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Abstract

We consider the optimal portfolio and consumption problem for a jump-diffusion pro-
cess with regime switching. Under the criterion of maximizing the expected discounted
total utility of consumption, two methods, namely, the dynamic programming principle
and the stochastic maximum principle, are used to obtain the optimal result for the
general objective function, which is the solution to a system of partial differential
equations. Furthermore, we investigate the power utility as a specific example and
analyse the existence and uniqueness of the optimal solution. Under the constraints of
no-short-selling and nonnegative consumption, closed-form expressions for the optimal
strategy and the value function are derived. Besides, some comparisons between the
optimal results for the jump-diffusion model and the pure diffusion model are carried
out. Finally, we discuss our optimal results in some special cases.
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Keywords and phrases: portfolio and consumption, jump-diffusion process, regime
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1. Introduction

For the price process of a risky asset driven by geometric Brownian motion (GBM),
Merton [22, 23] pioneered the study of the consumption and portfolio problem with
unconstrained investment strategy in a continuous-time setting. Since then, the optimal
consumption–portfolio or optimal investment–consumption problem has been studied
extensively by many authors. Among them, Jonathan and Ingersoll [16] studied the
problem for a class of intertemporally dependent utility functions; Akian et al. [2]
considered the optimal problem for an investor with proportional transaction costs and
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Framstad et al. [10] discussed a similar problem in a jump-diffusion market, which
then was extended by Ma et al. [21]; Koo [18] studied the problem with liquidity
constraint and uninsurable income risk; Wachter [31] solved the optimal problem
under mean-reverting returns; Karatzas and Žitković [17] considered the problem in a
constrained incomplete semi-martingale market by convex duality; Chacko and Viceira
[4] examined the problem with constant expected return and stochastic volatility in
incomplete markets; Schied [28] discussed robust optimal control for the problem
under model uncertainty and Cheridito and Hu [5] investigated the problem in a
possibly incomplete market with general stochastic constraints. Other examples can
be found in the literature [6, 11, 19, 26, 29].

In real financial markets, empirical studies often show the invalidity of the GBM
model due to various defects including sudden big changes in stock price or a random
market environment which switches among a finite number of states and hence a
more sophisticated tool for modelling stock prices is needed. To tackle jumps in
stock price, Merton [24] extended the GBM model to a jump-diffusion model for
option pricing. Under this model, Aase [1] studied the optimal portfolio–consumption
problem on a finite-time horizon; Framstad et al. [10] considered the problem on an
infinite-time horizon in the presence of proportional transaction costs with constant
relative risk aversion utility; Ruan et al. [27] investigated the optimal problem with
habit formulation in an incomplete market using the maximum principle; Guambe
and Kufakunesu [14] extended the work of Shen and Wei [29] to a geometric Itô–Lévy
jump process [7], and solved the problem by combining the Hamilton–Jacobi–Bellman
(HJB) equation [32] and a backward stochastic differential equation (SDE); Nguyen
[25] examined the problem with downside risk constraint. Apart from the diffusion
and jump-diffusion models, there are some other models to describe financial mar-
kets in the literature. For regime-switching models, Sotomayor and Cadenillas [30]
considered the investment–consumption problem in a financial market modelled by
an observable finite-state continuous-time Markov chain; Liu [20] investigated this
problem with proportional transaction costs; Gassiat et al. [12] examined the optimal
problem in an illiquid financial market, where the investor can trade a stock only at
the discrete arrival times of a Cox process [7] with intensity depending on the market
regime and Hu and Wang [15] studied the problem with liability and a maximum
value-at-risk constraint.

In this paper, we investigate a finite-time-horizon problem of optimal portfolio and
consumption for a jump-diffusion process in a Markovian regime switching economy,
in which the market modes are divided into a finite number of regimes and all the
key parameters change according to the change in the market mode. Suppose that the
financial market consists of one risk-free asset and n risky assets, where the price
processes are described by a jump-diffusion model. Under the criterion of maximizing
the expected discounted total utility of consumption, we study the problem for the
general objective function using two different approaches, namely the dynamic pro-
gramming principle and the stochastic maximum principle. Specifically, a verification
theorem under the dynamic programming principle as well as sufficient conditions
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for optimality under the stochastic maximum principle are proved. The results show
that the optimal strategies derived by both methods are the same. In the case of a
power utility function [14], under the constraints of no-short-selling and nonnegative
consumption, we investigate the existence and uniqueness of the optimal solution
and obtain closed-form expressions for the optimal strategy and the value function.
Moreover, in order to illustrate the effects of jumps on the optimal results, we carry out
some comparisons between the results for the risk model with and that without jumps.
We conclude that if the finance market is in good shape, investors are willing to invest
more into the risky asset so that the amount of consumption is reduced; whereas if the
financial market is bad, investors prefer investing less into the risky asset; when the
economic situation (good or bad) is not clear, further statistical properties of the jump
amplitude are needed on the comparison of the optimal results. Finally, we demonstrate
that our optimal results in some special cases are consistent with those in the
literature.

The main contribution of the present paper is fourfold. First, we add jumps in
the price processes of the risky assets. This kind of model is more reasonable for a
real financial market, since the information often comes as a surprise, which usually
leads to a jump in the price of a stock. Meanwhile, we consider the Markov regime
switching in various market parameters which can better reflect the random nature of
the underlying market environment than those with constant coefficients. It generalizes
the model of a risky asset from geometric Brownian motion to Markov regime
switching jump-diffusion processes, which makes the analysis more complicated.
Secondly, this paper considers the constraints of no-short-selling and nonnegative
consumption and extends the interval of the optimal portfolio solution from (0, 1)
in Framstad et al. [9] or Guambe and Kufakunesu [14] to (0, π0]. We also prove
the existence and uniqueness of the optimal strategy for the jump-diffusion model,
and closed-form expressions of the optimal strategy and the value function are
derived. In addition, we present the verification theorem and prove it in detail for
the jump-diffusion process with regime switching. Thirdly, we provide Example
4.5 to illustrate the optimal results of Proposition 4.2. It shows clearly what the
optimal portfolio strategy would be in different cases by analysing the monotonicity
and concavity of some function. Lastly, but not least, we carry out some detailed
comparisons between the optimal results for the jump-diffusion risk model and
the pure diffusion model in Section 5 and give some economic interpretations in
Remark 5.2.

The rest of the paper is organized as follows. In Section 2, the models and problem
are formulated. In Section 3, some optimal results for the jump-diffusion process with
regime switching are obtained. Section 4 analyses the existence and uniqueness of
the optimal solution, and derives closed-form expressions for the optimal strategy and
value function under the power utility. Section 5 gives some comparisons between
the optimal results for the jump-diffusion model and the pure diffusion model, while
Section 6 presents the optimal results in some special cases. We conclude the paper in
Section 7.
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2. Model and problem formulation

We consider a continuous-time and right-continuous Markov chain {α(t) | t ∈ [0, T]}
on a complete filtered probability space (Ω,F ,F (t), P), where F (t) is generated by
the information up to time t. The Markov chain α(t) is assumed to take values in a
finite state space M = {e1, e2, . . . , el}, where ei ∈ Rl and the jth component of ei is
the Kronecker delta δij. It is also assumed that the chain is homogeneous and has a
generator Q = (qij)l×l, in which

∑l
j=1 qij = 0 for any ei ∈ M, and qij > 0 if i � j.

Suppose that a financial market consists of a risk-free asset (bond) and n risky assets
(stocks). Assume that risky assets can be traded continuously over [0, T] and that there
are no transaction costs and taxes in trading. The risk-free asset’s price process S0(t) is
given by

dS0(t) = r(t,α(t))S0(t) dt, t ∈ [0, T],

where r(t, ei)(> 0) representing the risk-free interest rate at state ei is a bounded and
deterministic function on [0, T]. For k = 1, 2, . . . , n, the price process of the kth risky
asset denoted by Sk(t) is described by the following stochastic differential equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk(t) = Sk(t−)
[
bk(t,α(t−)) dt +

N∑
j=1

σkj(t,α(t−)) dWj(t)

+

M∑
j=1

∫
R0

ηkj(t, z,α(t−))Nj
α(dt, dz)

]
,

Sk(0) = Sk0,

(2.1)

where the symbol “t−” stands for the time before a jump occurring; Sk0 is the determin-
istic initial price; bk(t, ·) and σkj(t, ·) represent the appreciation rate and volatility coef-
ficient, respectively; ηkj(t, z, ·) (> −1) is the jump amplitude with R0 = R \ {0}; bk(t, ·),
σkj(t, ·), ηkj(t, z, ·) are continuous and bounded; W(t) = (W1(t), W2(t), . . . , WN(t))� is
an N-dimensional standard Brownian motion, where the superscript “�” denotes the
transpose of a matrix or vector and Nα(dt, dz) = (N1

α(dt, dz), . . . , NM
α (dt, dz))� is an

M-dimensional Poisson random measure with compensated Poisson random measures
defined as

Ñj
α(dt, dz) = Nj

α(dt, dz) − νj
α(dz) dt, j = 1, 2, . . . , M.

The diffusion component in equation (2.1) characterizes the normal fluctuation in
a stock’s price, due to gradual changes in economic conditions or arrivals of new
information which causes marginal changes in the stock’s price. The jump component
describes sudden changes in a stock’s price, due to arrivals of important new
information which has large effects on the stock’s price. It is well known from the
SDE theory that a unique solution exists for the SDE (2.1).

ASSUMPTION 2.1. Throughout the paper, we make the following assumptions.
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(A1) Nj
α(dt, dz), j = 1, 2, . . . , M, and Wj(t), j = 1, 2, . . . , N, are independent of each

other.
(A2) The expected return of the risky asset is larger than the risk-free

interest rate and hence, for any state ei ∈ M, we assume that bk(t, ei) +∑M
j=1

∫
R0
ηkj(t, z, ei)ν

j
ei (dz) > r(t, ei).

Let πk(t) be the proportion of an investor’s wealth invested into the kth risky
asset at time t and π(t) = (π1(t), π2(t), . . . , πn(t))�, t ∈ [0, T], be the investor’s portfolio
strategy. The remaining proportion of the investor’s wealth invested in the risk-free
asset is then given by 1 −∑n

k=1 πk(t). Assume that the investor consumes wealth with
nonnegative rate c(t) at time t. Denote u(t) = (π(t), c(t)). Given a consumption process
c and a portfolio process π, the wealth process X(t) = Xu(t) of the investor evolves as

dX(t) =
n∑

k=1

πk(t)X(t)
Sk(t−)

dSk(t) +
(
1 −∑n

k=1 πk(t)
)
X(t)

S0(t)
dS0(t) − c(t) dt

=

[{
r(t,α(t−)) +

n∑
k=1

πk(t){bk(t,α(t−)) − r(t,α(t−))}
}
X(t) − c(t)

]
dt

+

n∑
k=1

πk(t)X(t)
N∑

j=1

σkj(t,α(t−)) dWj(t)

+

n∑
k=1

πk(t)X(t)
M∑

j=1

∫
R0

ηkj(t, z,α(t−))Nj
α(dt, dz). (2.2)

Setting
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

B(t,α(t−)) = (b1(t,α(t−)) − r(t,α(t−)), . . . , bn(t,α(t−)) − r(t,α(t−)))�,
σ(t,α(t−)) = (σkj(t,α(t−)))n×N ,
η(t, z,α(t−)) = (ηkj(t, z,α(t−)))n×M ,

we can rewrite the wealth equation (2.2) as

dX(t) = [{r(t,α(t−)) + π�(t)B(t,α(t−))}X(t) − c(t)] dt

+ π�(t)X(t)σ(t,α(t−)) dW(t) +
∫
R0

π�(t)X(t)η(t, z,α(t−))Nα(dt, dz). (2.3)

In the rest of the paper, we write r(t,α(t−)), B(t,α(t−)), σ(t,α(t−)) and η(t, z,α(t−)) as
r, B, σ and η, respectively, for notational convenience.

DEFINITION 2.2. A portfolio–consumption strategy u(·) = (π(·), c(·)) is said to be
admissible if u(·) satisfies the following conditions:

(i) u(t) = (π(t), c(t)) is an F (t)-predictable process;
(ii) πi(t) ≥ 0 for i = 1, 2, . . . , n and c(t) ≥ 0;
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(iii)

E
[∫ T

0

{ ∫
R0

π�(t)X(t)η(t, z,α(t−))η�(t, z,α(t−))π(t)X(t)να(dz)

+π�(t)X(t)σ(t,α(t−))σ�(t,α(t−))π(t)X(t)
}

dt
]
< ∞;

(iv) the SDE (2.3) for X(t) has a unique solution.

The set of all admissible strategies is denoted byU.

For a real-valued continuous and concave function g (with respect to π and c) and a
concave function h (with respect to x), we define the reward function J(t, x, u(·), ei) for
a finite-time horizon [0, T] by

J(t, x, u(·), ei) = Et,x,ei

[ ∫ T

t
e−γsg(s, X(s), u(s),α(s)) ds + e−γTh(X(T),α(T))

]
, (2.4)

where Et,x,ei [·] = E[· | X(t) = x,α(t) = ei], which leads to the value function

V(t, x, ei) = sup
u(·)∈U

J(t, x, u(·), ei). (2.5)

Without the nonnegativity constraints on the portfolio strategy π and the consump-
tion rate c, we denote the corresponding admissible set by Ũ. It is obvious thatU⊆ Ũ.
In the next section, we will focus on the corresponding optimization problem with Ũ,
that is,

V(t, x, ei) = sup
u(·)∈Ũ

J(t, x, u(·), ei), (2.6)

where J(t, x, u(·), ei) is defined in (2.4) and X(t) satisfies the SDE (2.3). We will return
to the problem (2.5) with power utility in Section 4.

3. Some results for the optimization problem

In this section, we aim at investigating the problem (2.6) by two kinds of methods,
namely, the dynamic programming principle and the stochastic maximum principle.

3.1. Dynamic programming principle For any ei ∈ M, let C1,2([0, T] × R) denote
the space of ϕ(t, x, ei) such that ϕ(t, x, ei) and its derivatives ϕt(t, x, ei), ϕx(t, x, ei),
ϕxx(t, x, ei) are continuous on [0, T] × R. For any function ϕ(t, x, ei) ∈ C1,2([0, T] × R),
the usual infinitesimal generator Au under u for the jump-diffusion process (2.3) is
given by

Auϕ(t, x, ei) = ϕt(t, x, ei) + (rx + π�Bx − c)ϕx(t, x, ei) +
1
2
π�xσσ�πxϕxx(t, x, ei)

+

l∑
j=1

qijϕ(t, x, ej) +
M∑

j=1

∫
R0

[ϕ(t, x + π�xη(j), ei) − ϕ(t, x, ei)]ν
j
ei (dz),

where η(j) denotes the jth column of the matrix η.
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According to standard stochastic control theory (see the book by Fleming and Soner
[8]), one can show that the HJB equation associated with the problem (2.6) is⎧⎪⎪⎨⎪⎪⎩

sup
u
{AuV(t, x, ei) + e−γtg(t, x, u, ei)} = 0,

V(T , x, ei) = e−γTh(x, ei).
(3.1)

The following theorem shows a connection between the solution to the HJB equation
(3.1) and the optimal strategy as well as the value function.

THEOREM 3.1 (Verification theorem). Assume that W(t, x, ei) ∈ C1,2 is a solution to the
HJB equation (3.1) with Wx(t, x, ei) > 0, Wxx(t, x, ei) < 0 and u∗ = (π∗, c∗) satisfying

u∗ = arg sup
u
{AuW(t, x, ei) + e−γtg(t, x, u, ei)}.

Then the value function V(t, x, ei) coincides with W(t, x, ei), that is,

W(t, x, ei) = V(t, x, ei).

Furthermore, u∗ is an optimal strategy for the problem (2.6).

PROOF. The HJB equation (3.1) that is satisfied by W(t, x, ei) can be rewritten as

Wt(t, x, ei) + sup
u

{
ψ(π, c) +

l∑
j=1

qijW(t, x, ej)
}
= 0

with the boundary condition W(T , X(T),α(T)) = e−γTh(X(T),α(T)), where

ψ(π, c) = (rx + π�Bx − c)Wx(t, x, ei) +
1
2
π�xσσ�πxWxx(t, x, ei)

+

M∑
j=1

∫
R0

[W(t, x + π�xη(j), ei) −W(t, x, ei)]ν
j
ei (dz) + e−γtg(t, x, u, ei).

For any s ∈ [t, T], applying Itô’s formula [8] to the function W(s, X(s),α(s)) yields

dW(s, X(s),α(s)) =
1
2
π�X(s−)σ(s,α(s−))σ�(s,α(s−))πX(s−)Wxx

+

[
Ws + {r(s,α(s−))X(s−) + π�X(s−)B(s,α(s−)) − c(s)}Wx

+

M∑
j=1

∫
R0

{W(s, X(s−) + π�X(s−)η(j),α(s))

−W(s, X(s−),α(s−))}νj
α(dz)

+

l∑
j=1

{W(s, X(s−), ej) −W(s, X(s−),α(s−))}qα(s−)j

]
ds + dM(t),

(3.2)
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where

M(t) =
∫ t

0
π�(s)X(s)σ(s,α(t−))Wx(s, X(s),α(s−)) dW(s)

+

M∑
j=1

∫ t

0

∫
R0

{W(s, X(s−) + π�(s)X(s−)η(j),α(s))

−W(s, X(s−),α(s−))}Ñj
α(ds, dz)

+

l∑
j=1

∫ t

0
{W(s, X(s−), ej) −W(s, X(s−),α(s−))} dΦ̃j(s).

Here Φ̃j(s), j = 1, 2, . . . , l is an (F , P) martingale (see the paper by Zhang et al. [33]
for more details). Then M(t) is a local martingale. Since bk(t, ·), σkj(t, ·), ηkj(t, z, ·)
are continuous and bounded by the parameter hypothesis and u(·) = (π(·), c(·)) is an
admissible strategy, the first and second terms are square-integrable. Moreover, the
third term is also square-integrable due to the assumption W(t, x, ei) ∈ C1,2. Thus, M(t)
is a martingale.

Adding
∫ T

t e−γsg(s, X(s), u(s),α(s)) ds and taking expectation in equation (3.2),

Et,x,ei

[
W(T , X(T),α(T)) +

∫ T

t
e−γsg(s, X(s), u(s),α(s)) ds

]

= W(t, x, ei) + Et,x,ei

[ ∫ T

t
{AuW(s, X(s),α(s)) + e−γsg(s, X(s), u(s),α(s))} ds

]
.

From (3.1),

AuW(s, X(s),α(s)) + e−γsg(s, X(s), u(s),α(s)) ≤ 0,

where equality holds when u = u∗. By the definition of the objective function (2.4) and
the terminal condition W(T , X(T),α(T)) = e−γTh(X(T),α(T)),

J(t, x, u, ei) ≤ W(t, x, ei), (3.3)

where the equality in (3.3) will hold when u = u∗. Therefore, V(t, x, ei) ≤ W(t, x, ei).
On the other hand,

W(t, x, ei) = J(t, x, u∗, ei) ≤ V(t, x, ei).

As a result, W(t, x, ei) = V(t, x, ei), that is, the solution W(t, x, ei) to (3.1) is the value
function and u∗ is an optimal strategy. This completes the proof. �

Furthermore, the following theorem shows that under some condition, the optimal
result for the problem (2.6) is the solution to a system of partial differential equations.
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THEOREM 3.2. For the portfolio–consumption problem (2.6), if the inequality

e−γtgcc(t, x, u, ei)
[
xσσ�xVxx(t, x, ei) + e−γtgππ(t, x, u, ei)

+

M∑
j=1

∫
R0

Vxx(t, x + π�xη(j), ei)x2η(j)η(j)T
ν

j
ei (dz)

]
− e−2γtg2

cπ(t, x, u, ei) > 0 (3.4)

holds, then the optimal strategy (π∗, c∗) is the solution to the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

BxVx(t, x, ei) + σσ�πx2Vxx(t, x, ei) + e−γtgπ(t, x, u, ei)

+

M∑
j=1

∫
R0

Vx(t, x + π�xη(j), ei)xη(j)ν
j
ei (dz) = 0,

e−γtgc(t, x, u, ei) − Vx(t, x, ei) = 0.

(3.5)

PROOF. Differentiating ψ(π, c) with respect to π and c, respectively, yields
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ψ

∂c
= −Vx(t, x, ei) + e−γtgc(t, x, u, ei),

∂ψ

∂π
= BxVx(t, x, ei) + xσσ�πxVxx(t, x, ei) + e−γtgπ(t, x, u, ei)

+

M∑
j=1

∫
R0

Vx(t, x + π�xη(j), ei)xη(j)ν
j
ei (dz),

∂2ψ

∂c2 = e−γtgcc(t, x, u, ei),

∂2ψ

∂π2 = xσσ�xVxx(t, x, ei) + e−γtgππ(t, x, u, ei)

+

M∑
j=1

∫
R0

Vxx(t, x + π�xη(j), ei)x2η(j)η(j)�ν
j
ei (dz),

∂2ψ

∂c∂π
=

∂2ψ

∂π∂c
= e−γtgcπ(t, x, u, ei).

Since g is a concave function with respect to π and c and the Hessian matrix

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2ψ

∂c2

∂2ψ

∂c∂π
∂2ψ

∂π∂c
∂2ψ

∂π2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is a negative-definite matrix because of inequality (3.4), the maximizer u∗ = (π∗, c∗) to
the HJB equation (3.1) satisfies equation (3.5). �

3.2. Stochastic maximum principle In this subsection, we discuss the problem
(2.6) using the approach of the stochastic maximum principle. Define the Hamiltonian
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function H : [0, T] × R × U ×M× R × RN × RM −→ R by

H(t, x, u, ei, p,ϕ,ψ) = −e−γtg(t, x, u, ei) +
[{

r + π�
(
B +
∫
R0

ηνei (dz)
)}

x − c
]
p(t)

+

n∑
k=1

N∑
j=1

πkxσkjϕj(t) +
n∑

k=1

M∑
j=1

∫
R0

πkxηkjψj(t, z)νj
ei (dz).

Assume that the Hamiltonian function H is differentiable with respect to x.
The adjoint equation corresponding to u and X(t) for the unknown adapted

processes p(t),ϕ(t) and ψ(t, ·), where p(t) ∈ R,ϕ(t) ∈ RN and ψ(t, ·) ∈ RM , is given by
the following SDE:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dp(t) =
{
e−γtgx(t, X(t−), u,α(t−)) −

[
r + π�

(
B +
∫
R0

ηνα(t−)(dz)
)]

p(t−)

−
n∑

k=1

N∑
j=1

πkσkjϕj(t) −
n∑

k=1

M∑
j=1

∫
R0

πkηkjψj(t, z)νj
α(t−)(dz)

}
dt

+

N∑
j=1

ϕj(t) dWj(t) +
M∑

j=1

∫
R0

ψj(t, z)Ñj
α(dt, dz),

p(T) = − e−γthx(X(T),α(T)).

(3.6)

For the existence and uniqueness of the solution to the SDE (3.6) with jumps,
interested readers are referred to Zhang et al. [33].

The next theorem develops a sufficient stochastic maximum principle for the
optimal problem.

THEOREM 3.3 (Sufficient conditions for optimality). Let u∗ ∈ Ũ with the correspond-
ing solution X∗ = Xu∗ . Suppose that there exists an adapted solution (p̂(t), ϕ̂(t), ψ̂(t, ·))
to the corresponding adjoint equation (3.6) such that for all u(·) ∈ Ũ,

E
[ ∫ T

0
(X∗(t) − X(t))2

(
ϕ̂�(t)ϕ̂(t) +

∫
R0

ψ̂�(t, z) Diag(να(dz))ψ̂(t, z)
)

dt
]
< ∞

and

E
[ ∫ T

0
p̂(t)2
(
π∗(t)�X∗(t−)σσ�π∗(t)X∗(t−)

+

∫
R0

π∗(t)�X∗(t−)η Diag(να(dz))η�π∗(t)X∗(t−)
)

dt
]
< ∞.
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Assume further that the following three conditions hold:

(i) for almost all t ∈ [0, T],

H(t, X∗(t−), u∗(t),α(t−), p̂(t−), ϕ̂(t), ψ̂(t, ·))
= inf

u
H(t, X∗(t−), u(t),α(t−), p̂(t−), ϕ̂(t), ψ̂(t, ·));

(ii) for each fixed pair (t, ei) ∈ [0, T] ×M,

Ĥ(x) = inf
u

H(t, x, u, ei, p̂(t−), ϕ̂(t), ψ̂(t, ·))

exists and is a convex function with respect to x;
(iii) h(x, ei) is a concave function with respect to x for each ei ∈ M.

Then u∗ is an optimal strategy for the problem (2.6) and X∗ is the corresponding
controlled state process.

PROOF. Define J̃(t, x, u(·), ei) and Ṽ(t, x, ei) by

J̃(t, x, u(·), ei) = −J(t, x, u(·), ei)

= Et,x,ei

[ ∫ T

t
−e−γsg(s, X(s), u(s),α(s)) ds − e−γTh(X(T),α(T))

]
,

Ṽ(t, x, ei) = −V(t, x, ei),

respectively. Then the problem (2.6) is equivalent to the following problem:

Ṽ(t, x, ei) = inf
u(·)∈Ũ

J̃(t, x, u(·), ei) (3.7)

with X(t) satisfying the SDE (2.3).
For the problem (3.7) with the Hamiltonian function H(t, x, u, ei, p,ϕ,ψ) and the

adjoint equation (3.6), one can follow the proof of Theorem 3.1 in Zhang et al. [33] to
obtain the optimal strategy u∗ for the problem (2.6). This completes the proof. �

The next theorem presents the results derived by the method of the stochastic
maximum principle for the problem (2.6).

THEOREM 3.4. For the portfolio–consumption problem (2.6), the optimal strategy
(π∗, c∗) is the solution to the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−γtgπ(t, x, u, ei) + BxVx(t, x, ei) + σσ�πx2Vxx(t, x, ei)

+

M∑
j=1

∫
R0

Vx(t, x + π�xη(j), ei)xη(j)ν
j
ei (dz) = 0,

e−γtgc(t, x, u, ei) − Vx(t, x, ei) = 0.

(3.8)
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PROOF. For the problem (3.7) with the adjoint equation (3.6), we mimic the proof of
Theorem 4.2 in Zhang et al. [33] to obtain the optimal results. Note that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p̂(t) = Ṽx(t, x, ei) = −Vx(t, x, ei),

ϕ̂j(t) = Ṽxx(t, x, ei)
n∑

k=1

πkxσkj = −Vxx(t, x, ei)
n∑

k=1

πkxσkj,

ψ̂j(t, z) = Ṽx(t, x +
n∑

k=1

πkxηkj, ei) − Ṽx(t, x, ei)

= Vx(t, x, ei) − Vx(t, x +
n∑

k=1

πkxηkj, ei).

(3.9)

Since H(t, x, u, ei, p̂(t), ϕ̂(t), ψ̂(t, ·)) is linear in π and c, the coefficients of π and c should
vanish at optimality, that is,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−e−γtgπ(t, x, u, ei) +
[
B +
∫
R0

ηνei (dz)
]
xp̂(t)

+ xσϕ̂(t) +
M∑

j=1

∫
R0

xη(j)ψ̂j(t, z)νj
ei (dz) = 0,

−e−γtgc(t, x, u, ei) − p̂(t) = 0.

(3.10)

Substituting (p̂(t), ϕ̂(t), ψ̂(t, z)) of (3.9) into (3.10), we obtain the equation (3.8). �

REMARK 3.5. For the portfolio–consumption problem (2.6), by the techniques of the
dynamic programming principle and the stochastic maximum principle, we obtain the
same results for the general objective function, that is, the optimal strategy without
nonnegative constraints is the solution to a system of partial differential equations.
In the next section, we shall focus on the optimization problem with a power utility
function and derive closed-form expressions for the optimal strategy and the value
function.

4. Optimal results under power utility

In this section, we work on the problem (2.6) in which the utility function of the
investor is of power type, that is,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g(t, x, π, c, ei) =

cδ

δ
,

h(x, ei) =
xδ

δ
,

(4.1)

with 0 < δ < 1. For illustration purposes, we consider the case with n = N = M = 1.
The derivations of the optimal strategy and the value function are based on the HJB
equation. From (4.1) and based on the terminal condition of the value function, we try
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to fit a solution of the form

V(t, x, ei) = e−γtk1−δ(t, ei)
xδ

δ
, (4.2)

where k(t, ei) is a suitable function such that (4.2) is a solution to the HJB equation
(3.1). The boundary condition V(T , x, ei) = e−γTxδ/δ implies that k(T , ei) = 1. Then
the original HJB equation (3.1) can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xδ

δ
[(1 − δ)kt(t, ei) − γk(t, ei)] + rk(t, ei)xδ + sup

c
ψ(c)

+ sup
π

[k(t, ei)xδφ(π)] +
l∑

j=1

qijk1−δ(t, ej)kδ(t, ei)
xδ

δ
= 0,

k(T , ei) = 1,

(4.3)

where kt represents the partial derivative of the function k with respect to t and
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ψ(c) =

cδ

δ
kδ(t, ei) − k(t, ei)cxδ−1,

φ(π) = π(b − r) +
1
2

(δ − 1)σ2π2 +
1
δ

∫
R0

((1 + πη)δ − 1)νei (dz).

Recalling Theorem 3.2, we find that the inequality

(δ − 1)2e−2γtk1−δ(t, ei)xδ
[
σ2 +

∫
R0

(1 + πη)δ−2η2νei (dz)
]
> 0 (4.4)

holds and, thus, the maximizer of the problem (2.6) without constraints is the solution
to the following equations: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

e−γtψ′(c) = 0,

e−γtk1−δ(t, ei)φ′(π) = 0,
(4.5)

where ψ′ (φ′) represents the first derivative of ψ ( φ). From (4.5),

c∗ = k−1(t, ei)x, (4.6)

which is the maximizer of ψ(c).
We see later in Proposition 4.6 that k(t, ei) is positive for any state ei. Hence, if

X∗(t) ≥ 0 holds, then c∗(t) = k−1(t, ei)X∗(t) is the optimal consumption strategy. Before
investigating the optimal portfolio strategy, we need the following result.

LEMMA 4.1. Assume that the consumption process c(t) is given by the equation (4.6).
For any s ∈ [0, T], if 1 + πη(u, ·,α(u)) ≥ 0 holds for any u ∈ [0, s], then X(s) ≥ 0.

PROOF. Inserting c(t) = k−1(t, ei)X(t) back into (2.3) yields

dX(t) = X(t)
{
[r + (b − r)π − k−1(t,α(t−))] dt + σπ dW(t) +

∫
R0

ηπNα(dt, dz)
}
.
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Applying Itô’s formula to ln X(t) and integrating on both sides from 0 to s for s ∈ [0, T],

X(s) = x
N(s)∏
k=1

(1 + πη(τk, Zτk ,α(τk)))

× exp
{ ∫ s

0

[
r + (b − r)π − 1

2
σ2π2 − k−1(u,α(u−))

]
du +

∫ s

0
σπ dW(u)

}
,

where N(s) is the Poisson counting process (see the papers by Cont and Tankov and
Framstad et al. [7, 9] for details) up to time s. Since the exponent of the exponential
function is positive, we have X(s) ≥ 0 if 1 + πη(u, ·,α(u)) ≥ 0 for any u ∈ [0, s]. This
completes the proof. �

Define

M̄ = −ess inf η(t, ·,α(t)) = −sup{m | P({z | η(t, z,α(t)) < m}) = 0},

where the symbol “ess inf” is the essential infimum. Let π0 = 1/M̄ for M̄ > 0 and
π0 = +∞ for M̄ ≤ 0. It is easy to see that π0 ≥ 1. Then, for π ∈ (π0,+∞), it is possible
that 1 + πη(t, ·,α(t)) ≥ 0 or 1 + πη(t, ·,α(t)) < 0. If 1 + πη(t, ·,α(t)) < 0, then it follows
from Lemma 4.1 that the nonnegativity of X(t) cannot be guaranteed and hence the
consumption process c(t) could be negative due to equation (4.6), which is meaningless
and impractical. Thus, in the following context, we shall consider the optimal portfolio
strategy in the interval [0, π0], which guarantees that X(t) ≥ 0.

The following proposition gives the result of the optimal portfolio strategy.

PROPOSITION 4.2. Suppose that Assumption 2.1 holds. Then the function φ(π) reaches
its maximum value at π∗, where:

(i) π∗ is the unique positive solution to the equation

b − r + (δ − 1)σ2π +

∫
R0

(1 + πη)δ−1ηνei (dz) = 0 (4.7)

if φ′(π0) < 0;
(ii) π∗ = π0 if φ′(π0) ≥ 0.

PROOF. Obviously, according to the function φ(π),
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
φ′(π) = b − r + (δ − 1)σ2π +

∫
R0

(1 + πη)δ−1ηνei (dz),

φ′′(π) = (δ − 1)
[
σ2 +

∫
R0

(1 + πη)δ−2η2νei (dz)
]
.

For the jump-diffusion risk model, the jump item in φ(π) is a power function with
respect to π and η(t, ·,α(t)) is a random jump size with values in (−1,+∞). Therefore,
it is not easy to obtain an explicit expression for the optimal portfolio strategy simply
using φ′(π).
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By the definition of π0, we know that 1 + πη(t, ·,α(t)) ≥ 0 and φ′′(π) < 0 for
π ∈ [0, π0]. Hence, φ(π) is continuous and concave in [0, π0]. Also, following from
Assumption 2.1, we have φ′(0) > 0. Thus, we claim that if

φ′(π0) = b − r + (δ − 1)σ2π0 +

∫
R0

(1 + π0η)δ−1ηνei (dz) < 0 (4.8)

holds, according to the zero theorem [13], there exists a unique solution π∗ ∈ (0, π0)
such that φ′(π∗) = 0, which is the maximum point of φ(π), and thus π∗ is the optimal
portfolio strategy. If φ′(π0) ≥ 0, that is, φ(π) increases in [0, π0], then π0 is the
maximizer of φ(π) and hence it is the optimal portfolio strategy. �

REMARK 4.3. If the jump size of the risky asset is nonnegative, that is, η(t, ·,α(t)) ≥ 0,
we have π0 = +∞ and

φ′(+∞) = lim
π→+∞

φ′(π) = −∞,

so that the condition (4.8) is satisfied. Therefore, the optimal portfolio strategy is the
unique positive solution to the equation (4.7) in this case.

REMARK 4.4. Note that π0 = 1/M̄ ≥ 1. For the condition (4.8), which is similar to the
condition φ′(1) < 0 in Framstad et al. [9] or Guambe and Kufakunesu [14], we extend
the interval of the optimal solution from (0, 1) to (0, π0].

The following example illustrates the result in Proposition 4.2.

EXAMPLE 4.5. Assume that the jump size of the risky asset is negative, that is,
−1 < η(t, ·,α(t)) < 0. Set δ = q/p ∈ (0, 1) with two positive integers p and q such
that p > q and q/p is irreducible. Suppose that both p and q are odd numbers. In
this case, p − q and 3p − q are even numbers and 2p − q is an odd number, so that
(1 + πη(t, ·,α(t)))δ−1 ≥ 0 and (1 + πη(t, ·,α(t)))δ−3 ≥ 0 for π ∈ [0,+∞). Denote

ϕ(π) = σ2 +

∫
R0

(1 + πη)δ−2η2νei (dz)

with
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(0) = σ2 +

∫
R0

η2νei (dz),

ϕ(+∞) = lim
π→+∞

ϕ(π) = σ2,

ϕ′(π) = (δ − 2)
∫
R0

(1 + πη)δ−3η3νei (dz) > 0.

Thus, there exists a breaking point π̃ ∈ (0,+∞) satisfying

ϕ(π̃−) = lim
π→π̃−

ϕ(π) = +∞
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FIGURE 1. φ′(π1) ≤ 0.

and

ϕ(π̃+) = lim
π→π̃+

ϕ(π) = −∞,

where ϕ(π̃−) and ϕ(π̃+) express the left limit and the right limit for the function ϕ(·) at
π̃, respectively. Then there is a π̃1 > π̃ such that ϕ(π̃1) = 0. Define

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π̃0 = inf{π̃ > 0 | ϕ(π̃−) = +∞, ϕ(π̃+) = −∞},
π1 = inf{π̃1 > π̃0 | ϕ(π̃1) = 0},
π∞ = inf{π > π1 | ϕ(π−) = +∞}

and put π∞ = +∞ if there does not exist π > π1 such that ϕ(π−) = +∞. Obviously, we
have π̃0 ≥ π0. Moreover, it is easy to see that φ(0) = 0, φ′(0) > 0 and

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φ′(+∞) = lim
π→+∞

φ′(π) = −∞,

φ′′(π) = (δ − 1)ϕ(π),

φ′′′(π) = (δ − 1)ϕ′(π) < 0.

Then, for π ∈ [0, π̃0), φ′′(π) decreases and φ′′(π) < 0, which in turn imply that φ′(π) is
decreasing. On the other hand, for π ∈ (π̃0, π∞), φ(π) is convex in (π̃0, π1) and concave
in (π1, π∞). Define Θ = {π ≥ 0 : ϕ(π) > 0}. Then we have [0, π̃0) ∪ (π1, π∞) ⊆ Θ. Note
that the condition (4.4) holds for π ∈ Θ and φ(π) is concave in Θ.

If φ′(π1) ≤ 0, then φ′(π̃0+) = limπ→π̃0+ φ
′(π) < 0 and φ(π) decreases in (π̃0, π∞). So,

there exists a unique π∗1 ∈ (0, π̃0) such that φ′(π∗1) = 0 and π∗1 is the maximizer of φ(π).
Hence, the optimal portfolio strategy in this case is π∗ = min{π∗1, π0} and the trajectory
of the function φ(π) is shown in Figure 1.

If φ′(π1) > 0, then we have φ′(π̃0+) ≥ 0 or φ′(π̃0+) < 0. For φ′(π̃0+) ≥ 0, there exists
π∗1 > π1 such that φ(π) is increasing in [0, π∗1) and decreasing in (π∗1, π∞). Hence, π∗1 is
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FIGURE 2. φ′(π1) > 0.

the unique point such that φ′(π∗1) = 0, which maximizes φ(π). However, π∗1 � [0, π0].
Thus, the optimal portfolio strategy is π∗ = π0 in this case and the trajectory of the
function φ(π) is presented in Figure 2(a). For φ′(π̃0+) < 0, φ(π) increases first and then
decreases in π ∈ (0, π̃0−). Moreover, there are two points π∗1, π∗2 ∈ (0, π∞) such that
φ′(π∗1) = 0 and φ′(π∗2) = 0. Note that π∗2 � [0, π0]. Thus, the optimal portfolio strategy
is π∗ = min{π∗1, π0} and the trajectory of the function φ(π) in this case is presented in
Figure 2(b). �

With (4.6) and Proposition 4.2, by computing c∗ and π∗ and putting them back into
(4.3),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kt(t, ei) +
k(t, ei)
1 − δ

{
− γ + δ(r + π∗(b − r)) +

1
2
σ2δ(δ − 1)π∗2

+

∫
R0

[(1 + π∗η)δ − 1]νei (dz)
}
+

1
1 − δ

l∑
j=1

qijk1−δ(t, ej)kδ(t, ei) + 1 = 0,

k(T , ei) = 1.

(4.9)

PROPOSITION 4.6. The equation (4.9) admits a unique positive solution.

PROOF. Note that the equation (4.9) can be rewritten as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dk(t, ei)

dt
+Miik(t, ei) +

∑
j�i

Mijk1−δ(t, ej)kδ(t, ei) + C = 0,

k(T , ei) = 1,
(4.10)
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where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mii =
1

1 − δ

{
− γ + δ(r + π∗(b − r)) +

1
2
δ(δ − 1)σ2π∗2

+

∫
R0

[(1 + π∗η)δ − 1]νei (dz) + qii

}
,

Mij =
1

1 − δqij (j � i),

C = 1.

We first prove the existence and uniqueness of k(t, ei) to the equation (4.10). Denote
k̄(t, ei) = k1−δ(t, ei) and

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M̄ii = (1 − δ)Mii,
M̄ij = (1 − δ)Mij (j � i),
C̄ = (1 − δ)C.

Then (4.10) can be rewritten as

dk̄(t, ei)
dt

+ M̄iik̄(t, ei) +
∑
j�i

M̄ijk̄(t, ej) + C̄k̄−δ/(1−δ)(t, ei) = 0. (4.11)

This equation satisfies the Lipschitz condition, since all of the parameters are
continuous and bounded and π∗ ∈ (0, π0]. Applying Lemma A.1 in the Appendix of
Cajueiro and Yoneyama [3], one can conclude that the equation (4.11) has a unique
solution and that there exists a unique solution to the equation (4.10).

We next prove that the solution k(t, ei) to (4.10) is positive. Setting τ = T − t in
(4.10) yields dt = −dτ. Let k̃(τ, ei) = k(T − τ, ei) = k(t, ei). Then equation (4.10) can
be expressed as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dk̃(τ, ei)
dτ

= Miik̃(τ, ei) +
∑
j�i

Mijk̃1−δ(τ, ej)k̃δ(τ, ei) + C,

k̃(0, ei) = 1,
(4.12)

in which Mij ≥ 0 for j � i and C is a positive constant. Note that the equation (4.12) is
the same as (A.3) in Lemma A.2 of Cajueiro and Yoneyama [3]. Therefore, one can
show that the equation (4.12) has a positive solution and hence the equation (4.10) also
has a positive solution.

As a result, the uniqueness and positivity of (4.10) imply that the equation (4.9) has
a unique positive solution. �

Finally, Propositions 4.2 and 4.6 together with equation (4.6) give the following
result for the optimal problem with constraints, the problem (2.5).

THEOREM 4.7. For the portfolio–consumption problem (2.5), the optimal strategy is
attained at u∗ = (π∗, c∗), where π∗ and c∗ are given by Proposition 4.2 and equation
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(4.6), respectively. Moreover, the value function has the form

V(t, x, ei) = e−γtk1−δ(t, ei)
xδ

δ
,

where k(t, ei) is the unique positive solution to the equation (4.9).

5. Comparison of optimal results

In this section, we carry out some comparison between the optimal results for the
jump-diffusion risk model and the pure diffusion model.

Assume that the financial market has only one state, that is, l = 1. Let π∗, c∗ and
V(t, x) be the optimal results in the jump-diffusion market with ν � 0. Let π̄∗, c̄∗ and
V̄(t, x) be the corresponding optimal solutions when there are no jumps, that is, ν = 0.
Recall φ(π) defined in Proposition 4.2. Similarly, we define

φ̄(π) = π(b(t) − r(t)) + 1
2σ

2π2(δ − 1)

in the case of no jumps. Then we have φ(0) = φ̄(0) = 0. In addition, we can rewrite the
equation (4.9) as ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

kt(t) +
Γ(t)

1 − δk(t) + 1 = 0,

k(T) = 1,
(5.1)

where Γ(t) = −γ + δr(t) + δφ(π∗). Solving the equation (5.1) by using the variation of
constants method yields

k(t) = exp
{ ∫ T

t

Γ(s)
1 − δ ds

}
+

∫ T

t
exp
{ ∫ s

t

Γ(τ)
1 − δdτ

}
ds. (5.2)

It follows from (5.2) that the function k(t) increases as Γ(t) increases. In order to make
comparison of the optimal results more explicitly, we need to discuss the following
three cases.

CASE I. η(t, ·) ≥ 0.
In this case, φ(π) is concave and the inequality φ′(π) ≥ φ̄′(π) holds for all

π ∈ (0,+∞), which implies that φ̄′(π∗) ≤ φ′(π∗) = 0. Since φ̄(π) is concave and π̄∗

is the maximum point with φ̄′(π̄∗) = 0, we conclude that π̄∗ ≤ π∗. Moreover, we have
φ(π∗) ≥ φ(π̄∗) ≥ φ̄(π̄∗) and thus

Γ(t) ≥ Γ̄(t) = −γ + δr(t) + δφ̄(π̄∗).

In other words, the value of k(t) in the jump case is no less than that in the case without
jumps. Therefore, we have V(t, x) ≥ V̄(t, x) and c∗ ≤ c̄∗.

CASE II. −1 < η(t, ·) < 0.
In this case, we know that φ(π) is concave and φ′(π) < φ̄′(π) in [0, π0]. If π̄∗ ∈ [0, π0],

we have φ′(π̄∗) < φ̄′(π̄∗) = 0. So, we obtain π̄∗ > π∗ and φ(π∗) < φ̄(π̄∗), which in turn
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yield Γ(t) < Γ̄(t). As a result, we get V(t, x) < V̄(t, x) and c∗ > c̄∗. On the other hand, if
π̄∗ > π0, it is obvious that π̄∗ > π∗ and φ(π∗) < φ̄(π̄∗), so that we obtain the same result,
that is, V(t, x) < V̄(t, x) and c∗ > c̄∗.

CASE III. General η(t, ·), that is, η(t, ·) > −1.
Put

Φ̃(π) = E[(1 + πη)δ−1η] =
∫
R0

(1 + πη)δ−1ην(dz).

For any π ∈ [0, π0], we have Φ̃(π0) ≤ Φ̃(π) ≤ E[η].

(a) If φ′(π0) < 0 holds, the optimal strategy π∗ ∈ (0, π0) satisfies φ′(π∗) = 0.

(i) If E[η] < 0, that is, the average jump size of the risky asset is negative, the
financial market is bad, so we have Φ̃(π) < 0, from which we conclude that
φ′(π) < φ̄′(π). Therefore, π̄∗ > π∗ and φ(π∗) < φ̄(π̄∗), which lead to the two
inequalities shown in Case II, that is, V(t, x) < V̄(t, x) and c∗ > c̄∗.

(ii) If Φ̃(π0) > 0, which implies that Φ̃(π) > 0, then φ′(π) > φ̄′(π). Along the
same lines, one can show that the two inequalities in this case are the same
as those in Case I, that is, V(t, x) ≥ V̄(t, x) and c∗ ≤ c̄∗.

(iii) If E[η] ≥ 0 and Φ̃(π0) ≤ 0, it is hard to decide the sign of Φ̃(π) and hence
we cannot tell which one of π̄∗ and π∗ ( φ(π∗) and φ̄ (π̄∗)) is larger. Hence,
the relationship between c∗ and c̄∗ and that of V(t, x) and V̄(t, x) cannot be
determined.

(b) If φ′(π0) ≥ 0, the optimal strategy π∗ = π0.

(i) If E[η] < 0, similar to Case III(a)(i), one can obtain the result in Case II.
(ii) If Φ̃(π0) > 0, one can obtain φ′(π) > φ̄′(π) and φ′(π̄∗) > φ̄′(π̄∗) = 0. Unfor-

tunately, we still do not know whether π0 is larger than π̄∗ or vice versa,
since φ′(π0) ≥ 0, and φ(π0) may be greater or less than φ̄(π̄∗).

(iii) If E[η] ≥ 0 and Φ̃(π0) ≤ 0,

φ′(π0) = b − r + (δ − 1)σ2π0 +

∫
R0

(1 + π0η)δ−1ην(dz) ≥ 0

⇒ b − r + (δ − 1)σ2π0 ≥ 0 = b − r + (δ − 1)σ2π̄∗

⇒ π0 ≤ π̄∗.

However, we cannot judge which one of φ(π0) and φ̄(π̄∗) is larger. Therefore,
we cannot determine the relationship between c∗ and c̄∗ and that of V(t, x)
and V̄(t, x).

The following theorem summarizes the results of the comparison.

THEOREM 5.1. Under Assumption 2.1, the relationship between the jump-diffusion
model and the pure diffusion model for the portfolio–consumption problem (2.5) is
stated as follows.
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(I) For η(t, ·) ≥ 0,
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
π∗ ≥ π̄∗,
c∗ ≤ c̄∗,
V(t, x) ≥ V̄(t, x).

(5.3)

(II) For −1 < η(t, ·) < 0,
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
π∗ < π̄∗,
c∗ > c̄∗,
V(t, x) < V̄(t, x).

(5.4)

(III) For general η(t, ·), that is, η(t, ·) > −1, we have the following results:

(i) if E[η] < 0, then (5.4) holds;
(ii) if φ′(π0) < 0 and Φ̃(π0) > 0, then (5.3) holds;
(iii) if φ′(π0) ≥ 0, E[η] ≥ 0 and Φ̃(π0) ≤ 0, then we can only conclude that

π∗ = π0 ≤ π̄∗;
(iv) if (φ′(π0) < 0, E[η] ≥ 0, Φ̃(π0) ≤ 0) or (φ′(π0) ≥ 0 and Φ̃(π0) > 0), then no

conclusion can be drawn.

REMARK 5.2. The interpretation of Theorem 5.1 is as follows. If η(t, ·) ≥ 0, the
financial market is in good shape and hence the jumps are positive. As a result,
investors are willing to invest more into the risky asset, so that the amount of
consumption is reduced. On the other hand, η(t, ·) < 0 implies that the financial
market is bad. In this case, investors prefer investing less into the risky asset.
As for the general case, it is not clear that investors want to invest less or more
into the risky asset in the jump-diffusion market. Further statistical properties of
η(t, ·) are needed in order to make a conclusion on the comparison of the optimal
results.

REMARK 5.3. In this section, we present some comparison results to illustrate the
effects of the jump on the optimal results under the single-regime case, that is, l = 1.
If multiple regimes are considered, the corresponding equation (5.1) will be

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
kt(t, ei) +

Γ(t)
1 − δk(t, ei) +

1
1 − δ

l∑
j=1

qijk1−δ(t, ej)kδ(t, ei) + 1 = 0,

k(T , ei) = 1, i = 1, 2, . . . , l.

For this case, although Proposition 4.6 guarantees its existence and uniqueness, it is
very hard to obtain its explicit expression and not easy to analyse its properties as well,
for example, the monotonicity with respect to Γ(t). As a result, it is difficult and even
impossible to make comparisons for the optimal results. Thus, in order to obtain some
comparative results, we only discuss the case with a single state.
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6. Some special cases

In this section, we present some special cases of our model and compare the optimal
results with those in the literature.

EXAMPLE 6.1 (without jumps). Suppose that the risky asset’s price process is simply
modulated by a geometric Brownian motion. Write b(t,α(t)) = b(α(t)), r(t,α(t)) =
r(α(t)) and σ(t,α(t)) = σ(α(t)). Then the optimal strategy in Theorem 4.7 has the form

(π∗, c∗) =
( b(ei) − r(ei)
(1 − δ)σ2(ei)

, k−1(t, ei)x
)

and the value function is given by

V(t, x, ei) = e−γtk1−δ(t, ei)
xδ

δ
,

where k(t, ei) satisfies the following system:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kt(t, ei) +
1

1 − δ

[
− γ + δr(ei) +

δ(b(ei) − r(ei))2

2(1 − δ)σ2(ei)

]
k(t, ei)

+
1

1 − δ

l∑
j=1

qijk1−δ(t, ej)kδ(t, ei) + 1 = 0,

k(T , ei) = 1.

(6.1)

These optimal results are the same as those shown by Cajueiro and Yoneyama [3,
Theorem 5.1]. �

EXAMPLE 6.2 (without regime switching). Consider the case that Markov regime
switching does not come into play, that is, the number of the market states is only
one (l = 1), and that all the parameters r(t), b(t),σ(t), η(t) are constants. Let T → +∞
and k(t, ei) = k̃. By putting k̃ into (4.9) and solving the corresponding equation, the
optimal consumption strategy given in Theorem 4.7 becomes

c∗ = (Cδ)1/(δ−1)x,

where

C =
1
δ

(1 − δ
λ

)1−δ

with

λ = γ − δ[r + π∗(b − r)] +
1
2
π∗2σ2δ(1 − δ) −

∫
R0

[(1 + π∗η)δ − 1]ν(dz).

Also, under the condition that φ′(π0) < 0, the optimal portfolio strategy π∗ is the unique
positive solution to the following equation:

b − r + πσ2(δ − 1) +
∫
R0

(1 + πη)δ−1ην(dz) = 0.
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Moreover, the value function is given by

V(t, x) = Cxδ.

With π0 = 1, these results are in line with those by Framstad et al. [9]. �

EXAMPLE 6.3 (without jumps and regime switching). In this example, we assume
that there are no jumps and no regime switching, and that the parameters
r(α(t)), b(α(t)),σ(α(t)) are constants. Then one can solve the equation (6.1) and obtain

k(t) = eA(T−t) +
1
A

eA(T−t) − 1
A

with

A =
1

1 − δ

[
− γ + δr + δ(b − r)2

2(1 − δ)σ2

]
.

If the following condition holds:

γ > δr +
δ(b − r)2

2(1 − δ)σ2 ,

then A < 0. When T → +∞, we have k(t)→ −A−1. Therefore, we obtain the optimal
strategy

(π∗, c∗) =
( b − r
(1 − δ)σ2 , (δv)1/(δ−1)x

)

and the value function V(x) = vxδ, where

v =
1

δ(1 − δ)δ−1

(
γ − δr − δ(b − r)2

2(1 − δ)σ2

)δ−1
.

These results are consistent with the optimal results by Merton [23]. �

7. Conclusion

We investigated a portfolio and consumption problem in a finite-time horizon
for an investor involving n risky securities, in which the risk model is governed
by a jump-diffusion process with Markov regime switching. Under the criterion of
maximizing the expected discounted total utility of consumption, we first investigated
some results for the general objective function by the methods of the dynamic
programming principle and the stochastic maximum principle and obtained the same
results that the optimal strategy without constraint is the solution to a system of partial
differential equations. Then, for the special case of the power utility, the existence
and uniqueness of the optimal results were proved and closed-form expressions of the
optimal strategy and value function were derived. In addition, we gave a comparison
for the corresponding optimal results between the cases with and without jumps when
the regime switching is ignored. We found that when the financial market is good, the
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investor will invest more into the risky asset in the jump-diffusion market than that in
the pure diffusion market; however, when the financial market is bad, we obtained the
opposite conclusion; as for the market being uncertain, whether the investor invests
more into the risky asset or not in the jump-diffusion market strongly depends on the
number and frequency of the jumps.

It is worth noting that we adopted the power utility to make the problem tractable.
One of the potential research topics in the future is to extend our results to the case of
other utilities. However, even in the case of power utility, the analysis and calculation
are very complicated. It is also meaningful to extend our model to some other cases
such as involving transaction cost and tax or covering borrowing constraints, which
seem to be more challenging.
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