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Abstract For each discriminant D > 1, McMullen constructed the Prym–Teichmüller curves WD(4) and

WD(6) in M3 and M4, which constitute one of the few known infinite families of geometrically primitive
Teichmüller curves. In the present paper, we determine for each D the number and type of orbifold points

on WD(6). These results, together with a previous result of the two authors in the genus 3 case and with

results of Lanneau–Nguyen and Möller, complete the topological characterisation of all Prym–Teichmüller
curves and determine their genus. The study of orbifold points relies on the analysis of intersections of

WD(6) with certain families of genus 4 curves with extra automorphisms. As a side product of this study,

we give an explicit construction of such families and describe their Prym–Torelli images, which turn out
to be isomorphic to certain products of elliptic curves. We also give a geometric description of the flat

surfaces associated to these families and describe the asymptotics of the genus of WD(6) for large D.
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1. Introduction

A flat surface is a pair (X, ω) where X is a compact Riemann surface of genus g and

ω is a holomorphic differential on X . By integration, the differential endows X with

a flat structure away from the zeros of ω. Consider now �Mg, the moduli space of

flat surfaces which is a natural bundle over the moduli space Mg of smooth projective

curves of genus g. There is a natural SL2(R) action on �Mg by affine shearing of the

flat structure and we consider the projections of orbit closures to Mg. In the rare case

that the SL2(R) orbit of (X, ω) projects to an (algebraic) curve in Mg we call this the

Teichmüller curve generated by (X, ω) in Mg.

Not many families of (primitive) Teichmüller curves are known; see e.g. [15] for a brief

overview. Among them, McMullen constructed the Weierstraß curves in genus 2 [12]

and generalised this construction to the Prym–Teichmüller curves in genus 3 and 4 [14].

Recently, Eskin, McMullen, Mukamel and Wright announced the existence of six

exceptional orbit closures, two of which contain an infinite collection of Teichmüller

curves. One of them is treated in [15].

Any Teichmüller curve C is a sub-orbifold of Mg. Therefore, denoting by χ the

(orbifold) Euler Characteristic, by h0 the number of connected components, by C the

number of cusps and by ed the number of points of order d, these invariants determine

the genus g:

2h0− 2g = χ +C +
∑

d

ed

(
1−

1
d

)
,

i.e. they determine the topological type of C.

For the Prym–Weierstraß curves, the situation is as follows. In genus 2, cusps and

connected components were determined by McMullen [13], the Euler characteristic was

computed by Bainbridge [1], and the number and types of orbifold points were established

by Mukamel [19]. In genus 3 and 4, Möller [17] calculated the Euler characteristic and

Lanneau and Nguyen [9] classified the cusps. The number of connected components in

genus 3 were also determined in [9] (see also [26]) and the number and type of their

orbifold points in genus 3 were established in [25]. In the case of genus 4, Lanneau has

recently communicated to the authors that the Prym locus is always connected [10]. The

present paper classifies the orbifold points of these curves.

Theorem 1.1. For discriminant D > 12, the Prym–Teichmüller curves WD(6) have

orbifold points of order 2 and 3. More precisely:

• the number of orbifold points of order 2 is

e2(D) =


0, if D is odd,

h(−D)+ h(−D/4), if D ≡ 12 mod 16,

h(−D), if D ≡ 0, 4, 8 mod 16,

where h(−D) is the class number of O−D;
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Orbifold points on Prym–Teichmüller curves in genus 4 675

Figure 1. A C4-eigendifferential of genus 4 with a single zero (the Turtle): the canonical 4-cover of the
4-differential on an elliptic curve pictured in Figure 3 (§ 6).

• the number of orbifold points of order 3 is

e3(D) = #{a, i, j ∈ Z : a2
+ 3 j2

+ (2i − j)2 = D, gcd(a, i, j) = 1}/12;

• W5(6) has one point of order 3 and one point of order 5;

• W8(6) has one point of order 2 and one point of order 3;

• W12(6) has one point of order 2 and one point of order 6.

Theorem 1.1 combines the results of Theorems 3.1, 4.1, and 5.1 and thus completes

the topological classification of the Prym–Weierstraß curves. The topological invariants

of WD(6) for nonsquare discriminants D 6 200 are listed in Table 3 on page 704.

Recall that the orbifold locus of WD(6) consists of flat surfaces (X, ω) where ω is not only

an eigenform for the real multiplication but also for some (holomorphic) automorphism α

of X . To describe this locus, it is therefore natural to consider instead families F of curves
with a suitable automorphism α and consider the α-eigenspace decomposition of �F . We

isolate suitable eigendifferentials ω with a single zero, and check whether the Prym part

of (X, ω) ∈ �F admits real multiplication respecting ω, i.e. find the intersections of F
with WD(6) for some D.

To be more precise, it is essentially topological considerations that not only show the

possible orders d of orbifold points that can occur on a curve WD(6), but in fact determine

the possibilities for the group Aut X , in the case that (X, ω) is an orbifold point (see § 2). It

turns out that there are essentially two relevant families: curves admitting a D8 action –

giving points of order 2 – and curves admitting a C6×C2 action – giving points of order 3.

Because of the flat picture of the single-zero differentials on these families, we call them

the Turtle family (Figure 1) and the Hurricane family (Figure 2); see § 6 for details. In
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Figure 2. A C6-eigendifferential of genus 4 with a single zero (the Hurricane): the canonical 6-cover of

the 6-differential on P1 pictured in Figure 3 (§ 6).

addition, these families intersect, giving the (unique) point of order 6 on W12(6). Also,

there is a unique point with a C10 action, giving the point of order 5 on W5(6). Any

orbifold point on WD(6) must necessarily lie on one of these families (Proposition 2.1).

The difficulty when studying these families comes from obtaining the eigenforms in a

basis where we can calculate the endomorphism ring in order to study real multiplication

or, equivalently, understanding the analytic representation of suitable real multiplication

in the eigenbasis of the automorphism on the Prym variety.

We begin by analysing M4(D8), the 2-dimensional locus of genus 4 curves with a

specific D8 action; see § 3. The Turtle family is a 1-dimensional sub-locus of this moduli

space.

As a by-product, we give an explicit description of M4(D8). For an elliptic curve E ,

let φ denote the elliptic involution.

Theorem 1.2. The family M4(D8) is in bijection with the family

E = {(E, [P]) : E ∈M1,1, [P] ∈ (E \ E[2])/φ}

of elliptic curves with a distinguished base point, together with an elliptic pair.

In particular, this family is 2-dimensional; however, the sub-locus X of curves admitting

a C4-eigenform with a single zero is 1-dimensional and in bijection with M1,1\{E2}.
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This bijection is induced by the construction of this family as a fibre product of two

(isomorphic) families of elliptic curves over a base projective line.

To determine which points admit real multiplication with a common eigenform, we

fix an eigenbasis of �X and consider the Prym–Torelli map PT, which associates the

corresponding Prym variety to a Prym pair (X, ρ). We show that, in the D8 case, the

Prym variety of such a pair is always isomorphic to the product E × E , where E is an

elliptic curve arising as a quotient of X , and then the Prym variety admits suitable real

multiplication if and only if the elliptic curve has complex multiplication, accounting for

the class numbers.

The Hurricane family behaves quite differently; see § 4. We denote by Eζ the unique

elliptic curve with an automorphism ψ of order 6.

Theorem 1.3. The Hurricane family agrees with the family

Yt : y6
= x(x − 1)2(x − t)2

of cyclic covers of P1.

However, the Prym–Torelli image of Y is the single point Eζ × Eζ .

The Hurricane family has the advantage that it is 1-dimensional and can be understood

in terms of cyclic covers of P1. However, due to the large automorphism group, the whole

family collapses to a single point under the Prym–Torelli map, which of course admits real

multiplication in many different ways. Now, each fibre Yt gives a different C6-eigenbasis in

�Eζ ×�Eζ and checking when this basis is also an eigenbasis for some real multiplication

gives the intersections of Y and some WD(6).
The Hurricane family can also be constructed as a family of fibre products over certain

quotient curves. More precisely, all fibres Yt of Y can be seen as a fibre product of two

copies of Eζ over a projective line quotient P1. However, in contrast to the D8 case, the

base of the Hurricane family will not be isomorphic to a modular curve, but it will be a

dense subset inside the curve Eζ .
More precisely, denote by E∗ζ the curve Eζ with the 2-torsion points and the ψ-orbit

of order 3 removed and let φ be again the elliptic involution of Eζ . There is a

generically 6-to-1 map between the set of elliptic pairs of points E∗ζ /φ and the fibres

of Y (cf. Proposition 4.9).

Moreover, for each isomorphism class [Y ] ∈ Y, there exist generically 12 elements (up

to scale) in �Eζ ×�Eζ defining a C6-eigendifferential with a single zero on the curves

in [Y ] (cf. Proposition 4.13). This fact explains the factor of 12 in the formula for the

number of orbifold points of order 3.

Using the work of Möller [17] and Lanneau and Nguyen [9], Theorem 1.1 lets us calculate

the genus of the Prym–Weierstraß curves WD(6). In § 7, we describe the asymptotic

growth rate of the genus, g(WD(6)) with respect to the discriminant D.

Theorem 1.4. There exist constants C1,C2 > 0, independent of D, such that

C1 · D3/2 < g(WD(6)) < C2 · D3/2.

Moreover, g(WD) = 0 if and only if D 6 20.
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Table 1. Topological invariants of the six Teichmüller curves WD(6) that have genus 0. The number of
cusps is described in [9], the Euler characteristic in [17]. For larger D, see Table 3 on page 704.

D g e2 e3 e5 e6 C χ

5 0 0 1 1 0 1 −7/15
8 0 1 1 0 0 2 −7/6

12 0 1 0 0 1 3 −7/3
13 0 0 2 0 0 3 −7/3
17 0 0 1 0 0 6 −14/3
20 0 2 1 0 0 5 −14/3

The topological invariants of the geometrically primitive genus 0 Prym–Teichmüller

curves are summarised in Table 1.

Theorem 1.1 can be seen as the next and final step after [19, 25] in the study of

orbifold points on Prym–Weierstraß curves, thus bringing closure to the topological

characterisation of such curves. While the general method is similar in the genus 2,

3 and 4 cases (namely, studying the intersection of the Teichmüller curves with certain

families), the specific phenomena occurring are different.

In genus 2, the situation was simpler essentially due to the fact that the Prym

variety was the entire Jacobian [19]. While the relevant family also had a generic D8
automorphism group, this was a 1-dimensional object, while in M4 this locus is a surface

where the C4-eigendifferentials are contained in an embedded Modular curve.

In genus 3, the defining phenomenon was the fact that the Prym variety was a

(2, 1)-polarised abelian sub-variety of the Jacobian [25]. Also, for the first time, two

1-dimensional families occurred and in the case of C4 curves, the Prym–Torelli image

also collapsed to a point. However, both these families could be described as cyclic covers

of P1 in which case the eigenspace decomposition of �X is well understood. The main

technical difficulty in those cases was the explicit calculation of period matrices using

Bolza’s method. Moreover, the formulae obtained were of a slightly different flavour, as

the C6-family turned out to be isomorphic to the compact Shimura curve H/1(2, 6, 6),
giving a more general class number than in the other cases.

In contrast, in genus 4, for the first time a 2-dimensional locus plays a central role:

indeed, the space M4(D8) can be seen as a cyclic cover over an elliptic curve, which makes

the computation of the eigendifferentials with a single zero more difficult, cf. Theorem 3.6.

On the other hand, while in almost all cases the Prym variety is isogenous to a product of

elliptic curves (this is the reason for the abundance of modular curves and class numbers

in the formulae), it turns out that in genus 4 the Prym varieties are actually isomorphic

to this product. This results in a closer relationship of the endomorphism rings in this

case and is the reason we obtain an exact class number of a negative discriminant order

in Theorem 1.1.

In particular, the technical approach in this paper is completely different from the one

in [25], since the computational aspects of Bolza’s method have been replaced by a more

conceptual description of the families.
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Table 2. Families parametrising possible orbifold points on Prym–Weierstraß curves. Here, Xt is a
general fibre of X and Et is an elliptic curve that appears as a quotient of Xt . For genus 2 see [19], for
genus 3 see [25].

g(Xt ) d dimX dim PT(X ) Aut(Xt ) End(P(Xt , σ
d))

2 2 1 1 D8 order in M2(End(Et ))

3 2 1 0 C2 n (C2×C4) order in M2(Q[i])
3 3 1 1 C6 order in

( 2,−3
Q
)

4 2 2 (1) 1 D8 M2(End(Et ))

4 3 1 0 C6×C2 M2(Z[ζ6])

The occurring positive dimensional families are summarised and compared to the

families occurring in genus 2 and 3 in Table 2.

Finally, in § 6, we provide the flat pictures associated to the eigendifferentials in the

Turtle family and the Hurricane family.

2. The orbifold locus of WD

The aim of this section is to describe the orbifold locus of WD(6) as the intersection

with families of curves with a prescribed automorphism group in M4. In particular,

Proposition 2.1 determines the possible orders of orbifold points that may occur.

As usual, we write (g; n1, . . . , nr ) for orbifolds of genus g with r points of order

n1, . . . , nr . Recall that, given an automorphism α of order N on X , points of order ni on

X/α correspond to orbits of length N/ni on X . Moreover, we denote by ζd a primitive

dth root of unity.

Proposition 2.1. Let (X, ω) ∈ �WD be a flat surface that parametrises an orbifold point

of WD of order d. Then there exists a holomorphic automorphism α ∈ Aut X of order 2d
that satisfies α∗ω = ζ2dω and one of the following conditions:

(1) the order of α is 4 and X/α has signature (1; 4, 4);

(2) the order of α is 6 and X/α has signature (0; 3, 3, 6, 6);

(3) the order of α is 10 and X/α has signature (0; 5, 10, 10);

(4) the order of α is 12 and X/α has signature (0; 3, 12, 12).

Remark. Observe that family (1) is 2-dimensional, family (2) is 1-dimensional and

families (3) and (4) consist of a finite number of points in M4.

Before we proceed to the proof, we first recall some background and notation.

Flat surfaces and Teichmüller curves

A flat surface is a pair (X, ω) where X is a Riemann surface (or equivalently a smooth

irreducible complex curve) of genus g and ω ∈ �X is a holomorphic differential form

on X . Note that X may be endowed with a flat structure away from the zeros of ω

via integration. We denote the moduli space of flat surfaces by �Mg and note that it
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can be viewed as a bundle �Mg →Mg over the moduli space of smooth, irreducible,

complex curves of genus g. The space �Mg is naturally stratified by the distribution

of the zeros of the differentials; given a partition µ = (µ1, . . . , µr ) of 2g− 2, denote

by �Mg(µ) the corresponding stratum and given a family F of curves in Mg we set

�F(µ) := �Mg(µ)∩�F . We use exponential notation for repeated indices, so that, for

instance (1, . . . , 1) = (12g−2).

Recall that �Mg admits a natural GL2(R) action by affine shearing of the flat

structures. A Teichmüller curve is the (projection of a) GL2(R)+ orbit that projects

to an algebraic curve in Mg. See for instance [16] for background on Teichmüller curves

and flat surfaces.

Prym–Teichmüller curves in genus 4

McMullen [14] constructed families of primitive Teichmüller curves in genus 2, 3 and 4,

the Prym–Teichmüller (or Prym–Weierstraß) curves WD(2g− 2). We briefly recall the

construction in the genus 4 case. For brevity, we denote the curve WD(6) by WD in the

following.

Let X be of genus 4 admitting a holomorphic involution ρ. We say that ρ is a Prym

involution if X/ρ has genus 2. In particular, this gives a decomposition �X = �X+⊕
�X− into 2-dimensional ρ-eigenspaces with eigenvalues 1 and −1 respectively. It also

determines sublattices H1(X,Z)+, H1(X,Z)− ⊂ H1(X,Z) consisting of ρ-invariant and

ρ-anti-invariant cycles that satisfy H1(X,Z)± = H1(X,Z)∩ (�X±)∗. All this implies that

the Prym variety

P(X, ρ) :=
(�X−)∗

H1(X,Z)−
= ker(Jac(X)→ Jac(X/ρ))0

is a 2-dimensional, (2, 2)-polarised abelian sub-variety of the Jacobian Jac(X) (see [17]

or [3, Chapter 12] for details).

For any discriminant D ≡ 0, 1 mod 4, write D = b2
− 4ac for some a, b, c ∈ Z. The

(unique) quadratic order of discriminant D is defined as OD = Z[T ]/(aT 2
+ bT + c),

which agrees with

OD = Z⊕ TDZ, where TD =


√

D
2
, if D ≡ 0 mod 4 and

√
D+ 1
2

, if D ≡ 1 mod 4,

provided D is not a square. If D = f 2, the order OD = Z[T ]/(T 2
− f T ) is isomorphic to

the subring {(a, b) ∈ Z⊕Z : a ≡ b mod f }.
Now let D > 0 be a positive discriminant. We say that a polarised abelian surface A

has real multiplication by OD if it admits an embedding OD ↪→ End A that is self-adjoint

with respect to the polarisation. We call the real multiplication by OD proper, if the

embedding cannot be extended to any quadratic order containing OD.
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Denote by �WD the locus of (X, ω) ∈ �M4(6) such that

(1) X admits a Prym involution ρ, so that P(X, ρ) is 2-dimensional,

(2) the form ω has a single zero and satisfies ρ∗ω = −ω, and

(3) P(X, ρ) admits proper real multiplication by OD with ω as an eigenform.

McMullen showed that the projection WD of �WD to M4 gives (a union of) Teichmüller

curves for every discriminant D [14]. In fact, Lanneau has communicated to the authors

that WD is connected for all D [10].

Orbifold points on Prym–Teichmüller curves

An orbifold point of order d on WD corresponds to a flat surface (X, ω) ∈ �WD such that

• there exists a holomorphic automorphism α ∈ Aut X , such that α∗ω = λω for some

λ ∈ C∗ \ {±1};

• the element ρ = αd is a Prym involution satisfying ρ∗ω = −ω;

• ω is an eigenform for real multiplication on the Prym variety P(X, ρ).
Note that this implies that α is of order 2d and must have a fixed point (at the single

zero of ω). Details and background can be found in [25].

Definition. We say that (ω1, ω2) is an α-eigenbasis of �X− if the ωi are both eigenforms

for the action of α∗.

To study these points, we study the locus of curves in M4 with an appropriate

automorphism α and an eigenform with a single zero.

Proof of Proposition 2.1. Let (X, ω) correspond to an orbifold point in WD of order d.

The Prym involution ρ in genus 4 gives a genus 2 quotient with two fixed points, i.e.

X/ρ ∼= (2; 22). By the argument above, the curve X must possess an automorphism α of

order 2d that admits ω as an eigenform with eigenvalue ζ2d , has at least one fixed point

and satisfies αd
= ρ.

The automorphism α descends to an automorphism of X/ρ of order d and, looking at

possible orders of automorphisms on curves of genus 2, one sees that d = 2, 3, 4, 5, 6, 8
or 10 (see for instance [5, 22]). Now, points of odd order k on X/α (equivalently, α-orbits

of length 2d/k on X) give unramified points on X/ρ, since they are not fixed by ρ = αd

(more precisely, their preimages on X are not fixed). Points of even order 2k on X/α
(equivalently, α-orbits of length d/k on X) give d/k ramified points on X/ρ.

Since there are only two ramification points on X/ρ and at least one of them necessarily

comes from a fixed point of α, the automorphism α has two fixed points and no more

ramification points of even order. A case-by-case analysis using Riemann–Hurwitz yields

the four options in the statement.

Products of elliptic curves

In the analysis of orbifold points on Prym–Teichmüller curves in genus 4, Klein-four

actions and products of elliptic curves will be omnipresent. The following result will be

a crucial technical tool.
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Proposition 2.2. Let (X, ρ) be a genus 4 curve in the Prym locus admitting a Klein

four-group of automorphisms V4 = 〈ρ, β〉 such that both X/β and X/ρβ have genus 1.

Then P(X, ρ) ∼= X/β × X/ρβ as (2, 2)-polarised abelian varieties.

Remark. Note that this is in stark contrast to the situation in genus 2 and 3. Although in

those cases V4 actions were also ubiquitous, the Prym variety was always only isogenous

to a product of elliptic curves (cf. [19, Proposition 2.13] and [25, Theorem 1.2]) as the

Prym variety is (1, 1), respectively (2, 1), polarised in those situations. In the genus 4
case, the result above yields an even stronger relationship between the geometry of the

quotient elliptic curves and the Prym variety.

Let us first recall some general facts about elliptic curves. An elliptic curve E :=
(E, O) ∈M1,1 is a smooth genus 1 curve together with a chosen base point O ∈ E .

It always admits the structure of a group variety with neutral element O. The set of

2-torsion points with respect to this group law consists of four elements and is usually

denoted by E[2].
Every elliptic curve is isomorphic to Eλ := {v2

= u(u− 1)(u− λ)} for some λ ∈ C\{0, 1},
where we choose the base point O to be the point at infinity. Permuting {0, 1,∞} gives

an isomorphism between the elliptic curves corresponding to

λ, 1− λ,
1
λ
,

1
1− λ

,
λ− 1
λ

,
λ

λ− 1
.

By the uniformisation theorem, every elliptic curve can also be represented as the

quotient of C by a lattice 3 = Z⊕ τZ for some τ in the upper half-plane H. Points in

the same SL2 Z-orbit yield isomorphic elliptic curves, and therefore one can realise the

moduli space of elliptic curves M1,1 as the quotient H/SL2 Z. The relationship between

τ and λ is given by the modular λ-function.

Each elliptic curve carries a natural elliptic involution φ, the set of fixed points of

which agrees with E[2] = Fix(φ). In the model Eλ, the elliptic involution is given by

(u, v) 7→ (u,−v) and one has Eλ[2] = {(0, 0), (1, 0), (λ, 0),∞}. The quotient by the elliptic

involution is isomorphic to P1.

The general element of M1,1 has no further automorphisms fixing the base point.

The only exceptions, which correspond to the orbifold points of H/SL2 Z, are E2
(corresponding to τ = i in the upper half-plane) with a cyclic automorphism group of

order 4, and Eζ6 (corresponding to τ = ζ6 in the upper half-plane), where ζ6 = e2π i/6,

with a cyclic automorphism group of order 6.

Proof of Proposition 2.2. Consider the quotients p1 : X → X/β and p2 : X → X/ρβ.

Since X/V4 has genus 0, the images of the pullbacks p∗1 : �(X/β)→ �X and

p∗2 : �(X/ρβ)→ �X must both lie in �X−, the −1-eigenspace of ρ and in fact generate

�X−. Therefore, denoting also by p∗i the induced map between Jacobians and identifying

the elliptic curves with their Jacobians, one has

�(X/β)×�(X/ρβ) �X− �X

X/β × X/ρβ P(X, ρ) Jac X

∼=

(p∗1 , p∗2 )
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Since the polarisations induced from Jac X on X/β × X/ρβ and on P(X, ρ) are both of

type (2, 2), the map (p∗1, p∗2) is necessarily an isomorphism of polarised abelian varieties.

In particular, the proof shows that, in the above situation, we have a natural

decomposition

�X− = �X+β ⊕�X+ρβ
into a β and ρβ invariant subspace consisting of the differential forms that arise as

pullbacks from the two quotient elliptic curves.

Definition. Let X be a genus 4 curve with a V4 action. We say that (η1, η2) is a product

basis of �X− if η1 ∈ �X+β and η2 ∈ �X+ρβ .

Note that any product basis is a β-eigenbasis. More precisely, we have

β∗η1 = η1 and β∗η2 = −η2, (1)

as η2 is ρ-anti-invariant.

3. Points of order 2 and 6

The aim of this section is to prove the following formula describing the number of points

of order 2 on each Teichmüller curve WD and the unique point of order 6 on W12 (cf.

Theorem 1.1). Let h(−C) denote the class number of the imaginary quadratic order O−C .

Theorem 3.1. Let D 6= 12 be a positive discriminant.

• If D ≡ 1 mod 4 then WD has no orbifold points of order 2.

• If D ≡ 12 mod 16 then WD has h(−D)+ h(− D
4 ) orbifold points of order 2.

• Otherwise, WD has h(−D) orbifold points of order 2.

Moreover, W12 has one point of order 2 and one point of order 6.

To prove this theorem, we begin by a careful analysis of genus 4 curves admitting an

automorphism of order 4 with two fixed points.

Curves admitting an automorphism of order 4

By Proposition 2.1, for (X, ω) to parametrise a point of order 2 on WD, the curve X must

necessarily lie in the locus of curves with an automorphism of order 4 with two fixed

points. In fact, all such curves admit a faithful D8 action.

Lemma 3.2. Let X be a curve of genus 4 and α ∈ Aut X an automorphism of order 4 with

two fixed points.

Then X/α2 is of genus 2 and there exists an involution β ∈ Aut X such that αβ = βα−1,

i.e. 〈α, β〉 6 Aut X is a D8.

Proof. Since the quotient X/α by such an automorphism yields a curve of genus 1 with

two orbifold points of order 4, this is just case N2 in [6]. The proof of Bujalance and

Conder relies on a previous result by Singerman [24, Theorem 1] stating that every
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Fuchsian group with signature (1; t, t) is included in a Fuchsian group with signature

(0; 24, t). This group corresponds to the quotient X/〈α, β〉.

In terms of the corresponding curves, the situation is the following. The automorphism

α descends to an involution α of the genus 2 curve X/α2 different from the hyperelliptic

involution β. The hyperelliptic involution lifts to an involution β on X which, together

with α, generates the dihedral group. We denote by p1 : X → X/β and p2 : X → X/α2β

the corresponding projections.

Definition. We denote by M4(D8) the family of genus 4 curves admitting an

automorphism of order 4 with two fixed points.

Remark. Note that by Lemma 3.2, this family agrees with the moduli space of Riemann

surfaces of genus 4 with D8-symmetry, where we fix the topological action as in the lemma.

Moreover, moduli spaces of curves with automorphisms have been studied intensively, see

e.g. [8] for background and notations.

It turns out that such a curve is essentially determined by its genus 1 quotients.

Proposition 3.3. The family M4(D8) is in bijection with the family

E =
{
(E, [P]) : E ∈M1,1, [P] ∈ (E\E[2])/{±1}

}
of elliptic curves with a distinguished base point, together with an elliptic pair.

The bijection is given by X 7→ (X/β, [p1(Fix(αβ))]), where the origin of the elliptic

curve is chosen to be the point p1(Fix(α)).

Remark. Note that this is a 2-dimensional locus inside M4. However, we show

in Theorem 3.6 that the sub-locus X where X admits an α-eigenform in �X− with a

single zero is in fact 1-dimensional.

This classification is obtained by a careful analysis of the ramification data of D8 ∼=

〈α, β〉 6 Aut X .

Consider the following diagram of ramified covers:

X

X/α2 X/β X/α2β

X/α X/〈α2, β〉

X/〈α, β〉

p
p1

p2

π1
π2

Observe that all maps in the diagram are of degree 2.

The involutions β and α2β each have 6 fixed points on X . Together they form three

orbits of length 4 under 〈α, β〉. Similarly, αβ and α−1β have 2 fixed points each, forming a

whole orbit under 〈α, β〉 of length 4. Now, the four points of order 2 in X/〈α, β〉 correspond
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to the (three) orbits of the fixed points of β and α2β plus the orbit of the fixed points of

αβ and α−1β.

Looking at the ramification data of α and β, one sees that the quotients X/β and

X/α2β by β and α2β = αβα−1 respectively correspond to curves of genus 1. Choosing

the image of Fix(α) as an origin on each quotient, they are in fact isomorphic as elliptic

curves, since β and α2β are conjugate.

Also, the above-described action of α2β and β may be described purely in terms of

the quotient maps: the six branch points of p1 are mapped via p2 to the three 2-torsion

points on X/α2β, while p1 maps the six branch points of p2 to the three 2-torsion points

on X/β.

Proof of Proposition 3.3. Denote by φ the elliptic involution on E and let ϕ : E → P1 be

the corresponding quotient map, which we normalise such that ϕ(O) = ∞ and ϕ(P) = 0.

We define X = X(E,[P]) as the fibre product of the diagram

E
ϕ
−→ P1 −ϕ

←− E .

Note that, although there is a degree of freedom in choosing ϕ, this does not affect the

construction.

It is obvious from the ramification data that X(E,[P]) has genus 4, and the

automorphisms (Q1, Q2) 7→ (Q2, φ(Q1)) and (Q1, Q2) 7→ (Q1, φ(Q2)) of E × E restrict

to automorphisms α and β of X(E,[P]) generating a D8. It is straightforward to check that

the map (E, [P]) 7→ X(E,[P]) thus defined is inverse to X 7→ (X/β, [p1(Fix(αβ))]).

In particular, these curves satisfy the assumptions of Proposition 2.2, and therefore

their Prym varieties are isomorphic to a product of elliptic curves.

Corollary 3.4. Let X ∈M4(D8). Then P(X, α2) ∼= E × E as polarised abelian varieties,

where E ∼= X/β ∼= X/α2β.

As the quotient elliptic curves are isomorphic, we pick some differential form ηE on E
and denote by

ηi = p∗i ηE , for i = 1, 2, (2)

the corresponding product basis. Using the explicit description of X as a fibre product

and the expression of α used in the proof of Proposition 3.3, one can easily describe the

action of α∗ on these differentials to see that

α∗η1 = −η2 and α∗η2 = η1.

In particular, α interchanges the spaces �X+β and �X+ρβ .

The eigenspace decomposition

For a D8 curve to parametrise an orbifold point, it must necessarily admit an α-eigenform

with a single (6-fold) zero. To determine the possible eigenforms, we must analyse the

decomposition of �X into α-eigenspaces. We denote, as usual, by �X− and �X+ the

−1- and +1-eigenspaces of �X with respect to the (Prym) involution α2.
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Proposition 3.5. Let X ∈M4(D8). There is a natural splitting

�X− = �X i
α ⊕�X−i

α

into ±i-eigenspaces of α. The spaces �X±i
α are interchanged by β.

Proof. The quotient X/α has genus 1, so it is obvious that �X+ decomposes into

α-eigenspaces of dimension 1 with eigenvalue +1 and −1.

On the other hand, since αβ = βα−1, if α∗ω = λω for some λ ∈ C, clearly α∗(β∗ω) =

λ−1β∗ω. In particular, the eigenvalues of α∗ on �X− can only be ±i, therefore the space

necessarily decomposes as the sum of the α∗ i-eigenspace and the −i-eigenspace.

Note that any α-eigenbasis (ω1, ω2) of �X− will satisfy ω1 ∈ �X i
α and ω2 ∈ �X−i

α , up

to renumbering. Moreover, any product basis (η1, η2) as in (2) gives rise to an α-eigenbasis

ω1 = η1+ iη2, ω2 = η1− iη2. (3)

Now, while the family M4(D8) of curves admitting a D8 action is 2-dimensional, it

turns out that requiring an α-eigenform with a single zero reduces the dimension of the

locus we are interested in by one. Let us define

X =
{

X ∈M4(D8) : ∃ ω ∈ �X− α-eigenform with a single zero
}
.

Because of the flat picture of the elements (X, ω) in �X−(6), we call X the Turtle

family (see § 6).

Theorem 3.6. The map

X −→ M1,1
X 7−→ X/β,

where the origin of X/β is chosen to be p1(Fix(α)), induces a bijection between X and

M1,1\{E2}.

The only curve in X where α is extended by an automorphism of order 12 is the one

corresponding to X/β ∼= Eζ6 . It agrees with family (4) in Proposition 2.1.

Proof. By (3) α-eigenforms in �X+ are given, up to scale, by ω1 = p∗1ηE + ip∗2ηE and

ω2 = p∗1ηE − ip∗2ηE . We proceed in several steps.

Step 1. The α-eigenforms in �X− can have a zero at most at one of the (two) fixed points

of α.

Otherwise, every differential in �X− would vanish at both fixed points of α. In

particular, so would p∗1ηE and p∗2ηE . But the maps pi are unramified at Fix(α) and

we know that ηE has no zeroes in E . Note that, since zeroes of α-eigenforms outside

Fix(α) must be permuted by α, this immediately implies that the differentials ω1 and ω2
lie either in �X (14, 2) or in �X (6). Hence it remains to show that ω1, ω2 ∈ �X (6).

Step 2. Note that p∗i ηE vanishes only at the six branch points of pi .

In particular neither ω1 nor ω2 vanish at Fix(β)∪Fix(α2β), as the two sets of fixed

points are disjoint.
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Step 3. Choose λ so that E ∼= Eλ =
{

y2
= x(x − 1)(x − λ)

}
with the point at infinity as

a distinguished point, and let [P] = (A,±B) in these coordinates. Then we claim that

ω1, ω2 ∈ �X (6) if and only if 3A− 1− λ = 0.

In fact note that, in this case, the map ϕ : Eλ→ P1 in the proof of Proposition 3.3 can

be chosen to be (x, y) 7→ x − A, and the points in X(Eλ,[P]) outside of the branch loci of

the maps pi can be seen as pairs of points

Q =
(
(x, ε1

√
x(x − 1)(x − λ)), (−x + 2A, ε2i

√
(x − 2A)(x − 2A+ 1)(x − 2A+ λ))

)
∈ Eλ× Eλ,

where ε1, ε2 ∈ {±1}. Normalising ηE = dx/y and evaluating a local expression around Q
yields

ω1(Q) =
ε1

√
x(x − 1)(x − λ)

+
ε2

√
(x − 2A)(x − 2A+ 1)(x − 2A+ λ)

=
ε1
√
(x − 2A)(x − 2A+ 1)(x − 2A+ λ)± ε2

√
x(x − 1)(x − λ)

ε1ε2
√

x(x − 1)(x − λ)(x − 2A)(x − 2A+ 1)(x − 2A+ λ)
,

and similarly for ω2.

Now, comparing the addends in the numerator and taking squares one sees that the

differential ω1 will vanish at Q, for (exactly) two choices (ε1, ε2) and (−ε1,−ε2), whenever

2(3A− λ− 1)x2
− 4A(3A− λ− 1)x + 2A(2A− λ)(2A− 1) = 0.

In particular, if (and only if) 3A− λ− 1 = 0 the differentials do not vanish in the affine

part of Eλ, hence the zeroes of ω1 and ω2 must be at infinity, i.e. in Fix(α), and Step 1

implies that there is only a single zero on X(Eλ,[P]).

Step 4. The point P = (A, B) ∈ Eλ can be uniquely chosen as a non-2-torsion point

subject to the condition A = (λ+ 1)/3 from above if and only if λ 6= −1, 1/2, 2.

Note that these three values of λ give rise to the same elliptic curve, namely the square

torus E2. In particular, for all P ∈ E2 \ E2[2] the curve X(E2,[P]) has no α-eigenform with

a single zero.

Therefore, for any (E, O) ∈M1,1 \ {E2}, there is a unique choice of [P], such that the

fibre product X(E,[P]) admits a D8 action together with an α-eigenform that has a single
6-fold zero.

It remains to check when α can be extended, i.e. when there exists an α′ ∈ Aut X(E,[P])
that satisfies α ∈ 〈α′〉.

However, the proof of Proposition 2.1 shows that this can happen only if α′ is of

order 12. In this case, (α′)6 = α2 commutes with β, hence descends to an automorphism

of order 6 on the elliptic curve X/β which must therefore be isomorphic to Eζ6 .

On the other hand, denote by ψ ∈ Aut Eζ6 the automorphism of order 6 on Eζ6 . It is

easy to see that the automorphism (Q1, Q2) 7→ (ψ(Q2), ψ
4(Q1)) on Eζ6 × Eζ6 restricts

to an automorphism of order 12, extending α, on the curve of X corresponding to this

elliptic curve. In fact, the corresponding fibre product is the curve y6
= x(x + 1)2(x − 1)2,

see also § 4.
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Moreover, we have the following corollary.

Corollary 3.7. Let X be a genus 4 curve admitting an automorphism α of order 4 with two

fixed points. If additionally (X, ω) ∈ �WD then X ∈ X and ω = ω1 or ω2. In particular,

ω is an α-eigenform and (X, ω) is a point of order 2 on WD.

To check which (X, ωi ) ∈ �X are on WD, we need to check when P(X, α2) admits

real multiplication with ωi as an eigenform. Note that β∗ interchanges ω1 and ω2, and

therefore it is enough to focus on one of the two eigenforms.

First, we need the following explicit description of the endomorphism ring of the Prym

variety. Recall that the endomorphism ring End(E) of an elliptic curve is either Z or an

order in an imaginary quadratic field.

Lemma 3.8. Let (η1, η2) be the product basis of �X− as in (2). Then

End(P(X, α2)) = M2(End(E)),

where E ∼= X/β. Self-adjoint endomorphisms correspond to matrices satisfying MT
=

Mσ , where Mσ denotes conjugation by the non-trivial Galois automorphism of End(E)
on each entry.

Moreover, ω1 corresponds to the η-representation (1, i) and ω2 to the representation

(1, −i).

Proof. The first part of the lemma follows immediately from Corollary 3.4. The claim

about the eigenforms follows from (3).

We now have all the ingredients assembled to prove the formula for the points of order

2.

Proof of Theorem 3.1. Recall that X classifies an orbifold point of order 2 on WD if and

only if P(X, α2) admits proper self-adjoint real multiplication with the α-eigenforms ω1 or

ω2 as an eigenform. Since these are interchanged by β, it is enough to focus our attention

on ω1.

Again, we set E = X/β. Note that, by Theorem 3.6, E must not be isomorphic to Eζ6 .

Assume that D is not a square. Now, in the η-basis of E × E , the form ω1 has the

representation (1, i) (cf. Lemma 3.8). In other words, (X, ω1) ∈ �X is an orbifold point

on WD if and only if there exists TD ∈ M2(End(E)), where

TD =




1
2
−

√
−D
2

√
−D
2

1
2

 , if D ≡ 1 mod 4, and

 0 −

√
−D
2

√
−D
2

0

 , if D ≡ 0 mod 4,

while there is no TD′ ∈ M2(End(E)) for D = f 2 D′.
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As End(E) is integral over Z and 1/2 is not, the case D ≡ 1 mod 4 can never occur.

The other case occurs whenever
√
−D/2 ∈ End(E), and this happens if and only if E has

complex multiplication by the order O−D ⊂ Q(
√
−D).

To determine precisely which orders O−C contain such a maximal TD, note that, by

definition,
√
−D/2 ∈ O−C if and only if D = b2C for some integer b. Moreover, C must

be congruent with 0 or 3 mod 4 so that −C is a discriminant.

For b > 2 the action is never proper, and therefore we can assume b = 1 or 2.

The case b = 1 implies that elliptic curves E not isomorphic to Eζ6 admitting complex

multiplication by O−D always determine an orbifold point of order 2 on WD.

As for b = 2, there are several options. If D/4 ≡ 1 mod 4, then −D/4 ≡ 3 mod 4 is not

a discriminant. If, however, C = D/4 ≡ 3 mod 4, then −C is a discriminant and complex

multiplication by O−C = O−D/4 also gives proper real multiplication by OD on the Prym

part. Finally, if C = D/4 ≡ 0 mod 4, then −C is a discriminant but the Prym then admits

real multiplication by OC , hence the real multiplication by OD is not proper in these cases.

Moreover, observe that E ∼= Eζ6 if and only if C = 3, i.e. D = 12. On the other hand,

if D = 12, there exists precisely one elliptic curve with proper complex multiplication by

O−12 and hence W12(6) admits one point of order 2 and one point of order 6.

Finally, as it is well known that there are h(−C) elliptic curves admitting complex

multiplication by O−C , this proves the result.

For the square discriminant case D = f 2, one can follow the same reasoning as

above and use the fact that OD = Z[T ]/(T 2
− f T ) to deduce that the generator T ∈

M2(End(E)) must agree with

T =


f
2
−i

f
2

i
f
2

f
2


and an analysis similar to the one above proves the theorem.

4. Points of order 3

In this section we prove the formula for the orbifold points of order 3 on WD.

Recall the numbers

e3(D) = #{a, i, j ∈ Z : a2
+ 3 j2

+ (2i − j)2 = D, gcd(a, i, j) = 1}/12.

We have the following description of the orbifold points of order 3.

Theorem 4.1. Let D 6= 12 be a positive discriminant. Then WD has e3(D) orbifold points

of order 3.

To describe the points of order 3 on WD, we again describe the intersection with the

locus of curves with a fixed type of automorphism.

Curves admitting an automorphism of order 6

By Proposition 2.1, for an (X, ω) to parametrise a point of order 3 on WD the curve X
must necessarily admit an automorphism α of order six with two fixed points and two
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orbits of length 2 admitting ω as an eigenform. Note that in particular X/α has genus 0.

Cyclic covers of the projective line have been thoroughly studied by several authors (see

for example [4, 21], see also [25] for a brief summary of the facts required here).

Now, there are two families of cyclic covers of P1 of degree 6 with the given branching

data, namely:

Yt : y6
= x(x − 1)2(x − t)2, t ∈ P1

\{0, 1,∞}
and

Zt : y6
= x(x − 1)2(x − t)4, t ∈ P1

\{0, 1,∞}.
Denote by α = αt the automorphisms (x, y) 7→ (x, ζ6 y) of order 6 on Yt and on Zt .

Note that both Yt/α
3 and Zt/α

3 have genus 2, so ρ = α3 is actually a Prym involution.

The following proposition shows immediately that no member of the Z family can

belong to a Teichmüller curve WD.

Lemma 4.2. The space �Z− is disjoint from the minimal stratum �M4(6).
Proof. It is easy to check (see for example [4]) that for each t the space �Z−t is generated

by the differentials

ξ1 =
y dx

x(x − 1)(x − t)
and ξ2 =

dx
y
.

They both lie in the stratum �M4(12, 4). In fact, a local calculation shows that

div ξ1 = 4P1+ R′1+ R′2 and

div ξ2 = 4P2+ R′′1 + R′′2 ,

where the Pi are the two fixed points of α and {R′i } and {R′′i } are the α-orbits of length 2.

Now, any element of �Z−t different from the generators can be written as a linear

combination ξ = a ξ1+ b ξ2. But, since the ξi vanish at different points, such a differential

can never have a zero at any point of Fix(α), nor at any point in the two α-orbits of

length 2. As a consequence ξ ∈ �Z−t (16) and the result follows.

The following lemma detects which fibres of the Y family are isomorphic, together with

the special fibre having a larger automorphism group.

Lemma 4.3. The isomorphism z 7→ 1/z of P1 lifts to an isomorphism Yt ∼= Y1/t for each

t ∈ P1
\{0, 1,∞}.

In particular, at the fixed point, the automorphism α−1 of the curve Y−1 extends to an

automorphism γ : (x, y) 7→ (1/x, y/x) of order 12.

Proof. As the curve is given in coordinates explicitly as a cyclic cover of P1, this is a

straightforward calculation.

The intersections of Y and WD will give the orbifold points of order 3 on WD. To make

this statement more precise, we begin by the following observation.

Proposition 4.4. For each t the space �Y−t is generated by the α-eigenforms

ω1 =
y dx

x(x − 1)(x − t)
and ω2 =

−y dx
√

t(x − 1)(x − t)
.

Up to scale, the only differentials in �Y−t (6) are ω1 and ω2.
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Proof. The local expressions show that these differentials are holomorphic for all t . They

obviously span the α-eigenspace of eigenvalue ζ6 and therefore generate �Y−t (cf. [4]).

It is easy to see that ω1 (resp. ω2) has a single zero at the single point at infinity (has

a single zero at (0, 0)). Now, for every a 6= 0 the zeroes of the differential

ωa := ω1+ aω2 =
y dx

(x − 1)(x − t)

(
1
x
+ a

)
are located at the points with x-coordinate −1/a. They are either six simple zeroes if

a 6= −1,−1/t , or three zeroes of order 2 otherwise.

Remark. Note that, in contrast to the family X of curves with a D8 action, the

α-eigenspace inside �Y−t is in fact 2-dimensional. However, we are only be interested

in the two 1-dimensional subspaces of eigenforms with a single zero.

Because of the flat picture of the differentials (Yt , ωi ), we call Y the Hurricane family

(see § 6). Note that (ω1, ω2) yields an α-eigenbasis of �Y−t . The following is a consequence

of Lemma 4.2 and Proposition 4.4.

Corollary 4.5. Let X be a genus 4 curve admitting an automorphism α of order 6 with

two fixed points and two orbits of length 2. If (X, ω) ∈ �X−(6) then X ∈ Y and ω = ω1
or ω2. In particular, ω is an α-eigenform.

Corollary 4.6. A flat surface (X, ω) parametrising a point on WD corresponds to an

orbifold point of order 3 if and only if there is some t ∈ P1
\{0, 1,−1,∞} such that X ∼= Yt

and [ω] = [ω1] or [ω] = [ω2].

It corresponds to an orbifold point of order 6 if and only if X ∼= Y−1 and [ω] = [ω1] or

[ω] = [ω2].

Proof. This is a consequence of Propositions 2.1, 4.4 and Lemma 4.2.

We must therefore analyse when the Prym part of Yt admits real multiplication. Recall

that the elliptic curve Eζ , where ζ := exp(2π i/6), is the only elliptic curve admitting an

automorphism of order 6 fixing the base point. It corresponds to the hexagonal lattice,

i.e.

Eζ ∼= C/3ζ , with 3ζ = Z⊕ ζZ.
Next, we collect some useful observations.

Lemma 4.7. Any curve Yt admits an involution β commuting with α, i.e. such that

〈α, β〉 ∼= C6×C2. Moreover, one has P(Yt , ρ) ∼= Eζ × Eζ .

The general member Zt of the Z family has an automorphism group equal to C6.

Proof. By [24, Theorems 1 and 2] there is only one Fuchsian group containing a

generic Fuchsian group of signature (0; 3, 3, 6, 6). The signature of such supergroup is

(0; 2, 2, 3, 6), and the inclusion is of index 2 and therefore normal. As a consequence, the

automorphism group of any general fibre in the Y family or the Z family is at most an

extension of index two of C6.

In the case of Yt , the inclusion induces an extra automorphism β := βt , given by

(x, y) 7→ (x/t,
√

t y/x).

https://doi.org/10.1017/S1474748017000196 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748017000196


692 D. Torres-Teigell and J. Zachhuber

In particular α3 and β generate a Klein four-group such that the quotients Yt/β

and Yt/α
3β have genus 1. Therefore, they satisfy the conditions of Proposition 2.2 and

P(Yt , ρ) ∼= Yt/β ×Yt/α
3β. Since α induces an automorphism ψ of order 6 on both Yt/β

and Yt/α
3β, they are necessarily isomorphic to the elliptic curve Eζ .

As for the Z family, any such automorphism would induce an automorphism of Zt/α ∼=

P1 permuting orbifold points of the same order. Since the exponents at 0 and ∞ and at

1 and t are different, there cannot be such an automorphism.

We write again p1 : Yt → Yt/β and p2 : Yt → Yt/α
3β for the corresponding projections.

The following lemma gives an explicit formula for these two maps that will be needed

later to compute the explicit pullbacks of the differentials on Eζ .

Lemma 4.8. Consider the Weierstraß equation {v2
= u3

− 1} defining Eζ . In this model,

the maps p1 and p2 are given by

p1 : Yt → Eζ

(x, y) 7→
(

−1
(1+
√

t)2/3
(x − 1)(x − t)

y2 ,
i

(1+
√

t)
(x − 1)(x − t)(x +

√
t)

y3

)
,

p2 : Yt → Eζ

(x, y) 7→
(

−1
(1−
√

t)2/3
(x − 1)(x − t)

y2 ,
i

(1−
√

t)
(x − 1)(x − t)(x −

√
t)

y3

)
.

These maps are only unique up to composition with (a power of) α.

Proof. The map Yt → Yt/β induces an isomorphism between the function field C(Yt/β)

and the subfield C(Yt )
〈β〉
⊂ C(Yt ) fixed by β∗. This subfield is generated by the rational

functions

ũ := x +β(x)+ 2
√

t =
(x +
√

t)2

x
, ṽ := y+β(y) = y

x +
√

t
x

.

Using the equation of Yt it is easy to check that the generating functions ũ and ṽ satisfy

the relation ṽ6
= ũ3(̃u− c)2, where c = (1+

√
t)2. One can then check the ramification

points of the degree 6 function (̃u, ṽ) 7→ ũ and easily deduce the isomorphism

Ẽ : ṽ6
= ũ3(̃u− c)2 → Eζ : v2

= u3
− 1

(̃u, ṽ) 7→ (u, v) =

(
−ũ(̃u− c)

c1/3 ṽ2 ,
i ṽ3

c1/2 ũ(̃u− c)

)
.

Finally, replacing ũ and ṽ by their values in terms of the coordinates x and y, one gets

the formula for p1.

The same argument replacing β by α3β yields the result for p2.

Fibre products

Similarly to the case of the D8 family, one can also construct the Hurricane family Y
of genus 4 curves with a C6×C2 action as a certain family of fibre products over two
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isomorphic elliptic curves. In order to do so, let ψ denote the automorphism of order 6
on Eζ and consider the following diagram:

X X/β ∼= Eζ

X/α3 X/〈α3, β〉 ∼= P1

P1 ∼= X/α X/〈α, β〉 ∼= P1

p1

ϕ

Clearly, β is the hyperelliptic involution on X/α3. On X/α ∼= P1 the involution β has

two fixed points and the preimages of these points give the six Weierstraß points on

X/α3. Moreover, X → X/α3 is ramified only over the two fixed points of α, while the

map X/α3
→ X/α also branches at R′ and R′′, the preimages (on X) being {R′1, R′2} and

{R′′1 , R′′2 }, respectively.

Now, α and β have no common fixed points, hence the image of the (two) fixed points

of α on X gives the (unique) fixed point O of ψ = α on Eζ . In addition, β interchanges

R′ and R′′, hence we may name the fibres such that the images R1 of {R′1, R′′1 } and R2 of

{R′2, R′′2 } form the unique ψ-orbit of order 3 on Eζ .
On the other hand, the six Weierstraß points of X/α3 have 12 preimages on X with

β acting on each fibre. Three fibres form the six fixed points of β on X , i.e. the branch

points of p1, while the other three give the fixed points of α3β, which are equivalently

the fixed points of the elliptic involution φ = α3 on X/β, i.e. the three 2-torsion points.

The situation is exactly reversed for the projection p2 : X → X/α3β ∼= Eζ .
Finally, note that in Lemma 4.8 the coordinates on Eζ were chosen such that the

projection ϕ : Eζ → P1 ∼= Eζ /φ to the quotient by the elliptic involution maps O to ∞

and both R1 and R2 to 0. Observe that ψ then descends to an automorphism of order 3
on the quotient that fixes 0 and ∞. In particular, we can assume ϕ(ψ(S)) = ζ 2

6 ϕ(S), for

each S ∈ Eζ .
Now, for each P ∈ E∗ζ := Eζ \(Eζ [2] ∪ {R1, R2}) consider the map ϕP : Eζ → P1, Q 7→

ϕ(P) ·ϕ(Q). We define Y = YP as the fibre product of the diagram

Eζ
ϕ
−−→ P1 ϕP

←−− Eζ .

This fibre product admits a group of automorphisms isomorphic to C6×C2 given by the

restriction of the following automorphisms of Eζ × Eζ :

α(Q1, Q2) = (ψ(Q1), ψ(Q2)), β(Q1, Q2) = (Q1, ψ
3(Q2)).

By Lemma 4.7, every YP is therefore a fibre of the Y family.

Proposition 4.9. The map P 7→ YP gives a 6-to-1 map between the set of elliptic pairs of

points E∗ζ /φ and the fibres of Y.

It descends to a 2-to-1 map between the set E∗ζ /ψ of regular orbits of ψ and the fibres

of Y. Moreover, the only ramification value of this map corresponds to the curve Y−1
admitting an automorphism of order 12.
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Proof. Let P ∈ E∗ζ . Note that the construction does not depend on the choice of

{P, φ(P)}. In fact, even for any choice of a different point in the orbit {ψ j (P)}5j=0 the

automorphism of Eζ × Eζ given by (Q1, Q2) 7→ (Q1, ψ
− j (Q2)) induces an isomorphism

between YP and Yψ j (P).

Now, for the point P ′ ∈ E∗ζ such that φ(P ′) = 1/φ(P), the automorphism (Q1, Q2) 7→

(Q2, Q1) induces an isomorphism between YP and YP ′ .

On the other hand, for any Y ∈ Y take x ∈ Fix(β) and write P = [x] ∈ Y/β ∼= Eζ for

its image in the quotient. It is straightforward to check that Y ∼= YP . Any other choice

of x ∈ Fix(β) or x ∈ Fix(α3β) determines different points in {ψ j (P), ψ j (P ′)}5j=0, defining

the same fibre product.

Remark. Note that the action of ψ on the point P corresponds to the action of α on the

maps pi mentioned in Lemma 4.8. The remaining factor of 2 comes from the (generic)

identification of Yt with Y1/t

Eigenforms with a single zero

By Lemma 4.7, all Prym varieties in the Y family are isomorphic. To understand

End(P(Yt , ρ)), where ρ = α3, denote by (η1, η2) again the product basis of �Y−t given

by

ηi = p∗i ηE , for i = 1, 2. (4)

It is well known that Oζ := End(Eζ ) = Z⊕Zζ 2
6 are the Eisenstein integers.

Lemma 4.10. Let (η1, η2) be the product basis of �Y−t from (4). Then

End(P(Yt , α
3)) = M2(End(Eζ )) = M2(Oζ ).

Self-adjoint endomorphisms correspond to matrices MT
= Mσ , where Mσ denotes

conjugation by the non-trivial Galois automorphism of Oζ on each entry.

Proof. This is an immediate consequence of Lemma 4.7.

While the product basis gives an easy understanding of the endomorphism ring, and

while in fact any differential in �Y−t is an α-eigendifferential, we are interested in

α-eigendifferentials with a single zero that are also eigenforms for real multiplication

of the Prym variety. By Proposition 4.4, these are precisely the differentials ω1 and ω2
on Yt .

To check whether ω1 or ω2 are eigenforms for real multiplication, we must therefore

keep track of these differentials in the product basis. For this, we set

µ := µt :=

(
1−
√

t
1+
√

t

)1/3

.

The relationship between the α-eigenbasis and the product basis can be summarised as

follows:

Lemma 4.11. Denote by (η1, η2) the product basis. Then

[ω1] = [−µt η1+ η2], [ω2] = [µt η1+ η2]
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gives an α-eigenbasis with ωi having each a single zero on Yt .

In particular, for each isomorphism class of curves [Y ] ∈ Y, with [Y ] 6= [Y−1], there

exist 12 elements µt ∈ C∗ such that µt η1+ η2 are precisely the α-eigendifferentials with

a single zero on [Y ].
On the curves [Y−1] there are six different values of µ giving eigendifferentials with a

single zero.

Proof. The differential ω1+ω2 (resp. ω1−ω2) is β-invariant (resp. α3β-invariant).

Therefore, there exist k1, k2 such that ω1+ω2 = k1 η1 and ω1−ω2 = k2 η2, where ηE
is a fixed differential on Eζ .

In particular
−x
√

t
=
ω2

ω1
=

k1 η1− k2 η2

k1 η1+ k2 η2
.

One can solve for k1/k2 to get

k1

k2
= −

(x −
√

t)η2

(x +
√

t)η1
,

and then, using Lemma 4.8 and choosing ηE = du/v in that model,

k1

k2
= −

(
1−
√

t
1+
√

t

)1/3

= −µ.

Now, solving t in terms of µ gives

t =

(
µ3
− 1

µ3+ 1

)2

,

and Lemma 4.3 implies the rest of the claims.

Note that every value of µ gives two eigendifferentials with single zeros on (generically)

two different fibres of Y, which are identified by six different isomorphisms.

Lemma 4.12. For t 6= −1 we have that in P�Y(6)

(Yt , ω1) ∼= (Yt , ω2) ∼= (Y1/t , ω1) ∼= (Y1/t , ω2)

as flat surfaces and (Yt , ω1) 6∼= (X, ω) for all other (X, ω) ∈ P�Y(6).

Proof. This is clear by Proposition 4.4, Lemma 4.3 and the fact that β interchanges the

classes of ω1 and ω2.

In particular, we do not have to distinguish between the classes of ω1 and ω2. This

relationship becomes more explicit when expressed in the fibre product construction.

Proposition 4.13. Let (µ ηE , ηE ) ∈ �Eζ ×�Eζ , µ 6= 0 and let P = (A, B) ∈ E∗ζ . The

corresponding α-eigendifferential µη1+ η2 on YP has a single zero at a fixed point of

α if and only if A = µ2.
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In particular, this induces a 12-to-1 map

C∗ → P�Y(6)
µ 7→ [(YP , [µη1+ η2])],

where [P] = (µ2,±
√
µ6− 1) is an elliptic pair on Eζ .

Proof. For each P ∈ E∗ζ we consider the differentials η1 = p∗1ηE and η2 = p∗2ηE on YP .

The proof of this theorem will proceed in a similar way to the proof of Theorem 3.6 up

until Step 3.

Step 1. The α-eigenforms in �Y−P can have zeroes at most at one of the fixed points of α.

Otherwise, every differential in �Y−P would vanish at both fixed points of α. In

particular, so would η1 and η2, but the maps pi are unramified at Fix(α) and we know

that ηE has no zeroes in E .

Again, zeroes of α-eigenforms must be permuted by α, the orbits of which have length

1, 2 or 6. This immediately implies that α-eigenforms lie either in �YP (16) if the zeroes

are located at regular points, in �YP (6) if it only has zeroes at a fixed point of α, or

in �YP (32) if it has zeroes at the two points of the orbit of length 2 (see the proof

of Proposition 4.4). Again, we just need to prove that ω1, ω2 ∈ �YP (6).

Step 2. Again, p∗i ηE vanishes only at the six branch points of pi . In particular both η1
and η2 lie in �YP (16).

Step 3. Let Eζ ∼=
{
v2
= (u3

− 1)
}

with the point at infinity as a distinguished point, and let

(µ ηE , ηE ) ∈ �Eζ ×�Eζ . We claim that, given a point P = (A, B) in these coordinates,

the differential µη1+ η2 on YP has a single zero if and only if A = µ2.

Note that we can normalise ϕ : Eζ → P1 to be (u, v) 7→ u. By construction of YP as

the fibre product of the maps ϕ, ϕP : Eζ → P1, points in YP outside of the branch loci of

the maps pi can then be seen as pairs

Q =

(u, ε1

√
u3− 1

)
,

 u
A
, ε2

√
u3− A3

A3

 ∈ Eζ × Eζ ,

where ε1, ε2 ∈ {±1}. Normalising ηE = dx/y, and evaluating locally around Q yields

µη1+ η2(Q) =
ε1µ
√

u3− 1
+

ε2
√

A3

A
√

u3− A3
=
ε1µA

√
u3− A3+ ε2

√
A3(u3− 1)

A
√
(u3− 1)(u3− A3)

.

Comparing again the addends in the numerator and taking squares, one sees that this

differential vanishes at Q (for two choices (ε1, ε2) and (−ε1,−ε2)) whenever

u3
= A ·

µ2 A2
− 1

µ2− A
.

In particular, whenever the right-hand side is different from 0, 1 and ∞ one has that

the differential µη1+ η2 necessarily has 6 simple zeroes. The case u3
= 1 corresponds to

µ = 0, which has been treated in Step 2. The case u = 0 corresponds to A = ±1/µ and

yields the differentials with zeroes at the two points of the α-orbit of length 2.
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Finally, if A = µ2 the zeroes of the differential must be in Fix(α), and Step 1 then

implies that there is a single zero.

As a consequence, to each µ ∈ C∗ we can associate the elliptic pair of points

[P] = (µ2,±

√
µ6− 1) ∈ E∗ζ ,

defining the curve YP together with the differential with a single zero µη1+ η2. By

Proposition 4.9 and the fact that ±µ give the same elliptic pair and, by Lemma 4.12,

the same class of flat surfaces, the association is 12-to-1.

We are now finally in a position to prove the formula for e3(D).

Proof of Theorem 4.1. First, let D be a nonsquare discriminant and recall the order

OD = Z⊕ TDZ associated to D, where

TD =


√

D
2
, D ≡ 0 mod 4,

√
D+ 1
2

, D ≡ 1 mod 4.

Then, for i = 1, 2, (Yt , ωi ) lies on WD if and only if P(Yt , ρ) admits real multiplication

with ωi as an eigenform. By Lemmas 4.10 and 4.11 this is equivalent to the existence of

some self-adjoint matrix

A =
(

a b
c d

)
∈ M2(Oζ ) such that A ·

(
±µ

1

)
= T ·

(
±µ

1

)
.

By Lemma 4.12, it suffices to consider +µ. Moreover, by self-adjointness, we have c = bσ ,

the Galois conjugate in Oζ , and a, d ∈ Z. The eigenform condition then yields

(a− TD)µ+ b = 0 and bσµ+ d − TD = 0.

The first equation gives

µ =
b

TD − a
and substituting this into the second equation yields

bbσ − ad = T 2
D − (a+ d)TD.

First, we consider the case D ≡ 0 mod 4. Then this gives

bbσ − ad =
D
4
− (a+ d)

√
D

2
.

As the right side of the equation must be an integer, we find a = −d and hence

D = 4bbσ + (2a)2, for D ≡ 0 mod 4.

Similarly, for D ≡ 1 mod 4, we obtain d = a− 1 and thus

D = 4bbσ + (2a− 1)2, for D ≡ 1 mod 4.
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It is well known that the norm squared of an element in Oζ is given by

bbσ = i2
− i j + j2

=
3 j2
+ (2i − j)2

4
, for b = i + ζ 2

6 j.

Hence, P(Yt , ρ) admits a real multiplication by OD with ωi as an eigenform for every

a, i, j ∈ Z such that

a2
+ 3 j2

+ (2i − j)2 = D.

Clearly, this real multiplication is proper if and only if gcd(a, i, j) = 1.

By Lemma 4.11 or equivalently Proposition 4.13, this gives 12 times the cardinality of

points of order 3.

A similar analysis in the square discriminant case D = f 2 yields, with the same notation

as above, d = f − a and bbσ − a( f − a) = 0. Multiplying by 4 and adding f 2 to both sides

of the equation one gets

D = 4bbσ + (2a− f )2,

and the same argument as above proves the result.

5. Points of order 5

In this section we find the orbifold points of order 5 on the Teichmüller curves WD.

Theorem 5.1. The Teichmüller curve W5 has one orbifold point of order 5. For any other

discriminant, WD has no orbifold points of order 5.

Curves admitting an automorphism of order 10

By Proposition 2.1, flat surfaces (X, ω) parametrising a point of order 5 on WD will

correspond to cyclic covers of degree 10 of P1 ramified over three points with ramification

order 5, 10 and 10. There are two such curves:

V : y10
= x(x − 1)2, and U : y10

= x(x − 1)8.

Calculations similar to the ones in the proof of Lemma 4.2 and Proposition 4.4 give us

the differentials with a single zero on these curves.

Proposition 5.2. The space �V− is generated by the α-eigenforms

ω1 =
y dx

x(x − 1)
, ω2 =

y3 dx
x(x − 1)

.

Up to scale, the only differential in �V−(6) is ω1.

The space �U− is disjoint from the minimal stratum �M4(6).

In particular one has the following corollary.

Corollary 5.3. Let X be a genus 4 curve admitting an automorphism α of order 10 with

two fixed points and an orbit of length 2. If (X, ω) ∈ �X−(6) then X = V and, up to scale,

ω = ω1. In particular, ω is an α-eigenform.
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Figure 3. Left: A 4-differential of genus 1 with a zero and pole, each of order 3. The length of c and the
angle θ give a complex parameter. Centre: A 6-differential of genus 0 with a single zero of order 1, a
pole of order 5 and two poles of order 4 each. The length of b and the angle θ give a complex parameter.
Right: The unique (up to scale) 10-differential on P1 with poles of order 3, 8 and 9.

The action of α on P(V, α5) induces an embedding Q(ζ10) ↪→ EndQ(P(V, α5)) and,

in particular, determines an element T5 = α+α
−1
= (
√

5+ 1)/2 for which ω1 is an

eigenform.

Proof of Theorem 5.1. By the argument above and the maximality of O5, the Prym

variety P(V, α5) admits proper real multiplication by O5 with ω1 as an eigenform.

Now Teichmüller curves �WD and �WE are disjoint for different discriminants D and

E . Therefore, as ω1 is, up to scale, the only differential with a single zero on V, there can

be no other WD with a point of order 5.

6. Flat geometry of orbifold points

In this section we describe, up to scale, the translation surfaces corresponding to the

Turtle family X , the Hurricane family Y and the curve V. We use the notion of

k-differentials and (1/k)-translation structures, cf. [2, §§ 2.1, 2.3].

Note that, whereas in the first two cases we have a 1-dimensional family of flat surfaces,

in the case of V the construction is unique (cf. Corollary 5.3). The case of a flat surface

with a symmetry of order twelve, also unique, is given by X ∩Y, the intersection of the

Turtle family and the Hurricane family (cf. Theorem 3.6).

Points of order 2

We briefly describe the construction of flat surfaces (Xκ , ηκ) ∈ �X (6) (that is curves Xκ
with a four-fold symmetry α together with a differential ηκ with a six-fold zero) in terms

of a parameter κ = κ(c, θ).
By Proposition 2.1, the quotient Xκ/α is of genus 1 with two fixed points. Therefore, a

4-differential ξ of genus 1 with a zero and a pole, each of order 3, at the two fixed points

will have (Xκ , ηκ) as a canonical cover, i.e. η4
κ = π

∗ξ , cf. [2]. The polygon corresponding

to ξ is given in Figure 3 with an angle of 2π/4 at the pole and 7 · 2π/4 at the zero. Note
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Figure 4. Left: A 12-differential of genus 0 with a pole of order 5 that pulls back to the zero, and poles
of order 11 and 8. Note that this is unique up to scaling. Centre: By taking the canonical double cover,
we obtain a 6-differential on P1 as in Figure 3. Right: By taking a triple cover, we obtain a 4-differential
on the elliptic curve Eζ with an automorphism of order 6. If we cut and re-glue as indicated, we obtain
a polygon as in Figure 3.

that the three pairs of sides are identified by translation and rotation by angle π/2 and

that the side c can be chosen as a complex parameter (i.e. the length of c and the angle

θ). The ‘unfolded’ canonical cover, resembling a turtle, is pictured in Figure 1 (§ 1).

Points of order 3

Similarly, we can construct flat surfaces (Yτ , ητ ) ∈ �Y(6) admitting a six-fold symmetry

α and a six-fold zero in terms of a parameter τ = τ(b, θ).
By Proposition 2.1, the quotient X/α is of genus 0 with two fully ramified points and

two points that are fully ramified over an intermediate cover of degree 3. For the flat

picture, this implies that we have a zero with angle 7 · 2π/6, a pole with angle 2π/6 and

two poles with angles 2π/3, see Figure 3 where the sides are identified by translation

and rotation of multiplies of 2π/6 to give a surface of genus 0. Equivalently, this is a

6-differential on P1 with a single zero of order 1, a pole of order 5 and two poles of order

4, admitting a canonical cover with only a single zero, cf. [2, § 2]. The ‘unfolded’ canonical

cover, resembling a hurricane, is pictured in Figure 2 (§ 1).

Point of order 6

By Theorem 3.1, there is a unique Prym differential (X, ω) with a symmetry of order 12
situated on W12(6).

By Proposition 2.1, we may picture this as a degree 12 cyclic cover of P1 with two

points of order 12 and one point of order 3. Hence, by [2], (X, ω) is the canonical cover

of a 12-differential on P1 with a pole of order 5 that pulls back to the zero, and poles

of order 11 and 8 at the totally ramified point and the point of order 3, respectively.

Equivalently, we may glue a quadrilateral with two angles of 7π/12 each and angles of

2π/12 and 2π/3 to give a surface of genus 0, see Figure 4. By ‘unfolding’ once, i.e. taking

the canonical 2-cover, we obtain the 6-differential on P1 that exhibits (X, ω) as a fibre

in the Hurricane family (see Figure 4). Taking the canonical degree 3 cover, we can cut

and re-glue as indicated in Figure 4 to obtain the 4-differential that is a C12-eigenform

on the elliptic curve with an automorphism of order 6 in the shape of the Turtle family

(see Figure 3).
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Figure 5. The canonical 10-cover of the 10-differential in Figure 3: a C10-eigendifferential of genus 4 with
a single zero Z .

Point of order 5

Finally, by Theorem 5.1 there is a unique point of order 5, i.e. an (X, ω) with a symmetry

of order 10 and a six-fold-zero differential.

More precisely, X is a degree 10 cyclic cover of P1 ramified over three points, two of

order 10 and one of order 5. Hence, (X, ω) is the canonical cover of a 10-differential

ξ on P1 with a pole of order 3 (that pulls back to the single zero on X) and poles of

order 9 and 8 at the second fixed point and the point of order 5 respectively, cf. [2,

Proposition 2.4]. Equivalently, the flat picture has angles of size 2π/10, 2π/5 and two

angles of size 7 · 2π/10 each, see Figure 3 where the sides are identified by translation and

rotation of multiplies of 2π/10 to give a surface of genus 0. Note that this differential is

unique up to scaling. The ‘unfolded’ canonical cover is shown in Figure 5.

7. Genus asymptotics

The aim of this section is to describe the asymptotic behaviour of the genus g(WD) of

WD with respect to D.

As additional boundary components make the calculation of the Euler characteristic

for D = d2 more tedious (cf. [1, § 13]), we assume throughout this section that WD is

primitive, i.e. that D is not a square.

Theorem 7.1. There exist constants C1,C2 > 0, independent of D, such that

C1 · D3/2 < g(WD) < C2 · D3/2.

More precisely, we give the following explicit upper bound on the genus.
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Proposition 7.2. The genus of WD satisfies g(WD) < 1+ D3/2
·

35
48π2 .

We also give an explicit lower bound.

Proposition 7.3. The genus of WD satisfies

g(WD) >
3

200
D3/2
−

D
6
− D3/4

− 150.

Corollary 7.4. The only curves WD with g(WD) = 0 are the loci for D 6 20.

Proof. By Proposition 7.3, g(WD) > 0 whenever D > 1050. The smaller values of D were

checked by computer.

Recall that the genus of WD, g(WD), is given by (D > 12)

g(WD) = h0(WD)−
χ(WD)

2
−

C(WD)

2
−

e2(WD)

4
−

e3(WD)

3
,

where χ(WD) is the (orbifold) Euler characteristic of WD, C(WD) denotes the number of

cusps and ed(WD) the number of points of order d on WD. Moreover, by [10], h0(WD) = 1
and by [17, Theorem 4.1],

χ(WD) = −7χ(X D),

where X D is the Hilbert modular surface of discriminant D. Moreover, χ(X D) was

calculated, for fundamental D, by Siegel in terms of the Dedekind zeta function ζD
of Q(

√
D). For non-fundamental D we write D = f 2 D0, where f is the conductor of D

and
( D0

p

)
for the Legendre symbol, if p is a prime. Furthermore, we set

F(D) =
∏
p| f

(
1−

(
D0

p

)
p−2

)
,

where the product runs over all prime divisors p of f , and thus have

χ(X D) = χ(X f 2 D0
) = 2 f 3ζD0(−1)F(D) = D3/2ζD0(2)

F(D)
2π4 ,

using the functional equation of ζD0 , cf. [1, § 2.3]. Finally, using Euler products, we obtain

the classical bounds

ζ(2)2 =
π4

36
> ζD0(2) > ζ(4) =

π4

90
and

ζ(2)
ζ(4)
=

15
π2 > F(D) >

1
ζ(2)
=

6
π2 .

We can now give an upper bound on g(WD).

Proof of Proposition 7.2. As C(WD), e2(WD), e3(WD) > 0, these terms may be neglected

yielding

g(WD) 6 1+
7
2
χ(X D) < 1+ D3/2

·
35

48π2 ,

using the bounds given above.
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Obtaining a lower bound is slightly more involved, as it involves bounding the number

of cusps and orbifold points from above. In general, the cusps are hardest to control, but

by [9, 13], we have

C(WD(6)) = C(WD(2)),

i.e. the Teichmüller curves of discriminant D in M2 and M4 have the same number

of cusps. Moreover, denote by PD the product locus in A2, i.e. abelian surfaces that are

polarised products of elliptic curves. This is a union of modular curves and, again by [13],

C(WD) = C(PD).

To bound the cusps we may therefore proceed in complete analogy to [19, § 6].

Lemma 7.5. The cusps are bounded from above by

C(WD)

2
6 D3/4

+ 150+
5
4
χ(X D).

Proof. By [1, Theorem 2.22], χ(PD) = −
5
2χ(X D). Moreover, by [19, Proposition 6.5], the

number of connected components of PD can be bounded by

h0(PD) 6 D3/4
+ 150.

Therefore, we may write

−
C(WD)

2
= −

C(PD)

2
= g(PD)− h0(PD)+

χ(PD)

2
+

∑
d

(
1−

1
d

)
ed(PD)

> −h0(PD)+
χ(PD)

2
> −D3/4

− 150−
5
4
χ(X D),

which yields the claim.

Next, we must bound the number of orbifold points.

Lemma 7.6. The number of points of order 2 satisfies e2(D) < D
2 .

Proof. By Theorem 3.1, we have e2(D) 6 h(−D)+ h(− D
4 ). Now, it is well known that

class numbers of imaginary quadratic fields may be computed by counting reduced

quadratic forms (cf. e.g. [7, § 5.3]), giving h(−D) < D
3 and thus proving the claim.

Lemma 7.7. The number of points of order 3 satisfies e3(D) < D
6 .

Proof. By Theorem 4.1,

e3(D) 6 #{a, i, j ∈ Z : a2
+ 3 j2

+ (2i − j)2 = D}/12.

The integers a and j essentially determine i . Moreover, a must have the same parity as

D giving at most
√

D/2 choices (up to sign) and j ranges (again up to sign) over at most
√

D possibilities. Accounting for sign choices and dividing by 12 yields the claim.
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Table 3. Topological invariants of the Teichmüller curves WD(6) for nonsquare discriminant. The number
of cusps is described in [9], the Euler characteristic in [17].

D g χ C e2 e3 e5 e6
5 0 −7/15 1 0 1 1
8 0 −7/6 2 1 1

12 0 −7/3 3 1 0 1
13 0 −7/3 3 0 2
17 0 −14/3 6 0 1
20 0 −14/3 5 2 1
21 1 −14/3 4 0 1
24 1 −7 6 2 0
28 1 −28/3 7 2 2
29 1 −7 5 0 3
32 1 −28/3 7 2 2
33 2 −14 12 0 0
37 1 −35/3 9 0 4
40 2 −49/3 12 2 2
41 3 −56/3 14 0 1
44 3 −49/3 9 4 2
45 4 −14 8 0 0
48 4 −56/3 11 2 1
52 4 −70/3 15 2 2
53 4 −49/3 7 0 5
56 6 −70/3 10 4 2
57 7 −98/3 20 0 1
60 8 −28 12 4 0
61 6 −77/3 13 0 4
65 8 −112/3 22 0 2
68 6 −28 14 4 3
69 10 −28 10 0 0
72 10 −35 16 2 0
73 10 −154/3 32 0 2
76 11 −133/3 21 4 2
77 9 −28 8 0 6
80 10 −112/3 16 4 2
84 14 −140/3 18 4 1
85 12 −42 16 0 6
88 15 −161/3 22 2 4
89 17 −182/3 28 0 1
92 15 −140/3 13 6 4
93 15 −42 12 0 3
96 18 −56 20 4 0
97 21 −238/3 38 0 2

101 14 −133/3 15 0 5
104 18 −175/3 20 6 2
105 27 −84 32 0 0

D g χ C e2 e3
108 21 −63 21 4 0
109 18 −63 25 0 6
112 22 −224/3 29 2 4
113 26 −84 32 0 3
116 21 −70 25 6 3
117 21 −56 16 0 0
120 29 −238/3 20 4 2
124 31 −280/3 29 6 2
125 21 −175/3 15 0 5
128 25 −224/3 22 4 4
129 37 −350/3 44 0 1
132 29 −84 26 4 0
133 27 −238/3 22 0 8
136 35 −322/3 36 4 2
137 37 −112 38 0 3
140 33 −266/3 18 8 4
141 34 −84 18 0 0
145 46 −448/3 58 0 2
148 39 −350/3 37 2 4
149 30 −245/3 19 0 7
152 37 −287/3 18 6 4
153 45 −140 52 0 0
156 46 −364/3 26 8 2
157 36 −301/3 25 0 8
160 44 −392/3 40 4 4
161 55 −448/3 40 0 2
164 37 −112 34 8 3
165 42 −308/3 18 0 4
168 51 −126 24 4 0
172 53 −147 37 4 6
173 37 −91 13 0 9
176 49 −392/3 29 6 4
177 66 −182 52 0 0
180 52 −140 36 4 0
181 49 −133 33 0 6
184 66 −518/3 38 4 4
185 66 −532/3 46 0 2
188 53 −392/3 19 10 4
189 51 −126 26 0 0
192 57 −448/3 34 4 2
193 77 −686/3 74 0 4
197 44 −343/3 21 0 11
200 56 −455/3 36 6 4
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Remark. The bound from Lemma 7.7 can be improved. Indeed, by the theory of modular

forms of half-integral weight, integral solutions of positive definite quadratic forms can

always be realised as coefficients of a suitable modular form, see [23] or e.g. [11] for

the concrete case at hand. In particular, the integral solutions of a2
+ 3 j2

+ (2i − j)2 are

coefficients of a modular form of weight 3/2, level 12 and Kronecker character 12. Hence,

e3(D) < C · D3/4

for some constant C that is independent of D (cf. e.g. [18, Theorem 2.1] for growth rates

of coefficients of modular forms).

This permits us to also give a lower bound for g(WD), proving Theorem 7.1.

Proof of Proposition 7.3. By the above bounds, we have

g(WD) = h0(WD)−
χ(WD)

2
−

C(WD)

2
−

e2(WD)

4
−

e3(WD)

3

>
9
4
χ(X D)−

D
6
− D3/4

− 150,

which yields the claim by the above bounds on χ(X D).
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