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SUMMARY

In this paper, the global stability problem for constrained
robot motions in the presence of constraint uncertainties
is investigated. We focus on the uncertainties in the
constraint functions and their effects on the global
stability. PD type controllers are used and conditions for
global stability are developed using Lyapunov’s direct
approach. In the presence of the constraint uncertainties
under investigation, the desired position and constraint
force can be guaranteed with global asymptotic
convergence. The developed conditions for feedback
gain selections clearly show the effects of the constraint
uncertainties. For the case when the velocity measure-
ments are not available, conditions for global stability
regulation are also established and the robot controller
uses only the measurements of the position angles.
Finally, we consider the case where the robot joints are
flexible and global stability conditions are given.

KEYWORDS: Constrained robot motion; Global stability;
Uncertainties; Lyapunov’s direct approach.

1. INTRODUCTION

In order to deploy robot manipulators in many advanced
machine operations, it is necessary to control both the
position and velocity of the end-effector and the
constraint force between the end-effector and the
environment. The class of dextrous robot motions has a
wide range of potential applications, such as a robot
manipulator whose end-cffector is in contact with a
constraint surface, multirobots holding a common object,
etc."? With the progressive deployment of robotic
manipulators for more sophisticated tasks, the dynamics
and control issues of dextrous robot motions have
attracted a lot of attentions and research efforts in the
past years.

We focus our attention on the studies for the
constrained robot motions where the constraints are rigid
and always in effect. Recent research has generated
many results on simultancous position and force control.
Since the early work by Whitney,' many control schemes
have been proposed. Raibert and Craig have proposed a
hybrid control method,” Yoshikawa has extended it to
dynamic hybrid control' and Khatib has proposed an
operational space formulation.” A careful stability
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analysis for such closed loop systems and a position force
tracking controller have been given by McClamroch and
Wang.® Conditions have been developed for local
stabilization using a linecar feedback controller.” Wang
and McClamroch have further presented the analysis of
effects of constraint functions on constrained system
stability in paper® and developed stability conditions for
constrained robot systems using Lyapunov’s direct
approach.” Mills and Goldenberg applied the theory for
linear descriptor system to achieve stable position and
force control.'” More recently, Arimoto surveyed the
developments for dextrous robot motions in papers'!'?
and also proposed the joint-space orthogonalization
method." Passivity properties for these dextrous robot
motions have also been analyzed in papers''"* and used
for control design.'*

Most of the developed methodologies require the
exact knowledge of the algebraic constraint functions in
order to carry out the stability analyses and control
designs. The reason is that most methods utilize the
constraint functions to construct local coordinates and/or
transformations in one way or another. In the presence
of uncertainties in the constraint functions, methods
relying on coordinates and transformation are not
guaranteed to work well. The constrained robot motions
in the presence of constraint uncertainties remain an
open field for research. The uncertainties in the
constraint functions change the steady states, in general,
and may affect the stability of the dextrous robot motions
as the example shown in paper. In most practical
operations, exact knowledge of the constraint functions is
not easy to obtain or requires a lot of careful robotic
workcell setup and surface measurements. Hence it is of
practical interest to establish that, with uncertainties in
the constraint functions due to the modeling inaccuracy,
stability on the actual constraint surfaces will remain and
the constrained robot motions will perform as expected.

In this paper, the focus of the investigation is on the
stability of constrained robot motions in the presence of
uncertainties in the constraint functions. The constraint
functions define the admissible motion space and thus
uncertainties in these functions will change the
admissible motion space. The uncertainties are described
and imbedded in the steady state error analysis and
global stability conditions. We use Lyapunov’s direct
approach because it does not depend on the local
coordinate systems or transformations at the contact
point. It is shown that the Lyapunov’s direct approach
can form the basis for position and force control design
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in the presence of the constraint uncertainties as well as
the development of stability conditions that guarantee
global regulation.

The organization of this paper is as follows: In section
2, constrained robot motions are modelled using
Lagrangian formulation, objectives are defined for
position and force control, and uncertainties in the
constraint functions are described. In section 3,
constrained robot motions with rigid link and rigid joints
are investigated and global stability conditions in the
presence of the constraint uncertainties are given. In
section 4, we investigate the case where only position
angle measurements are available for feedback. The
velocity measurements are not required in the feedback
control and the global stability conditions are developed.
In section 5, robots with flexible joints are considered.
The constrained motions of robots with flexible joints are
globally stabilized using an affine linear controller and
conditions are given for feedback gain selections. In
section 6, concluding remarks are made.

2. ROBOT DYNAMICS AND CONSTRAINT
UNCERTAINTIES

It has been understood that the constrained robot
systems can be modeled using a Lagrangian formulation
expressed by a set of differential-algebraic equations. Let
q € R" be a generalized velocity vector and ¢ € R" be a
generalized velocity vector. Suppose the holonomic
constraints on the motion are described by the following
m algebraic equations

D(q) =0, (1)

where the constraint functions ®' = [¢,, ..., ¢,,] are at
least twice differentiable. The kinetic and potential
energy functions are denoted by K(q, ) = 3¢'M(q)q and
P(q), respectively, where M: R"— R™" is a symmetric
positive definite inertia matrix, and the potential energy
function P:R"— R is at least twice differentiable. A
Lagrangian function is defined for this constrained robot
system as

L(q,q) = K(q,q) — P(q). 2)
so that

. |
Gl ta o] Law=T@ire o)

where A=(A,...,An)"eR™ is a vector of m
Lagrangian multipliers and w e R" is a vector of control
inputs. J(q) is the Jacobian matrix of the constraint
function @®(q). Using the definition of L(q,q), the
equations of constrained motion can be expressed as

M(q)i + B(q, ) + ﬁ P@ =T (@r+u (4

. d .0 .
where B(q,q) = [5 M(q)]q g [24"M(q)q]-
The constrained dynamics are described by n second
order differential cquations (4) and m algebraic
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equations (1) in terms of n +m variables q and A. The
m-vector of variables A determines the constraint force
vector f=J"(q)A which is normal to the constraint
surface (1) at the contact point q.

For dextrous robot motions, the equations (1) and
(4) clearly show that the constraint functions and their
differentiations are part of the dynamics and, more
importantly, the constraint equation (1) defines the
admissible motion space. Uncertainties in the constraint
functions will change the admissible motion space as well
as the dynamics of the dextrous robot motions. Here we
describe the uncertainties in the constraint functions
under investigation in this paper.

Equation (1) represents the actual constraint functions
which we do not know exactly. Instead, a set of m
nominal constraint functions @, (q) are used to model the
constraints for control design purpose. They are
described as follows:

@.(q) = 0. )

Associated with this set of nominal constraints, the
nominal Jacobian matrix is given as

Jl!l(q) c Rn><m. (6)

Note that at any position ¢, a rotation matrix
R(q,x) € R"" exists and satisfies

Ji(@)x = R(q, x)I'(g)x, ™)

for all x e R™. This rotational matrix R(q,x) has the
properties of being full rank, R™'(q,x)=R"(q,x) and
IR(q,x)|| =1 for all q. R{q,x)=1 indicates that the
normal directions of the actual and nominal constraints
coincide at . Equality (7) is always valid except a scalar
multiplier which can be eliminated by normalizations of
constraint functions.

In this paper, we study the control and stability
problem when there are uncertainties in the constraint
functions. The control design objective is to achieve
global stability regulation of position and the constraint
force to desired vectors. In particular, a desired constant
position vector g is specified as the target position and a
desired constant constraint force {4 is given as the desired
force. The objective is to achieve global regulation at
(qq, fy) using controller with feedback of displacement,
velocity and constraint force errors. As will be seen,
force feedback is not necessary to achieve global
regulation. Global convergence of displacements and
forces towards the desired position and force values can
be guaranteed by appropriate selection of the feedback
gains. Because robot motion considered in this paper is
under constraints, the global stability at qq is equivalent
to the convergence to qq for all q satisfying constraint
equation (1).

The desired position g4 and constraint force f; must be
specified to be consistent with nominal constraints in the
sense that they satisfy ®,(qq) =0 and f,=J}(q )\, for
some constant Lagrangian multiplier vector A, € R™. To
tackle the control design problem, some basic assump-
tions on constraint modelling are needed as follows.
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Assumption 1: Both actual and nominal constraint sets
contain m independent constraint functions, respectively.
Moreover, the given target position q, satisfies both sets
of constraints, i.c.,

D(qq) = Pr(qq) = 0. 8)

The desired position q, is chosen based on the nominal
constraints but must also be on the actual constraints. In
other words, the nominal motion space is required to
intersect the actual motion space at least at the desired
position. In practice, this assumption is not restrictive
because only one position point needs to be modelled
accurately using nominal constraint functions.

Assumption 2: Given a desired constraint force vector f,
a solution A, exists for the following equation

£y =J"(qu)A.- )

In this case, a solution is given as, using £, = J}(qq)Ads
(7) and (9),

A= (JT(CId))*fd = (JT((ld))*R(‘Id, Ad)JT(qd))‘d (10)

where A* is a pseudo-inverse of the matrix A.

In the special case of m =1, both A, and A, are scalars.
Equation (9) implies that nominal gradient vector J,(qq)
must be parallel to the actual gradient vector J'(qq) at
Ya.

Assumption 3: The second order derivatives, or the

Hessian matrices of ¢;(q), exist and are boundcd in the
sense of

for a finite positive constant 4, for all j=1,...,m, and
for q satisfying ®(q) = 0.

(.:)—;dn(q)H = (1)

Assumption 4: The contact between the robot end
effector and the constraint surface is always maintained
and free of friction.

3. STABILITY IN THE PRESENCE OF
CONSTRAINT UNCERTAINTIES

The effectiveness of Lyapunov’s direct approach has
been recognized for stability analysis and control design
for constrained robot motions, as can be seen in
papers.”'>'7 In paper,"” the constrained robot motions
are decoupled using transformation and Lyapunov’s
direct approach to study the stability of the closed loop
systems. In papers,”'® Lyapunov’s direct approach is
used directly to the constrained robot motions without
any local coordinates or transformations. However, the
systems considered in these results are assumed to be
known exactly. Wang and McClamroch consider the
effects of uncertainties in the constraint functions in
paper’ but the analysis and results arc valid in local
sense.

In this section, the stability problem is studied for the
constrained robots with rigid joints and rigid links. The
presence of the uncertainties in the constraint functions
as described in the previous section is taken into account
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in the stability conditions for control designs. We
consider a nonlinear controller to illustrate the idea and
a linear PD type controller for feedback gain
determination.

(A) A nonlinear feedback controller

To achieve regulation of position and constraint force to
the specified vectors (qq, f,), it is necessary to guarantee
the desired values are an equilibrium of the closed loop
system. This can be achieved by the following nonlinear
controller:

F 3 ,
" P(q) — P Pa(q) — Cq (12)

where Py(q) is any function that satisfies

d
a Py(qq) =14 (13)

and the gain matrix C is chosen symmetric and positive
definite.

Using controller (12) in equation (4), the closed loop
equations are given as

M@+ [ 5 M@ Ja -3 4@

+ i Pig)=T(@A ~Cq. (14)

A Lyapunov function for the constrained robot system
can be constructed to guarantee global stability at the
desired position q,. In particular, we introduce a function

Peaq) = Po(q) — Pa(qa) — D'(q)A.. (15)

This function can be used to form a Lyapunov function
for the constrained system as

V(q, @) = 34" M(q)q + Pea(q)- (16)

This is a global positive definite function of (q, q) at the
desired position, if the Hessian matrix of Py(q) is
positive definite for all q satisfying equation (1). The
Hessian matrix of P, is obtained as

NQA)=[1mR@ - Shcss@]  (07)

These developments lead to the following theorem:

Theorem 3.1: The closed loop constrained robot system
described by (1), (4) and (12), with the constraint
uncertainties  satisfying Assumptions 1-4, is globally
asymptotically stable at the specified position qq in the
sense that

4t)—>qa and 4()—0
as t— % for any (q(0), q(0)) satisfying equation (1) and
J(q(0)§(0) = 0 if the n X n symmetric matrix N(q, A.) in
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(17) is positive definite for all q satisfyving equation (1).
Furthermore, the constraint force asymptotically con-
verges to the desired vector in the sense that

f(t) > f,.

Proof: We examine the time derivative of the Lyapunov
function V (q, q) given by (16) along the solutions of (14)
and (1). It is easily shown that

d
“‘V . :_.TC.SO,
o 9,9 =-4Cq

where we have used the identities

J(q)q =0,
and

| oM Ja =4 - vl

Suppose the solution satisfies, on some time interval,
4"Cq=0; then q=0 and §=0 since the matrix C is
symmetric and positive definite.

From (14) and (1), a steady state solution (q, A.) must
satisfy the following n + m equations

0
— Py(q.) — I (g)A. = 0, 18
P 1(9qe) (9c) (18)

®(q;) = 0. (19)

It is easy to verify that the pair (q., A.) = (qq, A.) satisfies
the above equations. Use equations (13), (9) and
Mid-value theorem of calculus, the above two stationary
equations (18) and (19) can be rewritten as

N(qla AL)(qL - qd) - Jl(qc)(/\c - /\c) =0 (20)
J(q)(g: — 94) =0. (21)

where q, € [qq, q.]- Since N(q, A,) is positive definite and
J(q) is of full rank for all q satisfying equation (1), the
above equations (20) and (21) have the unique solution
q. = qq and A, = A.. Consequently, (qq,0, A.) is the only

dv
solution of (1) and (14) which satisfies EZO. Thus

according to LaSalle’s Theorem,”® q(t)—qq, §(t)—0,
A(t)— A, as t— . Finally, by noting equation (9), we
have f(t)— f,. This completes the proof. \YAYAY/

The condition for the matrix in (17) clearly
demonstrates the effects of the constraints and on the
stability of the dextrous robot motions with constraint
uncertainties. The Hessians of the actual constraint
functions play a critical role in determining the stability
of the constrained system. The desired potential energy
function Py(q) which guarantees N(q,A.) >0 exists
because of equation (11) in assumption 3.

(B) An affine linear feedback controller

The controller (12) is in general a nonlinear feedback
controller. The conditions in Theorem 1 serve as general
guidelines for control design. In the following, we choose
a particular function P,(q) which results in a simple affine

https://doi.org/10.1017/50263574798000502 Published online by Cambridge University Press

Global stabilization

linear feedback control law. The control law is also
shown to achieve simultaneous regulation of position and
force to the specified vector (qq, £y).

In this case, we choose

Po(q) = P(q) — P(qu) - [i P(qa) — fd] (4—qq)

+ %(q - qd)Tw(q - qd)‘ (22)

It is easy to check that P,(q) satisfies the requirement
(13). The modified energy function is

P.y(q) = Py(q) — A D(q) (23)

d
It is easy to verify that P.(qq) =0 and a—Pcd(qd) =0.
q
Also the matrix W is chosen to be symmetric such that

2 m 2
Qa2 = | W P@ - S A @] @)
q = q
is positive definite for all q. This is always achievable if
P(q) and ®(q) are twice continuously differentiable and
their Hessian matrices are bounded for all q satisfying
equation (1).
With this choice, the controller (12) takes the
following specific form

J
u= @ P(qe) —fa— W(q—q.) — Cq. (25)

This is an affine linear feedback control law of PD
type. The first two terms represent a constant bias, and
the third and fourth terms represent the feedback of
position and velocity errors. Note that if the matrices W
and C are diagonal matrices, then the feedback
controller is decentralized. Such feedback is useful in
implementation of robot control systems where each
joint actuator depends only on feedback of its local joint
displacement and velocity.

This controller is an extension of the PD controller
which was proposed by Takegaki and Arimoto'® for the
rigid joint and free end effector robot motion. The main
difference is the force feedforward term f,.

The closed loop equations with controller (25) are
given as

M(q){ + Bu(q, @) + Cq+ W(g — q0)
=J (@A — Ta(qa)Aa  (26)
where
d 19 .
O ].___ T
Ba(q,9) [ aM@ja-5o0 l4" M(g)q]
d d
+— P(q) — — P(q,).
P EERACh
Furthermore, the stationary closed loop equations of (26)
and (1) can be rewritten as follows.

Q(ql, )\c)(qc - qd) - JT(qc)(/\c - /\c) =0 (27)
J(q)(qc —gq4) = 0. (28)

where q, € [qq, q.]- Because Q(q, A.) and J(q) have full
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ranks, (q., A.) = (qq, A.) is the unique solution for all q
satisfying equation (1). Following Theorems 3.1, we have

Theorem 3.2: Consider the closed loop constrained
system (26) and (1) with the constraint uncertainties
satisfying Assumptions 1-3. Position asymptotically
converges to the specified position qq if the matrix W is
chosen such that the matrix in (24) is symmetrically and
positive  definite.  Furthermore, the constraint force
asymptotically converges to a constant vector in the sense
that

f(t) > f,.

4. STABILIZATION WITHOUT MOTOR
VELOCITY FEEDBACK
Most robotic manipulators used today are not equipped
with velocity transducers. Hence the angular velocity is
obtained by numerically differentiating the measured
angular positions and thus the velocity data is very noisy.
To tackle this problem, many efforts have been put in,
such as in papers.'”?* The results given in these papers
are dealing with unconstrained robot systems. In this
section, we consider the constrained robot systems
without the velocity measurements. That is, only position
measurements are used to achieve global asymptotic
stability for constrained robot systems in the presence of
uncertainties in the constraint functions.

To avoid using velocity measurements, the following
controller is used to replace the controller (25)

0
u= a P(qq) — £, — W(q—q) — Cz. (29)

The variable vector z is defined by

as
=di {—'} , 30
2= diag) =g (30)
where the parameters ¢; and b, i =1, ..., n, are positive

constants, We define the diagonal matrixes A = diag{a;}
and B = diag{b,}.

For the closed loop systems formed by equations (1),
(4), (29) and (30), an equilibrium point is found at

(0".9",2")" = (q4,0",0")". (1)

We can state a global stability condition without the
requirement of the motor velocity feedback as follows.

Theorem 4.1: Consider the closed loop system (1), (4),
(29) and (30) with the constraint uncertainties satisfying
Assumptions 1-4. The desired configuration qq is globally
asymptotically stable if C, A and B are chosen diagonal
and positive definite, and W is chosen symmetric and such
that

82 m 62
04 ) =W+ Pl - X n s b | (32
q -1 q
is positive definite for all q satisfying equation (1). At the
same time, the constraint force f(t) converges to the
desired vector .
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Proof: We define the function V the same as that in
Theorem 3.2. In addition, we define the following
function

V,=12"CA 'z (33)

Note that this function is positive definite in z at z=0.
Thus, we define the Lyapunov function for this case as

U=V+V, (34)

This Lyapunov function is globally positive definite at the
equilibrium point defined by equation (31) because the V
is globally positive definite at (q%,q")" = (q},0"", as
shown in the previous section, and V, is globally positive
definite at the equilibrium z = 0.

We also note the filter (30) is equivalent to the
following dynamic controller

z=-Bz+ Aq. (35)

The time derivative of the function U along the closed
loop motion described by equations (1), (4), (29) and
(30) is, after similar manipulation as in the proof of
Theorem 3.2,

U=V+2'"CA 'z
=-72TCA"'Bz
=0

This proves stability of the equilibrium. To establish that
it is globally asymptotically stable, we need to invoke
LaSalle’s invariance theorem with the following argu-
ments. From equation (35), z= 0 implies ¢ = 0. Similar to
the arguments for Theorem 3.2, we can show that the
equilibrium point defined by equation (31) is the unique
equilibrium point and it is thus globally asymptotically
stable. At the same time, the constraint force f(t)— f, by
the same arguments as before. This completes the proof.

VvV

Compared with Theorem 3.2, the selection condition
of position feedback gain W is the same, but the
selection condition of “‘velocity” feedback gain C is
slightly more restrictive.

5. STABILITY FOR DEXTROUS ROBOTS WITH
FLEXIBLE JOINTS

Now we consider the case where the joints of the
manipulator are flexible and characterized by mechan-
isms illustrated in Fig. 1. The stiffness of the flexible

Fig. 1. Flexible joint transmission.
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y = plg-0)

Fig. 2. A typical profile of the stiffening spring characteristics
y=plg—0)

joints are characterized by the n-vector p(q—6)=
[pi(g,—6)), ..., pu(qn— 0,)]" where each pi(-) is the
stiffness function of a flexible joint transmission and its
characteristics is described by Fig. 2. The variables 8,
i=1,...,n, are the motor angles and the variables q,,
i=1,...,n, are the link angles.

Define x=q— 6 and x4 as a constant vector, then
x;=q;,—6; and x,, for i=1,...,n Also, define the
following function

h(x) = p(x) — Kx, (36)

where the diagonal matrix K is chosen so that

d -
£<X)ZK>O for x#0. Such a K implics x'p(x)=

x'Kx>0. In the case of linear springs, p(x)=Kx or
h(x) =0. Based on the definition of h(x), x'h(x)=0
holds for all x and, furthermore, for alli=1,...,n,

Fe) = [ ) - nwdp=0. @)

The control input is applied to the motor and the
motor torque is passed through the spring to turn the
link on the other side. The contact force is applied to the
end-effector at the last link of the manipulator. Based on
Lagrangian formulation, the dynamics of the constrained
robot with flexible joints can be modeled by the
following equations.

M(q)i + B(a. 4) + i P(@)= —p(q—8) + T (@A (38)

RO +DO=p(q—6)+u (39)
P(q) =0 (40)

In these 2n differential equations and m algebraic
equations, € R" is the vector containing # link angles, q
is the link angular velocity vector, 8 € R” is the vector
containing motor angles, @ is the rotor angular velocity
vector, and u € R" is the control inputs applied at the n
joint motors. Furthermore, R is the inertia matrix of the
joint motors. The n X n matrix D = diag[d,, ..., d,] is the
joint friction coefficient matrix. In the link dynamic
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equation (38), p(q—6) and J'(q)A are, respectively,
from the flexible-joint transmissions and the interaction
between the end-effector and the constraints. Other
terms are the same as those defined in section 2.

With the definition of the function h(q— 8), the
dynamic equations (38)-(40) can be rewritten as

M(@)i + (4, @) + = P()
q

+K(q—0) +h(g—60) =T (@A (41)
RO+DO-K(q—6)—h(q—6)=u (42)

d(q) =0. (43)

Suppose that the manipulators considered here are of
articulated types and that only the motor angle and
velocity variables are measurable. The control objective
is the same as that in the previous sections. For such a

regulation objective, we consider a simple biased
proportional plus derivative (PD) controller as follows:

J .
u:a—P(qd)‘fd—CQ‘W(O— Qd) (44)
q
where 8, satisfies the equilibrium equation

|
(ii P(qq) + p(qe— 04) = 4 (45)

In the presence of uncertainties described in section 2,
the stability conditions for feedback gain selections are
given in the following theorem.

Theorem 5.1: Consider the closed loop system (38)—(40)
and (44) with the constraint uncertainties satisfying
Assumptions 1-4. The desired configuration qq with
desired constraint force £y is globally asymptotically stable
in the sense that q(t)— qq, q(t)— 0 and f(t)—> £, as t — =
if C is chosen so that D+ C is symmetric and positive
definite, and W is chosen symmetric and

H(q)=K-K(K+W) 'K
P S-S aw @)
aq =1 oqT
is positive definite for all q satisfying equation (1).
Proof: Let us choose the Lyapunov function as
V= 36"M@a + 56RO+ Vi(a)
+Vy(q, 0) + Vi(q — 9)

where

Vi(q) = P(q) — P(q0) — PY(@)Aq

(sor@-1) @-a)
1 T 1 62
30— 0" (BH@) 5 P@
m (")2
+ 2 Ao Py ¢j(‘l)>(q = qa),

=1

L qanT
VZ(q’e):§<9—el> .
d
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K- @ + 1 P@ - 3 0 Lo, K

i1

~K, W+ K
% (q - %)
0 - Gd
and
Vilg—6) = EF(CI, 0,).
Clearly, V,(q) is positive definite at q4 because
Vi(qu) =0

dJ
- Vi(qs) =0
aq 1(qa)

and
2

9 .
e Vi(q) = zH(q) >0

Also, V5(q, 8) is positive definite at (qq, 64) because
Va(qq, 80) = 0

0

—Vi(q4,04) =0

iq

o

% Vz(qda Gd) =0
and its Hessian matrix is

K ) 2P0~ S A2 @), K

j=1

~K, W+K
which is congruent to
(%H(q), 0 >
0, W+H

and the later is symmetric and positive definite.

The function V,(q—6) is positive semidefinite at
qq — 0, because each F(q; — 6;) is positive semidefinite at
Gia ~ -

The above shows that V is positive definite at
(9,4, 6, 0) =(qq4,0, 64,0). Now, the time derivative of
V along the closed loop dextrous robot motion
trajectories can be derived as

wo-[2ae 2] 2]

d T -
- [%P(Qd)“fd] q+qIJT(Q)/\d
_ T — :
+éTRé+<q qd) ( K -K )(“)
6—-06,/ \-K, W+K/\@

where T =3q"M(q)q. Using equations (41)-(43), (44)
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d
and equality 7 d(q) = J(q)q = 0, the above equation can
be reduced to
V()= —-6"(D+C)f+ Vh(q —60)—(¢—6)'[h(q—6)

+ K(‘Ia ed) + P(qd) fd]
Also,
Vi =5 |2 Rl = 2 0

= ; (hi(x;) — hi(xi0)%;

=(q— 6)"(h(q— 0) — h(gq — 6,))
With the above equation, V(t) reduces to
V(t)y=—8"MD+C)0—(4— )"

| W= 00+ Klaa— 0+ Pla) 1]

But from equation (45), the second term is zero. Hence
V(t)=-6"(D+C)o=0.

In the invariant set, V(t) =0 implies 8(t) =0 since D + C

is symmetric and positive definite. This fact implies that

(t)=0 and 8(r)= 0., where 6. is a constant vector.

Substitute these results in equations {44) and (39) to
yield

d
—p(ge = 6:) + W(O. — 64) — o P(qo) —£,=0, (48)

where q is set to a constant value vector q, since the rest
in the identity is a constant vector. Therefore, =0 and
= 0. Hence equation (38) becomes

%Pmo) (@ 0) - TF@Ih=0.  (49)

and the constraint equation

P(q.) =0 (50)

The Jacobian matrix of equations (48)—(50) is obtained
as

—p@d+ PM) EAW 2¢M)
- & p(x),
—¥(q),
d
-2 T
PRUIC S ()
0 . (81
—px)+W, 0 1
X
0, 0
This matrix is symmetric and congruent to
Y 0, 0
0
0, —px)+W, 0
ox
0, 0, H@Y J(g)
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where

Y= p(x )——p<x)( p(x>+W)“ L p(x)

P(q) PP o 4@

=1
is symmetrlc and positive definite. The positive
definiteness of this matrix follows from the given

)
conditions of ;p(x)2K>O for all x and H>0. (See
X

Lemma 2 in Appendix.) Therefore, the (2n+m) X
(2n + m) Jacobian matrix (51) has full rank and this
implies that q.=qq, 6.~ 84 and A, = A, are the unique
solution in the invariant set. According to LaSalle’s
invariance principle, the equilibrium (q4, 64, A;), or
equivalently (qq, 04,f4), is globally asymptotically
stable.'® This completes the proof. \YAVAY,

For industrial robot systems, there always exists a

feedback gain matrix W such that the matrix H in (46) is
symmetric and positive definite. One such choice is
1
WwW=—-K (52)
o

where « is a positive number. With this selection, we
have

H= K__lTK+5ci§P(q) EA,L 2¢(q)
1+~
k- S hs@. 6

=1

. d .
For industrial manipulators, x p(x) is much larger
X

2 2

d ad
than ﬁP(q) -2, Aic};;].i ¢;(q). We can choose K as
q =1 A i

d
the infimum of ;p(x) for all x. Then such a positive
X

number « exists to guarantee H>0 and, therefore, the

chosen W can guarantee asymptotic stability. If
2

9*
P(q) 2 Aie T Py ¢i(q) is indefinite or negative

deﬁmte, a must not be too large to keep the positive
definiteness of matrix H.

Furthermore, if the velocity measurements are not
available for feedback purpose, the controller can be
modified similarly to that in equation (29). The proof of
the global asymptotic stability for the case where no
velocity measurements can be easily carried out by
combining the Lyapunov function for the flexible joint
robot and the V, defined in section 4.

6. CONCLUSIONS

Global stability of the constrained robot motions with
uncertainties in the constraint functions has been studied.
Feedback controllers have been proposed and conditions
have been established for feedback gain selections. It is
recognized that the uncertainties in the constraint
functions must be taken into account in the feedback
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gains for the closed loop to remain stable. The cases with
proved results include the rigid robots with rigid joints or
with flexible joints, with complete state measurements of
angular positions and velocities or with partial state
measurements of angular position only. It has been
shown that force feedback is not necessary to achieve
position and force control, but it can be useful to
improve closed loop robustness propertics. In the
developments, Lyapunov’s direct approach has been the
vehicle for analyses and control design. It does not
require the local coordinate systems and transformations
at the contact point and thus is appropriate for the study
of constrained robot motions in the presence of
uncertainties in the constraint functions.

APPENDIX
Lemma 1 Suppose that P, =zP,>0 and V>0. If
(P, +V) '+ B>0, then (P,+ V)" + B>0.
Proof: Since
P,+V=P,+V>0,
P,+V) '=P, +V)'>0.

Hence the result. VvV
Lemma 2: Suppose that K, =K, > 0. If
- K](Kl + W)71K1 + B > 0,
then
-K(K, + W) 'K, + B>0.
Proof:
K ~-K/(K +W) 'K, =(XK'+wW !
then
(Ki'+WH '+B>0
implies from Lemma 1,
(K'+WH'+B>0
or
K2 - K2(K2 + W)MIKZ + B > 0
\YAYAY/
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