

X = (Σ̄δ × Σ̄δ) \ D̄δ.
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Let ε > 0 be sufficiently small and let R, δ, ψ be as in proposition 3.1. Consider
then the map Ψ defined by

Ψ(u) =
(

ψ

(
eu∫

Σ
eu dVg

)
, ψ

(
e−u∫

Σ
e−u dVg

))
. (4.1)

By proposition 3.6 and remark 3.11, we have a lower bound of the functional Iρ1,ρ2

on functions u such that u ∈ D̄δ. Therefore, there exists a large L > 0 such that if
Iρ1,ρ2(u) � −L, then it follows that Ψ(u) ∈ X.

In [13] Malchiodi and Ruiz proved that even though the set X is non-compact,
it retracts to some compact subset Xν . Indeed, we have the following lemma.

Lemma 4.1. For ν � δ, define

Xν,1 = {((x1, t1), (x2, t2)) ∈ X : |t1 − t2|2 + d(x1, x2)2 � δ4,

max{t1, t2} < δ, min{t1, t2} ∈ [ν2, ν]},

Xν,2 = {((x1, t1), (x2, t2)) ∈ X : max{t1, t2} = δ, min{t1, t2} ∈ [ν2, ν]},

and set
Xν = (Xν,1 ∪ Xν,2) ⊆ X.

There then exists a retraction Rν of X onto Xν .

Our next goal is to introduce a family of test functions labelled on the set
Xν , on which the functional Iρ1,ρ2 attains large negative values. For (ϑ1, ϑ2) =
((x1, t1), (x2, t2)) ∈ Xν define

ϕ(y) = ϕ(ϑ1,ϑ2)(y) = log
(1 + t̃22d(x2, y)2)2

(1 + t̃21d(x1, y)2)2
, (4.2)

where

t̃i = t̃i(ti) =

⎧⎪⎪⎨
⎪⎪⎩

1
ti

for ti � δ

2
,

− 4
δ2 (ti − δ) for ti � δ

2
for i = 1, 2.

We start by proving the following estimate.

Lemma 4.2. For ν sufficiently small, and for (ϑ1, ϑ2) ∈ Xν , there exists a constant
C = C(δ, Σ) > 0, depending only on Σ and δ, such that

1
C

t21
t42

�
∫

Σ

eϕ dVg � C
t21
t42

. (4.3)

Proof. First, observe that the following equality holds true for some fixed positive
constant C0: ∫

R2

1
(1 + λ2|x|2)2 dx =

C0

λ2 , λ > 0. (4.4)

To prove the lemma, we distinguish the two cases

|t1 − t2| � δ3 and |t1 − t2| < δ3,
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in order to exploit the properties of Xν . Starting with the first alternative, by the
definition of Xν and by the fact that ν � δ, it turns out that one of the ti belongs
to [ν2, ν], while the other is greater than or equal to δ3/2.

If t1 ∈ [ν2, ν] and if t2 � δ3/2, then the function 1 + t̃22d(x2, y)2 is bounded
above and below by two positive constants depending only on Σ and δ. Therefore,
using (4.4) we get that

t21
C

=
1

Ct̃21
�

∫
Σ

eϕ(y) dVg(y) � C

t̃21
= Ct21.

On the other hand, if t2 ∈ [ν2, ν] and if t1 � δ3/2, then the function 1 + t̃21d(x1, y)2

is bounded above and below by two positive constants depending only on Σ and δ;
hence, ∫

Σ

eϕ(y) dVg(y) � 1
C

∫
Σ

(1 + t̃22d(x2, y)2)2 dVg(y) � t̃42
C

=
1

Ct42
,

and, similarly,∫
Σ

eϕ(y) dVg(y) � C

∫
Σ

(1 + t̃22d(x2, y)2)2 dVg(y) � Ct̃42 =
C

t42
.

In both the last two cases we then obtain the conclusion.
Suppose now that we are in the second alternative, i.e. that |t1 − t2| < δ3. Then,

by the definition of Xν we have that d(x1, x2) � δ2/2 and that t1, t2 � ν + δ3.
Using (4.4) we obtain that∫

Σ

eϕ(y) dVg(y) �
∫

Bx1 (δ3)
eϕ(y) dVg(y) � 1

C

(1 + t̃22d(x1, x2)2)2

t̃21
� 1

C

t21
t42

.

In an analogous way, we derive∫
Bx1 (δ3)

eϕ(y) dVg(y) � C
(1 + t̃22d(x1, x2)2)2

t̃21
� C

t21
t42

.

Finally, by the estimate∫
(Bx1 (δ3))c

eϕ(y) dVg(y) � C

t̃41

∫
(Bx1 (δ3))c

(1 + t̃22d(x2, y)2)2 dVg(y) � C
t41
t42

,

we are done.

Remark 4.3. Note that for e−ϕ the same result holds true if we just exchange the
indices of t1 and t2.

Proposition 4.4. For (ϑ1, ϑ2) ∈ Xν , let ϕ(ϑ1,ϑ2) be defined as in (4.2). Then,

Iρ1,ρ2(ϕ(ϑ1,ϑ2)) → −∞ as ν → 0

uniformly for (ϑ1, ϑ2) ∈ Xν .
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Proof. We start by showing the following estimates:∫
Σ

ϕ dVg = 4(1 + oδ(1)) log t1 − 4(1 + oδ(1)) log t2, (4.5)

1
2

∫
Σ

|∇gϕ|2 dVg � 16π(1 + oδ(1)) log
1
t1

+ 16π(1 + oδ(1)) log
1
t2

. (4.6)

We begin by proving (4.5). It is convenient to divide Σ into the two subsets

A1 = Bx1(δ) ∪ Bx2(δ) and A2 = Σ \ A1.

Moreover, we write that

ϕ(y) = 2 log(1 + t̃22d(x2, y)2) − 2 log(1 + t̃21d(x1, y)2).

For y ∈ A2 we clearly have that

1
Cδ,Σt21

� 1 + t̃21d(x1, y)2 � Cδ,Σ

t21
,

1
Cδ,Σt22

� 1 + t̃22d(x2, y)2 � Cδ,Σ

t22
;

therefore, we derive∫
A2

ϕ dVg = 4(1 + oδ(1)) log t1 − 4(1 + oδ(1)) log t2.

Moreover, working in normal geodesic coordinates at xi one also finds that∫
Bδ(xi)

log(1 + t̃2i d(xi, y)2) dVg = oδ(1) log ti.

Using the last two inequalities jointly, we obtain (4.5).
We now prove (4.6). We have that

∇gϕ(y) = 2∇g log(1 + t̃22d(x2, y)2) − 2∇g log(1 + t̃21d(x1, y)2)

=
4t̃22d(x2, y)∇gd(x2, y)

1 + t̃22d(x2, y)2
− 4t̃21d(x1, y)∇gd(x1, y)

1 + t̃21d(x1, y)2
.

From now on we assume, without loss of generality, that t1 � t2. We distinguish
between the case t2 � δ3 and the case t2 � δ3.

In the first case the function 1 + t̃22d(x2, y)2 is uniformly Lipschitz with bounds
depending only on δ, and, therefore, we have that

∇gϕ(y) = −4t̃21d(x1, y)∇gd(x1, y)
1 + t̃21d(x1, y)2

+ Oδ(1).

We fix a large constant C1 > 0 and consider the subdivision of the surface Σ into
the three domains

B1 = Bx1(C1t1), B2 = Bx2(C1t2), B3 = Σ \ (B1 ∪ B2).

In B1 we have that |∇gϕ| � Ct̃1, while

t̃21d(x1, y)∇gd(x1, y)
1 + t̃21d(x1, y)2

= (1 + oC1(1))
∇gd(x1, y)
d(x1, y)

in Σ \ B1. (4.7)
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These estimates imply that

1
2

∫
Σ

|∇gϕ|2 dVg =
∫

Σ\B1

|∇gϕ|2 dVg + oδ(1) log
1
t1

+ Oδ(1)

= 16π

∫ 1

C1t1

dt

t
+ oδ(1) log

1
t1

+ Oδ(1)

= 16π(1 + oδ(1)) log
1
t1

+ 16π(1 + oδ(1)) log
1
t2

+ Oδ(1),

recalling that t2 � δ3.
If, instead, t2 � δ3, by the definition of Xν we have that d(x1, x2) � δ2/2, and,

therefore, B1 ∩ B2 = ∅. Similarly to (4.7) we get that

t̃21d(x1, y)∇gd(x1, y)
1 + t̃21d(x1, y)2

= (1 + oC1(1))
∇gd(x1, y)
d(x1, y)

t̃22d(x2, y)∇gd(x2, y)
1 + t̃22d(x2, y)2

= (1 + oC1(1))
∇gd(x2, y)
d(x2, y)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

in B3.

Moreover, we have
|∇gϕ| � Ct̃i in Bi, i = 1, 2.

Therefore, we find that

1
2

∫
Σ

|∇gϕ|2 dVg =
∫

B3

|∇gϕ|2 dVg + oδ(1) log
1
t1

+ oδ(1) log
1
t2

+ Oδ(1)

= 16π(1 + oδ(1)) log
1
t1

+ 16π(1 + oδ(1)) log
1
t2

+ Oδ(1)

for t2 � δ3. This concludes the proof of (4.6).
Finally, the estimates (4.5) and (4.5), together with (4.3) and remark 3.11, yield

the inequality

Iρ1,ρ2(ϕ) � (2ρ1 − 16π + oδ(1)) log t1 + (2ρ2 − 16π + oδ(1)) log t2 → −∞

as ν → 0, uniformly for (ϑ1, ϑ2) ∈ Xν , since ρ1, ρ2 > 8π.

We next state a technical lemma that will be of use later in the paper.

Lemma 4.5. Let ϕ(ϑ1,ϑ2) be as in (4.2). Then, for some C = C(δ, Σ) > 0, the
following estimates hold uniformly in (ϑ1, ϑ2) ∈ Xν :

sup
x∈Σ

∫
Bx(rt1)

eϕ dVg � Cr2 t21
t42

∀r > 0. (4.8)

Moreover, given any ε > 0 there exists C = C(ε, δ, Σ), depending only on ε, δ and
Σ (but not on ν), such that∫

Bx1 (Ct1)
eϕ dVg � (1 − ε)

∫
Σ

eϕ dVg (4.9)

uniformly in (ϑ1, ϑ2) ∈ Xν .
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Proof. By the elementary inequalities (1+t̃22d(x2, y)2)2 � C/t42 and 1+t̃21d(x1, y)2 �
1, we have that∫

Bx(t1r)
eϕ(y) dVg(y) � C

t42

∫
Bx(t1r)

1
(1 + t̃21d(x1, y)2)2

dVg(y)

� Cr2 t21
t42

for all x ∈ Σ,

which gives (4.8).
We now prove (4.9). Using again that (1 + t̃22d(x2, y)2)2 � C/t42 we have that∫

Σ\Bx1 (Rt1)
eϕ(y) dVg(y) � C

t42

∫
Σ\Bx1 (Rt1)

1
(1 + t̃21d(x1, y)2)2

dVg(y). (4.10)

Finally, using normal geodesic coordinates centred at x1 and (4.4) with a change
of variable, we find that

lim
t1→0+

t−2
1

∫
Σ\Bx1 (Rt1)

1
(1 + t̃21d(x1, y)2)2

dVg = oR(1) as R → +∞.

This fact and (4.10), with (4.3), conclude the proof of (4.9), by choosing R suffi-
ciently large, depending on ε, δ and Σ.

Remark 4.6. The same result holds if we consider e−ϕ, interchanging the indices
of t1 and t2.

We next present a crucial step in describing the topology of low sublevels, which
will allow us to find a min–max scheme later on.

Proposition 4.7. Let L > 0 be so large that Ψ({Iρ1,ρ2 � −L}) ∈ X, and let ν
be so small that Iρ1,ρ2(ϕ(ϑ1,ϑ2)) < −L for (ϑ1, ϑ2) ∈ Xν . Let Rν be the retraction
given in lemma 4.1. Then, the map Tν : Xν → Xν defined as

Tν((ϑ1, ϑ2)) = Rν(Ψ(ϕ(ϑ1,ϑ2)))

is homotopic to the identity on Xν .

Proof. We define ϑi = (xi, ti) and

f1 =
eϕ(ϑ1,ϑ2)∫

Σ
eϕ(ϑ1,ϑ2) dVg

, ψ(f1) = (β1, σ1),

f2 =
e−ϕ(ϑ1,ϑ2)∫

Σ
e−ϕ(ϑ1,ϑ2) dVg

, ψ(f2) = (β2, σ2),

where ψ is given in proposition 3.1. First, observe that we have the following rela-
tions:

1
C

� σi

ti
� C, d(βi, xi) � Cti (4.11)

for some constant C = C(δ, Σ) > 0, depending only on Σ and δ. Indeed, by (4.9),
we have that

σ(xi, fi) � Cti,
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where σ(x, f) is the continuous map defined in (3.1). From that, we get that σi �
Cti. Moreover, by (4.8), we get the relation ti � Cσi.

Next, by (3.2) and using again the fact that σ(xi, f) � Cti, we obtain that

d(xi, S(fi)) � Cti,

where S(f) is the set defined in (3.3). But since we have the inequality

d(βi, S(fi)) � Cσi,

we can conclude the proof of (4.11).
We are now able to prove the proposition. The proof will follow by taking into

account a composition of three homotopies. The first deformation H1 is defined in
the following way:( (

(β1, σ1)
(β2, σ2)

)
, s

)
H1�−−→

(
(β1, (1 − s)σ1 + sκ1)
(β2, (1 − s)σ2 + sκ2)

)
,

where κi = min{δ, σi/
√

ν}.
We now introduce a second deformation H2, given by( (

(β1, κ1)
(β2, κ2)

)
, s

)
H2�−−→

(
((1 − s)β1 + sx1, κ1)
((1 − s)β2 + sx2, κ2)

)
,

where (1−s)βi +sxi stands for the geodesic joining βi and xi in unit time. Observe
that if κi < δ, then we have that σi <

√
νδ. Therefore, by choosing ν small enough,

we have that βi and xi are close to each other, by (4.11). Instead, if κi = δ, the
equivalence relation in Σ̄δ makes the above deformation a trivial identification.

We perform a third deformation H3 defined by( (
(x1, κ1)
(x2, κ2)

)
, s

)
H3�−−→

(
(x1, (1 − s)κ1 + st1)
(x2, (1 − s)κ2 + st2)

)
.

Finally, we define H as the composition of these three homotopies. Then,

((ϑ1, ϑ2), s) �→ Rν ◦ H(Ψ(ϕ(ϑ1,ϑ2)), s)

gives us the desired homotopy to the identity. Indeed, we observe that, since ν � δ,
H(Ψ(ϕ(ϑ1,ϑ2)), s) always belongs to X, so Rν can be applied.

We now introduce the min–max scheme that provides existence of solutions
for (1.1). The argument follows the ideas of [5], which have been used extensively
(see, for example, [6, 7, 21]).

Let X̄ν be the topological cone over Xν , which can be represented as

X̄ν = (Xν × [0, 1])/(Xν × {1}),

where the equivalence relation identifies all the points in Xν ×{1}. We choose L > 0
so large that Iρ1,ρ2(u) � −L implies that Ψ(u) ∈ X, and we choose ν so small that

Iρ1,ρ2(ϕ(ϑ1,ϑ2)) � −4L
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uniformly for (ϑ1, ϑ2) ∈ Xν . The existence of such ν is guaranteed by proposi-
tion 4.4. Fixing this value of ν, we define the following class:

H = {h : X̄ν → H1(Σ) : h is continuous and h( ·×{0}) = ϕ(ϑ1,ϑ2) on Xν}. (4.12)

We then have the following properties.

Lemma 4.8. The set H is non-empty and, moreover, letting

cρ1,ρ2 = inf
h∈H

sup
m∈X̄ν

Iρ1,ρ2(h(m)),

one has that cρ1,ρ2 > −2L.

Proof. To prove that H �= ∅, we just note that the map

h̄(ϑ, s) = sϕ(ϑ1,ϑ2), (ϑ, s) ∈ X̄ν , (4.13)

belongs to H . Assuming, by contradiction, that cρ1,ρ2 � −2L, there would exist a
map h ∈ H with supm∈X̄ν

Iρ1,ρ2(h(m)) � −L. Then, since proposition 4.7 applies,
writing m = (ϑ, t), with ϑ ∈ Xν , the map

t �→ Rν ◦ Ψ ◦ h(·, t)

would be a homotopy in Xν between Rν ◦ Ψ ◦ ϕ(ϑ1,ϑ2) and a constant map. But
this is impossible since Xν is non-contractible (see remark 4.9 and the fact that Xν

is a retract of X) and since Rν ◦ Ψ ◦ ϕ(ϑ1,ϑ2) is homotopic to the identity on Xν .
Therefore, we deduce the proof of the lemma.

Remark 4.9. In [13] Malchiodi and Ruiz proved that the set X = Σ̄δ × Σ̄δ \ D̄δ

is non-contractible. Indeed, if Σ = S
2, then Σ̄δ can be identified with B0(1) ⊂ R

3

and it turns out that X � S
2, where � denotes homotopical equivalence. The case

of positive genus is not so easy. However, Malchiodi and Ruiz proved that X is
non-contractible by showing that its cohomology group H4(X) is non-trivial.

From lemma 4.8, the functional Iρ1,ρ2 has a min–max structure. By classical
arguments, such a structure yields a Palais–Smale sequence. However, we cannot
directly conclude the existence of a critical point, since it is not known whether the
Palais–Smale condition holds or not. To bypass this problem and get the conclusion,
we need a different argument, usually taking the name ‘monotonicity argument’.
This technique was first introduced by Struwe in [18], and then used in more general
settings (see, for example, [5, 8]).

We take µ > 0 such that Λi := [ρi − µ, ρi + µ] is contained in (8π, 16π) for both
i = 1, 2. We then consider ρ̃i ∈ Λi and the functional Iρ̃1,ρ̃2 corresponding to these
values of the parameters.

It is easy to check that the above min–max scheme applies uniformly for ρ̃i ∈ Λi

for ν sufficiently small. More precisely, given any large number L > 0, there exists
ν so small that for ρ̃i ∈ Λi we have the gap

sup
m∈∂X̄ν

Iρ̃1,ρ̃2(m) < −4L, cρ̃1,ρ̃2 := inf
h∈H

sup
m∈X̄ν

Iρ̃1,ρ̃2(h(m)) > −2L, (4.14)
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where H is defined in (4.12). Moreover, using, for example, the test map (4.13),
one shows that for µ sufficiently small there exists a large constant L̄ such that, for
ρ̃i ∈ Λi,

cρ̃1,ρ̃2 � L̄.

Under these conditions, the following proposition is well known.

Proposition 4.10. Let ν be so small that (4.14) holds. Then, the functional Itρ1,tρ2

possesses a bounded Palais–Smale sequence (un)n at level ctρ1,tρ2 for almost every

t ∈ Γ :=
[
1 − µ

16π
, 1 +

µ

16π

]
.

Using the above result we are now able to prove theorem 1.1.

Proof of theorem 1.1. The existence of a bounded Palais–Smale sequence for the
functional Itρ1,tρ2 implies, by standard arguments, that the functional possesses a
critical point. Now consider tj → 1, tj ∈ Γ , and let (uj)j denote the corresponding
solutions. It is then sufficient to apply the compactness result in theorem 2.1, which
yields convergence of (uj)j to a solution u of (1.1), by the fact that ρ1, ρ2 are not
multiples of 8π.
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