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Commutativity via spectra of exponentials
Rudi Brits, Francois Schulz, and Cheick Touré

Abstract. Let A be a semisimple, unital, and complex Banach algebra. It is well known and easy to
prove that A is commutative if and only ex e y = ex+y for all x , y ∈ A. Elaborating on the spectral
theory of commutativity developed by Aupetit, Zemánek, and Zemánek and Pták, we derive, in this
paper, commutativity results via a spectral comparison of ex e y and ex+y .

1 Introduction

Throughout this paper, A will be assumed to be a complex and unital Banach algebra
with the unit denoted by 1. The group of invertible elements, and the center of A
modulo the radical, are denoted respectively by G(A) and Z(A). We shall use σA
and ρA to denote, respectively, the spectrum

σA(x) ∶= {λ ∈ C ∶ λ1 − x ∉ G(A)},

and the spectral radius

ρA(x) ∶= sup{∣λ∣ ∶ λ ∈ σA(x)}
of an element x ∈ A (and agree to omit the subscript if the underlying algebra is
clear from the context). If K ⊂ C, then #K denotes the number of elements in K;
so either #K < ∞ or #K = ∞. For each x ∈ A, completeness of A gives the existence
of an element ex , either via the Holomorphic Functional Calculus, or equivalently,
by the direct series expansion ex ∶= ∑∞n=0

x n

n! . As is evident from the literature on
algebras of operators, and more generally Banach algebras, the utility of the complex
exponential function extends to the more general settings. If x and y commute,
then, as in the complex case, the exponential formula ex e y = ex+y holds, and if the
exponential formula holds for all x , y ∈ A then A is commutative. We should point
out that it is possible, for some x , y ∈ A, that ex e y = ex+y even though x and y do not
commute. In fact, the first study of this phenomena goes back to Fréchet [6] and was
very quickly followed by [8–11]. For a more recent development on this matter, see
[14]. The aim of the current paper is to compare ex e y and ex+y with respect to the
spectral parameters ρ and #σ , but on a larger scale than for single elements x and y.
In particular, we are able to characterize commutative C⋆-algebras in this way (see
Theorem 2.1 and Corollary 2.2). In Theorem 3.2, we use similar ideas to characterize
semisimple commutative Banach algebras in general.
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The most familiar spectral characterization of semisimple commutative Banach
algebras is probably the following: If A is semisimple, then A is commutative if and
only if there exists K > 0 such that ∥x∥ ≤ Kρ(x) for all x ∈ A. We should note that
the easiest proof of this uses exponentials together with the fact that, for any Banach
algebra A, the spectral radius is cyclic i.e., ρ(x y) = ρ(yx) holds for all x , y ∈ A.
More interesting spectral characterizations of commutativity appeared later during
the 1970s; in a rather intriguing series of three papers, Aupetit [1] on the one hand, and
Zemánek [16] and Zemánek and Pták [12] on the other hand, obtained, independently,
but at the same time, a number of striking results where spectral conditions imposed
on the algebra imply commutativity. The methods employed by Aupetit and those
used by Zemánek, and Zemánek and Pták, differ greatly with the latter mentioned
authors relying mostly on connections with classical complex analysis, and Aupetit
on subharmonic techniques, the origin of which goes back to Vesentini’s theorem
[15]. Most notably, they established the following equivalences:
(i) A is commutative.
(ii) ρ is uniformly continuous on A.
(iii) ρ is Lipschitz continuous on A.
(iv) ρ is subadditive on A.
(iv) ρ is submultiplicative on A.

The following two results, due to Aupetit, will be crucial in our arguments and are
stated for the sake of convenience.

Theorem 1.1 (Scarcity Principle, [2, Theorem 3.4.25]) If f is an analytic function from
a domain D ⊆ C into a Banach algebra A, then either

DF = {λ ∈ D ∶ σ ( f (λ)) is finite}

is a Borel set with zero capacity, or there is n ∈ N and a closed, discrete subset E ⊂ D
such that #σ ( f (λ)) = n for λ ∈ D/E and #σ ( f (λ)) < n for λ ∈ E. In the latter case, the
n points of σ ( f (λ)) (as λ varies) are locally holomorphic functions on D/E.

Theorem 1.2 (Spectral Characterization of Central Elements, [1, Lemma 4]) If a ∈ A
satisfies #σ (ax − xa) = 1 for all x ∈ A, then a ∈ Z(A).

We shall also make use of the following standard application of Gelfand theory:

Lemma 1.3 ([13, Theorem 11.23]) Suppose that a and b are commuting elements of A.
Then σ (a + b) ⊆ σ (a) + σ (b) and σ (ab) ⊆ σ (a)σ (b).

2 Algebraic elements and C⋆-algebras

In our first main result, Theorem 2.1, we show that if A is a semisimple noncom-
mutative Banach algebra containing noncentral algebraic elements, then there must
be some degree to which the terms ex e y exert dominance over the terms ex+y with
respect to the spectral radius as well as the number of elements in the respective
spectra. Further, we are inclined to believe that the condition (i) implies that A itself
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is commutative, although this may be hard to prove. On the other hand, we show, in
Example 2.3, that condition (ii) is too weak to establish this.

Theorem 2.1 Let A be a semisimple Banach algebra. Then every algebraic element of
A belongs to Z(A) if any one of the following conditions holds:
(i) There exists some K > 0 such that ρ(ex e y ) ≤ Kρ(ex+y ) for all x , y ∈ A.
(ii) There exists ε > 0 such that #σ (ex e y ) ≤ #σ (ex+y ) for all x , y ∈ B(0, ε).

Proof (i) We shall first prove that zero is the only nilpotent element of A. Since
an algebra which contains nonzero nilpotent elements must necessarily also contain
elements with nilpotency degree 2 it suffices to show that q2 = 0 ⇒ q = 0. Let x ∈ A
be arbitrary but fixed. From the assumption we then have that

ρ(eλx eλq−λx ) ≤ Kρ(eλq ) = K for all λ ∈ C.

Since the map λ ↦ eλx eλq−λx is an entire function from C to A it follows by Liou-
ville’s Spectral Theorem [2, Theorem 3.4.14] that the polynomially convex hull of
σ (eλx eλq−λx ) is constant on C. By setting λ = 0 we deduce that

σ (eλx eλq−λx − 1) = {0} for all λ ∈ C.

In a similar fashion, we have that

σ (eλx−λq e−λx − 1) = {0} for all λ ∈ C.

Since eλx−λq e−λx and eλx eλq−λx commute it follows from Lemma 1.3 that

σ (eλx eλq−λx + eλx−λq e−λx − 2) = {0} for all λ ∈ C.(2.1)

Using the fact that q2 = 0, we now have

eλx eλq−λx + eλx−λq e−λx − 2

=
⎛
⎝
∞

∑
j=0

(λx) j

j!
⎞
⎠

⎛
⎝
∞

∑
j=0

(λq − λx) j

j!
⎞
⎠

+
⎛
⎝
∞

∑
j=0

(λx − λq) j

j!
⎞
⎠

⎛
⎝
∞

∑
j=0

(−λx) j

j!
⎞
⎠

− 2

= q2 λ2 + ( x2q2

2
− q2x

2
) λ3 + ( q4

12
+ q2x2

6
+ q3x

12
+ xq2

12
+ x2q2

6
− qxq2

12

+ qx2q
12

− q2xq
12

− xq2x
4

− qxqx
12

− xqxq
12

)λ4 + ⋯

= ( qx2q
12

− qxqx
12

− xqxq
12

) λ4 + ⋯

= − 1
12

(qx − xq)2 λ4 + ⋯.

Next, define an entire function from C into A by

f (λ) = { (eλx eλq−λx + eλx−λq e−λx − 2) /λ4 , λ /= 0,
−(qx − xq)2 /12, λ = 0.
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For all 0 /= λ ∈ C it follows that the subharmonic function λ ↦ ρ( f (λ)) satisfies
ρ( f (λ)) = 0, and hence, by the Maximum Principle for subharmonic functions [2,
Theorem A.1.3] that ρ( f (0)) = 0. From this, we deduce, from the Spectral Mapping
Theorem, that σ (qx − xq) = {0} for all x ∈ A, and so, by Theorem 1.2, we obtain
q ∈ Z(A). Consequently, from Lemma 1.3 it follows that σ (qx) = {0} for all x ∈ A.
Hence, we conclude that q belongs to the radical of A, and so, since A is semisimple,
it follows that q = 0 as required. The next step is to show that every idempotent of A
belongs to Z(A). Let p ∈ A be a nontrivial idempotent. For each x ∈ A, we have that
px(1 − p) is nilpotent and hence by the first part of the proof px p = px. Similarly,

(1 − p)x p is nilpotent and so px p = x p. This shows that p ∈ Z(A). Finally, if a is an
algebraic element, then, by the Holomorphic Functional Calculus, a can be written
as a = λ1 p1 + ⋯λk pk + q where each λ i ∈ C, p i is an idempotent, and q is a nilpotent
element. Since q = 0 and p i ∈ Z(A) it follows that a ∈ Z(A).

(ii) Suppose, as the first of two cases, that dim A = ∞. Let q ∈ A be nilpotent of
degree 2 and 0 /= x ∈ A arbitrary. Then, by the hypothesis, there is δ > 0 such that

#σ (eλx eλq−λx ) ≤ #σ (eλq ) = 1 for all λ ∈ B(0, δ).(2.2)

If we recall that the function λ ↦ eλx eλq−λx is entire, then, since the spectrum is
nonempty, it follows from (2.2) and Theorem 1.1 that

#σ (eλx eλq−λx ) = 1 for all λ ∈ C.

Observe then that, for each λ, eλx−λq e−λx is the inverse of eλx eλq−λx when we also
have #σ (eλx−λq e−λx ) = 1 for all λ ∈ C. So together, using Lemma 1.3, we can deduce
that

#σ (eλx eλq−λx + eλx−λq e−λx − 2) = 1 for all λ ∈ C.

With f as in the proof of (i) above, Theorem 1.1 yields #σ ((qx − xq)2 ) = 1. This implies
that, for each x ∈ A, we have one of the following:
(a) #σ (qx − xq) = 1 or
(b) #σ (qx − xq) = 2.
If (b) holds for some y ∈ A, then, since #σ ((qy − yq)2 ) = 1, we are forced to conclude
that qy − yq ∈ G(A). Further, since the map D ∶ x → qx − xq is an inner derivation
on A satisfying #σ (D(x)) ≤ 2 for each x ∈ A, it follows that, for each x, D(x) belongs
to the socle of A [4, Theorem 3.2]. However, this would mean that the socle contains
an invertible element of A, and so, since the socle is an ideal, it must be all of A. Since
every element of the socle has a finite spectrum, the Hirschfeld–Johnson Criterion
[7, p. 19] now implies that A is finite-dimensional. But this contradicts the assumption
that dim A = ∞. So it follows that (a) holds for each x ∈ A, and the remaining part of
the proof follows as in (i).

Suppose now that dim A < ∞. With the cardinality assumption on the spectrum,
we first establish the result for A = Mn (C), that is, we show that the assumption forces
n = 1. Suppose to the contrary that n ≥ 2. Then A = Mn (C) has a subalgebra, say B,
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which contains 1 ∈ A and

B ≅ M2 (C) ⊕ C ⊕ ⋯ ⊕ C
�                     !                     "

n−2 factors

.

Of course, if x ∈ B, then σB (x) = σA(x) = σ (x). Let

p′ = [1 1
1 1] and q′ = [0 3

0 0] .

Then, with x′ = −p′ and y′ = p′ + q′ it follows that

ex′ =
⎡⎢⎢⎢⎢⎣

e2+1
2e2

−e2+1
2e2

−e2+1
2e2

e2+1
2e2

⎤⎥⎥⎥⎥⎦
and e y′ =

⎡⎢⎢⎢⎢⎣

e4+1
2e

e4−1
e

e4−1
4e

e4+1
2e

⎤⎥⎥⎥⎥⎦
,

so that

ex′ e y′ =
⎡⎢⎢⎢⎢⎣

e6+3e4+3e2+1
8e3

e6+3e4−3e2−1
4e3

−e6+3e4−3e2+1
8e3

−e6+3e4+3e2−1
4e3

⎤⎥⎥⎥⎥⎦
and ex′+y′ = [ 1 3

0 1] .

Now let

x = (x′ , 0, . . . , 0) and y = (y′ , 0, . . . , 0) ∈ B.

Then there exists δ > 0, such that λ ∈ B(0, δ) ⊆ C implies that λx , λy ∈ B(0, ε) ⊆ A.
Since for all λ ∈ C, we have that σ (eλ(x+y)) = {1} it follows, by our assumption, that

#σ (eλx eλ y ) ≤ #σ (eλ(x+y)) = 1 for all λ ∈ B(0, δ).

Since the spectrum is nonempty, it follows by Theorem 1.1 that #σ (eλx eλ y ) = 1 for all
λ ∈ C. If we observe that the matrices x′ , y′ ∈ M2 (C) satisfy

tr (ex′ e y′) = −e6 + 9e4 + 9e2 − 1
8e3 and det (ex′ e y′) = 1,

then

tr2 (ex′ e y′) − 4 det (ex′ e y′) /= 0 ⇒ #σM2(C) (ex′ e y′) = 2

from which it follows that #σ (ex e y ) ≥ 2 thereby contradicting the fact that
#σ (eλx eλ y ) = 1 for all λ ∈ C. This means that n cannot be greater or equal to 2,
and so A = C. If A is an arbitrary semisimple finite dimensional Banach algebra, then
the Wedderburn–Artin representation, together with the preceding result, imply that
A ≅ C

n for some n ∈ N, and thus that A is commutative. ∎

Corollary 2.2 If A is a C⋆-algebra, and if either of the conditions (i) or (ii) in the
statement of Theorem 2.1 holds, then A is commutative.

Proof An old theorem of Kaplansky’s [3, Proposition 6.4.14, p. 110] says that
any noncommutative C⋆-algebra contains nonzero nilpotent elements. So the result
follows from Theorem 2.1. ∎
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Example 2.3 There exists a noncommutative semisimple Banach algebra A such
that #σ (ex e y ) ≤ #σ (ex+y ) for all x , y ∈ A.

Proof We consider the first exposition [5, Theorem 9] of a noncommutative
Banach algebra which contains no nonzero quasinilpotent elements; the first part of
our proof is essentially Duncan and Tullo’s argument. Let {u, v} be an alphabet of two
letters, and denote by

W = {u, v , u2 , uv , vu, v2 , . . . }

the standard enumeration of words, formed by juxtaposition, from the alphabet.
The length of a word is the number of letters that comprises the word (counting
repetition). From this, we may construct the Banach algebra B consisting of all infinite
series

x = α1u + α2v + α3u2 + α4uv + α5vu + α6v2 + ⋯

such that

∥x∥ ∶=
∞

∑
n=1

∣αn ∣ < ∞.

Of course, a zero coefficient in the representation of x deletes the corresponding word
from the representation. In the usual manner, we adjoin an identity element 1 to B
to obtain the unital Banach algebra A with norm ∥α1 + x∥ = ∣α∣ + ∥x∥ for α ∈ C and
x ∈ B. Now let 0 /= α1 + x ∈ A be arbitrary. Notice that, if α /= 0, then

∥(α1 + x)n ∥ ≥ ∣α∣n ⇒ ρ(α1 + x) ≥ ∣α∣.

If α = 0, then let s(u, v) be any one of the (finite collection of) shortest words which
appears in the representation of x, and let β be its coefficient. It follows that, for each
n ∈ N, the coefficient of [s(u, v)]n in the representation of xn is βn . By definition of
the norm on B, we have that

∥xn ∥ ≥ ∣β∣n ⇒ ρ(x) ≥ ∣β∣.

This proves that A contains no nonzero quasinilpotent elements. Suppose next that
α1 + x (x ∈ B) is a nontrivial idempotent of A. Then either x or −x is an idempotent;
therefore if A has a nontrivial idempotent then B has a nontrivial idempotent. But, by
comparison of the lengths of the shortest words in x and x2, this is clearly impossible.
Thus the only idempotents of A are trivial. Further, if a ∈ A has finite spectrum then,
from the Holomorphic Functional Calculus, we know that a = λ1 p1 + ⋯ + λk pk + q
where λ i ∈ C, p i is an idempotent, and q is a quasinilpotent element. This proves that
C1 are the only elements in A which have finite spectra. If for some x , y ∈ A, σ (ex+y ) is
a finite set, then, since the spectrum is compact and the complex exponential function
has period 2π, the Spectral Mapping Theorem implies that σ (x + y) is also finite. It
then follows that x = α1 − y for some α ∈ C, and thus that x and y commute. This
is sufficient to deduce that #σ (ex e y ) ≤ #σ (ex+y ) for all x , y ∈ A. Observe further
that if some x ∈ A has countably infinite spectrum, then one could separate σ (x),
and use the Holomorphic Functional Calculus to construct a nontrivial idempotent
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in A which leads to a contradiction. We therefore actually have the stronger result:
Card σ (ex e y ) ≤ Card σ (ex+y ) for all x , y ∈ A. ∎

Remark 2.4 To see that Theorem 2.1 (i) cannot be localized, consider the following:
Let A = M2 (C), let r > 0 be arbitrary, and take K = e4r . For any x , y ∈ B(0, r) observe
that

σ (x + y) ⊆ {λ ∈ C ∶ −2r ≤ Re λ ≤ 2r}
⇒ σ (ex+y ) = eσ(x+y) ⊆ {λ ∈ C ∶ e−2r ≤ ∣λ∣ ≤ e2r }
⇒ e−2r ≤ ρ(ex+y ).

Then, for each x , y ∈ B(0, r), it follows that

ρ(ex e y ) ≤ e∥x∥e∥y∥ ≤ e2r ≤ Kρ(ex+y ).

Thus the hypothesis in Theorem 2.1 (i) is satisfied in the ball B(0, r), but not all the
algebraic elements of A can belong to Z(A) since every element of A is algebraic.

To see that Theorem 2.1 (ii) cannot be generalized to arbitrary open balls in A,
consider the following: Let A = M2 (C) and pick z ∈ A such that σ (z) = {λ1 , λ2 } ⊂ R

and λ1 /= λ2. By spectral mapping σ (e2z ) = {e2λ1 , e2λ2 } ⊂ R. If we take disjoint discs
B(e2λ1 , ε) and B(e2λ2 , ε) then, by continuity of the spectrum and continuity of the
map x ↦ ex , it follows that there exists r > 0 such that

w ∈ B(2z, r) ⇒ #σ (ew ) ∩ B(e2λ1 , ε) = 1 and #σ (ew ) ∩ B(e2λ2 , ε) = 1,

so that w ∈ B(2z, r) ⇒ #σ (ew ) = 2. If x , y ∈ B(z, r/2) then, by the triangle inequality,
we have that x + y ∈ B(2z, r) whence the preceding calculation shows that

#σ (ex+y ) = 2.

Since the spectral cardinality of any element in A is at most 2, we have

#σ (ex e y ) ≤ #σ (ex+y ) = 2 for all x , y ∈ B(z, r/2).

But, as in the first example, A /= Z(A).

3 General commutativity

We start with the following simple result the proof of which follows along the same
lines as the standard argument which gives

A is commutative ⇔ ∥x y∥ = ∥yx∥ for all x , y ∈ A.

Proposition 3.1 A complex Banach algebra A is commutative if and only if there exists
some K > 0 such that

∥ex e y ∥ ≤ K∥ex+y ∥ for all x , y ∈ A.

Proof Let x , y ∈ A. By the hypothesis, we have

∥eλx+y e−λx ∥ ≤ K∥e y ∥ for all λ ∈ C.
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Define ϕ ∶ C → A by

ϕ(λ) = eλx+y e−λx ,

and let f ∈ A′ be arbitrary. Then f ○ ϕ is an entire function satisfying

∣ f (ϕ(λ))∣ ≤ ∥ f ∥∥ϕ(λ)∥ ≤ ∥ f ∥∥e y ∥ for all λ ∈ C.

Thus, by Liouville’s theorem, f (ϕ(λ)) = f (e y ) for all λ ∈ C. Since f ∈ A′ was arbi-
trary it follows, from the Hahn–Banach theorem, that ϕ(λ) = e y for all λ ∈ C, and
hence, with λ = 1, we get that ex+y = e y ex for all x , y ∈ A. So, by symmetry, any two
exponentials of A commute. If x , y ∈ A are arbitrary, then choose n ∈ N sufficiently
large so that both σ (1 + x/n) and σ (1 + y/n) do not separate 0 from infinity. By the
Holomorphic Calculus, there exist a, b ∈ A such that 1 + x/n = ea and 1 + y/n = eb .
Then 1 + x/n and 1 + y/n commute, which implies that x and y commute. ∎

Theorem 3.2 A semisimple Banach algebra A is commutative if and only if there exists
an open set U ⊂ A such that any one of the following conditions holds:
(i) #σ (ex+y − ex e y ) = 1 for all x , y ∈ U.
(ii) #σ (ex+y e−x e−y ) = 1 for all x , y ∈ U.

Proof (i) Let x ∈ U and y ∈ A be arbitrary, and define g ∶ C → A by

g(λ) = (1 − λ)x + λy.

Then there exists ε > 0, such that g(λ) ∈ U for all λ ∈ B(0, ε). By assumption, we have
that

#σ (ex+g(λ) − ex e g(λ)) = 1 for all λ ∈ B(0, ε).(3.1)

If we observe that the map λ ↦ ex+g(λ) − ex e g(λ) is analytic fromC into A, then, since
the spectrum is nonempty, it follows from Theorem 1.1 that (3.1) holds for all λ ∈ C. By
taking λ = 1 it follows that the hypothesis in (i) holds for all x ∈ U , y ∈ A. From this,
it then further follows that there exists δ > 0, such that

#σ (eλ(x+y) − eλx eλ y ) = 1 for all λ ∈ B(1, δ).(3.2)

Another application of Theorem 1.1 shows that (3.2) is in fact valid for all λ ∈ C. From
the power series expansion

eλ(x+y) − eλx eλ y = yx − x y
2

λ2 + a3 λ3 + a4 λ4 + ⋯

for some a i ∈ A, i ≥ 3 (the particulars of which are of no importance to us), we observe
that the function

λ ↦ (eλ(x+y) − eλx eλ y ) /λ2
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has a removable singularity at λ = 0. Hence the function

f (λ) = { (eλ(x+y) − eλx eλ y )/λ2 , λ /= 0,
(yx − x y)/2, λ = 0.

is an entire function from C to A. Notice then that #σ ( f (λ)) = 1 for each 0 /= λ ∈ C

from which Theorem 1.1 again gives #σ ( f (λ)) = 1 for all λ ∈ C. In particular, with
λ = 0, we see that #σ (yx − x y) = 1. Since y ∈ A was arbitrary Theorem 1.2 says that
x ∈ Z(A) and therefore that U ⊂ Z(A). But this is obviously sufficient to establish
that A ⊂ Z(A) which completes the proof.

(ii) The proof is very similar to the proof of (i); with the same arguments we
obtain that, for any x ∈ U and y ∈ A, #σ (eλ(x+y)e−λx e−λ y ) = 1 for all λ ∈ C which, by
translation implies that #σ (eλ(x+y)e−λx e−λ y − 1) = 1 for all λ ∈ C. If we consider the
power series expansion

eλ(x+y)e−λx e−λ y − 1 = x y − yx
2

λ2 + b3 λ3 + b4 λ4 + ⋯,

where b i ∈ A, i ≥ 3, then the same argument as in the proof of (i) is valid with f
replaced by

h(λ) ∶= { (eλ(x+y)e−λx e−λ y − 1)/λ2 , λ /= 0,
(x y − yx)/2, λ = 0.

∎
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