
J. Fluid Mech. (2018), vol. 856, pp. 552–579. c© Cambridge University Press 2018
doi:10.1017/jfm.2018.674

552

Non-modal stability analysis of miscible viscous
fingering with non-monotonic viscosity profiles
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A non-modal linear stability analysis (NMA) of the miscible viscous fingering in a
porous medium is studied for a toy model of non-monotonic viscosity variation. The
onset of instability and its physical mechanism are captured in terms of the singular
values of the propagator matrix corresponding to the non-autonomous linear equations.
We discuss two types of non-monotonic viscosity profiles, namely, with unfavourable
(when a less viscous fluid displaces a high viscous fluid) and with favourable (when
a more viscous fluid displaces a less viscous fluid) endpoint viscosities. A linear
stability analysis yields instabilities for such viscosity variations. Using the optimal
perturbation structure, we are able to show that an initially unconditional stable state
becomes unstable corresponding to the most unstable initial disturbance. In addition,
we also show that to understand the spatio-temporal evolution of the perturbations
it is necessary to analyse the viscosity gradient with respect to the concentration
and the location of the maximum concentration cm. For the favourable endpoint
viscosities, a weak transient instability is observed when the viscosity maximum
moves close to the pure invading or defending fluid. This instability is attributed
to an interplay between the sharp viscosity gradient and the favourable endpoint
viscosity contrast. Further, the usefulness of the non-modal analysis demonstrating the
physical mechanism of the quadruple structure of the perturbations from the optimal
concentration disturbances is discussed. We demonstrate the dissimilarity between the
quasi-steady-state approach and NMA in finding the correct perturbation structure and
the onset, for both the favourable and unfavourable viscosity profiles. The correctness
of the linear perturbation structure obtained from the non-modal stability analysis is
validated through nonlinear simulations. We have found that the nonlinear simulations
and NMA results are in good agreement. In summary, a non-monotonic variation of
the viscosity of a miscible fluid pair is seen to have a larger influence on the onset
of fingering instabilities than the corresponding Arrhenius type relationship.

Key words: fingering instability, mixing and dispersion, porous media

1. Introduction
Flow stability in displacement processes in porous media has been the subject

of numerous past investigations in the petroleum industry, solute transportation in
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aquifers and packed bed regeneration, to name a few. In particular, when a fluid of
lower viscosity displaces a fluid of higher viscosity in a porous medium, the interface
between the fluids becomes unstable and the resulting displacement pattern is known
as viscous fingering (VF) (Saffman & Taylor 1958; Homsy 1987). In the area of
miscible displacement, there have been many theoretical and experimental studies
addressing the onset of instability and the subsequent growth of unstable disturbances
(viscous fingers). Several studies have been concerned with the determination of
conditions leading to the onset of instability, essentially employing modifications of
the Tan & Homsy (1986) theory for miscible viscous instability in porous media.
Further, attempts are also made to develop simplified predictive schemes for the
description of finger growth (Kim 2012; Pramanik & Mishra 2013).

The vast majority of previous studies (Homsy 1987; Ben, Demekhin & Chang 2002;
Pritchard 2009; Hejazi et al. 2010; Mishra et al. 2010) on miscible viscous fingering
have focused on a monotonic viscosity–concentration relationship of Arrhenius type,
that is, µ(c) = exp(Rc). Here R = ln(µ2/µ1) is the log-mobility ratio where µ1 and
µ2 correspond to the viscosity of the displacing and displaced fluids, respectively.
For such monotonic profiles, it is well known that the instability criterion for an
unfavourable viscosity contrast (when less viscous fluid displaces a high viscous
fluid) is determined from the endpoint viscosities, equivalently when R> 0. However,
in practice the monotonic relationship may not always represent close approximation
of the miscible fluid combinations. For example, exploratory investigations of the
enhanced oil recovery process have employed slugs of alcohol or alcohol mixtures
that separate the oil from the water, which is used as the driving fluid (Latil 1980).
Since different kinds of alcohol are generally miscible with each other, as well with
water and oil, the dependence of the viscosity of these mixtures on the respective
concentrations will affect the overall dynamics of the displacement process. In general,
the viscosity, µ(c), will depend on the fluid pair employed and can be neither linear
nor exponential. Some fluid pairs like isopropyl alcohol and water employed in
laboratory experiments have a non-monotonic viscosity–concentration relationship
(Weast 1990).

Recently, it has been observed experimentally (Riolfo et al. 2012; Nagatsu
et al. 2014) and theoretically (Hejazi et al. 2010) that due to a miscible chemical
reaction there could be a build-up of non-monotonic viscosity profiles, i.e. the
relationship between viscosity µ and concentration c need not be monotonic,
but rather display a maximum viscosity at the intermediate concentration value.
Similarly, in the application of the chromatographic column Haudin et al. (2016)
showed that a non-monotonic viscosity profile can be observed due to non-ideal
mixing properties of certain alcohols in a porous medium. Further, some enhanced
oil recovery schemes such as water-alternating-gas (WAG) have the potential to
introduce mobility non-monotonicities by exploiting the dependence of the oil’s
mobility on the amount of dissolved gas. Blunt & Christie (1991) have simulated
a tertiary WAG process in which the oil saturation profile and consequently the
mobility profile are non-monotonic. Hickernell & Yortsos (1986) showed that in the
absence of physical dispersion, any rectilinear miscible displacement with a locally
unfavourable viscosity profile is unstable. Later, this observation was confirmed by
Chikhliwala, Huang & Yortsos (1988), who analysed the immiscible displacements
considering non-capillary displacements that are equivalent to miscible displacements
without physical dispersion. Bacri et al. (1992a) extended these investigations by
including the dispersion effect. For the step profile associated with time t = 0, they
identify a single stability parameter with arbitrary viscosity–concentration profile.
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Manickam & Homsy (1993) pointed out that in the case of non-monotonic
viscosity–concentration profiles, the stability of the system depends on the endpoint
derivatives of the viscosity–concentration relationship. They performed linear stability
analysis based on a quasi-steady-state approximation (QSSA) and noted that
at early times the QSSA is questionable where the base state changes rapidly.
Later, Pankiewitz & Meiburg (1999) analysed the influence of a non-monotonic
viscosity–concentration relationship on miscible displacements in porous media
for radial source flows and the quarter five-spot configuration. Schafroth, Goyal
& Meiburg (2007) also extended the work of Manickam & Homsy (1993) for
miscible displacement in a Hele-Shaw cell with Stokes equation governing the
flow. Further, such non-monotonic viscosity profiles can also typically be obtained
in the study of reaction–diffusion problems (Hejazi et al. 2010; Nagatsu & De
Wit 2011), double-diffusion problems (Pritchard 2009; Mishra et al. 2010) and the
effect of nano-particles in miscible VF (Dastvareh & Azaiez 2017). Moreover, a
detailed discussion of the non-monotonic viscosity profile and stabilization in a
radial Hele-Shaw cell has been presented by Wang (2014). Wang (2014) presented
a nonlinear simulation to study the radial injection-driven miscible flow and lifting
radial Hele-Shaw cell, both with a monotonic and non-monotonic viscosity profile.

Although there has been considerable analysis of monotonic viscosity–concentration
profiles, it is evident from the existing literature that only a few attempts (Manickam
& Homsy 1993, 1994; Kim & Choi 2011) have been made to address the
linear stability analysis for non-monotonic viscosity profiles in miscible rectilinear
displacements. Utilizing the self-similarity in the concentration base state, Kim & Choi
(2011) employed an eigenanalysis in a self-similar coordinate from which the transient
nature of the base state can be removed, albeit that the linearized operator remained
time-dependent. However, the eigenanalysis presented by Kim & Choi (2011) fails to
demonstrate the quadruple structure and hence the physical mechanism of perturbation
growth which was shown by Manickam & Homsy (1993) by means of the vorticity
perturbations. The methods demonstrated in the works of Manickam & Homsy (1993)
and Kim & Choi (2011) did not consider the energy amplification or the effect
of viscosity–concentration parameters on the perturbation structures. Furthermore,
for different parameters in the viscosity–concentration relationships proposed by
Manickam & Homsy (1993) (viz., endpoint viscosity, maximum concentration and
maximum viscosity), different vorticity configurations may result. It has been observed
that the global dynamics of the fingers and the entire displacement will be strongly
affected by this base-flow vorticity (Manickam & Homsy 1993, 1994). Thus, it is
important to realize that the base-flow vorticity is a function of the viscosity profile
itself. Hence, when analysing displacements, the nature of the viscosity profile is
expected not just to affect the fingering process directly, but also indirectly through
the base-flow vorticity. Thus, it is necessary to carry a linear stability analysis which
can capture the disturbance structure and determine the onset of instability accurately.
Moreover, in miscible VF, the governing linearized equations are time-dependent.
Owing to the non-autonomous nature of the linear stability matrix, we have adopted
the non-modal analysis based on a propagator matrix approach (Rapaka et al. 2008;
Hota, Pramanik & Mishra 2015a,b). The stability of the dynamical system is then
described in terms of the singular values of the propagator matrix. This approach
can address the time evolving modes and their spatial structure more appropriately
than QSSA or eigenanalysis. Hence, our goal is to illustrate the advantages of
non-modal linear stability analysis (NMA) and the physical mechanism of stability
based on the optimal structure of the concentration perturbations. The novelty of the
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Flow direction
U

Displacing fluid

x

y

Displaced fluid

µ = µ1

c  = c1

µ = µ2

c  = c2

FIGURE 1. Schematic of the flow configuration with coordinate system. Initially the
interface is located at x= 0 shown as the dashed line.

present analysis is that we can determine the onset and describe the effects of the
non-monotonic viscosity–concentration parameters on stability without invoking the
streamfunction–vorticity formulation.

The organization of the paper is as follows. In § 2, the governing equation and
linearized perturbation equations are derived for a general viscosity–concentration
profile. Then, we describe a parametric study that demonstrates the non-monotonic
dependence of the viscosity–concentration relations. To conclude this section, we
have summarized the non-modal analysis. In § 3, the non-modal stability results
are discussed and a comparison is made with nonlinear simulations and QSSA in
self-similar coordinates followed by the conclusions in § 4.

2. Mathematical formulation
Consider the miscible displacement flow in a porous media as shown in figure 1.

The fluid of viscosity µ1 displaces a fluid of viscosity, µ2, with a uniform velocity U.
The fluids are assumed to be Newtonian, non-reactive and neutrally buoyant, and the
porous medium is homogeneous with a constant permeability and isotropic dispersion.
Fluid flow and mass transport in the porous medium are governed by the equations for
conservation of mass, conservation of momentum in the form of Darcy’s law and the
volume-averaged mass balance equation in the form of a convection–diffusion equation
which are given by

∇ · u= 0, (2.1)
∇p=−µu, (2.2)

∂c
∂t
+ u · ∇c=D∇2c, (2.3)

µ=µ(c), (2.4)

where u= (u, v) is the two-dimensional Darcy velocity, c is the solute concentration,
p is the fluid pressure, µ is the dynamic viscosity and D is the isotropic dispersion
coefficient taken throughout to be constant. At the initial time t= 0, the concentration
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and viscosity of the displacing fluid are c1 and µ1, respectively whereas the displaced
fluid has concentration and viscosity as c2 and µ2, respectively.

In the present work, we have used Darcy’s law to describe the flow in a porous
medium or equivalently Hele-Shaw flow within a thin gap approximation. In particular,
equation (2.2) is obtained by averaging the parabolic velocity profile in between the
parallel plates. The mathematical analysis of Darcy’s law in thin regions has been
studied extensively, e.g. for averaging of creeping flow (Bayada & Chambat 1986) and
for averaging of Navier–Stokes systems (Nazarov 1990). Validity of Darcy’s law, in
continuum modelling of flows in porous media, implicitly assumed that the viscosity
varies over the macroscopic scale and can be treated as constant on the micro-scale on
which the permeability is computed. Similarly, Zick & Homsy (1982) observed that
the viscosity variation is slow relative to the grain size, so that the force is determined
to a good approximation by a constant viscous stress. In addition Nagatsu & De Wit
(2011) and Riolfo et al. (2012) successfully showed that the experimental findings
agree meticulously with the numerical simulation of reaction-driven viscous fingering
based on a Darcy’s law model.

In order to make the governing equations dimensionless, characteristic scales have
to be introduced. We note that the set of equations (2.1)–(2.4) involves neither a
characteristic time scale nor a length scale; so the equations are made dimensionless
using diffusive scaling, i.e. we considered the characteristic length D/U and time
D/U2, where D is the isotropic dispersion coefficient. Thus the non-dimensional form
of the equations that govern the two-dimensional flow in a reference frame moving
with constant injection velocity U are described by (Manickam & Homsy 1993)

∇ · u= 0, (2.5)
∇p=−µ(c)(u+ î), (2.6)
∂c
∂t
+ u · ∇c=∇2c, (2.7)

where velocity, concentration, viscosity and pressure are non-dimensionalized with U,
(c− c1)/(c2 − c1), µ1, and p/µ1D, respectively. Here î is the unit vector along the
main flow direction, i.e. the x direction.

The initial and boundary conditions associated with the coupled equations (2.5)–
(2.7) are as follows (Nield & Bejan 1992).

Initial conditions:

u(x, y, t= 0)= (u, v)(x, y, t= 0)= (0, 0), (2.8)

and ∀y, c(x, y, t= 0)=

{
1, x< 0
0, x > 0.

(2.9)

Boundary conditions:

u= (0, 0),
∂c
∂x
→ 0, |x|→∞, streamwise direction, (2.10a,b)

u= 0,
∂v

∂y
→ 0,

∂c
∂y
→ 0, |y|→∞, spanwise direction, (2.11a−c)

where u and v are the axial and transverse components of the two-dimensional
velocity u. Further, the coupled equations (2.5)–(2.7) admit the following transient
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base state,

ub = (0, 0), cb =
1
2

[
1− erf

(
x

2
√

t

)]
, pb(x, t)=−

∫ x

−∞

µb(s, t) ds, (2.12a−c)

by solving the equations

∂pb

∂x
=−µ and

∂cb

∂t
=
∂2cb

∂x2
. (2.13a,b)

Here erf(·) is the error function and the subscript b stands for the base state.

2.1. Non-monotonic viscosity relationship
The exact nature of the relationship between the dynamic viscosity µ and concentration
c will depend on the particular combination of fluids under consideration (Pankiewitz
& Meiburg 1999; Haudin et al. 2016). It has been observed that there exists an
alcohol–water pair for which viscosity µ(c) can achieve a maximum at some
intermediate local concentration composition c (Manickam & Homsy 1993, 1994;
Schafroth et al. 2007; Haudin et al. 2016). In other words, the flow develops a
potentially unstable region followed downstream by a potentially stable region or
vice versa. In this scenario, the stable region acts as a barrier to the growth of fingers,
thereby providing a mechanism to control the VF. Hence, a fundamental understanding
of the finger propagation in flows with non-monotonic viscosity profiles is essential
to develop methodologies aimed at controlling the growth of viscous fingers. In
order to understand the influence of non-monotonic viscosity profiles, we focus on
the non-monotonic viscosity–concentration model proposed by Manickam & Homsy
(1993).

In order to allow comparisons with earlier studies of rectilinear displacements, we
employ the non-monotonic class of viscosity–concentration profiles used by Manickam
& Homsy (1993, 1994) and Pankiewitz & Meiburg (1999). The viscosity–concentration
profiles are sine functions modified through a sequence of transformations which is
well-suited to the non-monotonic profiles of alcohol mixtures (Weast 1990) and is
given by the expressions

µ(c)=µm sin(ζ ), (2.14)
ζ = ζ0(1− η)+ ζ1η, (2.15)

η=
(1+ a)c
1+ ac

, (2.16)

where
ζ0 = arcsin(α/µm),

ζ1 =π− arcsin(1/µm),

a=
cm − ηm

cm(ηm − 1)
,

ηm =
π/2− ζ0

ζ1 − ζ0
, and α =µ2/µ1.


(2.17)

The transformations are defined in such a way that the endpoint values are µ(0)= α,
µ(1)= 1 and they attain a maximum value µm at c= cm.
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FIGURE 2. Spatial variation of the viscosity relation (2.14) in a self-similar coordinate
ξ = x/

√
t for (a) α = 5, µm = 7.5 and (b) α = 0.5, µm = 2. The monotonic viscosity is

µ(c)= exp(ln(α)(1− c)).

The non-monotonic profile of dynamic viscosity is characterized by a family of
curves described by three parameters, namely, α, cm and µm. The parameter α is the
ratio of the endpoint viscosities, i.e. α = µ2/µ1, the traditional measure of stability
in viscous fingering. In particular, for α < 1 the flow is said to have a favourable
viscosity contrast, and when α > 1, the flow is said to have an unfavourable viscosity
contrast. Figure 2(a,b) demonstrates the spatial variation of µ(c) for α = 5, µm = 7.5
and α= 0.5, µm= 2, for different values of cm. It can be noted that for cm> 0.5, µm is
located closer to the displacing fluid, while it is near to the displaced fluid if cm< 0.5.
Manickam & Homsy (1993) showed that the stability criterion for non-monotonic
profiles (2.14) is determined by a parameter, χ , that relates the endpoint slopes of
the viscosity profile which is defined as

χ =−


dµ
dc

∣∣∣∣
c=0

+
dµ
dc

∣∣∣∣
c=1

α + 1

 . (2.18)

In particular, the system is stable if χ < 0, otherwise it is unstable. For the monotonic
case, i.e. µ(c) = exp(R(1 − c)), R = ln(α), we have χ = R. In contrast, in the
non-monotonic case the sign of χ depends on the magnitude of the gradient at the
endpoints. Thus, in the non-monotonic case, the stability depends not on the endpoint
viscosities but on the derivative of the viscosity with respect to concentration at the
endpoints.

2.2. Linear stability analysis
In order to carry out the linear stability analysis, we introduce an infinitesimal
perturbation to the base state, equation (2.12). Then, we linearize the equations
(2.5)–(2.7) about the base state (2.12) and eliminate the pressure and transverse
velocity disturbances by taking the curl of Darcy’s law and utilizing the continuity
equation. The final form of the linearized perturbation equations is given by
(Manickam & Homsy 1993)

M1u′ =M2c′,
∂c′

∂t
=M3c′ +M4u′, (2.19a,b)
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where c′ and u′ denote the perturbation quantities representing the concentration and
the axial velocity component, respectively, and

M1 =D2
x +

1
µb
(Dxcb)Dx +µbD2

y , M2 =−R(µb)D2
y ,

M3 =D2
x +D2

y , M4 =−Dxcb,

 (2.20)

Dn
x = ∂

n/∂xn,Dn
y = ∂

n/∂yn, n= 1, 2. Since the coefficients of the above equations are
independent of y, the disturbances are decomposed in terms of Fourier components in
the y direction,

[c′, u′](x, y, t)= [φc, φu](x, t)eiky, i=
√
−1, (2.21)

where k is the non-dimensional wavenumber. Using (2.21), the operators in (2.20) can
be recast as

M1 =D2
x +

1
µb
(Dxcb)Dx − k2µbI, M2 = k2R(µb)I,

M3 =D2
x − k2I, M4 =−Dxcb,

 (2.22)

where I is the identity operator and R(µb) is a viscosity-related parameter given by

R(µb)=
1
µb

dµb

dcb
=
(1+ a)(ζ1 − ζ0)

(1+ acb)2
cot(ζ ). (2.23)

Here, µb and cb are the viscosity and concentration base states, respectively. It is
easily verifiable that for monotonic viscosity–concentration profiles, R(µb)=R= ln(α),
the log-mobility ratio. Now, the linearized (2.19) can be recast as an initial boundary
value problem,

∂φc

∂t
= L̃φc, (2.24)

where L̃=M3 +M4M−1
1 M2, and Mi values are as in (2.22). The associated boundary

conditions are (φc, φu)→ 0, as x→±∞ and a random initial condition. Manickam
& Homsy (1993, 1994) analyse the stability of (2.24) by using a quasi-steady-state
approximation (QSSA) and compare linear stability results with nonlinear simulations.
They have shown that the validity of the QSSA is questionable at short times where
the base state changes rapidly. A fundamental problem with such an approach is that
the concentration eigenfunctions span the entire spatial domain, i.e. the eigenfunctions
of the operator D2

x = ∂
2/∂x2, x ∈ (−∞, ∞) are global modes. Hence, they do not

provide an appropriate basis for streamwise perturbations (Ben et al. 2002). As the
present problem can have a small onset time (t ≈O(1)) for instability, the QSSA as
such is ill-suited to the task of resolving the early-time behaviour. To overcome this
difficulty, Kim & Choi (2011) uses the self-similar property of the base state, i.e. they
transform the (x, t) coordinate to a self-similar coordinate (ξ , t), ξ = x/

√
t such that

the base state, equation (2.12), becomes cb(ξ)= (1/2)[1− erf(ξ/2)]. In the self-similar
coordinate (ξ , t), the streamwise operator,

T=
∂2

∂ξ 2
+
ξ

2
∂

∂ξ
, (2.25)
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satisfies the eigenvalue problem

Ten(ξ)= λnen(ξ)= λnanHn(ξ/2) exp(−ξ 2/4), n= 0, 1, 2, . . . , (2.26)

where Hn(ξ) is the nth Hermite polynomial, an are positive constants and λn =

−(n+ 1)/2. The Hermite function based eigenfunctions, being localized around the
base state, provide an optimal basis for streamwise perturbations. This suggests that
the numerical simulation of the miscible viscous fingering dynamics in an unbounded
domain is best done in the (ξ , t) coordinates. For this reason we have investigated
the stability analysis of miscible viscous fingering in (ξ , t) coordinates. On rewriting
(2.24) in transformed coordinates (ξ , t), we have

∂φc

∂t
=L(t)φc, (2.27)

where L(t)= T3 + T4T−1
1 T2, and Ti values are as follows:

T1 =D′2 +
1
µb

dµb

dξ
D′ − k2tI, T2 = k2tR(µb)I,

T3 =
1
t
D′2 +

ξ

2t
D′ − k2I, T4 =−

1
√

t
dcb

dξ
I,

 (2.28)

D′n= ∂n/∂ξ n, n= 1, 2 and R(µb) as in (2.23). Even though the two sets of equations
(2.24) and (2.27) are mathematically equivalent, there is one restriction. It is observed
that the transformation to the self-similar coordinates (x, t)→ (ξ , t) is singular at
t= 0. Hence, we must restrict our evolution away from this singular limit t= 0. The
omission of this singular limit is not practically important. Further, we have presented
the relationship between the onset time and energy of the perturbations that is obtained
from both the coordinates in appendix B.

2.3. Non-modal analysis
As the linear stability operator, L(t), in (2.27) is non-autonomous, we have employed
the non-modal analysis (NMA) described by Schmid (2007). We first discretize the
linearized disturbance system, equation (2.27), to get an initial value problem (IVP):

dφc

dt
=L(t)φc. (2.29)

For a chosen time interval [tp, tf ], let Φ(tp; tf ) be a formal solution of (2.29), where
φc(tf )=Φ(tp; tf )φc(tp), φc(tp) being an arbitrary initial condition. Substitute this value
of φc(tf ) in (2.29) to get a matrix-valued IVP,

d
dt
Φ(tp; tf )=L(tf )Φ(tp; tf ), (2.30)

with initial condition Φ(tp; tp) = I , where I is the identity matrix. The operator
Φ(tp; tf ) propagating the information from initial perturbation time tp (time at
which the perturbation is introduced to the base state) to final time tf is known
as the propagator operator. It can be noted that the existence and uniqueness of the
solution to (2.29) can be established under the hypothesis that the map t→ L(t) is
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continuous from R+ to the set of n × n matrix over real numbers R (Vidyasagar
2002). Further, assuming that φc is square integrable over R, we wish to find the
maximum perturbation energy gain, that is,

G(tf ) = G(tf , k, Pe, R, δ) :=max
φc(tp)

Eφc(tf )

Eφc(tp)

= max
φc(tp)
‖Φ(tp; tf )φc(tp)‖2 = ‖Φ(tp; tf )‖ = sup

j
sj(tf ), (2.31)

where sj values are the singular values of Φ(tp; tf ), in other words, the eigenvalues of
the self-adjoint matrix Φ∗(tp; tf )Φ(tp; tf ) can be found by singular value decomposition
(SVD) of Φ(tp; tf ). Here Eg(tf ) := ‖g(tf )‖

2
2 =
∫
∞

−∞
|g(w, tf )|

2 dw.

2.3.1. Numerical solution of the stability problem
In the stability (2.27), we have used a central finite difference scheme with uniform

grids for all spatial derivatives and the fourth-order Runge–Kutta method for time
integration. The advantage of the finite difference technique is that we can study
the complete spectrum of the eigenvalues. The appropriate boundary conditions for
all disturbances is that they must go to zero far from the front. Mathematically,
this implies the appropriate eigenfunctions for the instability are localized and must
be zero away from the interface. It has been observed from the standard spectral
theory for an unbounded domain that due to this far-field boundary condition for
disturbances, we only need to deal with the discrete eigenspectrum, instead of the
essential modes whose eigenfunctions do not decay at the infinities of the governing
operator L (Pego & Weinstein 1994; Chang, Demekhin & Kalaidin 1998). This
fact is also verified by Manickam & Homsy (1993). In our analysis, the infinite
streamwise domain is truncated into a finite computational domain such that it can
fully capture all the decaying discrete eigenfunctions. In order to check the validity
of the results, the code was tested for several domain sizes and spatial step sizes. The
results were reported if the obtained eigenvalues and eigenvectors are independent of
domain and spatial step size. It is observed that the discrete eigenvalues associated
with the velocity perturbations are sensitive to the width of the domain. We have
performed numerical simulations by taking step size h = 0.1, 0.15 and 0.2. The
relative error between the singular vectors has been calculated corresponding to all
three simulations and it is found that the maximum relative error is of order O(10−2).
The error has been calculated in terms of the standard Euclidean norm in Rn, defined
as ‖ · ‖2

=
∑n

j=1(·)
2. Hence, for all simulations the spatial step size is taken to be 0.2

with the computational domain [−110, 90]. Figure 5 shows that this domain length is
good enough for our analysis. Further, the solution procedure has been validated by
comparing with the linear stability results of Hota et al. (2015a) for Arrhenius type
viscosity–concentration profiles.

3. Results and discussion
In order to understand the fundamental features and onset of instability in miscible

displacements with non-monotonic viscosity profiles, we have studied two different
cases, namely α less than 1 and greater than 1. Using NMA, we have shown that the
singular vectors carry the information about coherent optimal perturbation structures
and their temporal evolution. We validate our numerical findings by comparing with
nonlinear simulations (NLS) performed using the Fourier pseudo-spectral method.
Further, our results are in contrast to the existing linear stability analyses (Manickam
& Homsy 1993; Kim & Choi 2011).
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FIGURE 3. (a) Schematic of the spatial variation of viscosity for a diffused concentration
profile and α > 1. (b) Viscosity profiles for α= 5, µm = 7.5 and various values of cm. As
cm increases, the viscosity gradient in the unstable region steepens.

3.1. Stability analysis for unfavourable endpoint viscosity contrast
In this case, we have α>1, equivalently, µ1<µ2. The spatial variation of the viscosity
profile and the corresponding variation with concentration is given in figure 3(a,b),
respectively. From figure 3 there develops a potentially unstable region, where the
viscosity increases in the flow direction, followed in the downstream direction by a
potentially stable region, where the viscosity decreases in the flow direction. In order
to compare our results with the existing literature, we choose the following parameters:
α=5,µm=7.5 and cm=0.25,0.5 and 0.75. With this configuration, the viscosity ratio
within the unstable zone grows 7.5 times, while it decreases moderately by a factor
7.5/5= 1.5 within the stable zone.

3.1.1. Optimal amplification
The optimal amplification, G(t), is the maximum possible energy that a perturbation

can have, incorporating all possible initial conditions. From G(t), the onset of
instability can be obtained as follows:

ton =min
{

t> 0 :
dG(t)

dt
= 0
}
. (3.1)

Figure 4(a) shows the optimal amplification, G(t) (see (2.31)), for α= 5 and µm= 7.5
and initial perturbation time tp = 0.01. The initial perturbation time tp is chosen to
be at least one order of magnitude smaller than the onset of instability, ton. We have
shown in figure 4(b) that the onset times, ton, for cm = 0.25, 0.5 and 0.75 are found
approximately to be 5.11, 2.17 and 0.63, respectively. In other words, we have found
that for the parameters considered, ton is a decreasing function of cm. Further, the
energy is most amplified for cm = 0.75 in comparison to cm = 0.25 and 0.5, which
is in contrast to the findings of Manickam & Homsy (1993) and Kim & Choi (2011).
These authors have shown that the instabilities set in the unstable region and propagate
downstream into the stable barrier. Figure 3(a) illustrates that the concentration cm,
at which the viscosity reaches a maximum, determines the length of the stable zone.
Further, the larger the value of cm, the longer the stable zone and consequently its
effectiveness in stunting the downstream propagation of the viscous fingers.
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FIGURE 4. (a) Optimal amplification, G(t), for α = 5 and µm = 7.5 for three different
values of cm. The black dots (u) denote the onset of instability, ton. (b) Onset time, ton,
is monotonically decreasing with increase in cm.

α = 5, µm = 7.5 α = 0.5, µm = 2
cm Unstable interval Stable interval Unstable interval Stable interval

0.25 [−6, 0.95] [0.95, 5.8] [−4.7, 1] [1, 6.5]
0.5 [−6, 0] [0, 5.5] [−5, 0] [0, 6]
0.75 [−6.5,−0.95] [−0.95, 5.1] [−5.7,−1] [−1, 5.8]

TABLE 1. The unstable and stable interval for (α, µm) = (5, 7.5) and (0.5, 2) (see
figures 3a and 7a). The initial unperturbed interface is located at ξ = 0. In each case
the left-hand endpoints are obtained when the value of µ is equal to µ(c = 1) = 1, and
similarly the right-hand endpoints are obtained when the value is equal to µ(c= 0)= α,
with an absolute error of order O(10−12). It is evident that the stable region is increasing
with an increase in the value of cm.

From table 1 and figure 3(b), it can be observed that although with the increase
in cm one has a larger stable zone, the corresponding viscosity gradient is larger.
In this light, the present contrasting results from NMA can be explained from the
structure of the viscosity profiles. For α = 5, µm = 7.5, figure 3(b) depicts that as cm

increases the resident fluid experiences an increase in viscosity. This enhances the
energy of the perturbations and thus results in a early onset of instability. Note that
the values of χ (as defined in (2.18)) for cm= 0.25, 0.5 and 0.75 are −2.12, 3.58 and
14.05, respectively. This implies that there is a strong influence of the concentration
gradient with respect to concentration in the non-monotonic viscosity profiles. Hence,
it is shown that the endpoint viscosity gradient, along with the unfavourable endpoint
viscosity contrast, have a substantial effect on the growth rate. The NMA findings
are also supported by the findings of Wang (2014) on the radial miscible flow in
a Hele-Shaw cell. Wang (2014) found that the time evolution of the interfacial
length (which is a global measurement of the onset of fingering) suggests that for
an unfavourable endpoint viscosity a higher value of cm leads to a more unstable
interface at early times.
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FIGURE 5. (Colour online) For α = 5, µm = 7.5, k = 0.2, (a1–a3) the optimal initial
perturbations, c′p = Vopt cos(ky), and (b1–b3) the corresponding evolved state, c′ =
Uopt cos(ky). From top to bottom cm = 0.25, 0.5 and 0.75. Here the time integration
intervals are (i) = [0.01, 0.5], (ii) = [0.01, 4] and (iii) = [0.01, 10]. Both c′p and c′ are
normalized with respect to sup-norm. The dashed lines correspond to the negative contours
and the continuous lines correspond to the positive contours. The vertical dashed lines
show the initial fluid–fluid interface. The concentration contours shown: (a1,b1) 0.02–0.7
with eight equal increments, (a2,b2) 0.01–0.6 with five equal increments, (a3,b3) span
from 0.01 to 0.8 with four equal increments.

3.1.2. Structure of optimal perturbations
For miscible displacements with a non-monotonic viscosity–concentration profile,

Bacri et al. (1992a), Bacri, Salin & Yortsos (1992b) and Manickam & Homsy (1993,
1994) have found that even for a favourable (unfavourable) endpoint viscosity contrast
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the displacement can be unstable (stable). Manickam & Homsy (1993, 1994) analyse
the physical mechanism of the stability of the flow, in terms of the structure of
the vorticity and streamfunction fields. It is observed that the vorticity field has a
quadruple structure which can give rise to dynamics fundamentally different from the
dipole structure (see figure 5 of Manickam & Homsy (1993) and figure 7 of Hota
et al. (2015a)) that dominates the evolution of monotonic displacements.

The structure of the optimal perturbations can be analysed by the singular value
decomposition (SVD) of the propagator matrix Φ(tp; tf ). The SVD of Φ(tp; tf ) at a
given final time, tf , is given by

Φ(tp; tf )=U[tp;tf ]Σ[tp;tf ]V
∗

[tp;tf ], (3.2)

where U and V are the right and left singular values of Φ(tp; tf ) and the superscript
star (∗) denotes the Hermitian.

For α = 5, µm = 7.5, k = 0.2 and cm = 0.25, 0.5 and 0.75, figure 5(a1–a3,
b1–b3) shows the contours of initial optimal perturbations, c′p = Vopt cos(ky), and
corresponding evolved state, c′ = Uopt cos(ky), respectively. The vertical dashed line
shows the initial interface position, which is ξ =0 in all our simulations. It is observed
that displacements characterized by non-monotonic viscosity profiles typically lead
to quadruple structures of the flow field, as opposed to the dipoles observed for
monotonic profiles (Manickam & Homsy 1993; Hota et al. 2015a). It is evident from
figure 5(a1–a3) that the optimal perturbations have two columns of isocontours, and
the contours on the right of the dashed line, being situated in the stable region, have
a larger impact than the column of contours on the left.

Figure 5(b1–b3) illustrates the optimal output associated with the initial optimal
perturbations shown in figure 5(a1–a3). In figure 5(b1–b3), the left column contours
are destabilizing as they move low viscosity fluid to the high viscosity regions, in the
direction of the flow, and move high viscosity fluid to the region of lower viscosity,
against the direction of the flow. On the other hand, the right column contours
do exactly the opposite. Formation of quadruple contours for the perturbations is an
unique feature of non-monotonic viscosity profiles. It is observed from figure 5(b1–b3)
that the optimal perturbations are spread farther in the backward than in the forward
direction and this spreading is more for the higher value of cm, i.e. 0.75. The flow
is unstable if the destabilizing left columns are stronger than the right column
contours, otherwise it is stable. Further, as the value of maximum concentration,
cm, increases, the diffusive region connecting the perturbations and the resident
fluid experiences an increase in viscosity. As a result, the left column contours
diminish, which causes early instability with an increase in cm. Thus, the onset
time, ton, of a flow with a non-monotonic viscosity–concentration profile and with
an unfavourable endpoint viscosity contrast is a monotonically decreasing function
of cm due to the relative strengths of the left and right columns of the isocontours.
These results are consistent with the findings of Manickam & Homsy (1993) based
on the vorticity perturbation equations. Thus, the optimal perturbation obtained from
NMA captured the non-monotonic viscosity–concentration effect without invoking the
vorticity perturbation equations.

3.1.3. Comparison with nonlinear simulations
Here, we compare our NMA results with nonlinear simulations. As the flow

is two-dimensional, we use a streamfunction formulation, ψ . Further, writing the
unknown variables as ψ ′(x, y, t)=ψ(x, y, t)−ψb(x, t), c′(x, y, t)= c(x, y, t)− cb(x, t),
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FIGURE 6. (Colour online) Finger propagation for the set of non-monotonic profiles with
α = 5, µm = 7.5 and (a) cm = 0.25, (b) cm = 0.5 and (c) cm = 0.75. All the simulations
have aspect ratio A= 4. The concentration contours shown span from c′ = 0.1 to c′ = 0.9
with six equal increments.

we solve the nonlinear equations (2.5)–(2.7) using the Fourier pseduospectral method
proposed by Tan & Homsy (1988) and the detailed algorithm found in Manickam
& Homsy (1994) and Pramanik, Hota & Mishra (2015). The non-dimensional
width of the computational domain is Pe = UH/D, the Péclet number and the
corresponding length of the domain is A · Pe. Here, A= L/H is the aspect ratio and
L, H the dimensional length and width of the computational domain, respectively.
The length of the computational domain is taken large enough so that we can
accommodate the viscous fingers. To obtain the nonlinear growth of perturbations,
the computational domain is chosen to be Pe = 512 and A = 4 with 1024 × 256
grid points for discretizing the domain. The time integration is performed by taking
time step 1t = 10−3. A convergence study has been carried out by taking spatial
discretization steps (1x, 1y) = (4, 4), (1x, 1y) = (2, 4) and (1x, 1y) = (2, 2) in a
computational domain [0, 2048] × [0, 512]. The relative error between the transversely
averaged concentration profiles c̄(x, t) = (1/Pe)

∫ Pe
0 c(x, y, t, dy) has been calculated

corresponding to both the simulations, and it is found that with respect to Euclidean
norm, ‖ · ‖2

=
∑n

j=1(·)
2, the maximum relative error is of order O(10−2). To get

optimal results, (1x, 1y)= (4, 4), with 1t= 0.1, has been chosen.
Figure 6 shows the NLS results for α= 5, µm= 7.5 and various values of maximum

concentration, cm. It is observed that at time t= 300 the fingers are visible for cm =

0.75, whereas the times at which the fingers are visible for cm= 0.5 and cm= 0.25 are
t= 340 and 400, respectively. From this important visual observation it can clearly be
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noted that the onset of the fingers is early for the higher value of cm in comparison to
smaller values of cm, or in other words, onset of fingers is a monotonically decreasing
function of cm. These results are consistent with the onset of instability in the linear
regime determined from NMA (see figure 4). Further, in contrast to the monotonic
viscosity–concentration profiles, in the case of non-monotonic viscosity–concentration
profiles, the fingers propagate faster in the backward direction than in the forward
direction. This is illustrated in figure 6 where the fingers have spread farther to the left
than to the right, especially for the case cm = 0.75. This result is consistent with the
nonlinear simulations of Manickam & Homsy (1994), who refer to this phenomenon
as reverse fingering.

The mechanism of reverse fingering, as shown in figure 6, can be explained from
the spatial variation of viscosity, which is shown in figure 3(b). For flow systems
with such profiles, there would develop a potentially unstable region, where the
viscosity increases in the flow direction, followed by a potentially stable region in
the downstream direction, where the viscosity decreases in the flow direction. Thus,
for non-monotonic displacements the stable zone of the viscosity profiles acts as a
barrier for the forward growth of fingers, which, when viewed in a reference moving
with the front, tend to propagate backwards. This feature of reverse fingering in
the non-monotonic displacement is also illustrated in the analysis of the structure
of optimal perturbations, shown in figure 5. Thus, it can be concluded that NMA
successfully captures the early evolution of perturbations which is well aligned with
results of NLS.

3.2. Stability analysis for favourable endpoint viscosity contrast
In this case, we have α < 1, equivalently, µ1 > µ2: the displacing fluid is more
viscous than the displaced fluid. The spatial variation of the viscosity profile and
the corresponding variation with concentration are shown in figures 7(a) and 7(b),
respectively. The flow systems as illustrated in figure 7 are said to have a favourable
viscosity contrast, as a high viscosity fluid displaces a low viscosity fluid. As before,
in order to compare our results with the existing literature, we use the following
parameters: α = 0.5, µm = 2 and cm = 0.25, 0.5 and 0.75. With this configuration, the
flow has a viscosity ratio of 2 across the weaker unstable zone and a viscosity ratio
of 2/0.5= 4 across the stable zone.

3.2.1. Optimal amplification
For α= 0.5, k= 0.06 and µm= 2, figure 8 demonstrates the influence of the position

of maximal concentration, cm, on the optimal amplification, G(t). For the present case,
the stability parameter χ has values −10.81,−1.68 and 5.29 for cm = 0.25, 0.5 and
0.75, respectively. For unfavourable viscosity contrast, χ > 0 represents the slope of
the viscosity profile at the point c= 1 being steeper than at the point c= 0, whereas
χ < 0 denotes the reverse scenario. From table 1, it can be observed that the length
of the stable interval is decided by the parameter cm, i.e. longer stable zones with
larger values of cm. This affects the delay in the onset time, ton, as cm increases. For
α= 0.5, cm= 0.25 and 0.75, an important feature resembling the secondary instability
of the optimal amplification G(t) is observed. Figure 8(a) illustrates that initially there
is an influence of steeper viscosity profile (see figure 7b) which helps to amplify
the energy, but due to the weak unstable region, this energy is only sustained for
a transient period. However, when diffusion becomes weaker and the isocontours in
the unstable zone overcome the stable zone, then there is a growth of energy which
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FIGURE 7. For α = 0.5 and µm = 2, (a) the spatial variation of the viscosity profile,
(b) viscosity–concentration profiles for cm = 0.25, 0.5 and 0.75. Across the unstable zone,
viscosity increases by a factor 2, while it decreases by a factor of 4 through the stable
zone. However, the strength of the (un)stable zone depends on dµ/dc, not on the endpoint
viscosity ratio. Thus, for the same values of α and µ, different cm determine the strength
of the two zones.
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FIGURE 8. For α = 0.5, µm = 2, (a) optimal amplification, G(t), for k = 0.06 with three
different values of cm. The black dots (u) denote the onset of instability, ton. (b) Onset
time, ton, is monotonically increasing with an increase in cm.

sets the instability and we call this a secondary instability. This temporal evolution
of the perturbation was not observed for cm= 0.5. Further, it is noted that the energy
amplification is lowest for cm = 0.5 in comparison to cm = 0.25 and 0.75. The reason
for this secondary instability is due to the steep viscosity gradient at either end at
c= 0 or c= 1 for cm = 0.25 and 0.75. This also shows that the value of cm alone is
not sufficient to describe the early-time temporal evolution of the disturbances.

3.2.2. Structure of optimal perturbations
The argument based on the fact that the flow will be unstable if the destabilizing

isocontours are stronger than the stabilizing one may not fully describe the
physical phenomena in the non-monotonic viscosity–concentration profiles. To
have a comprehensive analysis, we have studied the perturbation structures for
α = 0.5, k = 0.06 and µm = 2, as shown in figure 9. From this figure, it can be
observed that the displacement is stable for all the values of cm, but there are no
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FIGURE 9. For α = 0.5, k = 0.06 and µm = 2, (a–c) the evolution of the optimal initial
perturbations, c′p = Vopt cos(ky), for cm = 0.25, 0.5 and 0.75, respectively. Here the time
integration intervals are (i) = [0.01, 50], (ii) = [0.01, 100] and (iii) = [0.01, 150]. The
concentration contours shown span from its minimum to maximum values in five equal
increments. The initial interface is located at ξ = 0. Black lines correspond to negative
contours and grey lines correspond to positive contours. (d) The spatial variation of
viscosity for the same values of α and µm.

stabilizing right isocontours for cm = 0.75 at time t = 50. This is in contrast to the
argument of Manickam & Homsy (1993). The perturbation contours always have two
rows of patches of opposite sign on opposite sides of the viscosity maximum for
cm= 0.25 and 0.5. This can be explained from table 1 as follows: if the recirculating
fluid regions extend beyond the unstable region, the left column contours have taken
the stabilizing role, which is the case when cm= 0.75, as shown in figure 9(c). Thus,
we conclude that the strength of the destabilizing perturbation contour regions, their
location and their interaction with the gradients in the viscosity profile all influence
the stability in the case of non-monotonic viscosity–concentration profiles. Further,
it is shown in figure 9(b) that, at early times, the right side stabilizing contours are
weakened at t = 100 in comparison to t = 50, which at later time, t = 150, again
strengthened. For this reason, the optimal amplification G(t) for cm = 0.5 always has
the lowest energy (see the continuous line in figure 8a).
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3.3. Comparison with quasi-steady-state modal analysis
In this section, we present the stability analysis based on the quasi-steady-state
approximation in the self-similar (ξ , t)-domain, which we abbreviate as SS-QSSA
(Pramanik & Mishra 2013). Kim & Choi (2011) used QSSA2 for quasi-steady analysis
in the (ξ , t) domain. In the SS-QSSA approach, the space and time dependences can
be separated by fixing the time at t0 and the disturbance quantities from equation
(2.21) are assumed to be

(φc, φu)(ξ , t)= (φξc , φ
ξ
u )(ξ)e

σ(t0)t, (3.3)

where σ(t0) is the perturbation (quasi-steady) growth rate at the time t0, and φξc and
φξu are the concentration and velocity perturbations, respectively. Substituting (3.3) into
(2.27)–(2.28) produces an eigenvalue problem for eigenvalues σ and eigenfunctions
φξc , where L is as in (2.27). It is noted that here we are presenting the temporal
stability analysis, i.e. the non-dimensional wavenumber k, as a real number, whereas,
the growth rate, σ(t0), can be allowed to be a complex number. Numerically, the
temporal stability analysis has been performed by computing the leading eigenvalues,
i.e. σ(t0) = max Re[Λ(L)], the spectral abscissa of the stability matrix L(t0). Here
Λ denotes the set of all discrete eigenvalues of L. It is observed that the SS-QSSA
eigenfunctions are concentrated around the base state. However, these concentration
eigenfunctions fail to capture the quadruple structure and, consequently, only predict
the temporal growth of disturbances after an initial transient period.

Figure 10 demonstrates the spatial variations of SS-QSSA eigenfunctions at
times t0 = 0.5, 4 and 10. The parameters used are α = 5, µm = 7.5, k = 0.2 and
cm= 0.25, 0.5 and 0.75. It is observed that SS-QSSA typically produces the dominant
eigenfunctions that are qualitatively very different from the corresponding optimal
initial perturbations, e.g. the typical quadruple structure of perturbations that are
obtained from NMA (see figure 5) are not captured by SS-QSSA eigenfunctions, as
evident from figure 10(a–c). A comparison of quasi-steady eigenfunctions in (x, t)
and (ξ , t) domains are discussed in appendix B.

With this substantial difference in the structure of the quasi-steady eigenfunctions
in comparison to the optimal perturbations, we move to compare the growth rate
determined from NMA and SS-QSSA. The growth rate in SS-QSSA can obtained by
analysing the spectral abscissa, σ(L), which is defined as the collection of numbers
σ(t0) satisfying

L(t0)φ
ξ
c = σ(t0)φ

ξ
c , (3.4)

where t0 is the frozen time at which σ(t0) is determined.
Figure 11 illustrates the growth rate obtained from SS-QSSA, QSSA and NMA. In

figure 11(a–b), for α = 5 and 1, it is observed that the temporal evolution of growth
rates determined from NMA and SS-QSSA are opposite to each other. Although
both NMA and SS-QSSA predict that the system is unconditionally stable at early
times, the SS-QSSA approach illustrates that the onset of instability is an increasing
function of cm, which is in contrast to the result of NMA (see figure 4b). At the
early times, the qualitative nature of the growth rate of perturbations determined from
NMA (continuous lines) and QSSA (dotted lines) are similar. Manickam & Homsy
(1993) used the QSSA and suggested that when the parameter χ (see (2.18)) is
positive, the flow is always unstable, and when χ is negative, the initially stable flow
becomes unstable as the base flow diffuses. For the parameters given in figure 11(a),
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FIGURE 10. Quasi-steady eigenfunctions, φξc , of the linearized operator L (see equation
(3.4)) for α= 5, µm = 7.5, k= 0.2: cm = 0.25 (a), 0.5 (b) and 0.75 (c), at different frozen
times.

χ =−2.12,3.58 and 14.05, for cm=0.25,0.5 and 0.75, respectively. However, the flow
is stable for both χ > 0 and χ < 0. Thus, it is observable that QSSA underpredicts
the onset of instability for cm = 0.5 and 0.75. Furthermore, for α = 5, the trend
of onset obtained from NMA is in agreement with the NLS results (see figure 6),
where it is shown that the onset of fingering is early with the increase in values of
cm. This suggests that the deviation of the structure of discrete eigenfunctions and
eigenvalues from the optimal initial perturbations and non-modal growth, at small
times, is primarily due to the non-orthogonality of the quasi-steady eigenmodes. For
α = 0.5, figure 11(c) depicts that the growth rate of perturbation decreases with
increase in cm irrespective of any linear stability analysis (QSSA, SS-QSSA and
NMA). One important point that can be noted from figure 11(c) is that the system
can be unstable as predicted by NMA for cm = 0.25 as opposed to SS-QSSA, in
which the system is always stable for the given parameters.

Further, in order to validate the advantage of the non-modal approach, we compare
the results of NMA with those of nonlinear simulations (NLS). We obtained the
growth rate of concentration perturbations by introducing a sinusoidal perturbation of
the form

c′(x, y, t0)=

{
ε cos(ky), x= xi,
0, otherwise. (3.5)
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FIGURE 11. (Colour online) Growth rate for the corresponding viscosity profiles (2.14)
with (a) α = 5, µm = 7.5 and k = 0.2, (b) α = 1, µm = 2 and k = 0.06, and (c) α = 0.5,
µm = 2 and k= 0.1: the growth rate determined from NMA (continuous lines), SS-QSSA
(dashed lines) and QSSA (dotted lines). The NMA growth rates are determined from
(1/G(t))(dG(t)/dt).

where xi is the position of unperturbed interface, k is the non-dimensional wavenumber,
t0 is the time when perturbations are introduced and ε is the amplitude of the
perturbation, which is taken as 10−3. See appendix A for more detail.

Figure 12 demonstrates the neutral curves obtained from SS-QSSA (dotted line),
NMA (continuous line), NLS (dashed line) and QSSA (dash-dotted line), in the (k, t)
plane. The neutral curves show the combinations of k and t for which σ = 0. The area
above each curve determines the unstable region whereas the region below shows the
stable region. The solid dots (u) mark the critical points (kc, tc) at which perturbations
initially become unstable. Here the critical time is tc ≡min{τ : σ(τ)> 0, ∀k} and the
critical wavenumber is kc ≡ min{k : σ(tc) = 0}. In figure 12, we observe that the
SS-QSSA analysis predicts qualitatively very different behaviour from the rest of the
neutral curves, i.e. SS-QSSA predicts that with an increase in the value of cm, the
stable region increases, in contrast to the other methods. Although QSSA analysis
qualitatively agrees with NLS and NMA results, some of the perturbations that
are judged unstable by QSSA turned out to be stable, as shown in figure 12(b,c).
In table 2 it is shown that at the critical time, the unstable region and dominant
wavenumbers determined from NLS and NMA show excellent agreement. It is
also observed that NMA and NLS results show that the critical wavenumber kc

is an increasing function and the critical time tc is a decreasing function of cm,
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FIGURE 12. Comparison of neutral curves obtained from SS-QSSA (dotted line), NMA
(continuous line), NLS (dashed line) and QSSA (dash-dotted line) for α = 5, µm = 7.5:
cm = 0.25 (a), 0.5 (b) and 0.75 (c). The lowest points of each of these curves, marked
with the solid dots (u), correspond to the critical wavenumber kc and critical time tc.

(kc, tc) for α = 5 and µm = 7.5
cm SS-QSSA NMA NLS QSSA

0.25 (0.16, 10.3) (0.14, 3.9) (0.15, 3.5) (0.22, 1.1)
0.5 (0.15, 11.5) (0.19, 1.4) (0.19, 1.1) (−,−)

0.75 (0.15, 14) (0.27, 0.52) (0.28, 0.27) (−,−)

TABLE 2. The critical time, tc ≡ min{τ : σ(τ) > 0, ∀k}, and critical wavenumber, kc ≡

min{k : σ(tc) = 0}, from each of the neutral curves illustrated in figure 12. The onset
times determined from NMA and NLS are indistinguishable. Further, for cm = 0.5 and
0.75, QSSA shows that the system becomes unstable immediately.

which are in contrast to the results obtained from SS-QSSA. It can be noted here
that when discussing the physical relevance of QSSA analyses, it is important to
recall that, in physical systems, perturbations usually arise due to noise that excites
many eigenmodes simultaneously. Consequently, modal analyses only predict which
perturbations will dominate after an initial transient period. For this reason we have
found that QSSA, NMA and NLS results are almost identical at later times.
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Hence, it can be concluded that irrespective of viscosity–concentration profile, the
quasi-steady eigenvalues do not predict the accurate growth rate at early times. To
analyse the early spatial and temporal evolution of the perturbations, NMA is a
suitable approach. Our main focus in the present article is on determining the onset
of instability and describing the physical mechanism of instability. Thus, the effect
of injection-driven flow and the influence of lifting in the presence of non-monotonic
viscosity profiles may not be directly incorporated. However, we are hoping to explore
these effects in the near future.

4. Conclusion
The influence of the non-monotonic viscosity–concentration relationship on miscible

displacements in porous media is studied for the rectilinear flows. Due to the time
dependence of the stability matrix, we have used the non-modal linear stability
(NMA) approach based on the singular value decomposition of the propagator matrix.
This approach by construction accommodates all types of initial conditions and
hence gives the optimal amplification and optimal perturbation structure. Based on
the non-modal linear stability analysis, the non-monotonic viscosity–concentration
relationships, proposed by Manickam & Homsy (1993), are characterized by the
three parameters, namely, endpoint viscosity contrast, maximum viscosity, µm, and
the concentration that maximizes the viscosity, cm. The stability results are interpreted
in detail, based on the optimal concentration perturbations. This is in marked contrast
to Manickam & Homsy (1993) who used the vorticity perturbation to describe the
stability mechanism. Further, the NMA results demonstrate that each of the three
parameters has a significant influence on the onset of instability and the shape of
eigenfunctions. We notice that since a less viscous fluid displaces a more viscous fluid,
an increase in the maximum concentration, cm, generally leads to a more unstable flow.
This result is in contrast with earlier linear stability results based on eigenanalysis
(Kim & Choi 2011). Further, we have observed that the sign of the parameter χ is
not helpful in characterizing the dynamics of perturbation growth, whereas the reverse
scenario is observed when a more viscous fluid displaces a less viscous fluid. Hence,
our findings suggest that the onset and the dynamics of the disturbances obtained
by previous investigators, using quasi-steady approximation and eigenanalysis, can be
misleading. Moreover, the present analysis describes the physical mechanism which
is studied using the singular value decomposition of the propagator matrix, and is in
accordance with the nonlinear simulations of Manickam & Homsy (1993, 1994). It
can be concluded that, for non-monotonic viscosity profiles, the NMA approach can
describe the onset of instability and the underlying physical mechanism of instability
more accurately. Furthermore, the present linear stability analysis can be helpful in
understanding the effect of non-monotonic viscosity profiles in miscible reactive flows
(Hejazi et al. 2010) and double diffusive convection (Mishra et al. 2010).

Appendix A. Growth rate from Fourier pseudo-spectral method
Streamfunction forms for the dimensionless equations (2.5)–(2.7) in a Lagrangian

frame of reference moving with the speed U in the downstream direction are

∇
2ψ =−

d ln(µ)
dc

[
∇ψ · ∇c+

∂c
∂y

]
,

∂c
∂t
+
∂ψ

∂y
∂c
∂x
−
∂ψ

∂x
∂c
∂y
=∇

2c.

 (A 1)
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For the base state ub = (0, 0) (equivalently ψb = constant) and cb = (1/2)[1 −
erf(x/2

√
t)], introduce an infinitesimal perturbations, ψ = ψb + ψ

′ and c= cb + c′ to
(A 1). The associated boundary conditions are given by

(c′, ψ ′)(x, y, t)= (0, 0), at x= 0 and A Pe,
(c′, ψ ′)(x, y, t)= (0, 0), at y= 0 and Pe,

}
(A 2)

where Pe is the Péclet number, A=L/H is the aspect ratio, and L and H are the length
and width of the computational domain, respectively. We have adopted the Fourier
pseudo-spectral method to solve the system (A 1) subject to the boundary conditions
(A 2) and initial condition (3.5). Then, we obtained the spatio-temporal evolution of
the perturbation quantities, c′(x, y, t), and calculated the growth rates associated with
the concentration perturbations (Kumar & Homsy 1999; Hota et al. 2015b),

σ(t)=
1

2E(t)
dE(t)

dt
, (A 3)

where the amplification measure is given by E(t) =
∫ A Pe

0

∫ Pe
0 (c

′(x, y, t))2 dx dy.
Following Hota et al. (2015b) we have used (A 3) to quantify the growth rate of
disturbances and the onset of instability from nonlinear simulations.

Appendix B. Transformation of growth rate from (ξ , t) coordinates to (x, t)
coordinates

We define an energy E1(t) by

E1(t)= 1
2 ‖ c1(t) ‖2

2, (B 1)

where c1 is the concentration perturbation in the (x, t) coordinate and ‖ · ‖2
denotes the norm on L2(−∞, ∞), i.e. ‖ f (t) ‖2

2=
∫
∞

−∞
f 2(x, t) dx. The growth

rate corresponding to the energy E1(t) is defined as σ1(t) = (1/E1(t))(dE1(t)/dt).
Now, using the self-similar transformations ξ(x, t) = x/2

√
t and the chain rule

∂/∂t|(x,t) = ∂/∂t|(ξ ,t) − (ξ/2t)∂/∂ξ |(ξ ,t), we have

dE1(t)
dt

=
1
2

∫
∞

−∞

∂c2
1

∂t
dx=

∫
∞

−∞

c1
∂c1

∂t
dx

=

∫
∞

−∞

c2
∂c2

∂t
dξ −

∫
∞

−∞

ξ

2t
c2(ξ , t)

∂c2

∂ξ
dξ, (B 2)

where c2 is the concentration perturbation in the (ξ , t) coordinate and the associated
energy is given by E2(t)= (1/2)

∫
∞

−∞
c2

2(ξ , t) dξ . Thus, we have

dE1(t)
dt

=
dE2(t)

dt
−

∫
∞

−∞

ξ

2t
c2(ξ , t)

∂c2

∂ξ
dξ

⇒
1

E1(t)
dE1(t)

dt
=

1
E2(t)

dE2(t)
dt
−

1
E2(t)

∫
∞

−∞

ξ

2t
c2
∂c2

∂ξ
dξ

⇒ σ1(t)= σ2(t)−
1

E2(t)

∫
∞

−∞

ξ

2t
c2
∂c2

∂ξ
dξ, (B 3)

where σ2(t)= (1/E2(t))(dE2(t)/dt) is the growth rate in the (ξ , t) coordinate.
Figure 13 demonstrates the neutral curves, i.e. σi = 0, i= 1, 2, for α = 1, cm = 0.4

and µm= 2. The lowest point of each of these curves, marked with the solid dots (u),
corresponds to the critical time, tc,i, and critical wavenumber, kc,i. The dissimilarities
between the critical wave numbers (critical time) kc,1 and kc,2 (similarly tc,1 and tc,2)
are apparent.
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FIGURE 13. Comparison of the SS-QSSA (black line) and QSSA (grey line) neutral
curves for α=1, cm=0.4 and µm=2. The critical points (0.08,10) and (0.064,86), shown
as solid dots (u), are obtained respectively from QSSA and SS-QSSA. It is illustrated that
both the onset of instability and the corresponding critical wavenumber are significantly
different for QSSA and SS-QSSA.
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FIGURE 14. (Colour online) For the viscosity profile α= 1, µm= 2, k= 0.1 and cm= 0.4,
quasi-steady eigenfunctions obtained from (a) QSSA and (b) SS-QSSA, for the least stable
eigenvalue at different times, t0.

Appendix C. Quasi-steady eigenmodes of linear stability matrix L(t)
In order to study the physical destabilizing mechanism involved in non-monotonic

viscosity profiles, Manickam & Homsy (1993) examined the evolution of the
eigensolutions of L(t) at freezing times t0 known as the quasi-steady-state approxi-
mation (QSSA). In contrast to Manickam & Homsy (1993), we have analysed
the evolution of eigenmodes in the self-similar coordinates (ξ , t). To compare the
SS-QSSA eigenmodes to those obtained by Manickam & Homsy (1993), we choose
the following parameters: k = 0.1, α = 1, µm = 2, and cm = 0.4. The eigenfunctions
associated with concentration and velocity perturbations obtained from QSSA and
SS-QSSA are shown in figure 14 and the velocity contour plots are illustrated in
figure 15. From these two figures it can be concluded that the eigenfunctions in
the (ξ , t) coordinates are localized around the interface whereas the eigenfunctions
in (x, t) span the whole spatial domain, i.e. these eigenfunctions are global modes.
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FIGURE 15. (Colour online) For the viscosity profile α= 1, µm= 2, k= 0.1 and cm= 0.4,
contours of quasi-steady velocity eigenfunctions obtained from (a) QSSA and (b)
SS-QSSA, for the least stable eigenvalue at different times t0. From top to bottom,
t0 = 5, 10.65, 15. The positive perturbations are plotted with black lines and the negative
perturbations with grey lines. The velocity contours shown span from the minimum values
of to the maximum values of velocity with four equal increments.

This is the reason why some of the profiles that are judged unstable by the QSSA
analysis could turn out to be stable in SS-QSSA or in NMA. Further, the physical
mechanism of fingering instability at early times can be studied by analysing the
velocity eigenfunctions instead of concentration eigenfunctions.

Appendix D. Quantifying the non-orthogonality of quasi-steady eigenmodes
The extended duration of the transient period can be illustrated by analysing the

interaction of non-orthogonality of the quasi-steady eigenfunctions. To measure the
non-orthogonality, let us consider the Gram matrix M , which is defined as (Bhatia
1997)

M =


〈 f1, f1〉 〈 f1, f2〉 . . . 〈 f1, fn〉

〈 f2, f1〉 〈 f1, f2〉 . . . 〈 f1, fn〉

...
...

...
...

〈 f1, f1〉 〈 f1, f2〉 . . . 〈 f1, fn〉

 , (D 1)

where 〈 fi, fj〉 =
∫
∞

−∞
fi(x, t)fj(x, t) dx, fj denote the complex conjugate of the vector

and { fj : j= 1, 2, . . . , n} represents either concentration or velocity perturbations. It is
clear that if the set of vectors {fj : j = 1, 2, . . . , n} forms an orthogonal set, then M
is a unitary matrix and the condition number of M , denoted by cond(M), must be 1
or nearly 1. But if any two eigenfunctions are non-orthogonal (they may be linearly
independent), then cond(M) can be a very large number. In such cases, the stability
analysis investigated from the eigenmodes is either incorrect or suboptimal (Schmid
2007).

Figure 16 illustrates the change in cond(M) with respect to t0 and k for α = 1,
µm = 2 and cm = 0.4. It is observed that at early times the condition number is as
large as of order O(1010). This shows that at early times the velocity eigenfunctions
are not orthogonal, which leads to the disagreement between the onset of instability
determined from NMA and SS-QSSA as depicted in figure 11(b). Moreover, the non-
orthogonality tends to persist for a longer period of time for small wavenumbers.
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FIGURE 16. For the viscosity profile α = 1, µm = 2 and cm = 0.4, condition number of
Gram matrix M considering first six quasi-steady velocity eigenfunctions obtained from
SS-QSSA.
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