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We study the following coupled nonlinear Schrédinger system in R3:
—e2Au+ P(2)u = pru® + fov’u, =€ R3,
—&2Av + Q(z)v = pov® + Buv, = € R3,

where p1 > 0, p2 > 0 and 8 € R is a coupling constant. Irrespective of whether the
system is repulsive or attractive, we prove that it has nodal semi-classical segregated
or synchronized bound states with clustered spikes for sufficiently small € under some
additional conditions on P(z), Q(x) and 3. Moreover, the number of this type of
solutions will go to infinity as ¢ — 0.
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1. Introduction
In this paper, we consider the following nonlinear Schrédinger system in R3:

—2Au+ P(x)u= i + fviu, x e R3,
—&?2Av + Q(z)v = ppv® + Bulv, x € R3,

(1.1)

where we assume that P(x) and Q(z) are continuous bounded radial functions,
w1 > 0,2 >0 and B € R is a coupling constant.

To study problem (1.1) we aim to look for standing-wave solutions for the fol-
lowing time-dependent coupled nonlinear Schrodinger system:

oY g2

ieg- =~ 5Bt + P(@)Y — vy - Blo*y, z e R, >0,
0 2 .
220 = A6+ QU)o paloo - plufe. weR ts0 (P

Yv=y(t)el,  ¢=4¢(t)eC,
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which models a binary mixture of Bose—Einstein condensates in two different hyper-
fine states (see [12,13,19,45]), and where ¢ is the Planck constant, m is the atomic
mass and P(z) and Q(z) are the trapping potentials for two hyperfine states, respec-
tively; the constants u; and uo represent the intraspecies scattering lengths and 3
is the interspecies scattering length. The sign of the interspecies scattering length
determines whether the interaction of states is repulsive or attractive. If § > 0, the
interaction is attractive, and the components of the vector of solutions are synchro-
nized. On the other hand, if 8 < 0, the interaction is repulsive, leading to phase
separations. These phenomena have been confirmed in experiment and in numer-
ical simulations (see [13,15,19,28] and the references therein). Problem (1.2), the
system of Gross—Pitaevskii equations, arises in many applications, for example, in
some problems arising in nonlinear optics, in plasma physics and in condensed mat-
ter physics. Physically, ¢ and ¢ are the corresponding condensate wave functions
(see [6]).

System (1.1) has been extensively investigated under various assumptions on
P(z), Q(z) and f in recent years (see [1-5,7,9,10,12,14-16,18,20,22,25,28-41,43,
44,46,47] and the references therein). Here mention some significant works: in [33],
by using Nehari’s manifold, Lin and Wei obtained least energy solutions that are
independent of the sign of interspecies scattering length (§ for the two coupled
nonlinear Schrodinger systems with trap potentials, and derived their asymptotic
behaviours using techniques for the singular perturbation problem. Chen et al.
[16] proved the existence of positive solutions with any prescribed spikes by using
reduction methods. In [1], Alves was concerned with finding the existence and
concentration of positive solutions by using the mountain pass theorem. Wan [46]
used category theory to study the multiplicity of positive solutions and their limiting
behaviour as ¢ — 0. Wan and Avila [47] also used category theory to study the
relationship between the number of positive standing wave solutions for the special
system (1.1) with P(z) = Q(z) and 8 = 0 in R and the topology of the set of
minimum points of potentials. Pomponio [41] proved the existence of concentrating
solutions for a general system with repulsive interactions between states and that
the location of the concentration points depends strictly on the potentials. In [10],
Bartsch et al. considered the repulsive case and obtained segregated radial solutions
by using global bifurcation methods for the general system (1.1), establishing the
existence of infinite branches of radial solutions with the property that /u, — G —
V12 — B¢ has exactly k nodal domains for solutions along the kth branch. Recently,
Pi and Wang [40] constructed multiple solutions with arbitrary spikes and proved
that these spikes will approach the local maximum point of the trapping potentials
ase — 0T,

Here we should point out that in the above results the solutions are positive.
Although there is a wide literature studying the existence, multiplicity and shape
of positive solutions, there are few papers dealing with the case of nodal solutions,
with the exception of the single Schrodinger equation for the one-dimensional case
or the radial case [8], which allows methods, such as the use of a natural constraint,
that do not work in the non-radial setting considered here.

As far as we know, there are no results on the existence of nodal non-radial semi-
classical bound states that have any prescribed nodal domain. In this paper, we
shall present some results that remedy this gap in the literature.
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In order to state our main results, we first assume that inf,>0 P(r) > 0 and
inf, >0 Q(r) > 0 satisfy the following conditions.

(P) There exist constants a € R, m > 1 and 6 > 0 such that

P(r)=1+ar™+ 0™ asr— 07",

(Q) There exist constants b € R, n > 1 and 6 > 0, such that
Q(r)=1+br"+0("%) asr—0F.

The main results of our paper are as follows.

THEOREM 1.1. Let (P) and (Q) hold. Then, for any fized k € N, there exist a
decreasing sequence {3} C (—/t1fiz,0), with By — — /12 as | — oo, and g9 > 0
such that, for B € (—/mipiz,0) U (0, min{p, po}) U (max{puy, 2}, 00), B # B, and
0 <e<eo, (1.1) has a vector solution (ue,v:) with k positive peaks and k negative
peaks, and the peaks of the solution approach the extremal point 0 of P(x) and Q(z)
provided that one of the following two conditions holds:

(1) m<n,a>0andbeR orm>n,acR and b > 0;

(2) m=mn, aB + bCy > 0, where B and Cy are defined in proposition A.1.

Furthermore,
V111 = Blue = /|p2 = Blvellgr + IV w1 — Blue — V/|p2 — Blvel[re= — 0
ase— 07T,

THEOREM 1.2. Let (P) and(Q) hold. If m = n, a > 0, b > 0, then for any fized
k € N7 there exist constants By > 0 and €9 > 0 such that, for any 3 < By and
0 <e<eg, (1.1) has a vector solution (e, Ve) with k positive peaks and k negative
peaks that approach the local minimum point 0 of P(x) and Q(x) as ¢ — 0T.
Furthermore,

|7 (-) — ET=(Te) 0 + V/F3e() — o (Te)ll~ — 0 as £ = 0F.
Here T, € SO(3) is the rotation on the (x1,x2)-plane of 7/k.

Next, we introduce some notation to be used in the proofs of the main results and
formulate versions of the main results that describe the segregated or synchronized
character of the solutions more precisely. In doing so, we also outline the main idea
and the approaches to the proofs of theorems 1.1 and 1.2.

Define

H, = {u € H'(R?): uis even in z, h = 2,3,

T . T
u(rcos <9+ ]j),rsm <9—|— ;),xg,)

- (—1)ju(rcosﬁ,rsin9,x3)}, (1.3)
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where H'(R?) is the usual Sobolev space with the norm
lull? x = (u,u)e = /W (€*Vul? + K (a)[ul*) dz

for any bounded function K(x). Next, define H = H, x H; endowed with the
following norm:

1w )2 = [lull2 p + 10112 o-

wele) = w( *2Y)

_ [min{m,n} -6 1 min{m,n}+4 1
5 '_[ 2sin(m/2k) Elns’ 2sin(m/2k) 51116 ’

where 6 € (0, (0/(1 4 o)) min{n,m}), and o is defined in proposition A.2. Define

Set

and
(1.4)

. 1 1
A <rcos U : )Fﬂ“sin U : )W,.’L'g), ji=1,2,...,2k, r € S.. (1.5)

It is well known that the following problem has a unique radial solution denoted
by w:
3

—Au+u=u’, m%éu(x) =u(0), wu>0, (1.6)
rEe

and that w satisfies the following;:

/ : (N=1)/2r . w'(r)
w'(r) <0, lim r e"w(r)=Cp >0, lim =
r—o00 r—00 w(r)

When —,/pipz < 8 < min{py, po} or > max{u1, u2}, (U,V) = (cw,yw) is a
solution of the following system:

—Au+u=pu® + Bviu, z€R3, (17)

—Av + v = pgv® + Buv, z€R3, '
where
o= | H2=F [ mmB
pap2 — B pape — B
We let
2k 2k
Ur(z) = Z(_l)j_lUIj,s7 Ve(z) = Z(_l)j_lvﬁ,s'
j=1 j=1

We shall verify theorem 1.1 by proving the following result.

THEOREM 1.3. Under the assumptions of theorem 1.1, there exists a positive con-
stant g9 > 0 such that for any 0 < e < &g (1.1) has a solution of the form

(ue, ve) = (Ur(2) + ¢(2), Ve () + ¢(2)),
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where (p(x),¥(x)) € H and

l(e(x), v(x))]le = 0(5(3+min{m,n}*0)/2)7 |as3| — O(e In i)

for some small constant o > 0.
Let U; be the unique radial solution of the following problem:

—Au4u = pu®, maxu(z) =u(0), wu>0.
z€R3

It is well known that U; is non-degenerate and

/ . (N=1)/2 7 _Ui(r)
Ui(r) <0, lim r e"U;(r) = Co > 0, lim =-1
r—00 r—oo U; (T
We shall use (Uy, Us) to build up the approximate solutions for (1.1).
Let 27 be as defined in (1.5) and define
. 275 —1)m . (25 —-1)m .
yl = (pcos( j2k ) ,psm( ]2]{: ) ,:I:3>, i=1,2...,2k, (1.8)
where p € S..
Let
) 2k _ ) 2k _
U’f" = Z(_l)]ilUl,xj,m Vp = Z(_l)JilUny,s- (19)
j=1 j=1

To prove theorem 1.2, we need to prove the following result.

THEOREM 1.4. Under the assumptions of theorem 1.2, there exists a positive con-
stant eg such that for any 0 < e < &g (1.1) has a solution of the form

(e, ) = (Un(2) + 3(2), V() +1)(2)),
where (¢(x),V(x)) € H and

I(6(a) G(a)l. = O sminimmt=o1z) (o —0(em ).yl =0(em?)

for some small constant o > 0.

REMARK 1.5. Radial symmetries can be replaced by weaker symmetrical assump-
tions. After suitably rotating the coordinate system, we have the following.

(P") P(x) = P(2',z3) = P(|]z' —7'|,x3—T3) and P(z) has the following expansion:
P(r) = P(Z) + a|lz — Z|™ + O(|lz — Z|™*%) as |z —z| =0,
where 7 € R3, a € R,m > 1,0 > 0 and P(Z) > 0 are constants.
(Q) Qz) = Q(a',23) = Q|2 —T'|,x3—T3) and Q(x) has the following expansion:
Q(r) = Q(Z) + blx — Z|" + O(|z — Z|"*°) as |z — Z| — 0,

where 2 € R3, b€ R, n > 1,5 > 0 and Q(Z) > 0 are constants.
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REMARK 1.6. For N = 2, if we adjust the constants 0, 7, 72 in (1.4), then both
lemma 2.4 and proposition 2.5 still hold. In order to guarantee that proposition 2.5
holds, we can find nodal synchronized solutions of (1.1) for the attractive case
under the same assumptions. However, for the repulsive case, we cannot find nodal
segregated solutions of (1.1), since proposition 3.4 cannot hold.

The proofs of our main results are based on the well-known Lyapunov—Schmidt
reduction procedure which has been used widely (see, for example, [11,17,21, 23,
24,26,27,29]). In particular, in order to deal with nodal clustered solutions, we
perform the reduction in suitable symmetric settings in the spirit of [48], where
infinitely many positive non-radial solutions for nonlinear Schrodinger equations
were obtained. For the attractive case, we shall construct nodal synchronized solu-
tions approximately as

(i(l)leﬂ,ea ik:(l)jlvw,e)

Jj=1 Jj=1

with the points 27 located on and dividing the circle with radius Celn(1/¢) into
2k equal parts. Since the distance between two neighbouring peaks with the same
sign is larger than that between two neighbouring peaks with opposite sign, the
interaction between peaks with opposite sign dominates the interaction between
peaks with the same sign. Hence, if the more slowly decaying function of Q(z)
and P(z) has a local minimum at the centre of the circle, we can easily conclude
that the equilibrium is achieved for a suitable configuration of the points x7, which
can be reduced to solving a minimization problem related to the energy functional.
Generally speaking, the key to constructing nodal solutions by using the reduction
argument is to compare the influence of the interaction between the peaks with the
same sign and that between the peaks with opposite sign: the idea in [48] can help
us to construct a symmetric configuration space consisting of 7 (j = 1,...,2k).
For the repulsive case, we shall construct approximate nodal segregated solutions

as
2k . 2k )
(Z(l)lel,a:j,m Z(l)JlUZ,yf,e)

j=1 j=1

with the points 27 and 37 located on and dividing the circles with radius

Cieln (1> and Cseln (1>,
€ €

respectively, into 2k equal parts, and the vector from the origin to 7 equally divid-
ing the angle Zx70x771. Then, using similar methods to the attractive case, we can
construct nodal segregated solutions. This idea is also effective in finding infinitely
many non-radial positive solutions for semilinear elliptic problems (see [39]).

This paper is organized as follows. In § 2, we shall study the finite-dimensional
reduced problem and prove theorem 1.3. In § 3 we study the existence of segregated
solutions for (1.1) and prove theorem 1.4. All the technical calculations are given
in the appendix.
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2. Synchronized vector solutions and the proof of theorem 1.1

In this section, we consider synchronized vector solutions and prove theorem 1.1 by
proving theorem 1.3. The functional corresponding to (1.1) is

I (u,v) = %/Rs(sQ\Vu\Q + P(x)u® + %|Vul* + Q(x)v?) dx

1
1 [ Gl palolydo = 4 [ de. (21)
R

R3

Then I. € C?(H) and its critical points correspond to the solutions of (1.1).

Define
anj € 8Vwﬂ € .
Y, i =———, Z,:=—]7= =1,2,...,2
J 8T ) 7 87' ) J ) 4y ’ k?
where 27 is as defined in (1.5), and define
2k
E= {(Uﬂ)) €H: Z/ (U2 Yju+Vy Zjv)de = 0}. (2.2)

j=17R

Let
J(%WZIE(U,«-F%V,«-H#), (‘Pa¢) €E.

Expand J(p, 1) as follows:

J(p,10) = J(0,0) +(p, ) + 3Q(p, %) + R(p,¥), (p,¥) €E,  (2.3)

where
(o) = jz_];(l)“ JRGEER
— /]R3 (UE —jzkl(_l)j_lugj,e>@
2%
DYCIE / Q@)= WVt
= 2 /D§3 (VTB - i(—l)jlvé,a)@f’

2k
_ g/ (UTVf - Z(—1)j—1V§j£Uﬁ,€>w
R3 j=1
2k .
- ﬁ/a (U?Vr - Z(l)jlvﬂ,sUzﬁ,a)w’
R j=1
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Qo) = [ Vel + Pla)e? ~3mU2e)
+ [ (VU + Qu)? ~ V)
R3

~ 5 [ U+ AU Vi + V)
and
R(p, ) = /RS (1 Ur@® + p2Voth® + $p10" + Tpotr?)
=38 [ [0+ 0PV + 0~ U2V~ 20V + URV,)
— (U? + V2* + AU Vop)].
In order to find a critical point (p, 1) € E for J(p, 1), we need to discuss each term

in the expansion (2.3).
It is easy to check that

/ (e*VuVp + P(x)up — 3uUzugp)
R3
+ / (e2VuVip + Q(z)vyp — 3us Vi)
R3
- /6’/ (Ufm,/} + Vfugp + 2U,. V,up + 2U,. V,vp)
R3

is a bounded bi-linear functional in E. Thus, there exists a bounded linear operator
L from E to E such that

(L(u,v), (#,9))

= / (e2VuVp + P(x)up — 3u1Uup)
]RS
+ [ (V096 + Qa)ov — Vo)
R3
- / (U0 + V2up + 22U, Voud + 2U, Vovp),  (u,0), (9,1)) € E.
RS

From the above analysis, we have the following lemma.

LEMMA 2.1. There exists a constant C > 0, independent of €, such that, for any
resS.,

[L(u, )| < Cli(u, v)lle,  (u,v) € E.
Next, we discuss the invertibility of L.

LEMMA 2.2. There exist constants Cy > 0 and ey > 0 such that, for any 0 < € < &g
and any r € S,

IL(u, 0)|| = Col|(u, v) ][, (u,0) € E.
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Proof. We argue by contradiction. Suppose that there exist ¢, — 0%, r,, € S, and
(tn,vyn) € E such that

[ L(tn; vn)[| = 0n (1) (tn;, vn)

En*

Since L is linear, we may also assume that

[ (un, va)lI2, =€
and
Lt 0 || = 00 (1), (2.4)
Then
(L(tn, vn), (0, 9)) = 0n(1)[(0,¥) ||, g5 V(p,¢) € E.
That is,

/RS (e2Vu, Vo + P(z)u,p — 3M1Ufnunap)
+ /R (V0T + Q) — 33V v
=B | (U7 ot + V7 o + 20, Vit o+ 20, Ve Vi)
= on(Vl(@,¥)llcne/? V(p,4) € E. (2.5)
In particular, we have
(G0 + P@fun = 302, 02)
+ [ IV + Q@ =372 02)
— ﬂ/RS (Ufnvz + Vfﬂui 44U, Vy, unvy) = on(1)e3. (2.6)
We set 1, (y) = un(eny + 2t) and 0, (y) = vn(eny + ). Then
/RB(|V11,L|2 + P(eny + ') a2 + |V, |* + Q(eny + 2')32) = 1. (2.7)

Therefore, there exist u,v € H*(R?) such that n — oo,
Up —u  weakly in HL_(R?), i, — u strongly in L2 _(R?),
Up — v weakly in H (R?), Up — v strongly in L% _(R?).

Since 4, and v,, are even in yo and ys, it is easy to see that v and v are even in ys
and y3.
On the other hand, from the definition of E we know that (u,v) satisfies

oU oV
(727 ‘727 _
/3 ( xl'u,—F 31'1 U) =0. (28)
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Now we claim that (u,v) satisfies

—Au+4u—3u U — V3 —280Ve =0, zeR3,
—Av+ v —3uV?0 — BU%v — 2UVu =0, xeR3.

Define

E={ew em@) xm®@): [ (vghurvilo) —of.
R3 1 1

For any R > 0, let (¢,1) € C5°(Bg(0)) x C3°(Br(0)) N E and let (¢, 1)) be even
in yo and y3. Then

(enti)nl) = (o( L5 )0 (25 )) € G5 (B (61 x G5 (B, ()

En
Inserting (vn (), ¥n(y)) into (2.5), we find that
/RS (VuV + up — 3 Uup) + /RS(VUVdJ + vy — 3uaV3uh)
-3 g (U0 + V2up 4 20V urp + 2UVwy) = 0. (2.10)
However, since u and v are even in y2 and ys, (2.10) holds for any function (¢, ) €
C§°(BRr(0)) x C§°(Br(0)), which is odd in y2 or y3. Therefore, (2.10) holds for any

(91) € CE=(Bp(0)) x Ce (Br(0))N E. By the density of C°(Ba(0)) x C5*(Bx(0))
in H1(R3) x H'(R?), we obtain that

/ (VuVp + up — 3 Uup) + / (VoVy + vip — 3uaV3uh)
R3 R3

—6 | (U0 + Vg + 2UVuh +2UVvp) =0 Y(p,0) € E.
R3
(2.11)
Noting that (U, V) = (aw,yw) and w is a solution of (1.6), we can show that (2.10)

holds for oU v
(0, ) = <8x1’ (‘3331>

Thus, (2.10) is true for any (p,) € H*(R3?) x H!(R3). Therefore, we have veri-
fied (2.9).
From [39, proposition 2.3] know that (U, V') is non-degenerate. Since we work in

the space of functions that are even in y, and ys, the kernel of (U, V) is given by
the one-dimensional (8(3)(0w/0x1), (Qw/dx1)). So, we get

) :C(aU av>

dxy’ Oy

for some constant c. From (2.8), we can see (u,v) = (0,0). As a result,

/ (u? +v2) = 0,(1)e* VR > 0.
Br(—zt)
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By direct calculation, we get
/Rg(Ufnqu L V202) = 0, (1) + or(1)EE.
As a result, one has
ou(Nel = [ (Il + P&l = 302 1)
+ [ (I + Qo = 3pabi2 o)
-5 /]R U200+ V2 g, + 4Ty, Ve, Unvn)
= (14 0n(1) + or(1))el. (2.12)

This is a contradiction, so the proof is complete. O

LEMMA 2.3. For any (¢,v) € E, we have

IR(e, )l = O (0, 9)IIZ + e~ (0, ) 12),
IR (0, 9)Il = O 2 (0, 0)IIZ + e~ (0, 9)112),
IR (. )]l = O™ 2ll(0, )l + e~ [l (0, ¥)12)-

Proof. By direct calculation, we have, for any (u1,v1), (u2,v2) € E,
[R(p,)| = ’ /RS (11 Urp® + p2Veh® + Jap* + )
=38 [ [0+ 0PV, + ) — URVE =20 V2o + URV,)

— (U + V2™ + 4Urvrsow)}‘

/R3 (11U + paVod® + 2pno* + Lpoy?®)

o /R (P +20p0° + 2%9021/0‘

2k 2k
< 0/3 <§ Ui el + " + ) Vi |9 +¢4>
R - -
Jj=1 J=1

< CE*2le,9)I2 + (e D))

and

‘<R/(<p7'(/))7 (u17v1)>‘

/ (BurUr@®uy + 3uaVerh®vy + pipPuy + patpuy)
RS

+ ﬁ/ (p?ur + ©*pv1 + 2Unphvr + 22U ug + 2Vieppuy + 2V,0%01)
RS
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2k 2k
<cf [(ZU +szj,5)<so2 42 (fua + o)
r: [\ 75

j=1

+ (Il + [ P) (Joa] + fua)
< OE2l(e, )12 + (e, D)) (ur, v1)]

And by similar calculation, we get

(R (0, 9)(u1,v1), (uz,v2))|
< CE2) (@0l + eI, )2 (ur, vi)l|e | (uz, v2)

and so this completes the proof. O

LEMMA 2.4. There exists a small constant T € D such that

HlH _ O<rmm{n,m} + exp (_M) + exp <_2rsm(7r/k)>)63/2)

€ €
where

D={ze(0,3)|(1—-z)(2—1)> 12}

Proof. By direct computation, we have

2% 2k
—1)y-1 P -1 Um]E\ -1 i1 _1szs
> JRGERY o3 [ @@ =1V
2k 1/2 1/2
<> (Liew-veez) ([ )
= R3 R3
2%k 1/2 1/2
) ()
3 ( e -veva.) ([,
< Ce3/? (rm + exp (—S(l_aT)T lelle.p
+0(+om (-2 Yyl
< C<rmin{7n,n} + exp (_w)>53/2||(¢7¢)||57 (2.13)
2% 2k
-1 j71U3j _ UE) < —1 j*lv?}j .= ‘/7-3>
m/Ra(jz} P~ U o [ S =)o

xl — 22|

S O L (.14
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and
2k )
o [ (e - v

R3 Ny
j=1

2k

+p (Z(—l)j_lUﬁj,EVw‘,s - Ufw)w
R \

ot — 22|

< O exp (—) 10 (2.15)

Combining (2.13)—(2.15) and the definition of I, we can deduce that
. 1-— 27 si 2
HlH — O<rmm{n,m} + exp (_3( - 7')7') + exp (_ TSIDST/ k‘)))g?,/Q.

O

PROPOSITION 2.5. For ¢ sufficiently small, there exists a C*-map (p,1) from S.
to H: (¢,v) = (p(r),¥(r)), r = || satisfying (p,7)) € E and

9J(p,¢) _
<3(90,¢) 7(g,h)> =0 V(g,h) € E.

Moreover, there exists a small constant

1 mi —-1-
0<m< min{ min{n, m} J}

5’ min{n, m}

such that

—72) min{m,n 3(1 —7)(1 —7)r
||(907¢)||e<(r(1 S {,}mp(_( ) >>

©exp (_ (1 — 72)2rsin(m/2k) ) ) S

€

Proof. 1t follows from lemma 2.4 that [ is a bounded linear functional in F. Thus,
there exists an I’ € F such that I(p,¢) = (', (¢,%)). Thus, finding a critical point
for J(p,1) is equivalent to solving

'+ L(p,¥) + R (p,9) = 0. (2.16)

By lemma 2.2, L is invertible. Hence, (2.16) can be written as

(p,9) = A(p, ) := =L = L7 ' R'(¢,9)). (2.17)

We choose a small constant

1 mi —-1-
0 << min {3, Pl =

5’ min{n, m}
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and set
S = {(% ¥) € E: ||(p,9)]le < %2 (r(l_ﬁ)min{mvn} +exp (_3(1 — 722:(1 — T)T)
+exp (_ (1—72)2r sin(w/2k))> }
9

For ¢ sufficiently small, we have
[A(e, )l < CIVII+ ClIR (@, 9) |
< 053/2 (T,min{n,M} + exp (_ 3(1 ; T)T> + exp <_ 2r Slniﬂ-/2k))>
+COE ()2 + eI, 0)12)

< 32 (r(l—rz)min{m,n} +exp (_ 3(1 — 1) (1 — T)r)
g

(1 — 72)2rsin(7/2k)
€

+ exp < >) V(p, 1) €S,

which implies that A is a map from S to S.
On the other hand, for € sufficiently small, we have

|A(p1,¥1) — Alp2, ¢2)|

S OIR (¢1,91) — R (p2,2)]

CIIR"(A(@1,%1) + (1 = M) (@2, v2) Il (@1, 91) — (02, 92)]|
311(e1,91) = (02, 92|

Thus, for € sufficiently small, A is a contraction map. Therefore, we have proved
that, when ¢ is sufficiently small, A is a contraction map from S to S. The result

therefore follows from the contraction mapping theorem. This completes the proof.
O

NN

Now we are ready to prove theorem 1.1. Let (., %) = (©(r),%(r)) be the map
obtained in proposition 2.5. Define

F(T):IE(UT+SDT"/7"+1/}T)) r € Se.

With the same argument as in [14,42], we can easily check that if r is a critical
point of F(r), then (U, + ¢,, V;. +1,.) is a critical point of I.

Proof of theorem 1.3. Tt follows from lemmas 2.1 and 2.3 that
IL(ers o)l < Cll(orwr)lle, IR0, ) < Ce™ 2 (0, 02+ e[l (0, ) 12)-

So, from lemma 2.4 and proposition A.2, we obtain
F(r) = 2ke® | A+ aBr™ 4+ bCor™ + C(3 o + Lpay* + Ba®~?)

X exp (_ 2r SIHST/2I€)> + O(rmin{m—l,n—l}g) .
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Without loss of generality, we may also assume that n > m. Therefore,
2r si 2k
F(r) = 2ke®| A+ aBr™ + Cexp (_rsmiw/)) + O(rm_lg)} ,

where A, B, C are fixed positive constants.

Consider min{F'(r): r € S¢}, where S; is defined in (1.4).
Let )
f(r):=aBr™ + Cexp (W)

By the assumption, we know that a > 0. So, by direct calculation, we can show
that f(r) has a local minimum point

m+ o:(1) ol 1
———c¢cln-.
2sin(w/2k) " €

r =

So there exists €9 > 0 such that for any € € (0,¢¢] there exists rg € Se such that
f'(ro) =0.

By direct computation, we can obtain

Fn = [A " (M)mw (5 In i)m

n maB
2sin(m/2k)

= 2ke [A + (aB(mn(mW)m + 05(1)) (g In i)m] .

On the other hand, we also have

m—20 1
F(2sin(7r/2k)gln 5)
— 3 m—9 . 1 . m—0 m—1
= 2ke [A+GB(2sin(7r/2k)> <51n6) +Ce +O(r 5)}
> 2ke3 (A4 Ce™°)

m+9 1
F(Zsin(ﬂ'/2k)gln 8)

—|—6 m 1 m
-9 3 A B m In = m-+95 m—1
ke [ +a (2 sin(w/?k)) <5 n E) + Ce +O(r 5)]

= 2ke3 {A + <GB<2SZZ(;F/52@>m + 05(1)> (5 In i)m]

Hence, F(r) has a local minimum point r. in S, and r. is an interior point of S..
Thus, 7. is a critical point of F(r). As a result, (U,. + ¢,_, Vi, + ;) is a solution
of (1.1).

We can prove the case m > n by using a similar argument to that above.

7,m—1€ 4 O(Tm_l€):|

and
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For the case m = n,
—2rsi 2k
F(T) = 2ke? | A+ (CLB + bCo)rm + C'exp <7ASH;(7T/)) + O(Tmls)] .
Letting

f(r) = (aB + bCo)r™ + Cexp <—2r Sirjﬂ-ﬂk) ),

and using the above methods, we can prove the result. This completes the proof. [

3. Segregated vector solutions and the proof of theorem 1.2

In this section we consider segregated vector solutions and prove theorem 1.2 by
proving theorem 1.4.

het au au.

Y/j: 17.’,8]75’ Zj: 272!]75’ j=1,2,...
or dp

where 2/ and y7 are defined in (1.5) and (1.8) respectively.

For simplicity of notation, in the following we replace U,; . and V,; . by Uy 4 ¢
and Us 4 ., respectively. In this section, we assume

(r,p) € Se x 5. (3.1)
Define
_ 2k ~ 2k _
E= {(¢,¢) €H: Z/ Ut i Y0 =0, Z/ U;yj,ezﬂp_o}. (3.2)
j=1/K j=17R
Let

J(@, ) =1.(U- + ¢,V, +4), (¢,9)€E.

Then, similarly to (2.3), J(,) has the following expansion:

J(@,0) = J(0,0) +1(3,9) + 3Q(¢.¥) + R(g,¥), ($,9) € E,

where Q(@,J)) and R(g&,i/}) are the same as Q(p,v) and R(p,) in §2 if U, .,

Vi ey p and 4 are replaced by Uy i ¢, U yi o, ¢ and ¢7 respectively. We note that

there exists a bounded linear operator, B.: E — E, corresponding to Q((p 1/))
Note that l(go, 1/)) has the following form:

1(,9)
— 2(—1)3‘—1 /Rg(p(m) DU} i @ — /R (UE - i( /7Y 4 s><ﬁ
+ i_k:(—l)jl /RB(Q(W) — 1)Uy, — 2 /RS (Vpg - i_k:(_l)leg,yf,s>"Z)

—B | (U Ve +UV,0).
RS

From the above analysis, we have the following lemma.
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LEMMA 3.1. There exists a constant C > 0, independent of e, such that, for any
(r,p) € Se x S, } )
B (o, ) < Cll(p,¥)lles  (0,9) € E.

LEMMA 3.2. There exist g > 0,89 > 0 and Cy > 0 such that for any 8 < By and
any € € (0,e9), (r,p) € Sz x Se, we have

IB:(e. )| = Coll(e, ), (#,9) € E.

Proof. The argument is similar to lemma 2.2. We argue by contradiction. Suppose
that there are e, — 07, (1, pn) € Se, X Sz, and (¢, 1) € E with |[(¢n, ¥n)|2,
e satisfying

(Be(¢nsvn), (9, 1)) = 0n(V)ll(0ns ¥n)lle, [ (g: Bl Vg, h) € E. (3.3)
That is,

/ ) (e2Vn Vg + P(z)png — 31Uz ¢ng)
.
+ [ (V0TI Qs — 3272000
]R3

-8 / (U2nh + Vigng + 20, Voonh + 20, Votng)
R3
= 0n (D (@ns ¥u)llen l(gs W)l V(g:h) € B (3.4)
In particular, we have
| (€Tl + Pl@lon? - 3022)

+ / (2 V2 + Q)2 — 3uaV202)
R3

=5 [ (O34 V36 + 40 Vpnn) = 0a(DEh (35)
R
and

/ (&2 Vnl? + P(@)|onl? + 2|Vl + Q(a)2) = 5.
R3

We set i, (7) = pn(enx + 1), 9, (2) = Yn(enz + y*). Then we have
/ (Vitn(@)]? + Plent + 2Y)in(@)]? + [Von(@)2 + Qena + y1)[5n(@)[?) = 1.
R?»
Upon passing to a subsequence, we may also assume that there exist u,v € H 1(IR3)
such that, as n — 400,
Up(z) = u  weakly in HL_(R?), U (2z) — u  strongly in L2 _(R?),
Op(z) = v weakly in HL.(R?), Op(z) — v strongly in LE_(R?).

Moreover, u and v satisfy

oU; Uy B oUs oUs \
/R3 (V(%Vu—l— %u) =0, /R3 (VamVU—I—axlv) =0.
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We claim that v and v satisfy
~Au+u — 3 Uiu = 0, —Av + v — 3uUv = 0.
Let ¢(x) € C§°(Br(0)) and be even in x5 and z3. Define

1

oalo) 1= 5( 25 ) € CF (Beuta)

En

Then, inserting (¢, (), 0) into (3.4) and preceding as in lemma 2.2, we can see that

u satisfies
—Au+u—3umUtu=0 in R

Also, by the non-degeneracy of Uy, we find that u = 0. In the same way, we also
find that v = 0.
As a result,

/ 2 = 0u(1)e2, / U2 = 0u(1)e2 VR >0,
Br(—zt) Br(—y')

Thus, it follows from (3.5) and lemma A.3 that
on()el = [ @IVl + Plalonl = 3 T2e%)
+ [ (Ve + Q)i - 3uaVud)
5 /R (T2 + V20 + AT o)

> (@ 0n) 12, = CBINGn, ¥n)lI2, + €5 (0n(1) +0r(1).  (3.6)

If B < By :=1/C, and for large n and large R, we get a contradiction. So the result
in this lemma is true. This completes the proof. O

From (2.13), (2.14) and lemma A.3, we can get the following lemma.

LEMMA 3.3. There exists a small constant 71 € D such that

=20 (14 4 exp (-2 o (2000
+ exp (W) + exp (stm(7r/2k))

£

B ex [ V (p — 7 cos(m/2k))2 + (rsin(r/2k))2
* s . )

where D is as defined in lemma 2.4.

b

PROPOSITION 3.4. For € > 0 sufficiently small, there exists a Cl-map (p, :) fmm

Se % Se to H: (§,9) = (¢(r,p),4(r,p)) (r = |z'], p = |y']) satisfying (§,) €

and
ai(¢ 9). _ -
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Moreover, there exist a small constant

1 min{n,m}—-1-0¢
5’ min{n, m}

0<Tg<m1n{

and a constant C' such that

1(3,9) |-
< 2 (Ta—mm A= e <_

3(1—F)(1— %1)r>

g

+exp (_3(1 —72)(1 - ﬂ)p) +exp (_ (1—7)2r sin(w/?k))
€ €
texp ( (- h)?psin(w/%))

Lo Jé] \/(prcos(7r/2k'))2+(rsin(w/?k))2>).

(In(1/e))/s P (‘ E

Proof. From the definition of 1(¢,1), we know that I(@,1)) is a bounded linear
functional in E. Thus, it follows from the Riesz representation theorem that there

is an I’ € E such that

(g,9) = (I, (&,9).
So, finding a critical point of J(@, 77/1) is equivalent to solving

U+ Be(,9) + R(2,0) =0. (3.7)
By lemma 3.2, B. is invertible. Hence, (3.7) can be written as
(9.9) = A(p,9)) = =BT = BZ 'R ($,4)).

We choose a small constant

11mﬂnnﬁla}

0<m<
72 < min { 5’ min{n, m}

and a sufficiently large constant C, and set

5-{@h b

3(1—72)(1— %1)1")

(6.l < /2 (r0-m 4 p07n 4oxp ( .

(_al—@x1—ﬁm)

+ exp

+ exp

(1—"79 2psm (m/2k)
+exp< +C lnl/e 1/6

(_ V- rcos(w/% 2+ (rsin(n/26)) )) }

( u—m2mmwﬂk>

X exp
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For e sufficiently small, we have
1A(&, )
< Clliell + ClIR (&, ¥)

< C(rm +p" +exp (-W) + exp (_3(1—;1)9)
+exp (_2(/%)) texp (_2p</2k>>

g

B (_ Vip—r COS(?T/W;)2 + (rsin(m/2k))* ) ) 23/2

T n(1/2))7s P .
+ O D)2 + (3 D)

)
< ( 1- Tz)m+p(1 72)n+exp< ( 2)(1_T1) )

5
ox 31 =7)A—=T)p ox (1—79)2r 51n(7r/2k)
- <(1 _%2)2Epsin( /22)+ P( )

+exp< E )+C(ln(1/g)1/6

- (_ /(o —rcos(m /2R T (rsin<ﬂ/2k>>2>)53/2 Vo) € B

3

which implies that A is a map from S to S.
On the other hand, for ¢ sufficiently small, we get

|A(1,91) — (@2,752”

C|R (p1,91) — R (B2, 92)|

CIIR"(A(@1,¥1) + (1 = N (@2, Y2)) 11 @1, 1) — (B2, ¥2) e

Cle™ (11, 1)l + 1@, P2)lle) + e (1(@1, D) 12 + [1(B2, Do) II2)]
X [[(@1,91) = (B2, o)l

< 3181, 91) = (B2, ¥2) -
Thus, for ¢ sufficiently small, A is a contraction map. Therefore, we have proved

that when ¢ is sufficiently small A is a contraction map from S to S. So the result
follows from the contraction mapping theorem. This completes the proof. O

NN N ‘Gx

Now we are ready to prove theorem 1.2. Let (3(r, p), 4 (r, p)) be the map obtained
in proposition 3.4. Define

F(T,p) = IE(UT +95(7"7p)7‘7p +1;(7"7p))7 (T,p) € Se X Se.

We can check that, for e sufficiently small, if (7, p) is a critical point of ﬁ'(r, 0),
then (U, + @(r, p), V, + ¢(r, p)) is a critical point of I.
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Proof of theorem 1.4. From lemmas 2.3 and 3.3 and propositions 3.4 and A.5, we
have

F(r,p) = 2ke® [fl + aBr™ + bCp"
By exp ( 2r 51n(7r/2k)) 4 Byexp < 2p sm(7r/2k)>
€

3

( 2\/(p — 1 cos(n/k))2 (rsin(w/?k))2>

+ 0<(1) exp .

+0(r™ e + p"le)} .

Consider the minimization problem
min{F(r,p): (r,p) € S x S.}.

Since F(r, p) is defined in a closed domain, the minimization can be attained. So
we may assume that

F(r1,p1) = min{F(r,p): (r,p) € S x S.}.

We claim that (71, p1) is an interior point of S. x S..
We assume that

or sin(w/?k))

€

and

. . 2psi 2k
hi(p) = bCp™ + By exp (—pbmiﬂ-/)>

By direct computation, we see that §;(r) attains local minimization at

r 7771—}—05() ln}
" 2S,111(7r/2k)(E €
We have
o - m " \"
)= (o8 gngeram) o) (02
- m S 1 _ m—g
gl(?sm( /Qk)gln )_CE
and

o (s ) = (A (zmzram) +o0) ()

Similarly, &1 (p) also attains local minimization at

m+ o:(1)
2sin(m/2k)

p= eln—
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b () = (bé(mll(mmy + 05(1)) <g In i)m

~ m 5 1 _ m—§
fa (281n(ﬂ'/2k’)€1n )_CE

iy (msln 1) - (bé(M)m + 05(1)) <g In i)m

We may also assume that

and we have

and

G2(r) = aBr™ + (By + 0-(1)) exp (_W)

and

ha(p) = bCp™ + By exp (_2p sin(r/2k) >

€
By direct computation, we see that g2(r) attains local minimization at

m+ o:(1) ol 11
28111(77/2]6)

Ga(7) = (aé(%mz’;/%)y n 05(1)> (5 In i)m

_ m—20 N s
92 (251n(7‘r/2k)51n )_Cg

(s ot) = (P (o) +o0) (2]

Similarly, hs(p) also attains local minimization at

7771—&—05() lm1
281n(7r/2k)

hia () = (bé(Qsmg/mfl + 05(1)) <g In i)m

~ m—24 1 5
1 _ m—4
ha <2$1n(7r/2k)€ n ) e

hiy (mgln 1) - (bc<m>m + 05(1)) <g In i)m

r=

and we have

and

p=

and we have

and
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If 0.(1) > 0, then

F(Thpl)

<2k’[A+  min  {Ga(r) + ha(p) + O™ e+ p" o)}
(T1P)€SEXS€

< 2ke? {A + (aB(QSmg/%))m + bé(QsznW)m + 05(1)> (g In i)m} .

If 0:(1) < 0, then

F(Thpl)

<2ke’[A+  min {Gi(r) + ha(p) + O™ e + p" o)}
(T‘,p)ESEXSE

< 2ke® {A + (aB (kmg/%)y + bé(mng/%)y + 05(1)> (g In iﬂ .

Thus, we get

< 2ke? [A + <a]§’ <2smznw/2k)>m + bé(%m(mmy + 05(1)> (a In i)m} .

For convenience, we define

m—6 1 m+o 1
=——————cln— = ———————¢cln —,

& 2sin(m/2k) " €’ " 2sin(mw/2k) €
__7771—5 Eln1 ._7m+5 5ln1
PU= Ssin(r/2k)" e T sin(n/2R) T e

If 0.(1) > 0, then

F(ri, p) 2 2ke®[A+ g1 (r1) + ha(p) + O(r]" " 'e + p" o))

> 2ke® [[1 +Cemd <bé<28m(’:/%)>m + 05(1)) (5 In i)m} .

If 0.(1) <0, then

Flr1,p) = 2k [A+ Golm) + ha(p) + Ol < + "))

> 2ke® [21 +Cemd 4 (bé(mn(n:mk))m + 05(1)> (g In iﬂ .

Therefore, we have

F(ry, p) > 2ke® {A +Cem0 (bé(%m?;/%))m + 06(1)> (5 In i)m] . (3.9
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Similarly, we have

Err, p)
> 2ke? {A + (aB(M)m + bé(QSinznw/Zk))m + 05(1)> (5 In i)(m} 7 |
3.10
F(r,pr)
> 2ke® {A +Cemd g (aB (M)m + 05(1)> (s In i)m] (3.11)
and
F(r,py) i - .
> 2ke? {A + (aB(ZSm?‘m) + bé(M) + 06(1)> (5 In i)( } |
3.12

From (3.8)—(3.12), we can see that when ¢ is sufficiently small the local min-
imization of F'(r,p) cannot be obtained at the boundary of S. x S.. That is,
(71, p1) is an interior point of S. x Se. Thus, (r1, p1) is a critical point of F(r, p). So

(Up, +@(r1, 1), Vi +9(71, p1)) is a solution of (1.1). This completes the proof. [J

Appendix A. Energy estimate

In this section, we give some energy estimates of the approximate solutions. Recall
that

» j—1 —1
! = (rcos(j )W,rsin(‘7 )W,w3>, j=1,2,...,2k,

k k
Yl = <pcos(2‘72_kl)7r,psin(2‘72_kl)7r,x3), j=1,2,...,2k,

2k 2k

Up(@) =Y (1) Waie,  Vila) =D (-1 Wi,
j=1 j=1
2k 2k

U - Z(il)ji Ul,zi,m Vp = Z(il)ji U2,yJ,€
j=1 j=1

and
I(u,v) = %/ (2|Vul® + P(a)u? + €2Vl + Q(z)v?)
R3

1
1 [ Gl alol) - 45 [ aen
R3 R3
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PROPOSITION A.l. Assume (P) and (Q) hold. Then we get the following energy
estimate:

IE(Umj,87 Va:j,e)

— (1 —
=l {A +aBr™ 4+ bCor™ 4+ O <rm15 +7r" e +exp <(2 T)E: T)T>)] ,

where a, b are as given in (P) and (Q), T is determined in lemma 2.4,
A= (ot + poy* +28a%47) /]R3 w* dz,

a2/ w?dz  and 00:%72/ w? de.
R3 R3

Proof. By direct computation, we have

B =

N

1
Ia(sz,svvxj,s) = 95 AS(€2|VUzj,E|2 =+ Uz2J 5 +52|vvxj,s‘2 =+ V:v21 e)

1
7Z/RS(,U1|U$J',5|4+VJZ|V11,E| 1ﬂ/ ;1;95 aj]g

+%/RS[(P( ) = DUZ .+ Q) — V2 ]

25/ 176 x75

1
= 1/ (1| Us e [* + pi2|Vis o]
RB

3 [P@ -0k @@ -DVEL (A
But
E/RS(M\UW'@I‘L + | Vs o) = 1P /R3(M1U4 v
= 18" (ma’ + p2r") /Rs o (A2)
and

25/ z]gwa—zﬂé? /3U2V2 1ﬁ6322/RSw4~ (A3)

For any m > 1 and any 0 < d < 1, we have

ley + 29 |™ = |m3|m<1 +o<|€y|>>, Y € By, (0).

|27

Since

P(r) =14 ar™ 4+ O™ asr — 0t
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we get
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3 (P -1U3,

=1 [ (Pley+at) - 02
R3

=

N[=

N[

= 1e? {/ ar™U? + O(/ rm16|y|U2>
B1i—ryr/c(0) B1—7yr/c(0)

8 U (P(ey + ) — 1)U +/
B(I,T),,./E(O) B

S [ Gyl Oy ol
B —7yr/c(0)

(Pley + 27) - 1>U2]
G ryrse(0)

rofer ()

€3|:/ (a|xj|m (1+O(|€y.|)>
Bi—ryr/e(0) |.7ﬂ|

oerefeo@))
o282

rofer ()

S [ e sopes
ro(en ()
= ¢ [aBrm +O(rm 1) + 0 <exp (—(2 - T)S - T”")ﬂ , (A4)

where 7 is a small positive constant. Noting that

Q(r)=1+br"+0("%) asr—0F,

by the same argument as above we get

1

3 [ @@-1

So, combining

Is(ij,ea sz,e)

V. =6 [bCor" + 00" te) + 0<exp (—W)ﬂ .

(AD)
(A1)-(Ab), we get

= [A +aBr™ + bCor™ + O <7’m_16 +7r" e +exp (—(2 — T)il — T)T>)] .

O

https://doi.org/10.1017/50308210515000797 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210515000797

Nodal solutions for nonlinear elliptic equations in R3 973

PROPOSITION A.2. Assume that (P) and (Q) hold. Then there exist a small con-
stant 0 < 0 < min{{5, min{m,n} — 1} and a positive constant C' such that

(U, V,) = 2ke3 {A + aBr™ 4+ bCor™ + C(2pia® + Lpay* + Ba®~?)
( 2r sin(ﬂ/2k)>
€

X exp
+0 (rmls + 7" le fexp (—(1 — T)f — T)T>
4 exp (_ (1+ a)2r:in(7r/2k)>)] ,

where T is defined in lemma 2.4.

Proof. We know that

2k
Is(Ura er) = Z Is(Ua:j,ea sz,s)
j=1
AT T
R? i#]
- i,UzQ/ |:V4 Z xd e Z l+]ngﬂ € 6]
i£]j
ﬂ/ |:U2V2 Z I e ;I;J e Z( )Z+JV5] Eij,sUz'i,E
i#£]
- Z(_ H_JUxQJ EVI’EVIi,E:|
i#]
+5 Z H—J / ( ) - 1)U:cj,sUzi,s + (Q(J?) - 1)ij,svzi,s]-
#J
(A6)
But there exists a small positive 0 < o < min{%o, min{m,n} — 1} such that
SRR SERE SE NN
R 1#]
:%Ml/ |: Z UsJ 6U$i76+0( Z mJ Ele +Z e m’ >:|

li—j|=1 or 1<]i—j|<2k—1 i#£]

2k—1

diat [5 w420 e (DY)

|[i—j|=1 or
2k—1

(o’ (</>) of o (LD =NY). a
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Similarly, we have

WQ/R vi- zm 25 )V Vi

i#]

1+ o)zt — 22
et 5 b0 (U

|i—j|=1 or 2k—1

_ (Cuz;exp (_2rs1n§r/2k:)) +O(exp (_(1 +0)|:1 —x2|>)>

(A8)

and

- %B/R |:U2V2 Z zie a:J e Z( )z+]v382] eUﬂ,EUzi,E

i#]
- Z(_ 7+] U;?J szj,EV:ci,s:|
i#]

1_ .2
B 60[2 2/ Z wii,swxi@ + €3O<exp (_W))

li—j|=1 or 2k—1

=¢3 (C’ﬂazny exp (W) + O<exp (W))) (A9)

Combining (A 6)-(A9) and proposition A.1 yields
L(U.,V,) = 2ke3 {A + aBr™ + bCor™

4 4 .
+ C(#la " M2y +5a272) exp <_ 2r Slniﬂ/%))

2 2
1-—7)(2-
+O<rm1€+7""15+exp <—( T)i T)r>
+exp< (1 +U)2rbln 7 /2k) ))}
A10)
This completes the proof. O

LEMMA A.3.

2zt —
/ Ui i, U22yj . =¢c%0(1)exp (_|y|>
R3

3

Proof. Define

le{meRS: |z
wy ={zeR3: |2’ -

|:r;—m"|}7 QQ:{JZER3: lz — 17| < |a:—33i|},
lz -9}, wr={zeR® ' —y|<|z—¢[}

Y|
v’

2
2
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and

A 11/3 ) 11/3
di={ocaopl<e(mi) ) wt=focwiopize(wl) ],
Then we have

2 2 _ 2 2 2 2
~/RS Ul,mi,sUZyj,s - /Q Ul,:vi,sUQ,yj,s + /_Q Ul,ri,sUQ,yj,s'
1 2

U2 . _similarly, here we only estimate

Since we can estimate the term [, U7 ; U3 ;

2 2
/ Ul,aci,sUZ,yj,s'
22

By the definition of {25, we can conclude that

|z —2'| > 3|2 — 7| Vz € .

Then we have

2|zt — 97| 2] — x|
/ U12717i,€U22,yj,8 < Cexp (_| / exp\ ———mm
29Nwa € 2oNwo €

2zt — gl
< Coxp (chyl)

€
o (En(252)
X exp|—— |exp | ————
2aNws € 2e
5|zt — gl
< Cedexp <_|2y|), (A11)
193
2 2 2 2 2
/ vami’EUQ’yjfs :/ ULTi:EUvaj’S +/ ULI"”EUZW,E’
25Nwq ng—‘lwi .QQﬁwi/
1 20z’ — |
U2, U2, <C————exp (—
/nmw; bateT 2yt =T | (af — yd) e £

1
X _—
/fmw; [(z —y9)/el?
< 2(|l’fvi+|wyjllxiyj)>
xexp | —
5

1 2t —
é 072 exp (_H)sg
@ —y)/e] :

1
y / L
o] <(n(1/e))1/3 |2

X exp (—2<|x| +

zt— gy
€

JC_(ﬂci—yj)‘_

)
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1 2| — 3 1
e (N
(2% —y7) /e el <(n(1/e)1/s |22

e (- Q'x_y]> (wd)”

2|zt — 97| 1
< Cexp < . )53 )7 (A12)

and

2zt —
/ Uiml UQQyJ . < Cexp (—')
2Nwy’ €

1
X - <, 1
/Q @ y)/ep
g — ot ] — gt —
xexp(_ (lo o) + 2 — ] — Jo y|>>

13

ozt — I

< Coxp (_iwy>gs
g

1
x PR
/z|><1n<1/s))1/3 |[*

i 40 i 4
xexp(—2(|x|+a:—(x Z/) - x Y ))
€ €
20zt — g 1
Comp (=) | iy
€ o> (n(1/2))2/2 |2
2z —y|\ 3 1
<C - . A13
e (-2 i
From (A 12) and (A 13), we can easily get
2|zt — o7
/ U i U3 s o = 0=(1) exp (||>53. (A14)
25Nwy €
Combining (A 11) and (A 14), we obtain
2|zt — o7
[ 08 =y (22
2 €
and, similarly, we can also obtain
2|zt — g7
/ U12x1 U22yJ . =o0-(1)exp (—'xy>53.
o €
So A ‘
2|xt — oI
/ U127I7;75U22)yj)(5 = 0.(1)exp (||>53.
R3 : e
The proof is complete. O
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Using lemma A.3, which is similar to proposition A.1, we can obtain the following
proposition.

PROPOSITION A.4. Assume (P) and (Q) hold. Then we get the following energy
estimate:

gaaﬂﬁvmma—sﬂﬁ+aéw“+wb”—%u>

2 2
X exp _2 p—rcosl + 1"sin1
€ 2k 2k

. O<exp <(1 —F)(2 - %1)r>

g
1—-7)2—-7
+ exp <_( Tl)i 7’1),0) +pn16_|_,r,m1€>:|7

where a, b are given in (P) and (Q), 71 has been determined in lemma 3.3 and

fl:l/(,ulU{l—i-ugUf)dx, le/ Uldx and C’zl/ U3 dx.
4 Jps R3 2 Jps

2
Proof. We know that

1

U110 V2p ) = 3 [ (VU 4 U 4 V0 P+ U,y)
R

1
- 1/ (1 |U1 35 |+ p2|Us s o|*) = %ﬁ/ Uizj,sUiyj,s
R3 R3

+ %/RB[(P(OU) — 1)U12,xj,5 +(Q(z) — 1)U227yj’€].

Since U; are the unique radial solutions of the problem
—Au4u = pu®, maxu=u(0), u>0,
z€R3

we have
1
5 /3(52|VU171J75‘2 + Ulz,zj,s + 52|VU27yj76|2 + U22,yj,5)
R
1
1 [l alUa 1)
R

1
= (/“‘(’1|U1713j,€‘4+:u2|U2,yj,€|4)
4 Jps

i€3/ (1UY + p2Uy).
R3
Similarly to (A 4), noting that

Pr)y=1+ar™+ O(rm+9) asr — 0t

and

Q(r)=1+br"+0("%) asr—07,
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we obtain

s | (@) -1UR,, dx
2 RS ,xJ €

= ¢’ {aérm + 0™ ) + O(exp (— 2-7)0 - mr))} (A 15)

and
3 (@@ -1, o
=g {bépn +0(p" te) + O(exp (— 2-m) = fl)p))] : (A16)

where 71 > 0 is a constant.
From lemma A.3, we have

20zt — ot
%B/R?’ U12,acf,eU22,yj,6 dz = 55305(1) exp <_y> .

3

Therefore,

IE(Ul,xj,57 U2,yj,6)

2 2
- - ~ 2
:53[A+aBrm+bCp”_0€(1)eXp (—E\/<p—rcosz7;> + <rsin27;€>)

n O<exp ( (1-7)(2— ﬁ)r) ¢ e <(1 — A2 - ﬁ)p)

9 £

+p" e+ rm_15>].

This completes the proof. O

PROPOSITION A.5. Assume that (P) and (Q) hold. Then there exist positive con-
stants B1 and By such that

7.,V 14 aB ~ 2r sin(m/2k
100 =282 [ A4 aBr 06 4 By ewp (2920
+ Byexp <_2psm£ﬂ/2k>)

2 ™V EAY
+ o0:(1) exp 2\ (p—reos o + rsin g

+ O(exp (_(1 - %1)22 - ﬁ)r) e (_ (1-7)2- %1)p>

9

e e 4o <_ 1+ 0)2r€sin(7r/2k))
- ( (1+ U)Zp:in(w/ﬂc) ))} |

where o can be determined using proposition A.2.
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Proof. We can obtain
Is(ﬁr7 ~P)
2k

= Z IE(Ul,acj,s7 U2,yj,e)
j=1

2k
— 1 /3 <|Ur|4 _ Z Ul gic — 22(_1)Z+JU§I¢,EU1,W-,E>
R -
Jj=1

i#]
- iuz/ <|V,,|4 =Y Usyic— 22(—1)1+JU§’7yi,5Uz,y]‘,a>
R j=1 ij
o 2k
- %ﬂ <|U7"|2|‘/p|2 - Z U12,:rj,5U22,y1,5)
R3 =
1 it
+ 5 (—1) + / [(P(I) - l)Ul,:ri,eUl,zj,e + (Q(I) - 1)U2,y'i,eU2,yj,e]'
i#j R
(A17)
Similarly to (A7), we can prove that there exist positive constants B; and Bs such
that
[ (00 0t 2 Y )
R j=1 i#j
_ B, oxp (_ 2r singr/Zk))€3 N O(exp (_ (1+ 0)27“Esin(7r/2k) ) ) 3
(A18)
and

2k
- i/@ /]R3 <|VP|4 - Z Ug»yj,s - 22(_1)Z+]U§,yi,eU2vyj’5>
i=1

i#j
_ Byexp [ - 2250(T/2k) o L+ 0)2psin(m/2k) \ 5
Bep( - >s +O<e p< 5 >)iA19>

On the other hand, we have

1
5/ (P(I) - l)Ul,mi,sUl,a:j,a
R3

1
/ (P(:E) - l)Ul,:L’i',eUl,a:j,s + 5/ (P(‘T) - 1)U1,z'i,5U1,mj,5
By (0) B%,.(0)

<O [ il +30 [ Wha+UE)
RS B5,.(0)
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(o (2 oo (2520)

= 530(r2m + exp (—W) + exp (—MD (A 20)

3

Similarly, we obtain

1
! /}R Q) = 1)Uy Uy

= 630<p2" + exp (—W) + exp (—M)> (A21)

3

Then

2k
%ﬂ/w (Ur|2|vp|2 - Z U12,xf,eU22,yj76> ‘

Jj=1

~caen (2 (s rZ) () a2

By (A 17)—(A 22) and proposition A.4, we can easily show that
V i+ aB A 2r sin(m/2k
(U, V,) = 2ke® [A +aBr™ + bCp™ + By exp (_TSIH(W)

€
2psin(m/2k)
R

+0c(1) 2 N (s )
O¢ exp - 14 T COS o0 T S1n o

+ O(exp <(1 - %1)22 - %1)r> e ( (1-7)2— %1)[))

3

+ Bs exp <

1 2r si 2
+ pn71§ + ,rmfle + exp (_( + G) TESIH(T(/ k))
\ exp (_ (14 o)2psin(m/2k) ) )} .
€
This completes the proof. O
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