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SUMMARY

Piroplasms, includingBabesia, Cytauxzoon andTheileria species, frequently infect domestic andwildmammals. At present,
there is no information on the occurrence and molecular identity of these tick-borne blood parasites in the meerkat, one of
SouthAfrica’smost endearing wildlife celebrities.Meerkats live in territorial groups, whichmay occur on ranchland in close
proximity to humans, pets and livestock. Blood collected from 46 healthy meerkats living in the South-African Kalahari
desert was screened bymicroscopy andmolecularmethods, using PCR andDNA sequencing of 18S rRNA and ITS1 genes.
We found that meerkats were infected by 2 species: one species related to Babesia sp. and one species related to Cytauxzoon
sp. Ninety one percent of the meerkats were infected by the Cytauxzoon and/or the Babesia species. Co-infection occurred
in 46% of meerkats. The pathogenicity and vectors of these two piroplasm species remains to be determined.
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INTRODUCTION

Piroplasms, including Babesia, Theileria and
Cytauxzoon species, are one of the most common
blood parasites of mammals. These tick-transmitted
protozoans have been reported in many domestic
animals (Ristic, 1988) where they can cause asympto-
matic infection or severe disease, including fever,
anaemia, depression, diarrhoea, lethargy, anorexia
and abortion (Homer et al. 2000; Zintl et al. 2003).
Piroplasms are thus of considerable economic,
medical and veterinary importance. Because most
zoonotic Babesia are maintained in wildlife reservoir,
surveillance of wild mammals living in area where
undescribedBabesia are emerging has been suggested
(Yabsley and Shock, 2013).
In a wide range of wildlife, Babesia have been

molecularly described (Schnittger et al. 2012;Yabsley
and Shock, 2013). In mongooses (Herpestidae),
although several piroplasms have been detected,
they all have been described based entirely on
morphology (Grewal, 1957; Bandyopadhyay and
Ray, 1985; Penzhorn and Chaparro, 1994). The
meerkat (Suricata suricatta), one of South Africa’s
most endearing wildlife celebrities, is a small
burrow-living mongoose (van Staaden, 1994) that

can be infested by several ixodid tick species, in-
cluding Haemaphysalis zumpti and Rhipicephalus
theileri (Hoogstraal and El Kammah, 1974; Horak
et al. 1999, 2000). Meerkats can live on ranchlands,
in close proximity to humans, pets or livestock, which
increases the potential for the movement of patho-
gens, such as Babesia, between species. The presence
of piroplasms in meerkats has never been studied.
Here we investigated the occurrence and molecular
phylogeny of piroplasms infecting wild meerkats
using 18S rRNA and internal transcribed spacer
1 (ITS1) rRNA assay.

METHODS

Animal sources

This study was conducted on a wild population of
meerkats at the Kalahari Meerkat Project (Kuruman
River Reserve, Northern Cape; 26°58′S, 21°49′E), on
ranchland in the South African Kalahari. Thirty two
meerkats from 10 social groups were sampled in
March 2011, while 18 meerkats from 8 social groups
were sampled in November 2011. All meerkats in
the study population were individually recogniz-
able (Jordan et al. 2007) and habituated to close
observation. Meerkats were blood sampled in the
morning (between 6:00 AM and 9:00 AM) while
they were sunning themselves at a burrow entrance.
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Meerkats were caught by gently but firmly lifting
them by the tail base, and they were immediately
placed in a dark-coloured cotton bag. The meerkat
was supported by placing an arm under the bag while
it was carried away from the rest of the group to a
sampling area approximately 100m away. Anaes-
thesia induction and maintenance was by isoflurane
inhalation in air administered by face mask. Blood
(2 mL) was withdrawn from the jugular vein using a
25-gauge needle and a 2-mL syringe and placed in
a heparinized tube. Just after collection, a drop of
blood was either transferred on FTA® Elute Cards
(Whatman) with a glass capillary or smeared on glass
slide (Fig. 1).

European captive-born meerkats have presumably
never been in contact with the parasites, given their
several generations in captivity and no documen-
tation of contact with African ticks during this time.
They were, therefore, used as negative controls. We
used blood stored in EDTA-tubes from 3 captive-
born meerkats housed at Mulhouse Zoological
Garden (France), and 2 captive-born meerkats
housed at Thoiry Zoological Garden (France).

DNA extraction and PCR

DNA from filter papers of wild meerkats was
extracted using Whatman DNA extraction pro-
cedure. DNA from blood smears and from blood of
captivemeerkats was extracted usingDNA extraction
kits (DNeasy Blood and Tissue kit, QIAGEN,
Southern Cross Biotechnologies, SA), following the
manufacturer’s protocol.

Primary outside amplification for 18S rRNA gene
was conducted with 5·1 (Yabsley et al. 2005) and B
primers (Fig. 2; Medlin et al. 1988). One μL of DNA
was added to 9 μL of a master mix containing 1X
Green GoTaq reaction Buffer (Promega), 200 μM of
each dNTP (Promega), 0·4 μM of each primer and
0·05 unit of GoTaq DNA Polymerase (Promega).
Cycling conditions were 95 °C for 3min followed by
40 cycles of 95 °C for 30 s, 48 °C for 30 s and 72 °C for
2min, and a final extension at 72 °C for 5min.

To obtain near full-length 18S rRNA gene
sequence, overlapping sequences were amplified
using 3 secondary reactions. We used 5·1 (Yabsley
et al. 2005) and RLB-R (Gubbels et al. 1999)
primers, or RLB-F (Gubbels et al. 1999) and
BabRev (Blaschitz et al. 2008) primers, or BabFor
(Blaschitz et al. 2008) and B (Medlin et al. 1988)
primers (Fig. 2). To obtain sequence of the hyper-
variable region of the 18S rRNA gene, secondary
reaction was realized using RLB-F and BabRev
primers. All secondary reactions were realized using
1 μL of primary product as a template in a 20 μL
reaction. PCR master mix composition and cycling
conditions were the same as primary reaction except
the annealing temperature was 44 °C, and cyclic
extensions were for 1min.

Primary outside amplification for ITS1 gene was
conducted using ITS-15C and ITS-13B primers
(Bostrom et al. 2008). PCR master mix composition
was the same as for primary outside amplification
for 18S rRNA gene. Cycling conditions were 95 °C
for 3min followed by 40 cycles of 95 °C for 30 s,
55 °C for 30 s and 72 °C for 1min and a final
extension at 72 °C for 10min. Secondary amplifica-
tion was performed using ITS-15D and ITS-13C
primers (Bostrom et al. 2008) with the same
condition as primary reaction except the annealing
temperature was 49 °C.

All amplifications included a negative control
consisting of sterile molecular-grade water in the
primary reaction and the negative-control primary
PCR product for the secondary reaction. The PCR
products were purified and sequenced by Eurofins
MWG Operon (Ebersberg, Germany) or MilleGen
(Labège, France) sequencing services.

Phylogenetic analyses

Phylogenetic analyses were conducted on the near
full-length 18S rRNA sequences obtained during
the present study and additional sequences retrieved
from GenBank. Sequences were aligned using
Bioedit Sequence Alignment Editor. Before generat-
ing the phylogenetic trees, a series of likelihood ratio
tests were completed using MEGA 6 (Tamura et al.
2013) to determine the best nucleotide substitution
model to use for phylogeny analyses. The best model
predicted using the Bayesian Information Criterion
(BIC) was a Tamura-Nei model (TN93) with a

Fig. 1. Photomicrograph of a Giemsa-stained thin blood
film from a meerkat showing an intra-erythrocytic
piroplasm (Babesia or Cytauxzoon sp.). Original
magnification: ×1000.
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proportion of invariant sites (I) and among site
heterogeneity (G). A maximum-likelihood phylo-
genetic tree based on the Tamura-Nei model with
evolutionary rate differences among sites modelled
using a discrete Gamma distribution (number of
categories = 5), a neighbour joining tree and a
maximum parsimony tree model were then inferred
using MEGA 6 (Tamura et al. 2013).

RESULTS

Molecular characterization

For 1 meerkat, DNA was extracted both from filter
paper and from blood smear. ITS1 sequences were
identical suggesting that sequences collected from
the 2 DNA extraction procedures can be reliably
compared. Blood from 4 meerkats was collected both
in March 2011 and November 2011. For 2 meerkats,
species and strain detection based on ITS1 sequences
gave similar results across the 2 seasons. For the
2 remaining meerkats, infection was different be-
tween the 2 seasons, with meerkats being infected
by the 2 piroplasm species in 1 season, but infected
by a single species in the other season. However, for
each of these 2 meerkats, species-specific sequences
were identical between the 2 seasons.
All the 5 captive-born meerkats were PCR nega-

tive, while only 9% (n = 4) of wildmeerkats were. The
4 PCR-negativewildmeerkats belonged to 4 different
social groups.
We amplified a hypervariable region of the 18S

rRNA gene (*780 pb) in 13 wild meerkats, the near
full-length 18S rRNA gene (*1700 pb) in 6 of these
13 wild meerkats, and the ITS1 region (*540 pb) in
all wild meerkats (n = 51 samples). The 18S rRNA
and ITS1 sequences of wild meerkats separated into
2 groups, suggesting infection by 2 piroplasm species
(Fig. 3). Based on the ITS1 sequences, co-infection
with the 2 species was detected in 46% of individuals
(n = 21). Prevalence of co-infection may, however,
be underestimated because primers designed to
amplify all piroplasms may preferentially amplify
the more common template in the exponential phase
of amplification.

Four wild meerkats had a 100% similar amplicon
of the 18S rRNA hypervariable region. The near
full-length 18S rRNA gene was sequenced for 2
of these individuals and was shown to be 100%
identical to one another (GenBank accession number:
KM025200). By BLAST analysis (Altschul et al.
1990), they shared the highest homology with
Cytauxzoon felis (identity score: 95%; query cover:
100%; Fig. 3) and Cytauxzoon manul (identity score:
95%, query cover: 96%; Fig. 3). The ITS1 region
of this novel Cytauxzoon sp. was detected in 57%
of individuals (n = 26; Table 1). However, because
many meerkats were co-infected, ITS1 sequences
of Cytauxzoon sp. were reliably sequenced for
7 individuals only. Within the 485-pb ITS1 region,
we found 1 single nucleotide polymorphism (SNP)
(GenBank accession number: KM025207 and
KM025208). Out of the 7 individuals, 5 individuals
had a single ITS1 sequence, while the remaining
2 individuals had the 2 ITS1 sequences. All meerkat
social groups were infected by the Cytauxzoon
species, except 1 group for which only 1 meerkat
was sampled (Table 1).
Nine wild meerkats had similar sequence of the

18S rRNA hypervariable region. The near full-
length 18S rRNA gene was sequenced for 4 of
these individuals and was shown to be 100%
identical to each other (GenBank accession number:
KM025199). They shared the highest homology with
Babesia lengau (identity score: 99%; query cover:
93%; Fig. 3). Based on the ITS1 sequence, infection
by this Babesia sp. was detected in 80% of samples
(n = 40), and all meerkat social groups were infected
(Table 1). Eighty-three percent of meerkats had
more than one Babesia ITS1 sequence. Based on the
electropherograms containing Babesia sequences
only, 13 SNPs, one 1-nucleotide insertion and one
2-nucleotide deletions were detected in the 480-pb
ITS1 sequence of Babesia sp. The 2-nucleotide
deletion sequence was detected in 51% of Babesia-
infected meerkats, while the 1-nucleotide insertion
sequence was detected in 50% of Babesia-infected
meerkats. From the unambiguous electrophero-
grams, we reliably characterized 6 distinct ITS1

Fig. 2. Schematic illustration of the directions and combinations of the different primary and secondary primers used to
obtain the near full-length 18S rRNA gene sequences.
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sequences (GenBank accession number: KM025201
to KM025206).

Microscopy

In all blood smears where piroplasms were observed,
the organisms were single intraerythrocytic inclu-
sions, small in size (measuring ca. 1 μM in diameter;
Fig. 1) and few in number. No morphological
differences were discernible between the Babesia
and the Cytauxzoon species.

DISCUSSION

Meerkats were found to be infected by 2 different
piroplasm species: the first one closely related to
the Cytauxzoon species infecting Felidae (Wagner,
1976; Peixoto et al. 2007; Shock et al. 2011), and the
second one closely related to Babesia lengau, a species
infecting the South-African cheetah (Acinonyx
jubatus) (Bosman et al. 2010). Several piroplasm
species have been previously described in mongooses
(reviewed in Penzhorn, 2006), but all have been
described only from morphology. In particular,

Babesia cynicti has been found in South-African
yellow mongooses (Cynictis penicillata) (Penzhorn
and Chaparro, 1994), a species that can occupy the
same territory and burrow, and host the same tick
species as meerkats (Lynch, 1980). Molecular char-
acterization of Babesia cynicti is now required to
determine whether it is the same species as the ones
found in meerkats.

The prevalence of infection with Babesia and
Cytauxzoon in this population of meerkats was
high. Ninety-one percent of meerkats were infected,
including 46% that were infected by the 2 species.
Similar prevalence (88%) was detected for Babesia
cynicti in yellow mongooses (Penzhorn and
Chaparro, 1994). All sampled meerkats appeared,
however, clinically normal and showed no signs of
disease (personal observations). Although Babesia
and Cytauxzoon can cause severe disease in domestic
animals (Wagner, 1976; Homer et al. 2000), high
prevalence and subclinical infection are common
in wild animals (Schnittger et al. 2012) where
clinical disease manifests only when the host is
stressed (Penzhorn, 2006). Clinical babesiosis in the
sable antelope (Hippotragus niger), Grevy’s zebra

Fig. 3. (a) Maximum-likelihood, neighbour-joining and (b) maximum parsimony bootstrap consensus trees showing
the phylogenetic relationships of the new Babesia sp. and Cytauxzoon sp. with other piroplasms based on full-length
18S rRNA sequences. The numbers represent the percentage of 1000 replicates (bootstrap support) for which the
same branching patterns were obtained for (a) maximum likelihood and neighbour joining analyses, respectively and
(b) maximum-parsimony analysis. Toxoplasma gondii was used as an out-group. Sequences obtained during the present
study are shown in bold. The number after the species designation refers to the GenBank number (indicated in the first
tree only for clarity).
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(Equus grevyi), black rhinoceros (Diceros bicornis) and
Eastern grey kangaroo (Macropus giganteus) appears
to be triggered by the stress of capture, restraint
and translocation (Dennig, 1964; Nijhof et al. 2003;
Nijhof et al. 2005; Dawood et al. 2013; reviewed
in Penzhorn, 2006). The Babesia and Cytauxzoon
species identified in our study may be benign para-
sites, and infection does not appear to result in clinical
morbidity or mortality under normal conditions.
Meerkats are infected by several ixodid ticks

(Lynch, 1980), which are potential vectors of
Babesia and Cytauxzoon. Preliminary characteriza-
tions of ticks collected in our meerkat population
suggest that individuals are infected by R. theileri
(Prof Ivan Horak, personal communication), a
burrow associated ixodid tick that is associated with
the hot and arid climate of the Northern Cape
Province (Horak et al. 1999). The meerkat is a highly
social species living in family groups which share the
same burrows (Lynch, 1980). These features could
facilitate the transmission ofBabesia and Cytauxzoon
by ticks among members of the same group and
would explain the high infection prevalence in
meerkats. Examination of genetic variations within
the ITS region of the rRNA genes in relation to
meerkat group membership and spatial location
should help elucidate the transmission route of
piroplasms in meerkats. In our study, ITS1 sequence
analysis was complicated due to the co-infection of
meerkats with different species and/or multiple
strains of a single species, or due to the presence of
several rRNA gene copies in the genome. Future
works conducted with species-specific ITS1 primers
or including cloning prior sequencing are needed to
associate specific parasite genotype with host life
history characteristics.
In summary, 2 piroplasm species were found in

a high percentage of Kalahari meerkats. None of
meerkats had evidence of disease compatible with
babesiosis; thus these piroplasms appear to have low
pathogenicity for meerkats. However, infection with
either of them in combination with stress or other
factors such as immunosuppression could possibly
lead to disease.
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