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Well-posedness for the spatially homogeneous
Landau—Fermi—Dirac equation for hard potentials
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We study the Cauchy problem for the spatially homogeneous Landau equation for
Fermi-Dirac particles, in the case of hard and Maxwellian potentials. We establish
existence and uniqueness of a weak solution for a large class of initial data.

1. Introduction

Kinetic theory aims at modelling a gas or a plasma when one is interested in the
statistical properties of the gas rather than the state of each gas particle. The
evolution of the gas is then described by a distribution function f = f(¢,z,v) > 0
which represents the (local) density of particles with velocity v € R? at position
z € R3 and time t € Ry = [0, +o0].

In the absence of interactions (or collisions) between particles, the evolution of f
is given by the free-transport equation. When the effect of collisions is included, f
satisfies the celebrated Boltzmann equation or related models [3-5,20]. In partic-
ular, while the Boltzmann equation is valid for neutral particles or weakly ionized
plasmas, the modelling of completely ionized plasmas introduces a new model, the
Landau equation, which is obtained as a limit of the Boltzmann equation when
grazing collisions prevail (cf. [5,8,9,20]). Quantum effects such as the Pauli exclu-
sion principle should also sometimes be taken into account and both the Boltzmann
and Landau equations have to be modified accordingly in that case [5,7,20]. We
also mention that a Landau equation with Fermi statistics arises in the modelling
of self-gravitating particles [6,16].

In this paper, we study a modified Landau equation accounting for the Pauli
exclusion principle, which reads

Of+v-V,f = QL(f)a

where
QL(f) =V [ ¥(v—v)(v—v){fs(1 =0f )V — f(1 =)V [} dus,

where 6 =1, f = f(t,v), f« = f(t,v.) and II(z) denotes the orthogonal projection

on (Rz)*, L
i< .o
11;5(2) = 6ij — EEk 1<4,7 <3,
(© 2004 The Royal Society of Edinburgh
415
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and ¥ is a function such that ¥(z) = |2|**7, —=3 < v < 1. The choice ¥(z) =
|2|2T7 corresponds to inverse power-law potentials, among which we distinguish
the Coulomb potential (v = —3), soft potentials (—3 < v < 0), the Maxwellian
potential (v = 0) and hard potentials (0 < v < 1). We recall here that the Coulomb
potential is, however, the only one to have a physical relevance.

Taking 6 = 0 in Qr(f) corresponds to the classical Landau equation, while the
Landau-Fermi-Dirac (LFD) equation and the Landau-Bose-Einstein (LBE) equa-
tion correspond to § = 1 and & = —1, respectively. Only the case § = 1 will
be considered here and our aim is to investigate the existence and uniqueness of
weak solutions to the LFD equation in a spatially homogeneous setting, that is,
f = f(t,v) and satisfies

of = Qu(f), (1.1)

with § = 1. We point out that the Pauli exclusion principle implies that a solution
to (1.1) must satisfy 0 < f < 1.

While the classical Boltzmann and Landau equations have been the subject of
several papers (see [3,4,11,30] for the Boltzmann equation and [2,10,15,22,28,29] for
the Landau equation, and the references therein), fewer studies have been devoted
to the Boltzmann-Fermi-Dirac (BFD) equation and to the LFD equation. Con-
cerning the former, the spatially inhomogeneous Cauchy problem has been stud-
ied in [1,12,21] for cross-sections satisfying Grad’s cut-off assumption. In a spa-
tially homogeneous setting, existence of solutions to the BFD equation is investi-
gated in [13,24] for more realistic cross-sections, and their large-time behaviour as
well [13,24,25]. To our knowledge, the problem of existence and uniqueness of solu-
tions to the LFD equation has not been yet considered, and the only works on this
model concern a formal derivation from the BFD equation in the grazing collisions
limit [7] and a spectral analysis of its linearization near an equilibrium [18]. There-
fore, our purpose is to investigate the well-posedness of the Cauchy problem for the
LFD equation in a spatially homogeneous setting for hard or Maxwellian poten-
tials. As already mentioned, the Pauli exclusion principle implies that solutions to
the LFD equation should satisfy the L>° bound 0 < f < 1. On one hand, this
L*> bound simplifies the analysis in comparison to the classical Landau equation
where only a bound in Llog L is available. On the other hand, the term f(1 —df)
is nonlinear for § = 1 and requires strong compactness arguments to be handled
(weak compactness is sufficient for the classical Landau equation where § = 0, since
the term f(1 —4df) = f is linear in that case).

We now describe the contents of the paper. We set notation and state our main
results in the next section: existence, propagation of moments, uniqueness (the-
orem 2.2), ellipticity of Qr.(f) (proposition 2.3). A priori estimates are gathered
in §3 and are used in §4 to prove the existence of a solution to the LFD equation.
Finally, the uniqueness result stated in theorem 2.2 is proved in § 5.

2. Main results

We first introduce some notation and definitions. For s € R, p > 1 and k € N, we
set

LE(R?) := LP(R%; (1 + [v]*)* dw),
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1915, = [ 1£@PQ+ o) do,
>[I0 PPy a,

0< o<k

111,

where o = (i1, 2, 43) € N%, |a| =iy + iy + i3 and 9 f = 0} 0205 f.
For s > 0 and f € L1 ,(R3), we denote by Ma,(f) the moment of order 2s of f,
that is,

Moo (f) = / F@)of do.

For (i,7) € [1,3]?, we define

a(z) = (ai,j(2))i, with aij(2) = |27 (5@]- - IZ;|Z§>
bi(2) = Zakai,k(z) = —22z2|7,
k

c(z) = Z@ilaw(z) = —2(y+3)|#|",
k,l

and, when no confusion can occur, we write A = (4; ;), b= (b;), B = (B;), with

by = b;  f, Aij=aij*(f(1-[)),
c=cxf, Bi=b* (f(1 - [)).
Otherwise, we use the notation flzf,j, l_){, Bzf, ¢/ instead of fli,j? b;, B; and ¢.
With this notation, the LFD equation can then be written alternatively in the

form

Of =V - (AVf —bf(1 - [)), (2.1)

Ouf = A ;02 f +(B—b(1—2f))-Vf—cf(1-f),
1,

and is supplemented with the initial datum

f(0) = fin, (2.2)

where
fin € LYR®), 0< fin<1 ae. and fin Z0. (2:3)

We note that the last assumption is not restrictive since, when fi;, =0, f =01is a
solution to (2.1), (2.2).

The usual a priori estimates are available here. Indeed, one can formally verify
that solutions preserve mass and energy, namely, for every ¢t > 0

My(f)(t) = /f(t,v) dv = /fin dv := M,,, (2.4)
Mo (f)(t) = /f(t,v)\v|2 dv = /fin|v\2dv = Fiy. (2.5)
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418 V. Bagland
Moreover, introducing the entropy S(f) for Fermi-Dirac particles defined by

SU%=—/Umf+O—fﬂM1—ﬁNv>&

one can see, still formally, that ¢ — S(f)(¢) is a non-decreasing function.

DEFINITION 2.1. Consider f;, satisfying (2.3). A weak solution to the LFD equa-
tion (2.1), (2.2) is a function f satisfying the following conditions.

() € L®(Ry; LH(R) N C(Ry; D/(RY)), f(1— f) € L (Ry; L}, (RY)).
(1) 0< £ <1and £(0) = fin.

(iii) /f(t,v)\v\de < /fm(v)|v|2dv for every ¢ > 0.

(iv) Vo € D(R?) and Vs,t > 0,
[ oo [ 1. 00p)do
= th[ A0} jodv+ | fB-Vodv+ [ f(1—f)b-Vedu|.
[ X/ / /

Our main result is the following.

THEOREM 2.2. Consider fi satisfying (2.3) and assume further that fin € Ly, (R?)

for some sg > 1. Then there exists a weak solution f to (2.1), (2.2) satisfying (2.4),
(2.5) and

f(l - f) € LIIOC(R-F; L%s()—i-'y(]RB))a f € L?;C(RJF; L%SU (Rd)) N LIQOC(R“F; H%SU(RS))

If we also suppose that so > 1+ v, t = S(f)(t) is a non-decreasing function
and
Sin = S(fin) < S(f)(t) < B + 73/2 for every t € R,.

Moreover, for 2sg > 4y + 11, such a solution is unique.

The existence proof is adapted from that of [2,10] and is performed in three steps:
analysis of a regularized equation; uniform estimates; and passage to the limit by
a compactness argument. At this stage, we recall that, owing to the cubic nature
of QuL(f), a weak-compactness argument is not sufficient. Strong compactness is
actually a consequence of the uniform ellipticity of the matrix A, which we state
now.

We fix Ey > 0 and Sy > 0 and denote by Y(FEy, So) the set of functions f €
Li(R3) N L>°(R3) such that 0 < f < 1 a.e. and

MQ(f) Eo, S(f) > 5.

PROPOSITION 2.3. Let f € Y(Ey,So). Then there exists a constant K > 0, depend-
ing only on vy, Ey and Sy, such that

Y A ()68 > K1+ )21, veR?, £eR’
‘7]‘

<
<
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As for the uniqueness proof, it follows the lines from that of [10], but the non-
quadratic nature of Qr,(f) requires the use of an embedding lemma for weighted
Sobolev spaces.

3. A priori estimates

3.1. Uniform ellipticity

We first prove proposition 2.3 and proceed as in [10, proposition 4] for the Landau
equation with some modifications. Indeed, for the classical Landau equation, the
first step is a positive bound from below of || f|[z1(zy), Which is straightforward
by (2.4) and (2.5) (Bgr denotes the ball with centre 0 and radius R). For the LFD
equation, we need a positive bound from below of || f(1 — f)|z1(5,) and we realize
that the arguments of [10, proposition 4] provide no information for velocities where
f is close to 1. However, for such velocities, the required information is to be found
in the entropy.

LEMMA 3.1. There exist constants . > 0 and R, > 1, depending only on Ey and
So, such that

fA=fidv=n.>0 for every f € Y(Eo,So).
BR*

Proof. Let f € Y(Ey, Sy). For every R > 1, we have

sog/B (fllnfl+(1—f)|1n(1—f)|)dv+/| (fln ]+ (1= f)n(1 - f)]) do.

v|>R
(3.1)
STEP 1. We first consider the integral over Bg. Let £, € (0,1). Since
1—
IIn7r| < TT if r € (e, 1), (3.2)
IIn(1 — r)| <£ if r e (0,1—¢), (3.3)
we deduce that
flnsido< | flngido+ [ fl1n f] dv
Br BRﬂ{f>E} BRﬂ{fga}
1
<2 [ sa-pavse [ e
€ BR BR

and, similarly,

/<1—f>|1n<1—f>|dv<1 f<1—f>dv+ea/ (1- )2 In(1 - f)|do.
Br € JBgr B

R

As r — 77%|Inr| is bounded on [0, 1], we obtain, choosing ¢ = R4/,

01 (Oé) .

S (34)

/B (1 fl+ (L= Pl = Hhdv <287 [ 1= prav+
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STEP 2. It remains now to consider the second integral of (3.1). On one hand,
thanks to the Holder inequality and the boundedness of r — 7<|Inr| on [0,1], we
obtain

- —ay [ In f]
flnfdv:/ floeppt-a L2 g,
/|v>R 7] W>R i v[2(=e)

11—« @
< Cs(a) (/ f|v|2dv) (/ |21/ dv) .
[v| >R |lv|>R

We fix @ = £ and conclude that

5
El—a
/ flln f|dv < C=%—. (3.5)
[v| >R
On the other hand, using (3.3) with € = 3 leads to
[ a-pim-pla
lv[>R .
<2 f(lff)varf/ fdv
{lvI=R}n{f<1/2} € J{lv|=RIn{f>1/2}
2 2 1 2
< ﬁ/f|v| dv + @/ﬂﬂ dv.
Hence, for R > 1,
3Ey _3Ey
1—f)ln(l - f)|dv < — < —. 3.6
[0 pima - plav< T2 <27 (36)
From (3.5) and (3.6), we deduce
C3(E
[ G+ = nima - < S8 (1)
[vIZR
STEP 3. Substituting inequalities (3.4) and (3.7) into (3.1) gives
Ci(3) + Cs(E
Sy — w < 2RO F(1— f)do.
Br
The choice
R o— 201(%) + C3(Ep)
* S()
then completes the proof of lemma 3.1. O

Proof of proposition 2.3. Due to lemma 3.1, the remainder of the proof of proposi-
tion 2.3 is similar to that of [10, proposition 4], to which we refer. O

3.2. Propagation of moments

We now show (formally) the propagation of moments for solutions to the LFD
equation (2.1), (2.2), which, in turn, implies an H' estimate (still formally). All
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the computations we perform here will be justified in §4.2 by means of smooth
approximating solutions.

Let f be a smooth solution to (2.1), (2.2). Multiplying (2.1) by 1 and |v|? and
integrating with respect to v lead, after some integrations by parts, to the conserva-
tion of mass (2.4) and energy (2.5). Also, after multiplying (2.1) by In f —In(1 — f)
and integrating over R?, the non-negativity of the matrix a ensures that the entropy
S(f) is a non-decreasing function of time. From now on, C;, i > 1, denote positive
constants depending only on 7y, Mi,, E;, and Sj,. The dependence of the C; on
additional parameters will be indicated explicitly.

LEMMA 3.2. Assume that fi, € L, (R?) for some s > 1. Then, for every T > 0,

there exists a constant I'(s, T\, || finl|3_), depending only on s, T and || fin| 1y . such
that ‘

s 170, + / // o — 0?02 F£o(1 — 1) dvdvadr < T(s, T | fil s, ).

tel0,T
In particular, f(1— f) € Li, (Ry; Ly, (R?)).

Proof. Let ¢ be a smooth function on R3 and multiply (2.1) by ¢. After integrating
over R? and some integrations by parts, we obtain

%/f(t,v dv—Z//ff*l—f* Ja; ;(v — )”godvdv*
b [[ 1112 1= b0 = 0) - Vidudo.. (39
We take ¢(v) = @(|v|?) in (3.8), where @ is a convex function. As
Za” —v,) = 2Jv — v, [+,

Zaw iy = [v = v (Jo2[e.]? = (v 0,)?),
Zb 5= =2l — v (o] = (v-v.),

formula (3.8) becomes

(3.8)
S [ raoeryan=a [[ 1.0 - polo = o 27w, 0) dud,
where
A (v,0) = ([oef* = (0 v)) @ (J0]*) = @' ([vu]*) + ([0 [vel* = (v v.) )" (J0]*).
Since @ is convex, ' is non-negative and, consequently,
A (v,0,) < ([0l = (v v)) (@ ([0]?) = @ ([vs]*) + o]0 22" ([0]?).

Let &(r) = r°, s > 1. Since (v - vi) < |v||vi], we deduce (with the notation
A% = A?) that

A*(v,02) < s[s[o* v = [ou [ + Jolfos] ([0 72 + v 7)) (3.9)
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As s > 1, we have 2s — 1 > 1 and Young’s inequality ensures that

2257 2y% = 292y (25-2)/(25= 1) 2/(25-1) 2s — 2x25—1y+ 1 =3
2s —1 25 —1

Substituting this inequality for z = |v|, y = |v.| into (3.9) yields

-1
A (0,0.) < s | (s + DIl ol + ol = = ol
25 —1
Since f > 0 and |v — vi|7 < |7 + |vi|7 (7 = 0), we finally obtain

s—1
2s — 1

G [P avsass = [flo- Pl £)du,

< 48/ FEo + (o) [(s + D]ol**~Hou] + [v][o.>* 7] dvdo,.
Now

(o] + [oa ) [(s + D)o o] + [o][on]? ]
< (54 Dl o] + o2 o |] + [fof o 27+ folfo. 2971,
and Young’s inequality ensures that

max{|v|, |v|'*+1} <14+ \11|2 and rr1ax{|v|2$_17 \v|2$+7_1} <1+ |v\28.

Therefore,
d s—1
M) s [ [ o= v Pl P L £ dudv, < Ca(s) + Cals)Manl ).
(3.10)
Thanks to Gronwall’s lemma, we first conclude that, for every T > 0,
Mas(f)(t) < (Mas(fin) +1)C5(s,T), t€][0,T]. (3.11)

We next integrate (3.10) over (0,7') and deduce from (3.11) that

T
/0 / v = oo £ £ (1 = £.) dvdvedr < (Mas(fin) +1)Ca(s, T).

Since |v — v.|? = |vi|? — Jv|7, we infer that

T
s [ [ £ FolenPo do,
0
< (Mas(fin) +1)Ca(s, T) + | finll gl fl oo 0,7;8,),  (3:12)
which completes the proof. O

REMARK 3.3. Unlike the classical Landau equation, for which My(f) becomes
instantaneously finite for positive times and s > 1, we obtain here the propagation of
these moments but not their appearance. This is due to the term f,(1— f.) in (3.12).
Consequently, we do not recover the same smoothness as in [10, theorems 3 and 5].
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LEMMA 3.4. For every T > 0, there exists a constant C(s,T) such that

T
K//\Vf|2(1+|v|2)5+7/2dvd7
0
<CGT)+ 1A= Oy, Hfllzeores .y + 1 finllzy, - (3.13)

24y 25+~

Proof. Let s > 0 and fi, € L3, (R3). Since 0 < f < 1, equations (2.4), (2.5) and
lemma 3.2 imply that f € L°°(0,T; L3, (R?)). Tt follows from (2.1) that

1d

sa | POk

- / (AVf —Bf(1— P)V(F(L+ |of?)*) dv
= —/AVfo(l + [v?)* dv — 23/[1fo1}(1 + v]?)*~td

[ H0= 0BV o) o 2s [Beup - (1 o) do,
(3.14)

On one hand, since S(f) is a non-decreasing function and f satisfies (2.5), propo-
sition 2.3 implies that

/vam o) dv > K/ VFR(L 4 Jof2) /2 do.
On the other hand, it is easy to see that there exists a constant C such that
<SCIFA = Flllzy, , L+ [o]?)>*72, (3.15)

< Olflley (L +[of?)=+72,
<Ol flloy (L + o) 72,

|V . (/_1’1}(1 + ‘v|2)3_1)|
IV (31 + o))
b]
so that
[Beur = pa Pyt o < il [ 0+ P
and
/f(l — b VI o) do = —/(%F — 1PV - (b1 + o)) do
<Cll [ £+ Py 2a,
2 [Arvsot e oyt av = [ v pl)
SO0 Dy, [ 7O+ Py

Substituting the previous estimates into equation (3.14) and using (2.4) and (2.5)
yield (3.13) after integrating with respect to time. O
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4. Existence

This section is devoted to the proof of the existence part of theorem 2.2. First we
investigate a regularized problem and show the existence and smoothness of a solu-
tion. Indeed, a first difficulty common to both the Landau and LFD equations lies in
the fact that the coefficients of the elliptic operator Qr,(f) are unbounded. We thus
approximate them by bounded ones. However, the coefficients remain non-local,
which is the second difficulty to be faced. The existence of approximated solutions
follows from a fixed-point method, but, unlike the classical Landau equation, this
method has to be applied to a nonlinear equation. Finally, we obtain solutions to
the LFD equation as cluster points of sequences of approximated solutions. At this
stage, owing to the cubic nature of the LFD equation, weak convergence is not
sufficient.

4.1. The regularized problem

Let (¥.)c>0 be a family of smooth bounded functions on Ry that coincide with
WU(r)=r""2 for 0 <e <r < e ! and enjoy the following properties.

(i) The functions ¥, ¥ WE(S) and u75(4) are bounded.

)
(i) For 0 <r <e !, W.(r) > 4 *2 For r > =1, W (r) > 27072 > 0.
(iii) For every r > 0, ¥.(r) < r?(1 +r7) and [Z.(r)| < (v +2)r(1 4+ 7).

)

(iv) For 0 <7 < ¢, ¥.(r) = r?v.(r), with v. € C*([0,¢]), v.(0) = 1, v.(0) = 0 and
v/ (0) = 0.

For (i,7) € [1,3]?, we set

. e A c ZiZ5
a(z) = (a5;(2))ij, with af(2) :w€(|z|)<5i,j - |Z|§>7

222‘

bi(z) = ) Okafp(2) = \Z|2W€(|Z|)’
k

¢(2) =) Ohar,(2) = —%[%(I'ZD + |21X(12])]
k,l

and consider the regularized problem

Of =V - (ATEVf bl f(1 - f)) + eAf, (4.1)
f(07 ) = fin- (42)

We first note that, thanks to the properties of ¥., we have the following result.

LEMMA 4.1. The functions a5 ; and b belong to CR(R3). The function ¢ belongs
to CZ(R3).

We set
K = max [af e + max 16 oy + ez

We next investigate the well-posedness of (4.1), (4.2).
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THEOREM 4.2. Consider
fin € C(R?) N HY(R?) N W3 (R?)
such that

—B2lv)?
—Bill* ¢ ¢ e 3
0 < age < fin(v) < AT <1 for everyv e R, (4.3)
for positive constants oy, as, B1 and Ba. Let € > 0 and T > 0. Then there exists
a solution f¢ to the regularized problem (4.1), (4.2) with initial condition fi, such
that, for every s > 0, f¢ belongs to

L%(0, T3 Ly, (R?)) N L*(0, T H, (R?)).
Let 81 > 1, D, E, F and CY, be five positive constants, the values of which we

will specify later. We denote by C the set of functions f € C([0,T]; L*(R?)) such
that, for all s,t € [0,T] and ¢ € CZ(R3),

0<f<1,
/f(t,v)dv:/fin(v) dv,

[0 - stsopetoyan

< Cufiellezlt = sl,

< Cufellezlt = sl,

[0 D60 - 0= st as

Et,—Ba|v|?/(1+Ft
Ozle_ﬁ“UIZG_Dt < f(tv) < agelte=P2lvl"/ ) .
= ’ 1+a2eEtefﬁg|v\2/(1+Ft)

For g € C, we consider the following quasi-linear problem,

Of =V - [(A9° +el)Vf — b7 f(1— [)], (4.4)
f(0,) = fin, (4.5)

where I3 denotes the identity matrix of R3.
The existence of solutions to (4.1), (4.2) will follow from the existence of solutions

to (4.4), (4.5) by means of a fixed-point method. We thus first study the latter and
prove the following result.

THEOREM 4.3. Let 6 € (0,1) and e > 0. For each g € C, there exists a unique clas-
sical solution f& € H>*+5C+)/2([0, T] x R3) to (4.4), (4.5) and there is a constant
A, depending only on fin, 6, T, € and Cy,, such that

| fE I p2ts.c2400/2 < A

Moreover, there exist constants 8y, D, E, F and Cy,, depending only on fi,, T
and €, such that f€ belongs to C.
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For T > 0,1 > 0,1 ¢ N and {2 a domain of R?, we consider Holder spaces
HEY2([0,T] x £2), whose norm are

[fll3402 = sup Y 1070af(t )

3
OSISTweER? | 1ol )

|8[8af(t,v) — atraaf(t»w”

|v — wl|t=1l

+  sup
OSESTwAw | oy
10700 f (t,v) — 970a f(5.v)|

It — 5| =72 ’

+ sup
s#t,veER3

le|+2r=[1]

where [I] denotes the integer part of [ and a € N3.
Thanks to lemma 4.1 and the properties of C, the coefficients of the parabolic

operator in (4.4) have the following regularity properties.

LEMMA 4.4. Let € > 0, 6 € (0,1) and g € C. For every (i,j, k) € [1,3]3, the
functions AY7, b7* OkAg © and &9° belong to the Hélder space H*%/2([0,T] x R3),
with

< KE“fin”Ll- (4'6)

max | A2 1.0 + macx 50| + ||
'L 3

Moreover, for every bounded domain 2 of R3, the functions Age bgs akAgE
and Oxb?° belong to the Hélder space HI+o <1+5>/2([0 T x 2).

Proof of theorem 4.3. Owing to the uniform ellipticity

eléf® < Z (A25 (v) +26:,)&&5 < BE| fillr + )€1, v R, £eR® (4.7)

and classical arguments, the maximum principle and [17, theorem 5.8.1] imply the
existence and uniqueness of a solution f& € H2t%2+9)/2([0, T] x R3) to (4.4), (4.5).
This solution satisfies

0< fo(t,v) < 1, (4.8)
and there exists a constant A, depending only on fi,, §, T, € and Cp, such that

1FE lagzrs.caoy2 < A

(see the appendix for a sketch of proof).
We next show that we can choose constants 31, D, E, F' and Cp, such that f€ € C.
First, we verify that, for every (¢,v) € [0,T] x R3,

Eto—pBa|v]?/(1+Ft)
1ol azelle
age Al o= Pt < pe(p 4) < 2

S T ageBre— AP /FFD (4.9)

Indeed, introducing

’ 2
- -D
©int(t,v) = are Arlvle=Dt,

and the parabolic operator £ defined by

Lu=0pu— Y (AVS +e6;;)07 ;u— Y [BIF = b°(1—2f9)|0u + (1 — f°)u,

i,J i
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we see that Loi,s < 0 as soon as

1
prz, and D> 1281 K2 finllL0 + 681 (Kell finll 2 + €) + Kl finll 2,

whence o
e Pilvl o=t < fe(t,v),  (t,v) €0,T] x R,

by the comparison principle [17, theorem 1.2.1].

We next set

azeEte—th)\z/(l-i-Ft)
1+ ayeBle—BalolP /(1T FD)

and let M be the semilinear operator defined by
Mu = 0= (AFS +¢6,;)07 ju— Y [BPF = b7 (1 - 2u)]0;u + (1 — u)u,

(psup(t> ’U) =

,] 1
For
E > 12K2| finllzr + Kol finll3: and  F > 1285 K.|| finl 12 + 4B2e + Bo,

we have Mypg,p = 0 = M f®. Owing to the regularity of the coefficients of the
parabolic operator, we are in a position to apply the comparison principle [19,
theorem 9.1] to obtain that
Fe(tv) < agePle= P2l /04T
TS 1 4 ageBle— B2/ FY)

It readily follows from (4.9) and the continuity of f¢ that f¢ € C([0,T]; L*(R3)).
In addition, classical truncation arguments and equations (4.6) and (4.9) allow us
to check that

/f@@@:/h@mutemﬂ. (4.10)

It remains now to verify the two Lipschitz properties, and this will be the aim
of the three following lemmas. We only give formal calculations, but they can be
rigorously justified by standard truncation arguments.

LEMMA 4.5. For every r > 0, f¢ belongs to L*(0,T; H3.(R?)). Moreover, there
exists a constant C, depending only on fin, 7, € and T, such that

£ 20,112 ) < C-

Proof. Let r > 0. We multiply (4.1) by f¢(1 + |[v|?)" and we integrate with respect
to v to obtain

1d -

s [ 1P+ ) do = [ (09 4 ) Vv (L4 o) do
- 27’/(/19’6 +el3)Vfvfe(1+ o) do
b [ e Py

i 2T/(fa)g(l — [ - u(1 + [of*) " do,
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After integrating over (0,t), we infer from (4.6), (4.7) and Young’s inequality that

%/|f€\2(t,v)(l+ |v|2)Tdv+s/0t/|Vf€|2(1+|v|2)rdvd7
< ée/ot/|VfE|2(1+|v|2)rdvdT
+ C.[3K.|| fin |l 11 +s]2/0t/ e+ o)t dudr
+ie | / VR ) dudr + CR2 Al [ / £+ o) dudr
+ORlfnles [ [0 Py avir 4 ] [P+ 7y

Therefore,

t
s//\Vf5|2(1+|v|2)TdvdT
0
t
<C(g,Min)//ff(H|v|2)rdvd7+g/\fm|2(1+|v|2)rdv,
0

and (4.9) implies that the right-hand side of the above inequality is bounded. O

LEMMA 4.6. The function f¢ belongs to L>(0,T; H*(R3)). Moreover, there exists
a constant G, depending only on fi,, € and T, such that

If N o 0,m5m1) < G-
Proof. We first observe that
fE c H2+5,(2+5)/2([0’T] % RS) m H3+6’(3+6)/2([07T} X .Q)

for each bounded domain 2 C R?, by [17, theorem 5.8.1]. We may thus differenti-
ate (4.4) with respect to v and obtain

O[T = V- [(AV +eI3)VO f© + 0, ATV € =095 (1 —2f°) O < — Oxb?° f(1— £9)].

Hence

1d _
>dG (Opf5)? dv = — /(Ag’s +el3)VOLfEVOLf€ du
- / O ATEY FEVO, € du
+ /(1 2NV fo O S du

+ / fs(l — f5)8k5975 . V&kfs dv,
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and (4.6), (4.7) and Young’s inequality lead to

t
/|3kf5|2dv+2s//|V8kf‘5\2dvd7
0
t
< %6//\V8kf5\2dvdr
0

+ C B2 finll L IV oI 0702y + CTRZ | finll 2 + 1 finl -

Lemma 4.6 then readily follows from the above inequality by lemma 4.5. O

LEMMA 4.7. There exists a constant C1,, depending only on fin, € and T, such that,
for all € C2(R3) and o,t € [0,T),

/ (F5(t,0) — (0, 0))p(v) du| < Cillglealt — o],

a0 - - st

< Culelezlt —al.

Proof. Let ¢ € CZ(R?). Classical truncation arguments ensure that

[ rtoeedo- [ Feveea
/ dT{Z/AgE ]gpdv+/f€Bg’5-V<pdv

/fs — fO)boE - Vgodv—l—e/fsAgodv} (4.11)
The first inequality of lemma 4.7 then readily follows from (4.10), (4.11) and

lemma 4.4 with C1, > C1 = C(K¢||finllzr + &)l finll L1
Similarly, we infer from (4.4) that, for ¢ € CZ(R3), we have

[ 0= eoee)do - [ 0= o vee)
_ /; dr{— /(Agvs b el V(1 — 2/5)V — 20V f5] dv
—2/f€ F)bo -V £ do
/fg — 259 - chdv} (4.12)

With the notation M, : My = ZMMMJMQM for any two matrices M7 and Mo,
we have

/([lg’s +el3)VE(1—2f%)Vepdo
- [ A= (0 1)V do
/fE — f)BYF - Veodv — -/fa — f)(A9F - el3) : Vpdo,
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and the identity (4.12) becomes

/ff — 9)(t,v)p dv—/fa — 19)(0, v)(v) dv
/ {/f — f5)Bo* - V<pd11+/f5 — ) (A9 +el3) : Vipdu
+2/([lg’€+513)Vf‘5Vf5g0dv—2/f5(1—fe)gol_)g7E~Vf€ dv
/ FE( = fo)( fs)bgvs-wdv}.

The second inequality of lemma 4.7 then follows with the help of (4.10) and lem-
mas 4.4 and 4.6 with

Cr > Cz = C(Ke||finllor +€)(Il finll 1 + G?).
Choosing C1, = max(C1, C2) completes the proof of lemma 4.7. O

We have thus found g7, D, E, F and Cp,, depending only on fi,, T and e, such
that, if g € C, f¢ € C and the proof of theorem 4.3 is complete. O

Proof of theorem 4.2. We fix 81, D, E, F and C, as in theorem 4.3. For g € C, we
denote by ®(g) the unique solution f& € H2+%Z+9)/2([0,T] x R3) to (4.4), (4.5).
Then ¢(g) € C by theorem 4.3 and we now check that ¢ : C — C is continuous and
compact for the topology of C([0,T]; L*(R?)).

CoONTINUITY OF ¢. Counsider g1 € C, g2 € C and put ff = &(g;) for i = 1,2. Then
u = f; — f5 satisfies
Opu— Y (AL 426, ;)07 ju— Y [BIF b (1 = ff — f5)|0u
4,J J
sl = ) = SR+ 08T,
J

where
T = (A0 — A%, f5 + Z(B;?“ — BP9)9; /5
- Z b‘“’ — b9 (1= 2f5)0;f5 — (€9° — &%) f5(1 = f5).

Since u belongs to H2t%(2+9/2([0,T] x R?) and is bounded (|u| < 1), we infer
from the maximum principle [17, theorem 1.2.5] that

sup_ (/7 — f31 < (suplff = f510) + 7 mac 7))o
[0,T]xR3 [0,7]x

with
w = K| finll2 (1 + 64),
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where the constant A is given by theorem 4.3. Since f5(0,-) = fin = f5(0,-) and

7| < Kclg1 — g2leqo, ;00 (Z sup 07 f5 | + 425111) 0; f3] + 1)7
J

%,
we deduce that

sup | ff — f5| < CTe*" |g1 — gale(o,ri01)-
[0,7] xR3

Now, for R > 0, we have
|fi = f5leqomyiny

<sw [ - gltodor s [ (DG
[v|<R [v|>R

te[0,T) te[0,T]
< CR?’TewT|91 = g2leqo.m;zry + 2azeET/ e~ Blv?/(IHFT) g,
[v[ZR
c(T)

< C(T)R%|g1 — gale(o.riLry + R3O

whence ,
1

\fi = fsleqomny < C(T)|gr — 92|cf[o,T];L1)7

with the choice "
R =lg1 = g2leqorysr)-

COMPACTNESS OF @. For m > 4, we have

Ly(R*) nWH=(R?) € L'(R?) € (H™(R?))',
with a compact embedding L}(R?) N W1>(R?) ¢ L'(R?). Since

&(C) is bounded in L>(0,T; L3(R?) N W1 >°(R?)),
O:®(C) is bounded in L"(0,T; (H™(R?)))),

with 7 > 1, by theorem 4.3, we deduce from [27, corollary 4] that @(C) is relatively
compact in C([0, T]; L} (R3)).

We are now in a position to complete the proof of theorem 4.2. Indeed, C is a non-
empty, convex, closed and bounded subset from the Banach space C([0, T]; L*(R?)).
Since @ is a compact and continuous map from C into C, the Schauder fixed-point
theorem ensures the existence of a fixed point of @, that is, of a solution to (4.1),
(4.2). In addition, equation (4.9) and lemma 4.5 warrant that f° has the desired
properties. O

4.2. Uniform estimates

In order to pass to the limit as e — 0 in (4.1), (4.2) and obtain a solution to (2.1),
(2.2), we first need to establish uniform estimates on f¢ that do not depend on e.
These estimates are actually similar to those listed in § 3. In the following, we denote
by C' any constant depending only on v, Mi,, Fi, and Si,.
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LEMMA 4.8. For all o,t € [0,T], o < t, the function f¢ satisfies

/fs(t,v) dv = My, (4.13)
/fs(t, 11)|U|2 dv = Ein + 6€Mmt g Ein + 6€MinT (414)

and
S(f) (o) < S(F7)(@), (4.15)

where Miy = Mo(fin), Ein = Ma(fin) and Sin = S(fin)-

Proof. Since f¢ € C, the first equality holds true. It then follows from (4.6), (4.9)
and (4.11) with p(v) = |v|? that

/fs(t,v)|v|2dv—/fin(v)|v|2dv_65/0t/fE(T,v)dvdT,

whence (4.14) by (4.13).
Finally, since f¢ is differentiable with respect to time and satisfies 0 < f€(¢,v) < 1
for every (t,v) € [0,T] x R3, by (4.9), we have

Ol f*In f* + (1 =) In(l = f)]=[Inf* —In(1 - )]0 f*.
Therefore, thanks to (
fE

S(F)(t) = S(fin) / dr / AP = (1= ) ey o

+s/ dT/valf_E';E

S(fn) + / dr / / (0= v) (fE(1 = F)VF° = F5(1— f)VS5)

X< Vi VE
PO =)

) dv,dv

+5/ dr/fjvlfj';a

Since the matrix a° is non-negative, we conclude that the function S(f¢) is non-
decreasing and (4.15) follows. O

We next consider the ellipticity of the diffusion matrix, the propagation of mo-
ments and the smoothness of f¢. Proceeding as in the proof of proposition 2.3, with
the help of the properties of ¥,, we first have the following results.

PROPOSITION 4.9. We denote by R, the constant given by lemma 3.1. For every
0 <e < (3R.)7Y, we have the following.

(i) Let f € Y(FEin, Sin). Then there exists a constant K > 0, depending only on
v, Ein and Siy, such that, for every v € R3,

D (A5 (0) +e8ig)6&s > K (L + |of*)Imin((eo]) ™, IFIEP, € € R

,J
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ii) If f(1 — f) € L., 5(R3), then there exists a constant C > 0, depending only
7+2
on M, 1o(f) and My(f), such that, for every v € R3,

0D (A5 (v) +26;5)68 < (CA+ "P2) + )¢, R

.3

In fact, the proof of the first point also gives a uniform (with respect to ¢)
ellipticity estimate.

COROLLARY 4.10. For 0 < e < (3R,)™!, there exists a constant k, depending only
on vy, Fi and Sy, such that, for every f € Y(Ein, Sin),

€1

D (A5 (v) +26i5)68 > o

.3

£eR3, wvelRd

We next proceed as in the proof of lemma 3.2 to show the following result.

LEMMA 4.11. For all T > 0, s > 1, there exists a constant I', depending only on s,
T and | finll s, such that

v — S fg p¢e g
oo 170y, + [ [[ D ez g2 avvar < PGl )
t€[0,7] lv—
(4.16)
REMARK 4.12. The constant I" increases with || fin| 1y -
Finally, a proof similar to that of lemma 3.4 leads to the following H' estimate.

LEMMA 4.13. For all T > 0, ¢ € (0,1), s > 0, there exists a constant C > 0,
depending only on s and T, such that

T
K / / V£ P+ [of2)* /2 min((elo]) ™, D2 dudr
0
C///fef* 1= 1) I(U |2|)| 20+ o) dvdu,dr

+C(1+ €)||fEHL°°(O,T;L§S+7) + [ finll Ly, -
(4.17)

In particular, for s € [0,1], we have, for every § > 0,

T
K [ [ 1V5P @+ oP) 2 in((elel) ) dudr
0
< O (fnlliy, ) + OO+ im0y, o+ Iinlliy, - (418)

Using corollary 4.10 instead of proposition 4.9 in the proof of lemma 4.13 yields
the following result.
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COROLLARY 4.14. For all T > 0, € € (0,1), s > 0, there exists a constant C > 0,
depending only on s and T, such that

T
n//|Vf5|2(1+|v\2)s’1dvdT
0
C/ //fsf* l_f* |( |2|)| *|2(1+ |U|2)871 d’Ud’U*dT
+CA+ )l f lp~orizs,, )+ lfinlley,-

Proof of lemma 4.13. A slight change to the proof of lemma 3.4 is required here,
since we do not have an estimate on f<(1 — f€) in L'(0,T; L}, (R?)) because ¥,
is bounded. Thus (3.15) has to be replaced by

\ [y @ iy do

/ff (-2l ;)|*|2<1+|v| ) dodu, + Oy £y

2s+7

which gives (4.17).
Let s < 1 and § > 0. We deduce from lemma 4.11 with s = 1 + %5, Young’s
inequality and equations (4.13), (4.14) that

///f Fe( =) |(| 1|}S|)| 21+ |[v?)*t dvde,dr

// feri(—r9) |(| |2|)(1+|v*|2+5)dvdv dr

X CT”fEHLOO(O,T;L%) + F(||fin||L%+5)'

Formula (4.18) then follows directly from (4.17). O

4.3. Proof of theorem 2.2
Consider fi, satisfying (2.3) and such that fi, € L3, (R?) for some s > 1. There

exists a sequence of functions (fin x)k>1 in C°(R3) N HY(R3) NW3°°(R3) such that
fin,k — fin in L%SO (R3) and

Cpe 0% |v|?

fo=Okulvl® g o WEC T
C’ke B fm,k X 1 + Cke_ék"vlz

for some positive constants Cy, C,, 0 and 0},
For every k > 1, we set

1
er =7 and fr = [,
k
where f°* denotes the solution to (4.1), (4.2) with initial datum fi, , given by

theorem 4.2.
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LEMMA 4.15. There exists a non-negative function
f€Cu([0,T]; L*(R?) N L=((0,T) x R?)

and a subsequence of (fi)k>1 (not relabelled) that converges to f in L?(0,T; L*(R3)),
in Cy ([0, T); L2(R?)) and a.e. on (0,T) x R3.
In addition, 0 < f <1 a.e. on (0,T) x R3.

Here, C,,([0,7); L?(R3)) denotes the space of weakly continuous functions in
L2(R3). Since 0 < fr < 1, it follows from lemma 4.15 and Holder’s inequality
that (fx)k>1 converges to f in LP((0,T) x R?) for any p € [1, 00].

Proof. For m > 4 and r > 0, we have
H2180727’Y(R3) n Li(Rg) - Ll(RB) - (H;):LF27<R3))/7

the embedding of Hy, o . (R*) N LL(R?) in L'(R?) being compact. Since the se-
quence (fin k)k>1 converges to fiy in Ly, (R?), there exists o such that || finxllzy <

50
Ko and

I

by remark 4.12. We then deduce from lemma 4.11 and corollary 4.14 that

1 )< I'(ko) fork>1, (4.19)

(fr)k>1 is bounded in L*(0,T; Hy,, 5 . (R*) N Ly(R?)). (4.20)

Next, for ¢ € H5 5 (R?), we have

/8tfk<pdv = Z// (v — ) frefrs(1 fk*)azjgo dvdv, + sk/kago dv
+ 30 [[ 600 fefe 1= f0)Oi — 0o v (421)

Hence

‘ / B frpdo| <

Since m > 4, we infer from lemma 4.11 and the continuous embedding of H™(R?)
into W2 °°(R3) that

Cllglwae / / v =0 g (1= ) ddo,

3/2

+ Cllellw2.e ||fk||L1 + CIISDIIHQM 1kl + exllellwzo |l finll L1

(Orfx)k>1 is bounded in L'(0,T; (ngfs_Qw(R:g))’). (4.22)

By [27, corollary 4], we conclude from (4.20) and (4.22) that (fi)r>1 is rela-
tively compact in the space L?(0,T; L'(R3)). Therefore, there exists a function
f € L*0,T;L'(R?)) and a subsequence of (fx)r>1 (not relabelled) such that
(fr)k>1 converges towards f in L2(0,T; L'(R?)) and a.e. on (0,7) x R3.
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Moreover, we deduce from (4.21) that, for ¢ € C3(R3) with compact support
included in Br for some R > 0, we have

] [ e~ [ foroa

< Cllgpllwene / //| = Perllo = vel)) 25 6 (1~ fo) dudusdr

v —v.]?

+ Cligllwaoslt = ol fl13 o 0.0:3) + K12 0.7,y + [ finllz):
(4.23)

From lemma 4.11, we deduce that, for R’ > 0,

T
v, (|lv— vy s

/ // Leulv = vu) 5 D 04 fio fro(1 = fi,) dvdvndr < T(|| finrlla, )

[v| <R, vl | <R | 0

v — v,
< F(Ho).

We may then pass to the limit as k¥ — +oo thanks to the a.e. convergence of (fx)r>1
and (¥, )r>1 and then, as R' — 400, by the Fatou lemma to obtain

T
/ // | — v, [|vs |20 f £ (1 = f.) dvdv,.dT < T(ko). (4.24)
0

Next, it is easy to check, by means of the a.e. convergence and (4.24), that

’U*|) 9 >
(//||<R v — v, |2 — 5SSk (1 = fi)|ve]” dvdo, -

converges towards

// v — v o2 £ (1 — £.) dudo,
lv|<R

in L1(0,T). Therefore, the Vitali theorem implies that

¢
1 _

lim sup/ // frfe.(1 _fk*)LJM .2 dvdv,dr = 0.
[t—o|=0k>1 lv|<R v — v,

We then deduce from (4.23) that the sequence ([ freodv)g>1 is equicontinuous
and bounded in C([0,T]). The Arzela—Ascoli theorem ensures that it is relatively
compact in C([0,77]). From the convergence of (fx)r>1 towards f in L((0,T) x R?),
we deduce that [ feodv is the unique cluster point of ([ fre dv)g>1. Therefore,
(J frepdv)gs1 converges to [ fidv in C([0,T]). Since the sequence (fi)r>1 and its
limit f are bounded in L (0, T’; L*(R?)), it follows that (fx)r>1 converges towards
fin Cy ([0, T]; L?(R3)). O

LEMMA 4.16. The limit f of the sequence (fr)r>1 is a solution to the Landau-
Fermi—Dirac equation (2.1), (2.2) which satisfies (2.4) and (2.5).
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Proof.

STEP 1 (conservation of mass and energy). Let ¢ € [0,T]. Due to lemma 4.11 and
(4.19), we have

/ Fult, v) ]2 dug/fk(t,v)\uﬁso v
lv|<R
< I'(ko)

for each k > 1. Thanks to lemma 4.15 and the Fatou lemma, we may let k — +o0,
and then R — 400, and obtain

/f(t,v)|v|280 dv < I'(ko).- (4.25)

Combining lemmas 4.11, 4.15 and (4.25), we see that (Ma,(fr))k>1 converges
strongly towards My, (f) in C([0,T]) for r € [0, s¢). Since (fin,x)r>1 converges to
fin in L3, (R?) and s > 1, we deduce

kgrfoo/fk(t’v) dv:kginoo/fmyk(v) dv:/fm(v) dv

lim /|v|2fk(t,v) dv = lim (Ms(fin )+ 6cxMo(fink)t) = Ma(fin).

k—+oo k——+oo

We thus conclude that f conserves mass and energy.

STEP 2 (passage to the limit in the weak formulation (4.11)). For all k > 1, ¢ €
C2(R3) and t € [0, T, the functions fj satisfy

[ ftoreto)do = [ furto)pwrao

_Z/ da// (0 = 0) fifin (1 = fr0)0F ;o dudu,

+€k/0td0/kag0dv
+Z/Otd0//bfk(v—v*)fkfk*(2—f/c — fro)dipdodo,.  (4.26)

Our aim here is to pass to the limit as k — +o00 in (4.26). By lemma 4.15, it is
obvious for the left-hand side and the second integral in the right-hand side. We
thus have to consider the two remalnlng integrals. As (¥, )r>1 converges point-
wise towards ¥, the functions a; ;5 and b;* defined at the beginning of §4.1 con-
verge towards a; ; and b;, respectively. Con81der ¢ € C%(R3) with compact support
included in Bg for some R > 0. Let R’ > 0. We first turn our attention to the
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integral involving the matrix a®*,

do

(0 = ) fr S (1= fi) = @i j(0 = 0.) [ (1 = )]0 ;0 dvdo.,

dO U_U*)fkfk*( fk*)

BRXBR/

—a; (v — ) ffo(1 = £2)]07 ;o dvdu,

t
+ Cliglwan / do / / e, (J0 = v ) i fios (1= o) dode,
0 {lvI<R,|v.|>R"}

t
+ Cllpllwz. / do // v — v "2 f f.(1 = f.) dvdo,.
0 {lWI<R,|v«|2R"}
(4.27)

The a.e. convergence of a®* and fj, the bound on f, the properties of ¥, and the
Lebesgue dominated convergence theorem imply that the first term of the right-

hand side of (4.27) converges to zero. For the two others, it follows from (4.16)
and (4.24) that

t
0 {lvI<R,|vs| >R}

t
2[R2R/7250 + R/27280]/ do’/ |v _ U*|V|U*\250ff*(1 _ f*)dvdv*
0
< 2F<K,0)[R2R/_230 + R/Q—Qso]

t
[ ] 0o, (1o = v fefin (1 = fi) dudo,
0 {lvI<R,|va|ZR"}
g 2F</€O)[R2R/72SO +R/27250]'

We then substitute these estimates in equation (4.27) and let first k& — 400 and
then R’ — 400 to obtain that the left-hand side converges to zero as k — +oo.
We proceed analogously for the integral of (4.26) which involves the function b°*,

do [ [ [67%(v = vi) fefree(2 = [k — frs)
b — v ) f (2~ | — )i dudo,
t
dU Bxi, [07F fefee(2 = fo = fri) = bif fo(2 = [ — f0)]0ip dudu,
Ek(v )
el [aa ff Tl o
+C 200 [ d — v, |1 f £, dudw,. 4.28
el / o / /{ IO (e vdo (4.28)
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For the first term of the right-hand side, we use again the a.e. convergence of a®* and
fx, the bound on fj, the properties of ¥,, and the Lebesgue dominated convergence
theorem, whereas for the other two, we have

t
/ do // v — v [T f £ dudo,
0 {lvI<R,|v«|2R"}

t
0 {lvI<R,|v|ZR'}

SOTA+ RS2 Fl I f |y,

and
t
W - Ux
Lo ) Pl f e dudo, < T+ RE)OT202) 2,
0 {Iv|<R.Jv.| >R} Yoo

[0 — .|
< CT(l + R/2)(1—1—’y—250)/21—v(ﬁo)27

by lemma 4.11. Inserting the estimates in (4.28) and letting first k¥ — +o00 and then
R’ — 400, we obtain that the left-hand side converges to zero as k — +oo.

Therefore, f is a weak solution to the Landau—Fermi-Dirac equation (2.1), (2.2),
which preserves mass and energy. O

Moreover, we deduce from (4.24) and (4.25) that f satisfies
f(l - f) € Llloc(]R-‘r; L%So-‘r’y(Rg)) and f € L?OOC(RJF;L%SO (RS)) (429)

Distinguishing the cases sg < 1437 and sg > 1+ 1, we infer from (4.17) and (4.18)
the existence of a constant C(T, kg) such that, for all R > 0, k > %R,

T
(%)2”/ / IV £ l2(1 + [0]?)% dvdr < (1 + £,)C(T, ko).
0 J|v|<R
Letting first £k — 400, thanks to a weak compactness argument, and then R — +o00
by the Fatou lemma, we conclude that
Vf € LIQOC(R+; Lgso (R3)> (43())

Therefore, the proof of the first statement of theorem 2.2 is now complete.

We now verify that, when fi, € L3 4 (R?), the entropy of f is a non-decreasing

function, which corresponds to the second statement of theorem 2.2. For this pur-
pose, we first need a smoothness result.

LEMMA 4.17. Let fin € L, (R®) satisfying (2.3). The weak solution f to (2.1),
(2.2) given by lemma 4.16 belongs to C([0,T]; L?(R?)).

Proof. Let us first show that
Of € L2(0,T; (HL,, (RP))). (4.31)
Indeed, the function f satisfies, in the sense of distributions,

Ouf =V - [AVf —bf(1 - f)].
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Moreover, since the initial datum belongs to Ly (R?), we have
f € Loo(07 T7 L%-&-V(RS)) n L2(07 Ta H21+7(R3))7

by (4.29) and (4.30). Consequently,

IV - [AY Al g,y < O Flly, 1l
IV B0 = Ay, < CIAIE,

whence (4.31). Since
H21+7(R3) - L%—i—’y(RS) C (H21+7(R3))/5
with continuous and dense embeddings, and
feL?0,T;Hy, (R*) and 8,f € L*(0,T; (Hy,,(R*))),

we have f e C([0,T]; L3, (R?)) by [23, proposition 1.2.1 and theorem 1.3.1] (see
also [14, theorem 5.9.3]). Lemma 4.17 then follows, since L3, (R?) Cc L*(R?). 0O

LEMMA 4.18. Let fin € Ly, (R®) satisfying (2.3). Let f denote the weak solution
to (2.1), (2.2) given by lemma 4.16. The entropy S(f) is a continuous and non-
decreasing function such that, for t > 0,

sug<swxw<Em+/ewfm. (4.32)

Proof. We first show the continuity of S(f). Let ¢t > 0 and (¢,,)n>1 be a sequence
converging to ¢. Lemma 4.17 implies that (f(t,))n>1 converges towards f(t) in
L*(R?). One can extract a subsequence f(fy(n))n>1 which converges a.e. in R?
towards f(t).

From the inequality

s(r) <o) +e " for0<r <1, (4.33)
where s(r) = r|lnr| 4+ (1 —7)|In(1 — r)|, we deduce that
IS(f)(temy) — S(H(E)]
(AKQAﬁmM»—dna»w

<

’ /|v|>R(f(t*"<">> +f(@®)v]* dv+ 2/ oo dy

lv|ZR

<LAK;dﬂmm»—aﬂ@»m

+ QR—’YF(KVO) + 2/ e—|1)|2 dv,
[v| 2R

and hence the convergence of (S(f)(t,(n)))n>1 towards S(f)(t). Since (S(f)(tn))n>1
is bounded by (2.5) and (4.33) and has a unique cluster point S(f)(t), we conclude
that (S(f)(tn))n>1 converges to S(f)(t).
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Let us now prove the monotonicity of S(f). Consider h > 0 and 0 < o < t. We
deduce from (4.15) that

o+h

t+h
BS(fr) < / S(f)(r) dr < / S(fi)(r) dr. (4.34)

o

As previously, inequality (4.33) implies that

T
/O 1S(fx) — S(f)|di

T
g\/
0

and thus that (S(fx))k>1 converges to S(f) in L'(0,7T). Similarly, (S(finx))k>1
converges to S(fin). We may then pass to the limit as k — 400 in (4.34) to obtain

/ (s(fi) — s(f)) dv
Br

dt + 2T R~ I (ko) + QT/ e 1P do,
[v|I>R

o+h t+h
sm<g [ Smar<g [ s

Letting h — 0, thanks to the continuity of S(f), completes the proof of the mono-
tonicity of S(f) and the first inequality in (4.32). Finally, the second inequality
in (4.32) follows from (4.33). O

5. Uniqueness

In this section, we are concerned with the uniqueness issue. As previously men-
tioned, we first need an embedding lemma for weighted Sobolev spaces because of
the non-quadratic nature of the LFD collision operator.

LEMMA 5.1. For allr > 0, € > 0, there exists a constant C > 0 such that, for every
function h € H3,(R?), we have

1hllzs < Ce™/4[h 2. + CM4|Vh| 1 .

The proof of lemma 5.1 is an easy extension of [26, lemma 3.6.7], where the above
inequality is established for » = 0.

THEOREM 5.2, Let fi, € L (R3), with 2s > 4y + 11, satisfying (2.3). Then there
is a unique weak solution f to (2.1), (2.2) (in the sense of definition 2.1) such that

f € Lig.(Ry; L3, (R*)) N Lie(Ry; Hy (R?)).

loc

REMARK 5.3. Since 0 < fin < 1, fin belongs to L3,(R3) as soon as it belongs to
L. (R3). Thus we do not need any extra assumption in a weighted L2-space as
in [10].

Proof. We only give formal computations in order to highlight the difference with
the proof for the classical Landau equation performed in [10, theorem 7]. Let f; and
f2 be two solutions to (2.1), (2.2) satisfying the requirements of theorem 5.2. We set
u= f1 — fo and w = f1 + fo. The function u satisfies, in the sense of distributions,

Opu = AV A ATy + (AN 4 AP )Vu—0"[f1 (1= f1) + fo(1— fo)] = b u(l —w)}.
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Then, for every g > 0,

%/|u\2(1+|v|2)qdv: —/Auﬂ-w)wwu(H (0[2)7] do (5.1)
—/[Afl + A2)VuVu(1 + |[v|?)?] dv (5.2)
+ [BUAA= 5 + Rl = IV + P o (5.3)
+/Bwu(1 —w)Vu(l + |v|*)?] do. (5.4)

We first consider (5.2) and (5.4):
(5.2) + (5.4)
= —q [IAR + AT+ ) odo — [ (AR + AT+ o) do

+ % /Ew V()1 + v?)?dv - /uwz_;w V(1 + |v]*)7 dv
+ 261/“2<1 —w)b" - v(1+ [v]*) dv.

With the ellipticity of the diffusion matrix and an integration by parts in the inte-
grals involving the term V(u?), we find

(5.2) + (5.4)
< —2K/ |Vaul?(1 + |v]?)9H7/2 do + q/u2[Bf1 +B2) w1+ [v)?T do

[ RIAR AP VI P do - L e oy
_ q/uQB“’ co(1 4 [v]?)? do — /uwl;w V(1 + [v[?)?dv

+ 2q/u2l_)“’ co(1+ |u»)?  do — 2q/u2wl_7w co(1 4 [v]?)? ! do.

Hence
(5.2) + (5.4) < —2K/|Vu\2(1+|v\2)q+7/2 dv
+ /qudv + ’/uwb“’ S Vu(l + |v*)?dv
+ 2q‘/u2wl_)w co(1 4+ oA do|,
where

E = q[Bl" + B + "] -v(1+ [v|*)" !
q[AT £ AP V(L (o)) - b (1 o)
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Now
E= Q/[fu(l = fr) + fou (L= f2)llv = 07 (1 + [v]*)*72
x {=2|v[*(v - vi) + 2q[v]?[ve|* — 2(q — 1) (v - v4)* — 20 - Vs + 2[v.|?} dus
+ [l = P+ P 43— 20l + 2000 0.) + 5 + 3o
and choosing 2q > v + 3, we deduce that E < C(1 + |v|?)? since
fi € L. (Ry; LY »(R?)) fori=1,2.

Consequently,
(5.2) + (5.4) < _zK/|vu|2(1 o) dv+0/u2(1 o) dv

+ ‘/uwl_)w SVu(l+ |v*)?dv

+ Qq‘/uzwl_)w o1+ |v*)? dol.

(5.5)
From Hoélder’s inequality and lemma 5.1, we deduce that, for every € > 0,
Tw 1/2
‘/uwb - Vu(l 4+ [v]?)?do| < CHw”L/quWAI”V“”quﬁHu”sz‘q
<Celwlly , lidy +elVul?,  (56)
and
’/qubw o1+ |v|2)q—1 dv| < C||w||L§q+27Hu||2L%q
<Cellwlly Il +elVulZ,, . (1)
Finally, substituting (5.6) and (5.7) in (5.5), we find
(5.2) + (5.4) < 2K ~ )| Vul?y  +Cellully, 1+ ulds ). (58)

It remains now to consider (5.1) and (5.3). In the sequel, we use the notation IT
for IT(v — v,). We have

(5.1) + (5.3)
_ _/ o — v 2us (1 — w,)VaVa(l + [v]?)? dvdo, (5.9)
- Qq/ v — v " Pus (1 — w,) Vouo(1 + 0?7 dudw, (5.10)

— — u — u 1 — J1 2 — J2 v 2)a VAV

—4q //(U — ) v — v Tul [f1 (1 = f1) + f2(1 = fo)]u(l + |v]?)7 ! dodw..
(5.12)
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Using successively the Cauchy—Schwarz inequality,
o= 0,27 < C(L+ [0f2) (1 + o [2)"

and the Fubini theorem, we find
1/2
(5.9) < C{/ [v — v |72 g || Va2 (1 + v)?) 7t dvdv*}

1/2
s [[10 =Pl 9P oy v

< Clullie,,IVull g, Vel

2 )
2q+v+4

1/2
5.10) < C v — 07T uy || Vw]2 (1 + [0]?)7 772 dudo,
( )

1/2
y {// v — v 12 a2 (1 + [o]2)a=1=7/2 dvdv*}

< Cllullzs

v llulleg, IVl

2 b))
2q+2v+2

1/2
(5.11) < C’{/ [v — v |72 e [|w] 2 (1 + |v]?)? dfudv*}

1/2
X {// [v — v |7 | [V 2 (1 + |v]?)? dvdv*}

< Cllullpy  Vullzg,, lwllzg, L,

1/2
5.12) < C v — 0" ug w2 (1 + o242 dodo,
(

1/2
s f [ o= ool o)t dudo. |

< Ol

o llulleg, lwlizg, -

Since v < 1, we thus obtain

(5.1) + (5.3) < CBOlull 2 [Vull s, +CB@Oullys , lullzz,

+ CAlull: IVl +CAllulle lul g,
<C@+BMO)ull,, (IVullyz,, + lullzz,).

y+2 2q+vy

where
A= swp [lu(t)
t€[0,T]

Now, for § > 0, we have

and B(t) = ||Vw(t)

HL%tz+2'7+4 ||L%q+'v+4'

lulls,, < Csllullzs ..,

and thus, for 2¢ > 2+ + 7,
(5.1) + (53) <e|Vullfy  +Ce(l+ A%+ B>(0))lull?, -
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From (5.8) and (5.13), we infer that

t
lullfs (0) <C [ (1+ A%+ A*+ B*(7))||ull7z (1) dr
2q 0 2q

Since A is finite and B belongs to L (R, ), we may use the Gronwall lemma
and conclude that u =0 = f; — fo. O
Appendix A. Well-posedness of (4.4), (4.5)

We give here further details for the proof of the well-posedness statement of theo-
rem 4.3. In order to apply [17, theorem 5.8.1], we introduce the quasi-linear problem

Of =V - (A9 +el3)V[) — (1= 2f)b" - V[ = f0(f), (A1)
where the function 6 is defined on R by

1 if <0,
0(f)=q1—f if0o<f<l,
0 if f>1.

Let 6 € (0,1). Then fi, € H?>T(R?). Owing to lemma 4.4 and the uniform
ellipticity (4.7), the functions «; and « defined by

a;(t,v, 5) = Z(Az’; + E(Si,j)fj and a(t? v, f, f) = (1 - 2f) Z BZ’E&C + Eg’sfe(f)
k

J

satisfy the assumptions of [17, theorem 5.8.1], which implies the existence of a
solution f° to (A1), (A2) belonging to the Holder space H2+%(2+9/2([0, T] x R?).
Moreover, there exists a constant A, depending only on fi,, §, T, € and Cf,, such
that

175 lag2rs.ea0y/2 < A

It remains to prove that 0 < f€(¢,v) < 1. To this end, we consider the linear
operator £q defined by

Liu = Opu — Z(ﬁfj + 56i7j)8i27ju — z:[Bf’E — b7 (1 — 2f9)]0iu + e7°0(f°)u.
1,7 7
Let R > 0. As soon as
C = 6K, || finllzr + 62 +12(1 + A’ K| finll2: and A > 1+ K| fullz1s

we deduce from the comparison principle [17, theorem 1.2.1] that
A
fe(t,v) = ——=(jv]* + Ct)e*,  (t,v) € [0,T] x Bg.

We let R — +o00 and obtain f(¢,v) > 0 for every (t,v) € [0,T] x R3.
Next, we introduce the quasi-linear operator Ly defined by

Lou=0pu— Y (ATS +26; ;)07 ju— Y [BI = bI°(1 — 2%)|0u + 7% f°0(u).

] i
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Let R > 0. For

C 2 6K funllrr + 62+ 12(1 + A KZ| finl| 71,

it follows from the comparison principle for quasi-linear equations [19, theorem 9.1]

that

A
fe(t,v) <1+ ﬁ(|v|2 + Ct)e!, (t,v) €[0,T] x Bg.

Letting R go to infinity, we obtain that f(¢,v) < 1 for every (t,v) € [0,T] x R3.

Consequently, there exists a solution to (4.4), (4.5) in H>+(2+9)/2([0, T] xR3).
The uniqueness of such a solution follows easily from the comparison principle [17,
theorem 1.2.5].
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