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We provide an estimate of the energy of the solutions to the Poisson equation with
constant data and Dirichlet boundary conditions in a convex domain {2 C R™. This
estimate is obtained by restricting the variational formulation of the problem to the
space of functions depending only on the distance from the boundary of 2. The main
tool in the proof is an isoperimetric inequality for convex domains, which is a
consequence of the Brunn-Minkowski theorem.

1. Introduction

Let 2 C R™, n > 2, be a convex domain (i.e. a non-empty open bounded convex
set) and let ug € H}(£2) be the solution of the elliptic Dirichlet problem

—Au=1 in £, }

1.1
u=0 on 92, (1.1)

that is, the unique function up € H{(£2) such that

/VUQ-Vgodx:/godx Yo € HY (). (1.2)
7 7

We recall that ug, is also the unique solution to the minimum problem

in  J(u; ), J;Q::/lVQ— dz. 1.3
uerﬁé?m (u; £2) (u; $2) Q(2| ul® —u)dr (1.3)

Choosing ¢ = ug in (1.2), we have

/|VUQ|2dac:/quac7
Q Q

and hence the minimum value of J(-; £2) on H}(§2) satisfies

J(UQ;Q):_%/ |VUQ|2dCE:_%/ ugn dx. (1.4)
17 17

The aim of this paper is to provide estimates for the energy J(ug;{2) of ugn by
restricting the variational formulation (1.3) of (1.1) to the class of the functions
that depend only on the distance from 9f2.
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Before describing in more detail our approach, it will be of interest to discuss the
physical motivation for this problem (see [2,13,18,22]). Consider a long cylindrical
beam of uniform cross-section 2 C R2. The state of stress in the interior of the
beam is determined by a warping function ug(x), € {2, satisfying (1.1). The
torsional rigidity of the beam is the torque required for unit angle of twist per
unit length when the shear modulus is equal to one, and can be expressed by the
Dirichlet integral fQ |Vug|?dz. We stress that its exact value can be computed
explicitly only in few particular cases (for example, when {2 is a ball). Therefore,
in order to have an estimate for the torsional rigidity of the beam, it is of interest
to provide an estimate for J(ugp; 2).

As mentioned above, this estimate will be obtained by considering the following
minimization problem,

ue%?ﬂ) J(u; £2), (1.5)
where W(£2) is the class of web functions, that is, the functions u € H}(§2) that
depend only on the distance from 0f2. This kind of approximation was proposed by
Makai and Pélya [14,17] in the bidimensional case in order to obtain a lower bound
for the Dirichlet integral. Notice that, when (2 is a ball centred at the origin, then
W(£2) is the subset of radially symmetric functions. The existence and uniqueness
of solutions to minimization problems in W({2) for more general functionals than J
was proved in [5,11]. The relative error one makes approximating (1.3) with (1.5)
can be expressed by the ratio

min, ey (o) J (u; 2)

£(0) = (1.6)

minge () J(u; 2)
We remark that this ratio is well defined, since J(ug; 2) < 0, and 0 < £(£2) < 1 for
every convex domain (2, since W(§2) C H}(§2). Moreover, £(§2) = 1 if and only if
{2 is a ball (see proposition 4.1 in §4). It is also worth remarking that £ is invariant
under dilations, that is, £(A2) = £(£2) for every A > 0.

Our main result is the following sharp lower bound for £.

THEOREM 1.1. For every convex domain {2 C R™, we have

1
£(02)> infe = L2
2n

where the infimum is taken over all convex domains of R™.

We remark that the infimum of £ is not attained. Some remarks about minimizing
sequences are addressed at the end of §4.

In previous papers [6,7], some estimates from below of £ were proved for more
general functionals. The bidimensional case of theorem 1.1 was considered in [8].
The main tool for extending the result for n > 2 is a new isoperimetric inequality,
proved in §3. This inequality is a consequence of the Brunn-Minkowski theorem
on the volume of concave families of convex bodies (see, for example, [4,20]). It
extends the well-known classical isoperimetric inequality and, in our setting, previ-
ous known results such as Diskant’s inequality [9]. We remark that only theorem 3.1
and corollary 3.3 in § 3 are necessary for the proof of theorem 1.1, but we believe
that the more general results proved in that section are of interest by themselves.
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Section 4 is devoted to the proof of theorem 1.1. In that section we prove estimates
from above for minyy(g) J(+;§2) and from below for ming o) J(-;§2) in terms of
the same comparing functional A({2) defined in (4.2) below. Combining these two
estimates, we obtain the lower bound for £ given in theorem 1.1. Some extra work is
required in order to show that this lower bound is not attained. Finally, we exhibit
a minimizing sequence, completing the proof of theorem 1.1.

For the sake of completeness, in the appendix we give a short self-contained
proof of a known result concerning the convergence of solutions to the Dirichlet
problem (1.1) in varying domains.

2. Notation

The standard scalar product of two vectors z,y € R™ is denoted by x -y, and
|z| = /= - denotes the Euclidean norm of 2 € R™.

A non-empty compact convex subset of R™ is called a convex body. By K" we
denote the class of all convex bodies in R™, and by K the subset of convex bodies
with interior points. For every {2 € K", we denote by rq its inradius, namely, the
supremum of the radii of the open balls contained in {2. Moreover, we denote by
(£2;), t € [0,70], the family of inner parallel bodies of {2, namely,

2y ={x € 2; d(z,00) > t},

where d(x,9(2) denotes the distance of a point z € {2 from the boundary of 2. It
will be convenient to extend d(-, 912) to all R™ by setting

min |z — y| if z € 02,
d(x,00) := { VE° (2.1)
—min [z —y| ifx¢N.
yeos?

We recall that K", equipped with the Hausdor(f metric

dy(K,L) := max{ sup inf |z — y|, sup inf |z — y|}, K,LeKk",
z€K YEL zeL YEK

is a complete metric space (see [20, theorems 1.8.2,1.8.5]). In the following, all met-

rical and topological notions occurring in connection with K™ are tacitly understood

to refer to the Hausdorff metric and the topology induced by it.

A convex body (2 € K is said to be a tangential body of an n-dimensional ball
B, if, through each boundary point of {2, there exists a support plane to {2 that
also supports B. (In other words, {2 is circumscribed to B.)

Recall that a polytope is the closed convex hull of a finite number of points. We
denote by Pj C Ki the class of all polytopes in R™ with non-empty interior.

The Lebesgue measure and the k-dimensional Hausdorff measure of a set A C R”
will be denoted, respectively, by |A| and H*(A), 0 < k < n.

As is customary, LP(£2), 1 < p < +oo, and H}(§2) will denote the Lebesgue
and Sobolev spaces of functions defined in a set {2 € Kf. The usual norms in these
spaces will be denoted, respectively, by || - |[Lr(@) and || - ||z ()

By B" we denote the n-dimensional unit ball centred at the origin, and by S"~1 =
OB™ the unit sphere of R". Moreover, we set By := pB" for every p > 0.
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The n-dimensional measure of B™ is denoted by k,,, and its surface area by w,,.
Thus
,n.n/2 2,”71/2

n=|B" = ——, n = H'""YOB™) = nk, =

With some abuse of notation, we shall denote by |02| the surface area of a set
2 € K2, that is, [02] = H*1(09).

3. The isoperimetric inequality

The aim of this section is to prove an isoperimetric inequality that will be used in
the proof of proposition 4.2 in the next section. This inequality turns out to be an
improvement of the classical isoperimetric inequality, which states that the volume
|2] and the surface area |0£2] of a set 2 € K™ are related in the following way:

N n—1 10} n
(H) < (_|8 |> _ (3.1)
Kn Wn,
The equality sign holds if and only if {2 is a ball.
We recall that, if £2 € K, then, by the Brunn-Minkowski theorem, the map

y(t) := "V1]082|, t€0,rgl, (3.2)

is concave in [0, rp] (see, for example, [4, § 24, 55] and [20, theorem 6.4.3]). This
implies that, for every ¢t € 0, rq [, there exist the left and right derivatives v/ (t) of v
at t (see [19, §23]). Moreover, since 7 is positive and strictly monotone decreasing in
[0, 7], there also exists the right derivative of v at 0 (and it is negative). Throughout
this section, for every {2 € K, we shall use the notation

n—1 n—1
VY V10902] — "R/108%
Co = —74(0) = lim t '

(3.3)

We now state the isoperimetric inequalities needed for the proof of theorem 1.1,
which will be obtained as a consequence of the more general inequality proved in
theorem 3.4 below.

THEOREM 3.1 (isoperimetric inequality). For every 2 € K}, we have
1
0| < —|on/ =Y, 3.4
21 < 100l (3.4)
where Cp = "~/wy, is the constant defined in (3.3). FEquality in (3.4) holds if and
only if £2 is a tangential body of an n-dimensional ball.
REMARK 3.2. Since Cp = "/, it is clear that (3.1) is a particular case of (3.4).

COROLLARY 3.3. Let 2 € Ki and assume that the map t — |082;| is differentiable

at some point t € [0,rp[. Then

n—1 |8Qt|2
no 62|

d
——1]042| <
(00
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Proof. We apply the isoperimetric inequality (3.4) to the convex body (2;. Since
Co, = /(1) = ~——=19| =/ =D L gy
i n—1 dt

from (3.4) we deduce that

d 1 _ n—1 n—1|082)?
—— 802 < — 1012 n/(n—1) _
dt|a 4 n|_Q,5||a 4 |0£2;|(2=n)/(n=1) no |2
concluding the proof. O

We now prove the main theorem of this section; its consequences will be exploited
in the subsequent corollaries.

THEOREM 3.4. For every {2 € Kjj, we have
002" =Y — nCq|02| = [|002Y ™Y —roCa]", (3.5)

where the constant Cg;, defined in (3.3), satisfies the bound Cp = "~Yw,,. Moreover,
the right-hand side in (3.5) is non-negative.

Proof. Let 2 € K. Since the map , defined in (3.2), is concave in [0, 7], we have
that v(t) < v(0) — Cqt for every t € [0,7g]. Then

7(0)" — [7(0) — Caral”
nCyg

T T
|Q|:/ |8Qt|dt:/ L8 dE < (36
0 0

and (3.5) follows by substituting v(0) = "/|02|. We remark that

7(0) = Care = y(re) 20,

and hence the right-hand side in (3.5) is non-negative.

Let us prove the inequality Cp > "~/w,. Let 27 = 2+ pB™, p > 0, be the
family of outer parallel bodies of 2. Let us fix p > 0. From the concavity of the
map t— "/]|0027], t € [0,p + 7], and the fact that its right derivative at ¢ = p
is —Cy, we deduce that

0027 < ["V/1092]+ pCa]™ .

On the other hand, |£2?| > |pB™| = knp™, and hence, using (3.1), we conclude that

Iizil ) Qp|n71 Iizil
>
oy RS g 7 Gt
which gives the required inequality. O

REMARK 3.5. The right-hand side in (3.5) gives an estimate of the so-called isoperi-
metric deficit.

REMARK 3.6. A sharper estimate on the constant Cy, will be proved in lemma 3.8.

The following lemma is needed in order to discuss the equality case in theorem 3.1.
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LEMMA 3.7. The condition
¢ n—1
|8Qt| = |8Q| (1 — 7”_> Vit € [0, TQ] (37)
I7)

holds if and only if, for everyt € [0,70], £2; is homothetic to £2 and it is a tangential
body of an n-dimensional ball. In particular, up to a translation, 2y = (1 —t/rg)2
for every t € [0,70)].

Proof. From the Brunn-Minkowski theorem, condition (3.7) holds if and only if
every {2; is homothetic to 2. By lemma 3.1.10 in [20], this last condition is satisfied
if and only if every (2, is a tangential body of an n-dimensional ball. O

Proof of theorem 3.1. Inequality (3.4) follows directly from the fact that the right-
hand side in (3.5) is non-negative. From (3.6), it is also clear that equality in (3.4)
holds if and only if v(t) = v(0)(1 — t/rg), that is, if and only if (3.7) holds. By
lemma 3.7, this last condition is satisfied if and only if {2 is a tangential body of an
n-dimensional ball. O

In order to state the consequences of theorem 3.4, a further piece of notation is
needed. For every 2 € K™ and every u € S"~!, denote by H~ (K, u) the supporting
half-space of 2 with exterior normal u. Let 2 € Kf, and let S be the smallest
closed set contained in S™~! such that £2 is determined by S, that is,

Q=) H (2u). (3.8)
ueS

Then the form body of {2 is defined by

Q.= () H (B",u). (3.9)
u€eS

We are now in a position to prove a sharper estimate on the constant C. We
remark that this estimate can be quickly proved using the tools of convex geometry
(mixed volumes and mixed areas (see, for example, [4,20])). However, we prefer to
give a simple proof, which can be followed without knowing this machinery, and
which uses only a formula for computing the measure of a polytope (see (3.11)
below).

LEMMA 3.8. Let 2 € Kij and let £2, be its form body. Then Co = Cq, = "/wn,.

Proof. The inequality Cp,, > "~/w,, follows from theorem 3.4. Since Cy; is invariant
under homotheties, without loss of generality, we can assume rp = 1. As a second
reduction, by an approximation argument, it is enough to consider 2 € P§. In this
case, the set S appearing in (3.8) and (3.9) is finite, say, S = {u1,...,um}. The
sets (2; and (£2,), for ¢ small enough, say, t < to € ]0, 1], can be represented in the
following way:

m

Qo= VHypoer (2)e=(VHyir te€0t0]
=1 i=1
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(see [20, corollary 2.4.4]). Here,

H,,:={r€R" z-u<a} (3.10)
and hi,...,h, € R are defined in such a way that H, , = H=(2,u;) for every
i=1,...,m. Since r = 1, it is clear that min; »; = 1. From lemma 5.1.2 in [20],
we have that there exist symmetric coefficients (a;,, .. ;.), ji,---,Jn € {1,...,m},

such that, for every t € [0, to],

120 = aj g by —t) . (hy, — 1), (20 =D aj,.5 (1 —1)" (3.11)

Computing the second derivative of the maps t — [2;| and ¢t — |(£2,)¢] in t = 0, we

get
Co = Zajh...,jn Z H R, Co, =n(n—1) Zaﬁw]’n'

hok rh.k
h#k

Since min h; = 1, we have that
Z H hj, =2 n(n—1),
b,k rh,k
h#k

and hence the proof is complete. O

The following corollary of theorem 3.4 is a result already known in the literature,
due to Aleksandrov [1] and extended by Diskant [9] (also see [20, p. 321]).

COROLLARY 3.9. Let 2 € Kf and let £2, be its form body. Then
o0 n/(n—1) B o0 1/(n—1) B n
(%) _ |Q||Q*|1/(n D> [(|_n|> _ 7n_Q|_Q*|1/(n DA (3.12)

where the right-hand side is non-negative. In particular,

o2 _ lo2."
|Q|n71 = |Q*|n71

= n"|02], (3.13)

with equality if and only if {2 is homothetic to (2.
Proof. Let us consider the function
g(s) = 1002 =Y —ns|2| —[|oR2)V Y —sro]", s > 0.

We have that ¢g(0) = 0 and g(Cyp) > 0, by (3.5). Since, by lemma 3.8, Cp,, < Cgq,
in order to prove (3.12) it is enough to show that g(s) > 0 for every s € [0,Cp].

Let
OV VA N 17 B

0 7ng/(nfl)’ 0o 70-7(12/(7171)

Computing the first derivative of g, it is easily seen that g is monotone increasing
for s < sg. If n is even, then g is monotone decreasing for s > sg, whereas if n is odd,
then ¢ is monotone decreasing for sy < s < s; and again monotone increasing for
s = s1. Since Cp < "/|002|/rn, we have that s; > Cp, and hence, in both cases
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(n even or n odd), we conclude that either g is monotone increasing in [0, Cp,] or
it has one maximum point sg in that interval. Thus g(s) = 0 for every s € [0, Cq],
and (3.12) is proved.

Inequality (3.13) now follows from (3.12). However, in order to discuss the equal-
ity case, we provide a self-contained proof of it. Since the left-hand side in (3.13) is
invariant under homotheties, it is not restrictive to assume rq = 1. Let

’Y*(t) = n7V1 |8(Q*)t|a te [Oa 1]'

Since 2. is a tangential body of an n-dimensional ball, we have 7, (t) = Cq, (1 — t),
t € [0,1], so that

n—1

C
10, = =2 |9, =cn (3.14)
" N
Finally, from (3.4), (3.14) and lemma 3.8, we deduce that

092"

_ o
|Q|n71

2 (nCQ)nil 2 (nCQ*)nil - |Q |n71

= n"|02,], (3.15)

with equality if and only if {2 is a tangential body of an n-dimensional ball, that
is, if and only if {2 is homothetic to {2.. We remark that, since {2, contains a unit
ball, from (3.15), we deduce that Cp, > "~/w,, with equality if and only if £2, is
a ball. O

REMARK 3.10. The case of polytopes is described in detail in [10]. In particular,
inequality (3.13) was proved in [10, theorem 34] when {2 € P['. We recall that the
form polytope of {2 is the convex polytope circumscribed about a unit ball which
has the same number of (n —1)-dimensional faces and the same set of outer normals
to these faces.

EXAMPLE 3.11. If £2 C R? is a convex polygon, then inequality (3.4), which is
equivalent to (3.13), becomes

00212
] < , 3.16
21 < o (3.16)
where Cp = 2 sz\; cotan%@i, and 01, ...,0N denote the inner angles of the poly-
gon. We have that
(N ~2)

Cq > 2N cotan T = 2N tan % > 2m,

2N

and hence inequality (3.16) is stronger than the classical isoperimetric inequality
|2] < |012]2 /47 (see also [2, § 1.1]). Inequality (3.16) was proved by Lhuilier in 1782
(see, for example, [3,16]).

4. Proof of theorem 1.1

We first prove a result that will be useful in the sequel (see [8, proposition 1]).

PROPOSITION 4.1. Let 2 € K. Then £(£2) =1 if and only if 2 is a ball.
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Proof. Let ug € HL(£2) be the solution to (1.3). If 2 is a ball, then uy, is radially
symmetric, and hence £(f2) = 1. Conversely, let us assume that £(£2) = 1. This
means that uo, € W(£2), that is, un(z) = ¢(d(z,012)), with

1) := t|95|d telo 4.1
¢()_ 0 |898| S, [,TQ] ()

(see [5, theorem 3.1]). Then, on 042, the normal derivative of uy, is given by

8UQ / /
— =¢'(d)Vd-n=—¢'(0).
2 @)V =—(0)
Now, from a result of Serrin [21] (which is valid only if 842 is of class C2, but can be
extended to convex domains thanks to the simplified proof given in [23]), it follows

that 2 must be a ball. O

In the following, a major role will be played by the functional

A(RQ) = /OQ{/tQ |Qs|ds} dt, Qekm. (4.2)

By the continuity of the maps 2 — r, and 2 — |2| with respect to the Hausdorff
metric, we also deduce that 2 — A(f2) is a continuous functional on K™.

In order to deal with positive quantities and make the inequalities more readable,
we shall use the notation £(£2) = N(2)/D(£2), where

N(2):=—-2 min J 3 42), 4.3
( ) uevé( ) (u ) ( )
D 12 =2 min J 712 = —-2J 25 12 s 4.4
( ) ueHé(Q) (U ) (U ) ( )

in such a way that 0 < N(£2) < D(£2). We remark that, from theorem 6.1 in [5]
and proposition A.1 in the appendix, the functionals 2 — N (£2) and 2 — D(£2)
are both continuous in K.

The proof of theorem 1.1 will be achieved in four steps.

(1) Give a lower bound for N'(£2) in terms of A({2) (see proposition 4.2).

(2) Give an upper bound for D({2) in terms of A(f2) (see proposition 4.7). Here
we need a strict inequality, in order to prove that the infimum of £ is not
attained.

(3) Combine the previous estimates in order to find a lower bound for £(£2)
(see (4.16)).

(4) Show that this lower bound is sharp by exhibiting a minimizing sequence.
STEP 1 (bound from below for N'(£2)).

PROPOSITION 4.2. Let 2 € Ki and let A(£2), N(§2) be the quantities defined,
respectively, in (4.2) and (4.3). Then

A(), (4.5)

with equality if and only if {2 is a tangential body of a ball.
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Proof. Using the explicit form (4.1) of the solution to (1.5), we have that

_ o] |Qt|2
N(Q)_/O |8Qt|dt

(also see [7, § 5] and [17, eqn (3.30)]). Let us define the function

P(t) = te[0,rol
From the isoperimetric inequality (3.1), we have that

0 < th(t) < cul82¢] "V [062]

for every t € [0,rqo[, where ¢, = 1/(n "~/w,). Hence ¢ can be continuously
extended to [0,70] by setting ¢ (rp) = 0. Furthermore, the map ¢ — [£2;| is con-
tinuously differentiable on [0,7], whereas the map ¢t — |92 is locally Lipschitz
continuous on ]0, 7 [. We can then deduce that also ¢ is locally Lipschitz continuous
on |0, rgl.

Let 7 C [0,rp] denote the set (with vanishing Lebesgue measure) of points of
non-differentiability of ¢. For every ¢ € [0,7] \ 7, we have

|‘()t|2 i |
002 dt "

From corollary 3.3 and the fact that d/d¢|0f2;| < 0, we obtain the estimates

V(b)) = =2/ -

n+1
=2/ < Y'(t) < - |92:|. (4.6)

It follows that |¢/(t)] < 2|Q| for every t € |0, rQ] \ 7, and hence 1) is a Lipschitz
continuous function on [0, rg]. Moreover,

/w ”“/t 2] ds,
:/Omzb(t)dw"+1

concluding the proof. O

and hence

A(2),

STEP 2 (bound from above for D(§2)). In order to give an estimate from above of
the denominator D(£2) in (4.4), some preparation is needed. We recall that, for
every 2 € K¥, ug denotes the minimizer of the functional J(+; £2) in Hg(£2). It is
known that ugp € C°°(int 2) (see [12, corollary 8.11]). If 2 € K™ but [£2] = 0 (that
is, 2 € Kf), we set up = 0 and J(ug; 2) = 0.

Let 2 € Kf. Since the distance function d(-,df2) is concave in {2, the vector

n(x) := —=Vd(z,012) is defined a.e. on 2, and coincides with the exterior normal on
982 (in the regular points of 942). For every u € H{(£2), let us define the following
vectors:

DNu(z) := (Vu(z) - n(z))n(z), D u(z):= Vu(z)— DNu(z), z € .
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Clearly, we have J(u; 2) = JN(u; 2) + J T (u; 2), where
IN(u; 2) = / (3| DNul* — ) dz, TV (u; 2) := / 1D"u|? da.
2 2

Our first task will be to give a lower bound for JN(-; £2) in terms of the functional
A(£2) defined in (4.2), which is valid when (2 € P§ is a polytope with non-empty
interior (see lemma 4.4 below).

We recall that, if 2 € P§ is a polytope and F1,. .., F,, are its (n—1)-dimensional
faces, then it admits the following representation,

0= ﬁ Hy o (4.7)
=1

where H, , is defined in (3.10) and u; € S™~1 is the exterior normal vector to Fj,

U,

i=1,...,m (see [20, §2.4]). On 042, let us define the piercing function
Ao(y) ==sup{p =05 y —pu; € 2, H(y — pu;) =y} ify € F, (4.8)

where IT(x) denotes the projection of the point x € {2 on 9(2. It is convenient to
extend A to all 2 by

AMz) =X (x)) — o — H(x)], z€n. (4.9)
The main properties of A\g are collected in the following lemma.

LEMMA 4.3. Let 2 € P§ and let Fi, ..., Fy, be its (n — 1)-dimensional faces. Then
the piercing function Ao satisfies the following properties.

(i) 0< Ao(y) < rg for every y € 012.

(ii) Ao vanishes on the relative boundaries of Fi, ..., Fy,, and is strictly positive
on their relative interior.

(iii) Ao 4s a Lipschitz continuous function on 0f2.

(iv) For every i € {1,...,m}, the restriction of Ao to F; is a concave function
on Fj.

Proof. Properties (i) and (ii) follow directly from the definition (4.3) of Ag. Let (4.7)
be the representation of (2. In order to prove (iii) and (iv), it is convenient to rewrite
Ao in terms of (u;) and ().

We claim that

o(y) = min 224

Vy € F;. 4.10
J# 1-— Usj = Uy Y ( )

Remark that —1 < wu; - u; < 1 for every j # ¢, and hence the right-hand side
in (4.10) is well defined. Let y € F;. The set of all u > 0 such that y — pu; € 2 and
II(y — pu;) =y is characterized by

o = (y — pug) - up < o — (y — pug) ~uy Vi # i
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Since y € F;, we have that y - u; = «;, and hence the inequality above becomes

1< &Y Y Vi £ .
1-— U; Uj
Therefore, equation (4.10) easily follows from the definition of Ag.
Now let ¢ € {1,...,m} and let y;,y2 € F;. From (4.10), we deduce that there
exist j1,j2 € {1,...,m}\ {¢} such that, for h = 1,2,

ajh_y-ujh<aj_y-uj VJ7£Z

)\ = X
O(yh) 1—ui 'Ujh 1—ui 'Uj

Hence

— Y1 Ujy _ajz_y2'uj2

No(y1) — Nolye) = =L

].—’U,Z"’U,jl ].—’U,Z"’U,jz
< Qjp — Y1 " Ujp Oy — Y2 " Ujy
h 1—ui'u]‘2 1—ui'u]‘2
sz
=Ly — ). 4.11
1—u, - uj, (y1 —y2) ( )

In particular, if y5 is fixed, then

Xo(w1) = Xo(y2) <p-(y1 —y2) Yy € Fj,

where
Y
S p——
so that (iv) follows. The Lipschitz continuity of Ay also follows from (4.11). Namely,

if we define

L:= max 1 (4.12)

N N )
l=i<j<m 1 —u; - u;

then, from (4.11), we obtain Ag(y1) — Ao(y2) < Lly1 — y2|. Exchanging the role
of y; and ys in (4.11), we also have A\g(y2) — Mo(y1) < Lly1 — =2/, and therefore
Ao is Lipschitz continuous on Fj, with Lipschitz constant L. Clearly, this property
holds for every ¢ = 1,...,m. Since the sets Fy,..., F,, are closed, property (iii)
follows. O

LEMMA 4.4. Let 2 € Py. Then JN(u; 2) = —A(£2) for every u € Hy(12).

Proof. Let Fy,...,F,, be the (n — 1)-dimensional faces of the polytope 2 and
let (4.7) be its representation. From lemma 4.3, the sets

{y_tu17y€FZ:0<t<>\0(y)}: i=1,...,m,

belong to Kf and form a covering of {2, with pairwise disjoint interior.
Let u € H}(£2). From Fubini’s theorem, we have that

TN(u; 2) = i/ {/O)\O(y) (2 Vu(y — tu)]* — u(y — tw;)] dt} dH"(y).
i=1"F
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Let us fix y € 0f2. The quantity in braces can be estimated by

Ao (y)
fo)> min{/o [%|v'(t)|2 —wu(t)]dt; v € HY(0,\(y)), v(0) = 0}
= _éAO(y)Bﬂ

and hence

ACCEEDS J owrae e =5 [ xowraete)

The proof will be concluded if we show that
1

42 =3 [ ol an ). (4.13)

By Fubini’s theorem, we have that

/ M) dH™ (y) = |2,
082

where A is the extension of \g defined in (4.9). In general, if g € C[0,rp], g(0) =0
and G(s) = [; g(o)do, s € [0,rg], we have

J s@nas= [ ( / " ) —9) ) ar )

= G(A(y)) dH" ().
082

()
o))
(e

Hence we have

Il
c\c\c\

_%/ [/ Ay)? dH"l(y)} dt:%/ Az)?dz
0 0824 0
1 e
=1 wrare),
o0
and the proof is complete. O

LEMMA 4.5. The functional 2 — JT(ug; Q) is continuous in K™.

Proof. Let 2 € K™ and let (£2;)r C K™ be a sequence converging to 2. If |2| =0,
then [2x] — 0 and JT (ugn,;2;) — 0. Assume now that |2| > 0, that is, 2 € Kg.
It is not restrictive to assume that 2, € K for every k € N. Let R > 0 be such
that {2 and every (2, are contained in B%. Let us extend the function ug to B by
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setting up = 0 on B} \ £2, so that ug € H&(BI’%), and let us extend the functions
ug, in the same way on BY% \ 2. Let us define

n(x) == =Vd(z,002), ng(z):=-Vd(z,002%), z€ Bj

(recall that the distance function is defined on all R™ by (2.1)). Let N C BE,
|N| = 0, denote the union of the sets of points of non-differentiability of the func-
tions d(-,042) and d(-,042). Since the sequence of concave functions (d(-, 042))x
converges to d(-,0f2) pointwise on B%, we have that ng(z) — n(x) for every
x € BE\N (see [19, theorem 24.5]). Moreover, from proposition A.1 in the appendix,
ugn, — ugn strongly in H&(BI’%), and hence Vug, — Vugp a.e. in B. Then, for a.e.
x € B,

D% ug, (z) = D ug(), DM ug, (2)]* < [Vug, (z)* — |Vug(z)[.

Therefore, (|DTug, |?)i is an equi-integrable sequence of functions converging a.e. to
the integrable function |DTug|?. From Vitali’s theorem, we have DTug, — DTug
in L2(B%), concluding the proof. O

LEMMA 4.6. Let 2 € K. Then J™(ug; 2) =0 if and only if up € W(£).

Proof. If up € W(S2), then DTug = 0 a.e. on 2, and hence J* (ug; 2) = 0. Con-
versely, assume that JT(ugp;£2) = 0. In order to prove that up, € W(£2), it is
enough to show that, if t € |0, 70|, then ug is constant on 92;. Let xg € 962;. We
are going to show that, for every x € 92, we have ugn(x) = ugn(xo). Let S C 9%
be the set of singular points of (2, that is, the subset of 0{2; where the exterior
normal is not defined. Since H"1(S) = 0 (see [20, theorem 2.2.4]), there exists a
Lipschitz continuous curve v : [0, 1] — R™ with the following properties: v(0) = xg;
v(1) = x1; y(s) € 942 for every s € [0,1]; v(s) € S for a.e. s € [0,1]. More-
over, up € C*(int {2), and hence the composed map s +— ugn(v(s)) is Lipschitz
continuous in [0, 1], and

ua(1(s)) = Vus(y(s)) -7/ (s)

for a.e. s € [0,1]. Now, JT (ug; 2) = 0 entails DTug = 0 a.e. on (2, that is, Vug(z)
is parallel to n(z) for a.e. z € £2. On the other hand, 7/(s) - n(y(s)) = 0 for a.e.
s € [0,1], and hence (d/ds)un(y(s)) = 0 for a.e. s € [0, 1]. Thus un(z) = un(xo),
and the proof is complete. O

PROPOSITION 4.7. For every 2 € K™, we have
D(2) = 2A(2) — §(02), (4.14)

where A(£2), D(£2) are the quantities defined, respectively, in (4.2) and (4.4), and
d is a non-negative continuous functional in K™. Furthermore, 6(§2) > 0 for every
neky.

Proof. From lemma 4.4, we have that, for every 2 € P,

J(u; 2) = IN(u; 2) + TV (u; 2) = —A(2) + T (u; 2) Yu € HE(D),
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and hence
min  J(u; Q) = J(ug; 2) = —A(2) + T (ug; 2). (4.15)
u€HS (£2)
From proposition A.1, the continuity of the volume and lemma 4.5, the functionals
02— J(ug;2), 2 +— A(2) and 2 — JT(ug; 2) are continuous in K", so we can
conclude that inequality (4.15) holds for every {2 € K™. Since D(£2) = —2J(ug; £2),
we have that D(£2) = 2A(2) — §(£2), with 6(£2) = 2J T (up; 2) > 0.
Finally, let 2 € Kf and prove that §(£2) > 0. If £(£2) = 1, that is, if D(2) =
N (£2), then, by proposition 4.1, we have that {2 is a ball. Then, from proposition 4.2,

we conclude that 41
D) = N(2) = = — A(©2) < 24(2),

so that 6(£2) > 0, by the definition of § in (4.14). On the other hand, if £(£2) < 1,
then ugp & W(S2), and hence, from lemma 4.6, we conclude again that () >
2JT(UQ;Q) > 0.

|

STEP 3 (bound from below for £((2)). From propositions4.2 and 4.7, it is straight-
forward to conclude that

n+1

£(R) > VR eKp. (4.16)

STEP 4 (the bound from below for £ is the infimum). It remains to show that

1
inf £(2)= Dt .
neKy 2n

It is enough to construct a sequence (£2%); C K¢ such that
1
limsup £(2%) < i
k 2n
We start by providing an upper bound to £ for domains of the following type,
2={(y,t) ER"' xR; y € D, aly) <t < Hy)}, (4.17)

where D C R™™! belongs to /ng and «, 3 are, respectively, a convex non-positive
function and a concave non-negative function on D, vanishing on 9D.
We consider the functionals

Jo(u) = / [%uf — u] de, J1(u) i/ %|Vyu|2dac7
0 0

where V,u denotes the vector of the first n — 1 partial derivatives of u, while
denotes the nth partial derivative of u. We remark that J(u; 2) = Jo(u) + J1(u).
It is easy to show that, for the function u*(y,t) = —$[t — a(y)][t — B(y)], we have

1

Jo(w) = —5 .

[B(y) — a(y)]® dy,
so that

D(2) = —2minJ > —2Jp(u*) — 2J1(u*) = 1—12 /D[,B(y) — a(y)]3 dy — 2J7 (u™).
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For R > 0, let f2r be the convex domain defined by (4.17) with D = B?{l,
a(y) =0 and B(y) = 1 — |y|/R. The previous estimate gives

Rn—1

s DT (1 - %)

The term N(£2) can be computed explicitly. Namely, if we denote by rr the
inradius of 2 (whose precise expression is not needed), we have that

D(2r) >

2"<5nfl

MO =)

R”flr}%,

and hence

2n+1) , 1\
E(QR)<TTR(1—E> .

1

5 as R — +00, we conclude that

Since rp —

n+1

limsup £(2g) <
R—+o0 2n

We conclude this section with some remarks about the minimizing sequences of £.
Since £ is invariant under dilations, it is enough to restrict our analysis to a subset
of convex domains with prescribed measure, for example K7 := {2 € £; |2| = 1}.
Let (£2%); C K7 be a minimizing sequence for .

We claim that

kEIJPoo ror = 0. (4.18)
Namely, assume by contradiction that r := limsup, ro» > 0. Up to a subsequence,
which we do not relabel, we may assume that limg ror =7 and ror > %r for every
k € N. Let 2 € K7. From the concavity of the map t — "/|02;|, we obtain the
inequality

n—1
002 > |arz|(1 - i) . te o ral,
T

which entails

ro
1:|9|:/ o2 dr> Ljon| ve e K.
0

Therefore, |002F] < n/ror < 2n/r for every k € N. It follows that, up to a trans-
lation, the sets (Qk) are equibounded. Hence, from the Blaschke selection theorem
(see [20, theorem 1.8.6]), there exists a subsequence of (£2%) converging to a set
£2 € K. By the continuity of the volume (see [20, theorem 1.8.16]), we have that
{2 € K}. From the continuity of £ on Kf}, we conclude that (2 is a minimizer of £,
in contradiction with the fact that £ does not attain its infimum.

We remark that condition (4.18) is only necessary in order to have a minimizing
sequence. Indeed, let us define, for every k € N7,

1

m. (4.19)

0k .= {(y,t); yEBLLil, 0 << 2}, TE =
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Then (£2%F) C K7 and limy ror = limg7, = 0. On the other hand, a straight-
forward computation shows that N'(£2%), D(22%) ~ 2r? for k — 00, and hence
limy £(02%) = 1.

This different behaviour can be explained by the following argument, for which
we are not exhibiting a formal proof. Let (2%) C K7 be a minimizing sequence of
&. From propositions 4.2 and 4.7, it is clear that

n+1
n

with Ag, 0 = 0 and limg Ay = limy 6 = 0. If the first condition (limg Ax = 0)
holds, we say that the sequence (£2%) is asymptotically tangential to a ball. Indeed,
from proposition 4.2, for k large, £2¥ tends to be a tangential body of a ball. This
requirement is fulfilled by the minimizing sequence chosen in step 4 above, but it is
not satisfied by the sequence of cylinders defined in (4.19). The second condition,
that is, limy 0 = 0, is automatically satisfied when limg ror = 0. (For sets of the
form (4.17), this assertion can be checked using the argument given in step 4 above.)
Therefore, we can conclude that, if the sequence (£2¥) C K7 is asymptotically
tangential to a ball and limg ror = 0, then (£2%) is a minimizing sequence of &.

N (2% = AR (1 + Ay), D(2F) = 2A(2%)(1 - 61),

Appendix A.

The next well-known proposition (see [15]) concerns the convergence of solutions to
the Dirichlet problem (1.1) on variable domains. In what follows, it is understood
that, if A C B for some sets A, B € K, then H}(A) is embedded in H}(B) by
setting v = 0 on B\ A for every v € H} (A).

PROPOSITION A.1. Let (2%)x C K& be a sequence converging to 2 € K& in the
Hausdorff metric. Let u € H}(£2) be the solution to (1.1), and, for every k € N,
let u, € HY(£2F) be the solution of the same Dirichlet problem on 2F. Let K € K}
be a set containing 2 and every 2%, k € N. Then u, — u in the strong topology

of HY(K).
/|Vuk|2dm:/ukdx
K K

Proof. Since
(see (1.4)), from the Poincaré inequality (see [12, §7.8]), we get
||Uk||?qg(1<) < C||Uk||H3(K),

so that [lull i) < C for every k € N. Thus there exists v € Hj(K) such that
uj, — v in the weak topology of H}(K).

We claim that v € H{(£2). Namely, it is enough to prove that v = 0 a.e. on K \ £2.
Indeed, if p > 0 is fixed, then there exists k, € N such that 2k c N+ By for every
k > k,. Hence uj, = 0 a.e. in K \ (2+ B}) for every k > k,, which entails v = 0 a.e.
in K\ (£2+ By). Now, this condition if fulfilled for every p > 0, and hence v = 0
a.e.in K \ 2.

Let us show that v is a solution to (1.1). Let ¢ € C§°(£2) be a test function. Since
supp ¢ (the support of ¢) is compactly contained in {2, there exists k, € N such
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that supp ¢ C 2F for every k > k. Therefore, from the fact that u, satisfies (1.2)
in 2%, we obtain

Vuk-chdm:/ pdr Vk 2> k.

0k 0k

Then the convergence of (uy) to v in the weak topology of Hj(K) entails

/Vv-chdm:/cpdm. (A1)
7 7

Since (A1) holds for every test function ¢ € C§°(£2), we have that v is a solution
to (1.1). From the uniqueness of the solution, we conclude that v = w.
Finally, from the convergence of (uz) to u in the weak topology of H}(K), we

obtain
/ |V, |* = / up — / u= / | Vul?,
K K K K
which allows us to conclude that uy — u in the strong topology of H}(K). O
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