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Abstract

The current paper describes the Multidisciplinary Combinatorial Appré®&®A), the idea of which is to develop

discrete mathematical representations, called “Combinatorial Representd{id®)sdnd to represent with them vari-

ous engineering systems. During the research, the properties and methods embedded in each representation and the
connections between them were investigated thoroughly, after which they were associated with various engineering
systems to solve related engineering problems. The CR developed up until now are based on graph theory, matroid
theory, and discrete linear programming, whereas the current paper employs only the first two. The approach opens up
new ways of working with representations, reasoning and design, some of which are reported in the paper, as follows:
1) Integrated multidisciplinary representation—systems which contain interrelating elements from different disci-
plines are represented by the same CR. Consequently, a uniform analysis process is performed on the representation,
and thus on the whole system, irrespective of the specific disciplines, to which the elements bellsritiag known

methods and theorems—new proofs to known methods and theorems are derived in a new way, this time on the basis
of the combinatorial theorems embedded in the CR. This enables development of a meta-representation for engineering
as a whole, through which the engineering reasoning becomes convenient. In the current paper, this issue is illustrated
on structural analysis.)®eriving novel connections between remote fields—new connections are derived on the basis

of the relations between the different combinatorial representations. An innovative connection between mechanisms
and trusses, shown in the paper, has been derived on the basis of the mutual dualism between their corresponding CR.
This new connection alone has opened several new avenues of research, since knowledge and algorithms from machine
theory are now available for use in structural analysis and vice versa. Furthermore, it has opened opportunities for
developing new design methods, in which, for instance, structures with special properties are developed on the basis of
known mechanisms with special properties, as demonstrated in this paper. Conversely, one can use these techniques to
develop special mechanisms from known trusses.

Keywords: Combinatorial Representations; Design; Graph Theory; Matroid Theory; Meta-Representation;
Multidisciplinary Combinatorial Approach

1. INTRODUCTION oughly and the connections between the individual CR
were established. At the next stage, the CR were applied
This paper presents an overview of a general approacto represent different engineering systems from different
called the Multidisciplinary Combinatorial Approach fields and then to solve them.
(MCA). During the research conducted with this ap- From the results already achieved, it appears that the
proach, first the representations based on discrete matlapproach contributes to both practical and theoretical as-
ematics, called Combinatorial Representati6B®) were  pects of engineering. In the current paper, a few of these
developed. At this stage, the properties, theorems and methesults are provided, while preserving the paper’s main ob-
ods embedded in each of the CR were investigated tholiective of giving a comprehensive perspective on MCA as a
whole.

. . . _ The use of graph theory in engineering and Al is widely
Reprint requests to: Offer Shai, Department of Mechanics, Materials, . .
and Systems, Tel Aviv University, Tel Aviv 69978, Israel. E-mail: accepted and many related works are reported in the liter-
shai@eng.tau.ac.il ature, some of which are listed below. In structural analy-
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sis, the first work was done by Krail963, who used the
analogy between electrical networks and elastic structures.
Fenves was the first to develop a software program,
“STRESS"(Fenves, Logcher, & Mauch, 1985vhich used g
a method based on graphs and networks for the formulag
tion of the structural problems. Structure analysis and opB8(M)
timization using graph theory has been performed by Kavel¢
(1991, 1997. In machine theory, the first study of graph P
theory as a representation of mechanisms was conduct )
by Freudenstein and Dobrjanskitj964). In dynamics, An-
drews(1971) associated vector algebra with graph theory,g
and called it the “vector-network model.” Computer pro- g
grams based on this formulation have been reported, amorie)
them, VECENT (Andrews & Kesavan, 1975 An ap- F'
proach that uses graph theory in a more general perspe@—*
tive was published by Bjork€éWang & Bjorke, 1989.
Bjorke found out that network theory is probably the bestGZ
foundation for establishing a unified theory to represent &_
manufacturing system. K(e)
In a similar manner, many works published in Artificial K(e
Intelligence used graphs for knowledge representation. Onér
of the first applications was to represent the state-space b
graphs in which vertices corresponded to states and edges’
to the operators, causing the states to be chafiyésison, MA
1977). Mg
The use of matroid theory to represent engineering sysp
tems is less known in the literature. In structural mechanics®
the known works are by Kaveh, who used matroid theory td?
represent structuredaveh, 1997. A comprehensive re-
. . . (e)
port on the use of matroid theory in electrical networks an o
in statics can be found in Recski989. An extensive list (g
of matroid theory applications can be found in(£983. Re
The approach adopted in this paper is different from ther,
works reported above. In this approach, the research at firgts
was focused entirely on developing the CR and investigat-
ing their properties, their embedded methods, and the inte>
relations between them. Only then were the CR applied tg-
represent engineering systems and to solve the related efi-
gineering problems. This conception has provided a genv,
eral engineering perspective, which enabled obtaining th&
results to be reported in this paper through six sections!(®)
each presenting a different aspect of the approach, as foIIow%.(e)
Section 2 starts with providing the mathematical foun—w(i)
dation for graph and matroid theories on which the CRy;
presented in the current paper are based. Matroid theory is

Notations

zero matrix

incidence matrix

scalar circuit matrix

vector circuit matrix

circuit matrix of a matroid

set of matroid circuits

vector of scalar displacements of truss elements
dimension of the forces acting in the truss
set of graph edges

number of edges in graph G

flow vector

flow in edge e

maghnitude of the flow in edge e

set independent subsets of a matroid
graph

the dual graph of graph G

flow graph

potential graph

resistance graph

scalar conductance of edge e

matrix conductance of edge e

square matrix containing the conductances of the resistance
edges of a graph

conductance cutset matrix

conductance cutset matrix of the potential difference sources
matroid

matroid defined by matriQ

vector of flows in the flow sources

vector cutset matrix

scalar cutset matrix

cutset matrix of a matroid

unit vector in the direction of edge e

scalar resistance of edge e

matrix resistance of edge e

resistance circuit matrix

resistance circuit matrix of the flow sources
square matrix containing the resistances of the resistance
edges of a graph

underlying set of a matroid

spanning tree

spanning tree without sources

set of matroid bases

relative linear velocity of link

set of the graph vertices

number of vertices in graph G

potential difference vector

potential difference in edge e

potential of vertex

empty set

an advanced topic in discrete mathematics, which is nopppreviations

familiar to the engineering community and therefore graphCC,vI
theory terminology was employed in its explanation. In g
the current paper, the following four graph representationggr
are introduced: Flow Graph Representati&iGR), which  PGR
is applied to represent static systems; Potential Graph RepGR
resentatio{PGR), employed to represent mechanisms; Re-MCA
sistance Graph RepresentatigRGR), with its two Eg'\é'
embedded methods, employed to represent electrical, dys, -
namical, hydraulic systems, and indeterminate trusses; and
the Line Graph RepresentatighGR), employed to repre-

Conductance Cutset Method
Combinatorial Representations

Flow Graph representation

Potential Graph Representation

Line Graph Representation
Multidisciplinary Combinatorial Approach
Resistance Circuit Method

Resistance Graph Representation
Resistance Matroid Representation

Matrices and sets in the current paper are designated by bold letters.
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sent planetary gear systems. In addition, one matroid redem simply means representing it so as to make the solution
resentation called Resistance Matroid RepresentéR®MR)  transparent. If the problem solving could actually be orga-
is introduced and shown to be a generalization of the RGRnized in these terms, the issue of representation would in-
Section 3 introduces one of the contributions of MCA— deed become centralp. 153 (Simon, 1981
deriving new connections between remote engineering fields. Section 7 introduces a possibility of developing new de-
In this section, based on the duality connection betweesign techniques by using properties of MCA. Here, the idea
FGR and PGR, a novel connection between trusses arfdr the design is derived from knowledge and ready designs
mechanisms is derived. This innovation opens up new avirom other fields. This idea is carried out by using the con-
enues in research and practical applications, some of whichection between mechanisms and trusses introduced in
are reviewed in the following sections. Section 3.
Section 4 gives a brief introduction to the contribution of
MCA to the theoretical research. It postulates that the theo-
rems embedded in the CR can be considered to be metg: COMBINATORIAL REPRESENTATIONS
theo.rems., from which _known t_he.oremg and methods s, hinatorial Representatiolt€R) are special represen-
engineering can be derived. This issue is demonstrated b[

. hat k h d hods i | Mtions based on discrete mathematics and used in MCA to
provmgt at novynt eorems and methods in structpra mefepresentvarious engineering systems. Combinatorial Rep-
chanics are derived from a theorem embedded in RG

lﬁ‘esentations are based on graph theory, matroid theory, and

called Tellegen's theorem. This enables a new method Olﬁiscrete linear programming. Table 1 lists combinatorial

research where new theorems and methods will be deve epresentations used in this paper and the engineering sys-

oped on the basis of the knowledge embedded in the CR.tems to which they are applied.

Section 5 highlights the contribution of MCA to dealing
with integrated multidisciplinary systems. It is based on the
fact that different engineering fields are represented by th@ 1. Mathematical foundation of the Combinatorial
same combinatorial representation, in this case RGR. This  Representations
opens up the possibility of applying a unified method to
deal with integrated systems Consisting of elements frorﬂ—his section gives a brief introduction to the mathematical
different fields. This section presents an example of a systopics on which the combinatorial representations devel-
tem composed of elements from dynamics, statics, and ele@ped in this paper are based. These mathematical topics are
tricity interacting with one another. The graph representatiofetwork graphs and matroid theory. Network graphs are
of that system, on the other hand, does not distinguish belsed in four graph representations: Flow Grap@R), Po-
tween those different types of elements. tential Graph(PGR), Resistance GraptRGR) and Line-
Section 6 introduces the further application of MCA that Graph(LGR) Representations. The matroid theory is used
allows checking the validity of the engineering problem in the Resistance Matroid Representati&MR).
before applying the analysis methods to solve it. This issue
is similar to the process done in the first representation used-1.1. Network graphs
in Al—the logic representation, where the logic formulas This section provides the reader with a brief survey on
should satisfy syntax rules, and if they do, they are calledyraph theory terminology. More details can be found in
“well-formed formulas”(Genesereth & Nilsson, 198 MCA Shai(1997 and Shai and Preig4999h or books on graph
deals differently with this issue: Its checking rules are basedheory, such as Swamy and Thulasiranta881).
on the knowledge embedded in the CR. Demonstration of A graph is defined by the ordered pair-(V,E), where
this ability is presented in subsection 6.5, where a problenV is the vertex set and E is the edge set, and every edge is
of checking the rigidity of a truss, which was found to be defined by its two end vertices. If each edge in the graph is
difficult even for experts, is easily solved using MCA. This assigned a direction, then the graph is known as a directed
issue enhances Herbert Simon’s postulate: “solving a probgraph. The directed graph is a network graph, if each edge

Table 1. Combinatorial representations, their applications, and the corresponding sections in the current paper

The Combinatorial Representation Represented engineering systems Section

Flow Graph RepresentatidffrGR) determinate trusses, geometric constraint systems 2.2

Potential Graph RepresentatiodAGR) mechanisms 2.3

Resistance Graph Representati®®GR) mass-spring-damper dynamic systems, electric circuits, hydraulic systems2.4
multidimensional indeterminate trusses, integrated systems

Resistance Matroid Representatid®MR)  indeterminate trusses 2.5

Line Graph RepresentatighGR) planetary gear systems 2.6
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a1 0 0o -1 -1

Q=AC|0 1 0 1 1

cD | o 0 0 1
(b)

Fig. 1. Example of a vector cutset matrita) The cutsets of the grapkb) The vector cutset matrix.

and vertex is assigned properties of flow and potentialpf these cutsets. Thus, this paper deals only with fundamen-

respectively. tal cutsets; hence, for brevity, they will be called cutsets.
For convenience, this paper uses linetype attributes, whickach cutset is defined by the corresponding branch and is
are: labeled with its index. The direction of the cutset is defined

o _ by the direction of its branch, as shown in Figure la.
A solid line—represents an edge with unknown value of  Thevector cutset matrix is a matrix that describes all

flow or potential difference. the graph cutsets, but contains only topological informa-
A bold line—represents an edge for which the flow or tion. The matrix has @) columns(corresponding to the
potential difference is known. edges of the graphand (G) — 1 rows(corresponding to

the cutsets or the branches that define therhe value of
the matrix eIemenE(ﬁg]ij may be+1, 0, or—1. Itis +1 if
edgej is included in the cutset that is defined by branch

) ] and has the same orientation as the cutsdtjf it has the

A double line—represents a branch of a spanning tree. opnosite orientation, and 0 if it is not included in the cutset.

. . The vector cutset matrix of the graph of Figure 1a is shown
In some of the graphs, one of the vertices will be chosen t§ grap g

b ial vert lled a “ref tex.” highliaht n Figure 1b.
© 8 special veriex cafled a freference vertex, NIgIgtea The scalar cutset matrixQ is obtained from the vector

with a gray color. L= LS . .
. . N cutset matrixQ by multiplying each column with a unit
To deal with the graph representations used in this PaP€Lactor in the direction of the edge to which it corresponds.

onetshou(ljd flrslt dfeﬂne Clét.set and cwcwi rgatrl;:es Ln thelrFor example, the scalar cutset matrix of the graph of Fig-
vector and scalar forms. Given a connected network graph, . 5. is given in Figure 2b.

choosing a spanning tree within it defines its branches an It is well known from vector algebra that the unit vector

A dashed line-represents a chord, which is an edge not
included in the spanning tree. If the value of the flow
in the chord is known, then it is both dashed and bold.

chords. . . . with anglea can also be written as
A cutsetin a connected graph is a minimal set of edges

whose removal results in a disconnected graph. It can be sina

proved(Swamy & Thulasiraman, 1981hat a cutset sepa- F= ( cosa >

rates the graph into two componeritsaximal connected

subgraphs When a cutset includes only one branch of theThis notation is extensively used in the current paper.
spanning tree, it is called a “fundamental cutset,” since any A circuit is a set of edges that form a closed path. A
cutset in the graph can be obtained as a linear combinatiocircuit is called a fundamental circuit if it includes exactly

1 2 3 4 5
AB(i)) 0 0  -i4 -i(5)
Q=AC|0 2 o OO
CD |0 0 O R )

(b)

Fig. 2. Example of scalar cutset matri¢a) The cutsets of the grapkb) The scalar cutset matrix.
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this paper, it is used to represent and analyze indeterminate

1 2 345 trusses.
- Bc(f(l-1 010 DerINITION. If we denoteSto be a finite set anB' to be
B = BDI1 -1 -1 0 1 a collection of certain subsets 8fthen the pair M= (S,F')
is called a matroid if the following properties are satisfied:
|
(a) (b) 1. JeF

_ o _ o 2. If X € F' andY C X thenY € F' must also hold.
Fig. 3. Example of a vector circuit matrixa) The circuits of a graph.

(b) The corresponding vector circuit matrix. 3. 1f X € F' andY € F' and|X| > |Y]|, then there
exists an element € X — Y, so thaty U {x} € F'.

Sis said to behe underlying set of matroill. The subsets
_ _ ~ of Swhich belong toF' are said to béndependent subsets
one chord. This paper deals only with fundamental circuits yiherwise they are calledependensubsets.
and for brevity they will be called circuits. Each circuit will — \1aximal independent sets of M, that is, independent sets
be labeled with the index of the chord that defines it. Theihat are not contained in any other independent set of M,
direction of the circuit is defined by the direction of its 4.6 calledbases oM. For every base of M there is a cor-

chord, as shown in Figure 3a. o respondingcobasewhich is the complement of the base to
The vector circuit matrixB, demonstrated in Figure 3b, g |t can be provedRecski, 1989that the sizes of all the
has €G) columns as for the vector cutset matrix an®e—  pases of a matroid are equal. In graph theory terminology, a

v(G) + 1 rows corresponding to the circuits. Each circuit is y5¢6 is a spanning tree of the matroid. Thus, every matroid
defined by a chord; therefore the number of rows is equal t@ 314 pe described by the collection of all its baSemstead

the number of chords defined by the spanning tree. Thgy he collection of all its independent sefé. Minimal
element BJ; is +1 if edgej is included in the circuit de- gependent sets of M, that is, dependent sets which do not
fined by chord, and has the same orientation as the circuit,sontain other dependent sets, are catizduits of M. The

—1ifit has opposite orientation, 0 otherwise. collection of all the circuits of M is denoted bg. It also
Every edge e is assigned a vector called floev and 5 pe used instead Bt to describe the matroid.

designated by-(e) that can correspond to a force, flow of

liquid, money, goods, or the likk. DEFINITION OF A MATROID CUTSET. The subseK C Sis
Every vertex v is assigned a vector called putential®  called acutset of Mif and only if it satisfies the following

and designated by (v). The potential may represent a phys- conditions:

ical quantity such as displacement, pressure, or voltage, but

it can also be used for other attributes. For instance, in 1. X # &,

the shortest path algorithm, it represents the lower bound 2 |x N Y| # 1 for everyY € C;

of the distance(or the combined weights of the edges

from the current vertex to the target vert€hai, 1997.

The potentials of the vertices of edge=e(v,,v,) define

the potential difference of that edge, designate),

as follows:

3. X is minimal with respect to these properties.

Since a base is a maximal possible set of independent
elements, adding an additional element to the base turns it
into a dependent set, that is, a set that contains a circuit.
Therefore every cobase element defines exactly one circuit
which contains the element itself and all the other elements

2.1.2. Basics of matroid theory ?arlecfirrcc):rl]}tthe base only. Such a circuit is called a fundamen-

Matroid theory is a branch of discrete mathematics that |1 -an also be shown that every base element defines a

possesses various important features, among them, the fegrjque cutset that contains the element itself and all the
ture of generality that allows consideration of matroid theoryoiher elements are cobase elements. Such a cutset is called
as a generalization of graph theory. To simplify the expla-; f,ndamental cutset
nation, matroid theory is introduced in this paper using ter- _ _
minology of graph theory. Matroid representation is used in 2.1.2.1. Representing graph as a matrofdonsider the
MCA to represent various engineering systems, whereas ifiraph of Figure 4a and its corresponding vector cutset ma-
trix in Figure 4b. One can define a matroid associated with
this matrix as follows: M, = (S, F5), where the underly-
In control theory, this is called the “through variable,” but the word ing set % is equa| to the set of columns @ and the

“flow” is more suitable for the work reported here. . : | . X

family of independent setscFis the collection of all sets of

2The potential difference between the vertices defining an edge is know ) ) | : X
in control theory as the “across variable.” columns which are linearly independent. According to lin-

A(e) = 7(vp) = 7 (V1) @
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1 2 4 6 3 5 7

1 1 0 0 0 1 1 1

0 = 2|0 1 0 0 1 1 1

Q 4] o 0 1 0 0 1 1

6L o 0 0 1 0 0 1

®
Fig. 4. Graph to be represented by a matroid.
ear algebra, every set of graph edges that corresponds to a B 1 2 0 2

minimal dependent set of columns @fforms a circuit in So=ql1)le)ls)l2)

1
1

2
1

0
3

2
1

0
3

1
1

2
2

1
1

0
3

2
1

the graph. By matroid properties, such a set is also a circuit
in the matroid. Thus, the circuits in dicompletely corre-  Some of the independent subsets bidfe:
spond to the circuits in the graph. Moreover, a similar claim
is true for the bases of Mand spanning trees of the graph,
cutsets in M, and cutsets in the graph, etc. . {( )( )} {( )( )}{( )}

One can see, for example, that columns 1, 2, and@ of
gr’](ljzIguf:)em‘]lbaa(:ri?ctri]tei?]rlslh:eprzn?lgim’ Z\g]e(r)e:?hzdggzrl’ %he first two of which are also the bases of,Msince any
hand, columns 1, 2, 4, and% ofptheg;natr.ix form the maXi_additional column fronjBQ will cause a linear dependence.
mum possible independent set of columns, that is, the bas%nd some of the circuitéelements olCo) are:
of Mg, whereas edges 1, 2, 4, and 6 in the graph form a
GHEHEEE)

2.1.2.2. Representing matrix as a matroidreviously, it
was explained that every vector cutset matrix of a graph can
be considered as a matroid and that such a matroid actually.2. The Flow Graph Representation (FGR)
represents the graph. In the current section, this issue is
expanded and it is shown that every matrix corresponds to a DEFINITION OF THE FLOW GRAPH REPRESENTATION
matroid. This time it is possible that this matroid does not(FGR). Anetwork graph Gis a flow graph, designated by
have a corresponding graph.

LetQ be a mx n matrix. The matroid M = {Sq, Fo) can
be defined as follows.

1. The underlying setSis the set ofn column vectors
of Q.

2. Every subset of linearly independent columnsQof
belongs to &.

Consider, for example, the matrix in Fig. 5.
The underlying set, of the matroid representing the
matrix of Figure 5 is:

Q_1202
11 3 2

Fig. 5. Matrix to be represented by a matroid.
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Gg, if the flows in the edges are independent of the poten-
tial differences and satisfy the Flow Law, stated as follows:
The vector sum of the flows in every cutset of G is equal to
zero.

The flow law may be recognized as a generalization of
the well-known Kirchhoff’s Current LawKCL). Note that
KCL is restricted only to one dimension, which is appro-
priate for electrical circuits, while the flow law can be
multidimensional; thus it can also be used for structures
and other engineering systems that require two or three
dimensions.

The matrix form of the Flow Law is:

Q-F=0, 2
whereF is the vector of the flows, oFlow Vector

The FGR can be used to represent various engineering
systems, such as simple electrical circuits, mass-cable sys-
tems in force equilibrium, and so forth.

The important property of the flow graph is that it should
not contain cutsets consisting entirely of the flow sources,
namely, edges whose flows are given. For if such cutsets of
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sources existed, then, by the flow law, there would be a\ote, that since the engineering system of Figure 6a is one-
linear dependence between the flows in these sources, visimensional, its vector and scalar cutset matrices are
lating the definition of the flow sources. Therefore, the span-identical.

ning tree of the flow graph should be chosen in such a wa

that it does not include the flow sources. %.2.2. Employing the Flow Graph Representation

(FGR) in representing determinate trusses

2.2.1. Representing mass-cable systems by the The conventional procedure used to analyze determi-
flow graph nate trusses is based on building the force equilibrium

Figure 6a shows an example of a system of masses Coﬁ_q_uatioq for each joint of the truss and for each coordi_nate
nected by cables which is known to be in static equilibrium.2XiS- This strongly correlates with the flow law, according
The objective is to find the gravitation force acting on the!0 Which, the sum of the flows at each cutsend thus
mass B. Since the system is in static equilibrium, it is ob-VerteX of the graph is equal to zero. Accordingly, one can
vious that it should be solved using statical equations relat:€Present a determinate truss byGyl one-dimensional
ing the forces acting in the system. The most convenienf GRS, €ach corresponding to a different coordinate axis.
representation for this purpose is FGR. Each edge in FGRO" €xample, a plane determinate truss of Figure 7a is

corresponds to an acting force, no matter whether it is tenf€Presented by two flow graphs—one corresponding to

sion in the cable or an external force. Each vertex correth® X coordinate(Fig. 7b) and the other to the Y coordi-

sponds to a point or a body, on which a number of forces i&at€(Fig. 79. o _
acting, like a mass or a pulley. The flow graph representing 1€ graphs presented in Figure 7b and Figure 7c are of
the system of Figure 6a is shown in Figure 6b. he same topology as the represented truss. One can think

The analysis equations for this graph are as follows. Of FGR as if the flow comes out from vertex O, flows
through the flow sourcel@xternal forceg then through the

T, edges(rods and returns back to the vertex O through the
1 o000 1 1 1 T, reaction edges. Vertex O is called theeference vertex
0 100-10 -1 T, (gray vertex since it assures that the sum of all the external
Q-F=0> ©c 010 0 0 1 T forces acting on the truss is also equal to zero. The refer-
c 001 0 1 0 T ence vertex can be considered to be the equivalent of the
1100 0 00 M 49 ground in electrical circuits.
1010 0 00 M/;g One can see that if the flows in the edges of the corre-
sponding graph are equated to the correct forces in the truss,
1 0 1 1 T, 1 they would be valid, that is, would satisfy the flow law.
1 0 -1 -1 Ts 0 To perform the statical analysis of the truss, there is a
=0=11 0 0 1 . |~ "{o X Mag. need to use the angles of the rods and the external forces.
01 0 O Mgg 1 The latter knowledge affects the ratio between the flows in

A

Mjug= 10N vy

<

(@ ®)

Fig. 6. Example of a mass—cable system and its corresponding g@Bystem of cables and masses in static equilibrilbhFGR
representing the system.
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() ©

Fig. 7. Plane determinate truss and its two one-dimensional Flow Graph Represent@jidtiane determinate trusé),(c) FGRs
corresponding to the X and Y coordinate axes.

the two FGRs corresponding to the X and Y coordinates. Step 3. Create a reference vertgyray vertex or choose
The most efficient way to store such information is by merg-one of the vertices corresponding to a joint connected to a
ing the two one-dimensional graphs into one two-hinged support to be the reference vertex of the graph.

dimensional graph, settmg the angles of the .ﬂOWS to be SteP4. For each externally applied force and reaction, add
constant. In other words, instead of representing the truss

by two FGRs with one dimensional flow in each, one FGRan edge to the graph as follows. For each external applied

4 - : . . force, a ‘flow source edgds added. Its tail vertex is the ref-
with multidimensional flow is used, as explained below. :
: o erence vertex and the head vertex is the vertex correspond-
The steps for representing the truss by a multidimen- L :
. ) ing to the joint upon which the external force acts. As was
sional flow graph are: . .
explained earlier, these edges should always be chosen to be
chords. Since flow source edges are chords and their values
are known, they appear in the graph as bold dashed lines. For
each roller support reaction aaction edgéis added. Its
StEP 2. For every rod create an edge in the graph, calledail vertex is the vertex corresponding to the joint upon which
a “truss edge”; its end vertices correspond to the joints thathe reaction acts and the head vertex is the reference vertex.
connect the corresponding rod to the truss. Assign an arbifhe reaction edge is assigned a unit vector directed along the
trary orientation to each truss edge and a unit vetter  reaction. For each hinged suppekcept for the one corre-
indicating the direction from the tail joint to the head joint. sponding to the reference verietwo “reaction edges” are
The engineering meaning of the flow in the edge is theadded, the first having the corresponding unit vector di-
force applied on the head joint by the rod in the direction ofrected along the X axis and the second along the Y axis.
the unit vectof (e). As is explained in detail in Sh§20013,
if the flow in the edge is positive, then the rod is in a In statically determinate trusses, the sum of forces at ev-
compression state, otherwise it is in a tension state. ery joint is equal to zero. In the terminology of the FGR,

Step 1. Create a vertex in the graph for every pinned
joint in the truss.
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this means that in the graph corresponding to the trus2.3. The Potential Graph Representation (PGR)

the flow law is satisfied. Thus, the force analysis process

of the truss is transformed into a search for flows that sat- DEFINITION OF A POTENTIAL GRAPH REPRESENTATION

isfy the flow law in the corresponding flow graph, while the (PGR). A network graph G is a Potential Graph, desig-
flows in the flow sources are given. An example of a truss,nated G, if the potential differences in its edges are inde-
its corresponding graph, and the equations written accord@endent of the flows in these edges and satisfy the Potential
ing to the flow law[Eq. (2)] are given in Figure 8. Law, which states: For every circuitin the graph, the sum of

R
1
R12345 6 7 8910 11 |F
Rf1 0000CO0C -1 -1 000 0 ds 1
1101 0000 -1 0 -1 00 O E, 0
21001000 -1 0 -111 o0f]|F 0] -
= P
310001 00 (] 1 -1 10 0 Fg 0
4000010 0 1 -111-1]||F 0
50 000 01 -1 0 -1 11 -1 —8 0
(© 2
Flo
Fy
R 1 2 3 4 5 6 7 8 9 10 1
RyfCos270) © 0 0 0 0 -Cos(77) -Cos(45) 0 0 0 0 ) [F] [Cos®)
Ry| Sin(270) © 0 0 0 0 -Sin(77) -Sin(45) 0 0 0 0 F Sin(0)
] 0  Cos(53) 0 0 0 0  Cos(77) 0  -Cos(150) 0 0 0 F; 0
Ll o Sin(53) 0 0 0 0 Sin(77) 0  -Sin(150) 0 0 0 F 0
2% o 0 Cos(233) 0O 0 0  -Cos(77) 0  -Cos(150) Cos(250) Cos(340) 0 Fy 0
2 o 0 Sin(233) 0 0 0  Sin(77) 0  -Sin(150) Sin(250) Sin(340) O Es] | 0
% o 0 0 Cos(180) 0 0 0  Cos(45) -Cos(150) Cos(250) 0 0 Fe |=] o [|'P
3, 0 0 0 Sin(180) 0 0 0 Sin(45) -Sin(150) Sin(250) 0 0 Fy 0
4% o 0 0 0 Cos(135) O 0 Cos(45) -Cos(150) Cos(250) Cos(340) -Cos(40) Fy 0
4] o 0 0 0 Sin(135) 0 0 Sin(45) -Sin(150) Sin(250) Sin(340) -Sin(40) Fy 0
5x 0 0 0 0 0 Cos(257) -Cos(77) 0 -Cos(150) Cos(250) Cos(340) -Cos(40) Fio Y
S 0 0 0 0 Sin(2s7) -8in(77) 0  -Sin(150) Sin(250) Sin(340) -Sin(@0)j | Fu | o |

(d)

Fig. 8. Example for analysis of a determinate truss using the FEBBw Graph Representatipr(a) Statically determinate truséh)
Corresponding flow grapHc),(d) Force analysis equations in the vector and scalar cutset matrix forms.
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the potential differences of the circuit edges is equal toThe potential of vertex, designatedr(i), is equal to the

zero. In matrix form this is written: linear velocity of the corresponding joint. The velocities of
o all the fixed joints in the mechanism are zero, thus all these
B-A=0 (3  joints are represented by the same vertex—the reference

whereA is the vector of potential differences, Botential (gray vertex.

Difference Vectar STEP 2. For every link of the mechanism, create a corre-
sponding edge in the graph; its end vertices correspond to

differences of all circuit edges, the potential of each vertex€ joints that connect the link to the mechanism. The po-

appears twice with opposite signs— either because itis ondgntia! difference of this edge, designatet) is equal to

a head vertex and once a tail vertex, or since it appears ondB€ relative velocity of the corresponding link, and can be

in the direction of the circuit and once in the opposite di-Vtten A(€) = V(e) = V(e)-U(€), where \(e) is the magni-
rection. Therefore this summation is equal to zero. m tude of the relative linear velocity ande) is a unit vector
in the direction of the relative linear velocity of the link.

This law is a vectorial generalization to several dimen-

sions of KVL (Kirchhoff’s Voltage Law which is stated for Step 3. Label the edge corresponding to the driving link
a one-dimensional or scalar system. with a bold line since its potential differen¢eorrespond-
The important property of PGR is that there can be nd-ng- tothe re_lative velocity beMeen its end vertidssknown.

circuits consisting of only potential difference sour¢gee ~ This edge is the potential difference source edge.
potential dlffe_rences ofthe edges are gw&f_‘SUCh cireuits Step 4. The relative velocity of a link is the velocity of
of sources existed, then there would be a linear dependen?ﬁ - : : R

S . e head joint minus the velocity of the tail joint. As was
between the potential differences in these sources, thus vi- = . .

. o T mentioned above, the property needed for analyzing the
olating the definition of potential difference sources. There_velocities in a mechanism is that in each circuit formed b
fore, the spanning tree of PGR should be chosen so that ,I y
includes all the potential difference sources.

Proof of the potential law: In the summation of potential

Inks, the sum of their relative velocities is equal to zero.

Since the relative velocity of a link is represented by the

potential difference of the corresponding edge, the Poten-
mechanism tial Law [Eq. (3)] is actually the implementation of this

The main property of a mechanism is that the vector Sunproperty.
of the link relative velocities is equal to zero in every cir-
cuit formed by its links. This property suffices for the analy-
sis, so it is reasonable to represent it by a PGR. In thi
representation, the potential difference of the edges will , )
correspond to the relative velocities of the links in the mech2-3-2- The analysis algorithm
anism. Note that this is different from the graph represen- The algorithm is based on the principle that every funda-
tation that is commonly used for mechanisit&dman, mental circuit must satisfy the Potential Law, as follows.

2.3.1. The potential graph representation (PGR) of a

Figure 9 shows an example of a mechanism and its cor-
éesponding PGR.

1993.
The steps for representing a mechanism by PGR are as Step 1. Find a spanning tree, and label each branch with
follows. a double line. Every chord defines a circuit.

StEP 1. For every joint of the mechanism having individ- ~ Step 2. For this spanning tree, write the vector circuit
ual velocity, create a corresponding vertex in the graphmatrix B, as defined in Section 2.1.1.

(®)

Fig. 9. Example of representing a mechanism by P@Rtential Graph Representatjota) The mechanismb) The corresponding
PGR.
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StTEP 3. On the basis of equatidB), write the equations: STEP 4. Solve the 2(e(G) — (v(G) — dr(G) — 1)) equa-
tions obtained in step 3.

-

(B E)-(KA ) =05 B-A=—B,-A,, (4 An exa_mplg of a mechanism analysis using the PGR is
4 shown in Figure 10.

whereB, is the part of the vector circuit matrix correspond-
ing to the potential difference sources amgis the vector

of the potential difference sourcéglocities of the driving  In the representations introduced until now, there was no
links). relation between the flows of the edges and potentials of

2.4. Resistance Graph Representation (RGR)

&
3 48 925 6 \Z
3(1 000 1 0 1 0)]|V, 1
4o 1 0 0 0 1 1 0]V, 1 .
glo o1 00 0 1 -1||V, || o a
9{0 0 0 1 0 0 0 -1) |V, -1
(©) Vs
\Z
3 4 8 9 2 5 6 7
3, (cosa, 0 0 0  cosa, 0 COSOl 0 v, COSQL,
3,| sina, 0 0 0 sina, 0 sinog 0 v, sina,
41 0 cosa, O 0 0  cosa, CcOSO 0 \'A cosa,
41 0 sina, 0 0 0 sina;  sino 0 .Vg _ sina, v
- 1
8] O 0  cosa, 0 0 0  cosa, —cosa, ||V, 0
81 0 0 sinot, 0 0 0 sina, -sino, | |V 0
9 0 0 0  cosa, 0 0 0 -cosa, | |V, -cosa,
9L 0 0 0 sina., 0 0 0 -sina, } \V, —sina,
@

Fig. 10. Kinematic analysis of a mechanism using PG&.A mechanism(b) The corresponding potential graplt),(d) Sets of
vector and scalar equations for its analysis.
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the vertices. This section introduces a graph representaticemd is independent of the potential difference. Potential dif-
that possesses such a relation. To clarify the explanatiorierence sources, denoted by bold solid lines, are the edges
the representation is first applied to electrical circuits. Do-in which the potential difference is known and is indepen-
ing so enables us to demonstrate the transition from onedent of the flow in that edge. Resistance edges, denoted by
dimensional problems, which are well known in the literature,black solid lines, are the edges at which there is a depen-
to the multidimensional ones, thus obtaining an insight intadence between the flow and the potential difference.

the generality of the approach. Moreover, since the repre-

sentation is applied to different engineering fields consist2.4.2. Conductance Cutset Method (CCM) for

ing of elements with different dimensions, it is suitable to analyzing the RGR

be the representation of multidimensional integrated sys- The analysis problem for the resistance graph is as fol-
tems, as shown in the current section. In the next sectiongws: Given the flows in the flow sources, the potential
this representation is extended on the basis of matroid theoryifferences in the potential difference sources, and the re-
o ) sistancegor conductance®of the resistance edges, find the
2.4.1. Description of the representation flows and potential differences in all thé®) edges of the
The Resistance Graph RepresentatiBGR) is a gener-  graph. The obvious method for solving the resistance graphs
alization of FGR and PGR. RGR is a network graph, whergs to write all the equations based on Eg), (3), (5), and
there are edges with a dependence between the flow and tiig) and then to solve them simultaneously. This method has
potential difference. Such a dependence is characterized by high computational complexity; thus in the current and
either a scalar or a matrix. The scalar is used if there is afext sections, efficient methods based on graph theory theo-
explicit dependence between the vector magnitudes of theems will be shown, with the method called the “Conduc-
flow and potential difference; otherwise the matrix is used.tance Cutset Method'CCM) explained first.
For both scalar and matrix possibilities there are two The first step in solving the resistance graph is to find a
presentations—resistance presentatitesignated by ) suitable spanning tree, which, for the reasons explained in
andR(e) respectively and conductance presentati@®s-  Sections 2.2 and 2.3, contains all the potential difference

ignated by Ke) andK(e) respectively, as follows: sources and does not contain any flow sources. Then, using
N N N - Eq. (10), derived from Egs(2), (3), (5), and(6), as shown
[A(e)] =R(e)-[F(&); [F(e)|=K(e)-[A(e) ®)  in Shai(1999, a set of linear equations is obtained:
A(e) = R(e)-F(e);  F(e)=K(e)-A(e), (6)

R N (QT'R'KR'QEI"R)'KT’ = _(QT'R'KR'QZR)'KA - éT’P'ﬁP:
whereA (e) is the potential difference in edge e aR(k) is

the flow. In addition, flows and potential differences of the (10
resistance graph must satisfy the flow and potential laws,
respectively. whereA and P are the edges corresponding to the potential

When dea]ing with resistance graph representation, aﬁifference and flow sources, respectively, and R are all the
important theorem from the graph theory, called the orthogother edges of the graph—the edges with resistancarer
onality principle, becomes essential. those branches of the spanning tree which are not sources.

For convenience, the matrifQ;r-Kg-Q%tr) is desig-

TueoreM 1. The orthogonality principle: Vectorial cut- Nnated aK;- and is termed the “conductance matrix of the

set and circuit matrices of a graph are orthogonal: spanning tree T' Matrix (Qrr-Kg-Q\g) is designated as
K and is called “the conductance matrix of the potential
B.Q'=0. (7) sources.” These are shown in EG1).
u (KT’)'KT’ = _(KA)'KA - éT’P'ﬁP- (11

As is shown in Swamy and Thulasiramétf81), from

this principle the following equations are derived: The values of the elements in these conductance matrices

can be derived on the basis of linear algebra considerations

A =04, ®) as follows.[K+ ] equals the sum of conductances of the
edges which belong to both cutsdtsandj defined by
F = B!.Fe, (9) branches with resistance; the sign of the conductance is

taken positive if it is directed similarly relative to both cut-
whereA is the vector of potential differences in the branchessets and negative otherwid , ];; also equals the sum of
of the spanning tree anB; is the vector of flows in the conductances of the edges that belong to both cuitsetd
chords of the graph. j,» although this time is a branch which is a potential dif-

The edges in the resistance graph are divided into threference source, whileis a branch with resistance.

principal groups: flow sources, potential difference sources, After solving Eq.(10) or (11), all the potential differ-
and resistance edges. Flow sources, denoted by bold dashedces in the branches are known. All the potential differ-
lines, are edges for which the value of the flow is knownences in the graph are obtained by using @8j.and after
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Table 2. Correspondence between the RGR and its dual graph the terminology of the dual resistance graph. This method
is called Resistance Circuit Methg®CM) and is formu-

RGR Dual graph lated by Eq.(12) (Shai, 1999.
e—edge &—edge R R . . . L. R
T—spanning tree C—set of chords (Ber'RrBhr)-For = —(Bor*Rr-Bbr)-Fp — Borpr Ay,
T'—branches which are not C’—chords which are not
sources sources (12
R(e), R(e)—resistance Ke'), K(e’)—conductance
A(e)—potential difference F(e')—flow whereRg is a square diagonal matrix, the components of
%A—p"tte““a'td'ftferert‘?e source EP—“O‘:" SOWCE?t . which correspond to the resistances in the resistance edges.
—Vector cutset matrix —\Vector circuit matrix . = 3t . .
CCM— Conductance Cutset RCM—Resistance Circuit For convenience, the matr(B,C'R' R BC'R,) is designated
Method Method by Rc and is termed the resistance matrix of the chord set
! - A - .
The dualism is also applied to the sub-matrices of B and Q, for instancec - Matrix (B_C’R' Rg- BPR)_ is designated byRp an_d 1S
Orr Bor called the resistance matrix of the flow sources. Using those
Qir Bbr notations we rewrite Eq12) in the following way:
(Rc')‘ﬁc' = _(RP)"EP_ EC’A‘KA- (13

The values of the elements of the resistance matrices can be
derived on the basis of linear algebra considerations of the
above dualismrelation, and they are as folloMR |;; isthe
sum of the resistances of the edges which belong to both cir-
) o ) cuitsi andj, defined by the chords which are not sources.
2.4.3. Resistance Circuit Method (RCM) for solving The sign ofthe resistance is positive if the corresponding edge
the RGR is directed similarly relative to both circuits and negative other-
It is well known in graph theoryDeo, 1974, that for ~ wise.[Rp]; is calculated in the same way, except that this
each planar graph, there exists a dual graph. This sectiaime the circuif is defined by the chord whichis aflow source.
shows that on the basis of this dualism, Resistance CircuiEquation 13 is actually a set of linear equations, the un-
Method(RCM) for RGR analysis can be derived from CCM. knowns of which are the flows in the resistance chords of the
The relations between RGR and its dual graph are given igraph. After solving it, all the flows in the graph are obtained
Table 2. Thus, one can develop a new method for analysiBy using Eq(9) and after that, all the potential differences in
of resistance graphs by just rewriting the CCM method inthe graph are obtained using E§) or (6).

that, all the flows in the graph are obtained by applying
Eq. (5) or (6).

Table 3. Representing engineering systems with RGR

Engineering system interpretation

Name of the Flow—potential
Engineering system Edge and flow Vertex and potential element difference relation
Electrical circuit Edge corresponds to electrical Vertex corresponds to the junction Resistor A =FR;
elements: resistor, condenser, coil, in the circuit. Potential corresponds
current and voltage sources. Flow to the elgctric potentialvoltage of Capacitor B dA; B
corresponds to electrical current the junction. Fi=G o Cis,
through the element
i dR
Coil A =L — =sLF,
dt
Dynamical system Edge corresponds to dynamical Vertex corresponds to junction Mass A = i
elements: mass, damper, spring having independent velocity. " ms
external force, initial tension or Potential corresponds to the ) F
velocity. Flow corresponds to the velocity of the junction. Spring A = St
internal force in the element. ' i
Damper A, = bF
Static system Edge corresponds to a system Vertex is a joint connecting system Rod F=K-A;
element with an internal force and elements. The potential corresponds
the flow to the force in that to the displacement of the joint. Reaction No relation
element.
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Fig. 11. Example of an electrical system and its corresponding graph representajidine electrical circuit(b) The resistance
graph representation.

2.4.4. Representing one-dimensional engineering 2 3 5
systems with Resistance Graph Representation i 1 1 1
This section shows how to represent various engineering 1 R R Ry Rq
. : 1 1 1 1 1
systems with the resistance graph. The fact that the san@; . = 3 A St TR =
representation has been applied to represent systems that 11 . i 6 11 6 1
belong to remote engineering fields opens two far ranging 5 R R B + A + R
possibilities: first, to use methods developed in one field 4 e 4 7s e
for the other field, and second, to solve integrated multidis- s 3 5
ciplinary engineering systems. Both issues are described 2/25 1 1
later in the paper. -3l 1 25 -1
The systems that are described in this section are electri- 5 ( 1 -1 2,5)
cal systems, dynamic systems, and multidimensional stati-
cal systems. 7
Table 3 gives all relevant information on how to represent 2(0 25 1 1 Va 0
these engineering systems with RGR, including the informa- Qf = 3( 0 )( 1 25 -1 ) . ( Vs) = —( 0 >|7
tion that can be found in the literatufe.g., Shearer et al., 5\-1/\1 -1 25/ \Vs -1

1971 about representation of one-dimensional systems.
2.4.6. Using Resistance Graph Representation for

2.4.5. Representing one-dimensional engineering analysis of multidimensional trusses
systems with Resistance Graph Representation Let d(G) be the dimension of the engineering system,

In this section, RGR is applied to electrical systems, sincéhat is, the dimension of potential or flow vectors. The ex-
applications of graph theory to these systems are well knowglanation provided in this section is for two dimensions,
in the literature(Balabanian & Bickart, 1969 The two  butthe approach is valid for three dimensions as well. Equa-
methods embedded in this representation, CCM and RCNion 6 can be rewritten:

(Sections 2.4.2 and 2.4,3are applied to analyze both elec-

trical circuits and multidimensional indeterminate trusses. F=K-A,
Doing so emphasizes one of the main advances of MCA,

that is, obtaining a unified perspective on systems consistwhereK is built from the conductivity matrices of the re-
ing of elements with different dimensions and from differ- sistance edges, each being a square matrix of i@ d

ent engineering fields. d(G). Figure 12 shows the initial and deformed states of a

The representation of an electrical circuit is quite simple:rod.
each junction corresponds to a vertex and an element to an Let A (e) be the potential difference between the two end
edge as shown in Figure 11. The solution equations derivedertices of edge e in coordinate directiarAs one can see
by applying the CCM to the graph of Figure 11 are asfrom Figure 12, under the small deflection assumptidfest,
follows: 1993, the following equation describes the scalar magni-
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nate axes. The flow in an edge corresponds to the internal
force in the corresponding rod.

Y The building process of the RGR corresponding to an

indeterminate truss can be summarized as follows: Build a
graph following the same steps as were explained in Sec-
tion 2.2.2 for building the FGR of a determinate truss. The

initial state of
the rod

deformed state of

-
.
i
o
o
i
R
..

the rod FGR becomes RGR when all of its edges that are not sources
are assigned conductancés resistances as shown in
Table 4.

The analysis process is based on applying the CCM to
the RGR of the indeterminate truss. The first step is choos-
ing a suitable spanning tree. Since specific components of
the potential differences in the reaction edges are known to

tude of the potential difference as a combination of its co-be equal to zero, these edges are somewhat similar to the

Fig. 12. Rod deformation.

ordinate components: potential difference sources. Thus, the spanning tree must
include the reaction edges and it should not include the
|A(e)| = A,(6)-cosa + A, (e)-sing, (149 flow source edges.
An example of an indeterminate truss, its corresponding
wherea is the angle of the element. graph, the spanning tree, and the equations derived from
Combining Eqgs(6) and(14) we obtain: CCM is given in Figure 13.

Fle) = P =K(e)- .cosza Sinc.u-zcosa (A 2.5. Resistance Matroid Representation (RMR)
Fy sina-cosa sin? a Ay

The previous section showed the application of the CCM
_ K(e)< Ax> (15) method embedded in the graph representation to analysis of
Ay ) indeterminate trusses. However, this approach has been
shown to have its limitations, one of which is the fact that
where the square matrik(e) is the “conductance matrix” the dual of CCM—RCM is not applicable to trusg&hai,
of the element. 1999. This is due to the fact that the conductance matrix of
This two dimensional conductance matrix of the grapha truss edge is singular. Thus, it does not have an inverse
edges(designated byK(e)) is the product of the constant matrix; hence the rod edge in RGR cannot be assigned a
conductivity K(e) and the transformation matrix. For edges resistance matrix.
corresponding to hinged support reactions, the constant According to the idea underlying MCA, such a limitation
should be taken as 0, since there is no dependence betweean be overcome by changing the representation or, as is
the displacement of the support and the reaction force. done here, extending the representation. In this case, such
In indeterminate trusses, the forces in the rods cannot ban extended representation is the matroid representation,
determined by the laws of statics alone, and one must alsahose definitions and properties are given in Section 2.1.2.
consider the compatibility conditions. In the terminology of During the research it was found that representing engineer-
graph representation, this means that the corresponding grapig systems by matroid theory enables one to obtain a more
of the indeterminate truss should be analyzed by using thgeneral perspective. Such a generalization is demonstrated
flow and potential laws simultaneously. in this section by representing indeterminate trusses by Re-
The components of the potential vector correspond to theistance Matroid RepresentatidRMR). The direct conse-
displacements of the joints in the directions of the coordi-quence of such a generalization is the fact that RCM in

Table 4. Types of edges in the graph representation of an indeterminate truss and their conductances

Type of edge The conductance of the edge
a. Truss rod—Resistance edge with finite conductance A(€)-E(e) cos a sina-cosa
L(e) sina-cosa sin® a
b. Fixed and roller supports Zero, since there is no dependence between the reaction force and the displacement.
c. Force applied to the truss—Flow source edge Flow sources are not assigned conductance, since the flows in them are given, while

the potential differences are not.
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Fig. 13. Statically indeterminate truss and its resistance gré@hthe truss(b) Corresponding RGRc) CCM analysis equations.

RMR is shown to be applicable to indeterminate trusses irtorresponds to a set of truss elements in which internal

contrast to RCM in RGR. forces can act simultaneously, that is, the truss elements
that have nonzero internal forces during some state of self-

2.5.1. Matroid representation for indeterminate trusses stress. Such a set forms an indeterminate subset of truss

The first step of representing an indeterminate truss by §ds(asubtruss.

matroid is representing it by a resistance grajsiec- 2.5.2.2. Circuits of M. A circuit of the matroid is a
tion 2.4.6. Let G; be a RGR of an indeterminate truss, minimal dependent set, that is, removing even one of its
and Q(G) be its scalar cutset matrix. The scalar cutsefglements results in an independent set. Therefore, in the
matrix defines the matroid M= (S,F') whereSiis the  terminology of structures, a circuit in dlcorresponds to a
set of columns ofQ(G) and F' is a family of all lin-  minimal indeterminate subtruss, which is a rigid subtruss
early independent subsets 8f The subscript Q in MiS  jndeterminate to the first degree. Such a subtruss has the
used to emphasize that the matroid corresponds to the SCBroperties of a circuit, since removing any of the rods from

lar cutset matrixQ. Each element of s a scalar cutset gych a truss will create a determinate truss or even a
matrix column that, in its turn, corresponds to a truss eleyechanism.

ment, which can be one of the following: rod, external o .
reaction, or external force. An example of a truss with its 2-2-2-3. Base of iJ. The base of a matroid is the maxi-
corresponding matroid is given in Figure 14a and Fig_mal mdependent_subsetﬁ;‘that is, adding any element.to
ure 14d, respectively. the base results in a dependent set. Thus, the basg,in M

corresponds to a determinate subtruss that contains all the
2.5.2. Structural interpretation of matroid components ~ Pinned joints of the truss. Itis well known that adding a rod
_ to a determinate truss, without adding a pinned joint, makes
_2‘5‘2'1‘ Dependent sets ogMThe flow law for RGRiS e ryss indeterminate. For the sake of consistency with
given by the graph theory, the base of the matroid representing the
truss is chosen so that it does not contain any external forces

Q(G)-F =0, (16) (flow sources acting on the truss.

whereF is a vector of force scalar values acting in the truss  2.5.2.4. Cobase of M The cobase of M, that is, the set
elements. Therefore the nonzero entries of the vaéete-  of elements which are not in the base is the set of external
fine a set of linearly dependent columns of the scalar cutsdorces and redundant rods of the truss. The notation that is
matrix. By definition, such a set is also the set of dependentised in this paper for grapliSection 2.1.1is also applied
elements in the matroid M Thus, a dependent set in]M  to matroids. For this reason, the base elemétis deter-

https://doi.org/10.1017/50890060401152030 Published online by Cambridge University Press


https://doi.org/10.1017/S0890060401152030

Engineering applications of MCA 125

Q G):lx(cos(l35°) c0s(90%) cos(45°) —cos(0°)] S$={1,2,3,P}
lysin(135°) sin(90°) sin(45°) -sin(0°) F'= ({1}, {2}.{3}.{P}.{1,2}, {1,3}.{1,P},

{2,3},{2,P},{3,P}}.
{—1/«/5 0 /42 -1
U¥2 1 142 0

(©) @

Fig. 14. Example of a truss and its corresponding matr@gThe truss(b) The graph(c) The scalar cutset matrixd) The matroid.

minate subtruss elemenisre represented by double lines, The set of fundamental circuits is represented by a spe-

the cobase elementsedundant truss elements and externalcial matrixB(M,), calleda circuit matrix of M,. The rows

forceg by dashed lines, whereas the cobase elements whiabf B(M) correspond to the cobase elements of M and the

correspond to the external forces are both dashed and boldolumns to all the elements of M. An entijyof the matroid
Figure 15 shows the truss from Figure 14, with high- circuit matrix is defined:

lighted base and cobase elemdiajsand the two fundamen-

tal circuits (circuits containing only one redundant rod or [BIM)]j = Aj. (18

external force (b) and(c).

2.5.2.5. Circuit matrix of M. By definition of circuit in Obviously, Eq.(17) still holds, when for some, all A; are

matroid, each fundamental circuit in /torresponds to a multiplied by the same arbitrary scalar. Therefore, it is le-

minimal set of linearly dependent columns@ In other gitimate to “normalize” the circuit matrix, that is, to multi-
words, for each fundamental circuit & can be written: ply the rows ofB(M) so that the matrix is written as follows:

B(M) = (B(M){][l), 19
> 4;Qu, =0, 17) (M) = (B(M)1[1) (19
jECI
wherel is a unit matrix whose size is equal to the number of
whereQ |, is thejth column of matrixQ. In the terminology  cobase elements, arB(M); is a matrix with rows and
of trussesy;; is the force acting in the truss elemg¢nthile  columns corresponding to the cobase and base elements,
the state of self-stress produced by a force in the redundamespectively. In structural mechanics terminology the value

truss element. of [B(M)];; becomes equal to the force in the truss rod or

S

(a) (b (c)

Fig. 15. Example of fundamental circuits in the matroid of a trus$.The base and cobase of ) A fundamental circuit defined
by the redundant rod 3c) A fundamental circuit defined by the external force P.
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reactioni when a unit force is applied in a redundant ele- ProrosiTioN 3. The matrixQ(M) = (1|—BY) is the cut-
mentj and the forces in all the other redundant elements arset matrix of matroid, that is, each row ofQ(M) de-
set to zero. fines a fundamental cutset in the matroid.

For example, the circuit matrix of matroid jhat rep-

resents the truss of Figure 14 is developed as follows. FoProof: To prove this property, one has to prove that every

cobase elements 3 and P, equations based ol(1EZpare

written, respectively,

/\3,1‘Q¢1 + /\3,2'Ql2 + A3,3'Ql3

1

N

\2
Ap1:Qui+ Ap2r Qo+ App Qup

1

1
A —1.414(2)+1- ? =<0
\2

row of Q(M) satisfies the conditions of a cutgefiven in
Section 2.1.2

Conditions(a) and(c) of the Section 2.1.2 are satisfied
sinceQ(M) contains a unit matrix, whose rows are non-
empty and do not contain other rows of the matrix. Condi-
tion (b) requires that for any circuit and any cutset the
number of common elements is not equal to one. This can
be proved by considering the forms of circuit and cutset
matrices(Fig. 16. The number of common elements in
circuiti and cutset is the number of elements correspond-
ing to the nonzero entries in rowsandj in the circuit and
the cutset matrices, respectively. From Figure 16 one can
see that this number can be either 0 or 2 depending on
whether element Bis equal to zero or not. Thus, the num-
ber of common elements in circuit and cutset can never be
equal to one. ]

Hence the circuit matrix of M is ) L
ProrosiTiON 4. The orthogonality principle:

1 2 3 P
3 1 -1414 1 0 Q(M)-BY{(M) =0 (21
B(M) = p< ~1414 1 0 1>' .

Proof: By substituting Eq(19) into Eq.(21), we obtain
ProrosiTioN 1. Every admissible force vectdf is a y g Eq(19) a-(21

linear combination of rows oB(M). n

Proof: Forces in the determinate subtrudisase are (22)

uniquely defined by the forces in the redundant elements.
Moreover, each row oB(M) corresponds to the forces in After the multiplication we geB(M)} — B(M)% = 0.
the determinate subtruss yielded by a unit force in the

corresponding redundant element. Therefore, by the super-

position principle, every admissible force vector is derived ProposiTioN 5. Matroid flow law:

by summing over all the rows @&(M) each multiplied by
the force in the corresponding redundant element. m

B(M);
Q<M>~Bt<M>=<||—B<M>‘T>< (, )T>.

Q(M)-F=0 (23
ProrosiTiON 2. The matroid potential law:

B(M)-D = 0, (20)

where D is a vector of scalar displacements in truss
elements. ]

Proof: According to the definition of matroid §, each
row of B(M) corresponds to a state of self-stress, which is
a vector of admissible flows in & On the other hand,
vectorD corresponds to a vector of admissible scalar po-
tential differences in G. Thus, according to the equilib- i i
rium between the internal strain energy of the truss and the 1
work done by the external forcé®Vest, 1993, multiplica-
tion of every row inB(M) by vectorD is equal to zero.m

2.5.2.6. The cutset matrix of matroidhe cutsets of a
matroid are represented by a cutset matrix as explained
below. Fig. 16. The form of circuit and cutset matrices.
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Proof: By proposition 1, every admissible force vector 2.6.1. LGR for planetary gear systems

is a linear combination oB(M) rows. According to prop- Al the links of planetary gear systems are represented by

osition 4,Q(M) is orthogonal td(M); hence it is orthog-  vertices in LGR, whereas the connections between them

onal to every linear combination of its rows, thatks, m  are represented by the edges connecting the corresponding
vertices. There are two types of connections, so there are

Bec‘f"use of the Va"d'ty.Of propositions 1 tp 5, the ﬂOW’ two types of edges, marked as bold and double as explained
potential, and orthogonality laws are all valid for matroid below

Mg. Such a matroid is called a Resistance Matroid Repre-
sentation(RMR). Since Eq.(13) was derived using only 5 pgg|q edge —knowing the gear ratio between two en-
these properties of the resistance graph, it is also valid for gaged gear wheels one can calculate the ratio between

the matroid M,. Substituting to Eq(13) the matrices cor- the angular velocitiepotential$ of the gear wheels.
responding to M instead of those corresponding tq Gve In the terminology of this paper, the edge representing
obtain: the engagement between the wheels is a dependent
potential source and for this reason it appears in the
(B(M)cr-Rr-B(M)tr)-For = —(B(M)cr-Rr-B(M)bg) graph as a bold line.

b. Double edge—an edge which represents a turning con-
nection. It will be shown below that the turning edges
form a spanning tree.

-Fp— Bcp-Dp. (24)

2.5.3. Example of application of the RCM in RMR to
an indeterminate truss Additional information about the labeled edges and the ver-
The method derived above is demonstrated in the followtices is added to the representation as follows:

ing example. First, RGR representing the truss of Fig-
ure 17a is built(Fig. 170. At the next stage, the cutset C. Labeled double edge—every double edgerning

matrix of the RGR is found, Figure 17c. Finally the circuit edge has a label, which represents the leitéle lo-

matrix of the RMR is built from the cutset matrix of the cation of the rotating connection.

RGR, Figure 17d. The elements of the circuit matrix (. Reference vertices—the distance between each pair

(Fig. 17e and f were substituted into Eq24) and the of connected gear wheels must be constant all the

analysis equations were obtaing€lg. 179. time, being maintained by a link or planet carrier. The
A base(statically determinate subtrysis obtained by vertex corresponding to such a link or a planet carrier

removing from the truss the redundantrods 7 and 10. Hence s called in the literaturéFreudenstein, 193 A “trans-

the cobase elements of the resistance matroid representing  fer vertex.” In the terminology of this paper, the name
the truss are 7, 10, and P, where the latter is the flow source.  «|gcal reference vertex” is more suitable; thus it is
The circuit matrix in Figure 17d is now built by calculating highlighted by the gray color. In this representation,
three self-stresses, each having a unit force in one of the || the turning edges on one side of the local reference
cobase elements. Then the parts of the circuit matrix are  vertex are at the same level, and those on the opposite
substituted into E(24) and the analysis equations are ob- side of the local reference vertex are at a different
tained (Fig. 179. After solving the equations of Fig- level.

ure 17g, the flows in all the cobase elements are known,
and by applying Eq(9), the flows in all the rest of the
elements of the matroid are obtained. Then, using the resis-
tance relations, the potential differences are obtained as well.

e. Labeled bold edge—every bold ed@gar engage-
ment edgghas a label that represents the planet car-
rier (local reference vertgxhat maintains the distance
between the two corresponding gear wheels. In addi-
tion, the bold line is assigned a plasinug sign in-
dicating that the engagement between the two gear

2.6. Line Graph Representation (LGR) wheels is internalexterna).

Line Graph Representatiqh GR) is the only graph repre- f. Labeled gear wheel vertex—every vertex that corre-
sentation dealt with in this paper, which has no knowledge sponds to a gear wheel has a label that represents its
embedded in it. LGR is a regular graph, the main property center level.

of which is the way it is used to represent engineering sys-

tems. In contrast to FGR, PGR, and RGR, the elements of Note, that Figure 18a is a standard engineering drawing
the engineering systems are represented in LGR not by edgd8r a gear system.

but by vertices. This enables us to use the edges of LGR to

describe the connections between the elements. .LGR was \Ew CONNECTIONS BETWEEN

used to repre_sent planetary gear systems, a trafflc cpntrol ENGINEERING FIELDS

problem (Shai, 1997, and various network optimization

problems(Shai, 1997. The current paper uses LGR to rep- This section shows the application of MCA to obtaining
resent planetary gear systems. novel relationships between engineering fields. These were

https://doi.org/10.1017/50890060401152030 Published online by Cambridge University Press


https://doi.org/10.1017/S0890060401152030

128

P
R 1 2 3 4 5 6 7 8
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cos(0")
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~cos(315%)
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—sin(0%)
0

0
[}
0
0
0
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0

O. Shai

P

0

[
cos(0°)
sin(0”)

0

Do 0O O O

Fig. 17. Example of analysis of indeterminate truss using RNResistance Matroid Representafiofa) Indeterminate truss.
(b) RGR of the truss(c) Scalar cutset matrix of RGR of the trugd),(e),(f) Circuit matrix of RMR of the truss and its components.
(g) Analysis equations based on RCM in RMR.

https://doi.org/10.1017/50890060401152030 Published online by Cambridge University Press



https://doi.org/10.1017/S0890060401152030

Engineering applications of MCA 129

|l :
2
3
C BE %B B = DA
5
o 4 —— 1
L -4
A — 0 Sz A B A
NG DA
_ T C
-1
3
C
(a) (b)

Fig. 18. Example of a planetary mechanism and its graghThe planetary mechanisrtb) Its line graph representation.

obtained through the mathematical relationships between RULE 2

the corr(_espondlng CR. More specn‘lcally., on t.he basis of”:: G is PGR, that is, G= G,

the dualism between FGR and PGR, which will be deveI-THEN_ B(G,)-A(G,) = 0 (equation 2

oped in Section 3.1.1, a new mutual relationship between ' A A q '

o_leterminate trusses _and mechanisms is established in S_eC'FACT 1: O(G)

tion 3.1.2. This relation postulates that for every determi-

nate truss there exists a specific mechanism, called the “dual

mechanism.” In this mechanism, there is a link for every CQNCLU§ION 1: FACT 1 AND RULE 1 -

rod of the truss, such that the force in the rod is equal to the B(Gr)-F(Gg) = 0. -

relative velocity of the corresponding link. CQNCLUSIQN 2: §ONCLL£SION 1 AND A(Gf) =
This innovation opens up a new avenue of research and F(Gg) — B(GE)-A(GEg) = 0.

practical applications, by creating favorable conditions for

cooperation between structural and mechanical engineersrom these inference rules it follows that the dual graph of

This cooperation enables us to use information, algorithms2ny FGR is a PGR, since the potential difference vector of

and new technok)gies deve|0ped for one field in the Otheﬁ_:he latter is identical to the flow vector of the former.

One of the possible applications of that research direction is

the development of a new design technique in engineering>-1-2- Duality between trusses and mechanisms

shown in Section 7. The potential inherent in the innova- On the basis of the dualism connection between FGR and

tions of this section can be appreciated also from its appliPGR given in the previous section, a new relation between

cations given in Section 6.5. determinate trusses and mechanisms is derived. This inven-
tion has been achieved by applying the following rules.

= B(G") (according to duality between
graphs(Swamy & Thulasiraman, 198]1L

3.1. Duality between trusses and mechanisms based FACT 2: For every flow graph, there exists a dual poten-
on the duality of their corresponding CR tial graph and vice vers@onclusion 2.
i ) FACT 3: Determinate trusses are isomorphic to flow
3.1.1. Duality between flow and potential graphs graphs(Section 2.2.2

This section intrgduces the duality cgnnection bgtween FACT 4: Mechanisms are isomorphic to potential graphs
the flow and potential graph representations from which the (section 2.3.1

dualism between trusses and mechanisms will be later de-
rived. FGR and PGR are shown to be dual by applying the
following inference rules:

CONCLUSION 3: FACT 2 AND FACT 3 AND FACT
4 — for every mechanism there exists a dual determi-
nate truss and vice versa.

RULE 1: . L . P
This reasoning is outlined in Figure 19.
IF: G is FGR, i.e. G= G Description of a dual mechanism Let T be a statically
THEN: Q(Gg)-F(Gg) = 0 (equation 1 determinate truss, G&T) its FGR, and G(T) be a PGR
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resentation. Therefore, when CR are used to represent an
engineering problem, their embedded theorems become
available as well. For example, when the Resistance Graph
Representation was applied to represent indeterminate
trusses(Section 2.4.§ its two analysis methods became
available and were used. In this section, it is shown how
Satisfies theorems and methods in structural mechanics can be de-

Flow
Graph
Representation
FGR

Potential
Graph
Representation
PGR

QG)=B(G")

Satisfies )
Flow Law Potential rived from a theorem embedded in RGR, called Tellegen’s
Q- F=0 ~ Theorem. Moreover, from the dualism law in RMR, a new

proposition is deduced stating that displacement and force
methods are actually dual methohai, 1999, 2001)b

All these results show the potential inherent in applying
MCAto allow, in the future, the derivation of new theorems

Determinate and methods from the knowledge embedded in the CR.

Trusses

mutual
dualism

4.1. Tellegen’s theorem embedded in RGR

Fig. 19. Diagram explaining the derivation of the duality between deter-

minate trusses and mechanisms. The theorem discussed in this section was developed by

Professor B. D. H. Tellege(Tellegen, 1952and therefore

bears his name. The main use made of this theorem nowa-

days is in electric circuit theorgPenfield et al., 1970; Chua
dual to G(T). Mechanism M is called a “mechanism dual et al., 1987. Since electric circuits are represented in MCA
to truss T" if G*(T) is its potential graph and for every edge by RGR, it is concluded that this theorem can also be em-
e in G(T) and its corresponding edgé ia the dual graph ployed in other engineering systems represented with RGR.

G*(T), the equality(25) is satisfied. This is done in the current section. According to Sec-
tion 2.4.6, indeterminate trusses are represented by RGR;
t(e) = v(e). (25) therefore Tellegen’s theorem, which is a meta-theorem in

RGR, is applied, and engineering theorems and methods
Table 5 summarizes the attributes of the duality betweerye derived.

trusses and mechanisms. Figure 20 shows a four-bar mech-
anism(a) and its dual trusgc). More detail on the duality ~ Theorem 2. Tellegen’s Theorem (combinatorial repre-
connection between trusses and mechanisms can be fousdntations formulation)et G and G, be two isomorphic

in Shai(20013. graphs, where the first is a flow graph and the second is a
potential graph; then:
4. META LAWS AND THEOREMS all edges R
. . : , . > F&.(8)-Ac,(e) =0. (26)
As was mentioned in Section 2, each combinatorial repre- e

sentation contains combinatorial theorems called “embed-
ded theorems,” which have been thoroughly studied and
investigated. The embedded theorems are actually meta- The theorem deals with two isomorphic graphs, one of
theorems that provide additional knowledge and enable ughich, G-, satisfies the flow law and the other, (atisfies

to derive engineering theorems exclusively from the repthe potential law. It postulates that the sum of scalar prod-

Table 5. The duality attributes

In a mechanism link In a truss rod

A(e) — Relative velocity of link e. F(e') — Force in rod &

Circuit. Cutset.

Potential difference. Flow.

Potential difference of edge-erelative linear velocity of the corresponding Flow in edge e= force acting in rod e= F(e) = F(e)-r(e).
link e = A(e) = V(e)-v(e).

v(e) — relative linear velocity unit vector. (&) — unit vector in the rod direction.

w; 0 —Angular velocity of link i= linear velocity length. F
L_ — Force per unit length.
i
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P-F(2)-F@3)=0

P
Fm =32 @)V, [=0) (f(lS)—E(2')—?(3'))-(F(2‘)]=0
F(3)

) ©)

Fig. 20. Example of a mechanism, its dual truss, and the corresponding mateac&se mechanismb) The potential graph and its
dual (dashed ling (c) The dual truss(d),(e) The corresponding matrices.

ucts between the flows in the edges qf &d the potential When the angles of the rods of the truss are known, the

differences in the corresponding edges of & equal to  following scalar formulation can be develop@&hai, 2000k

Zero.

4.1.1. Explanation of Tellegen's Theorem using the méof Fi(Ge)-Di(Gs) = ex%nalpi(GF)'D”(GA) =0 28
electrical networks the truss forces

Tq facilitate u_ndergtaqdmg, Te_IIegens t_heorem IS f'rTQ’tThis equation will be referred to as the “Multidimensional
applied to electrical circuits. Consider two different eleCt”CTeIIegen's Theorem” for trusses

circuits with the same topology shown in Figure 21a,b. Their

corresponding graphs appear in Figure 21c,d. Analysis of

the electrical systems gives the results shown in Figure 24.1.3. Deriving the method for analyzing joint
next to the edges in the corresponding graphs. displacement based on Tellegen’s Theorem

We can now choose the graph representing the system of Thjs section shows the derivation of the known equation
(a) to be G, and the graph representing the systeniofo 5, analyzing the displacement of a joint in a truss from the
be G-. These graphs satisfy the requirements of Theorem 2y ytidimensional Tellegen’s Theorem for trusses. To apply
Substituting the results into E@26) confirms Tellegen’s Tellegen’s Theorem, PGR and FGR will be used. The steps
theorem: for building the CR are the same as those explained in

Section 2.2.2. An extra edge, called “control edge,” is added.
10 . . .
S A{(Gy)-F/(Ge) = 0. 27) Its head vertex is the vertex whose displacement is to be
i-1 analyzed, and the tail vertex is the reference vertex.
The flow and potential graphs are used in two different
4.1.2. Applications of Tellegen’s Theorem to structures ways as follows. For the real potentia| grapﬁ,m*]e flow

The example that appears in the preceding section consalues in the source edges are the values of the external
cerns one-dimensional systems. However, one can deduderces. In the control edge, we put a “potential difference
from Eqg.(26) that the theorem can be applied to the multi- measurement,” which corresponds to a potential difference
dimensional systems as well. measuring devicée.g., voltmeter in electrical circyjtwhich

The multidimensional trusses are represented by RGRs located between the end vertices of the corresponding
hence the multidimensional Tellegen’s Theorem embeddeddge. The R superscript over G indicates that the potential
in this representation can be employed in their analysisdifferences in it are due to the “real” external forces applied
The formulation of Tellegen’s Theorem for trusses is asto the structure, and th& subscript indicates that the struc-
follows: Given two trusses with the same topology, the sumure should satisfy only the potential law.
over multiplications of the forces in the first and the poten-  For the virtual flow graph &, all the source edges which
tial differences in the second is equal to zero. correspond to the external forces are assigned zero flow
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Fig. 21. Applying Tellegen’s theorem to electrical circuitg),(b) Different electrical circuits possessing the same topol@m\PGR

of the circuit in a.(d) FGR of the circuit in b.

sources. One can think about it as a disconnection. In thA&n example for applying Eq(30) is given in Figure 22,
control edge, a unit force is applied in the direction of thewhere the horizontal displacement of joint ¢ is to be
displacement that has to be measured. The V superscrippmputed.

over G indicates that the flows in the graph are not the real

forces in the structure, but the forces due to a virtual exter4.1.4. Deriving Betti's Law from a theorem embedded

nal force applied to the structure, and the F subscript indi- in RGR

cates that the structure should satisfy only the flow law.

The previous section showed an example of derivation of

Applying the Multidimensional Tellegen’s Theorem a known method in structural mechanics from the knowl-

[Eqg. (28)] to the two graphs, gives

> F(GY)-Di(GR)— 3 0:-Dp(GR) — 1-Deonua(GR) = 0.

rods of external
the truss forces

From here, the well-known equatigkVest, 1993 for ana-

lyzing the displacement of a joint is derived:

FL(GY)-F(GE)-L,
DcontroI(G§) = E F A .
rods of Ai : Ei

the truss
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edge embedded in RGR. In the current section it is shown
that known theorems can also be derived from the embed-
ded knowledge. This is demonstrated by deriving Betti's
Law from Tellegen’s Theorem.

Consider a truss and two different sets of external loads
applied on it. The first set of external Ioadf?si,, causes joint
displacements,, internal forces,, and deformation®.

The second set of external Ioatﬁg, causes joint displace-
ments,, internal forces,, and deformation®.,.

Since both sets of loads act on the same truss, and the
forces (potential differencessatisfy the flow (potentia)
law, then according to Multidimensional Tellegen’s Theo-
rem[Eg. (28)], multiplication of forces from one set by the
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N - _0.00045

R R
Dy = +0.0018 Dy = +0.0025

R_ WV R, V. R, =V R _
7tx(‘:) Fi'Ds+Fs-Ds+F;-Dsy =
(0.375- -0.00045) + (-0.625- 0.000625) + (-0.625-0.001875) = -0.001731[m]

(d)

Fig. 22. Example of analyzing joint displacements by the Multidimensional Tellegen’s thedagifihe truss(b) The virtual flow
graph G. (c) The real potential graph % (d) Calculation of the displacement of joint ¢ in the direction of the x axis.

potential differences from the other set is equal to zero, as Another form of Tellegen’s Theorem for the two graphs

follows: is
N L T T O e I 33
GRS =0 FL.D, =P 7p, (3D (F3P3)-| _= — F3:Dy = P;-7p1. (33
—Tp2 P1
rosistance Combining the last two equations gives
Bl Feo= FLD, = F(R-Fy) - :
1*Tpp = F1-Up - 1° M2 P}_"ﬁ'pzz Pé"ﬁ'p]_- (34)
since R is

- . diagonal _ . This is the reciprocity theorem or Betti’s Law, which is well
=(Fi-R)-F, = Di-F. (32 known in the literaturéHibbeler, 1984.
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4.2. The relation between the Conductance Cutset AFg = —AgP. (35)
Method (CCM) for analyzing indeterminate _ _ o
trusses and other known methods Since any resistance edge=gu,v) satisfies Eq. 6, Eq. 35
becomes
In the current section it is shown that a known method in
structural mechanics is derived from CCM. Many methods AK gAg = —ApP. (36)

for analyzing indeterminate trusses have been reported in

the literature; most of them are based on virtual work andPue to Eq.(1), this can be written in matrix form:
minimum energy. In the displacement meth@dibbeler,
1984, each axis along which the joint is able to move is
assigned a variable, which is designated: “unknown dis- , . .
placement.” In the Conductance Cutset Metk@E&M), the which gives us

absolute pqtential of a vertex is the displacement of the AK A7 = — A P (38)
vertex relative to the reference vertex.

In the example of Figure 23, since all the cutsets are suciThe matrix AK R.&t is actually the “stiffness matrix,” and
that they contain exactly one vertex in one of the two sideshe elemenf AK R,&t]ij is the sum of the conductances of
of the cutset, the cutset conductance matrix is equal to thghe rods that meet both joimtand jointj (in the casé = j
incidence matrix, a well-known matrix in graph theory lit- it equals the sum of conductances of all the rods meeting
eraturg(Fenves & Branin, 1963; Deo, 19V & herefore, the  joint i).
displacement matrix of the displacement metkidibbeler,

;ziﬁésvjseinsigiraesztg?tobtalned from the resistance grapg,. A GLOBAL MULTIDISCIPLINARY

To derive the displacement method, one starts with the g5§_§£5§TlVE FOR INTEGRATED
incidence matrix, the rows of which are a linear combina-
tion of the vector cutset matrix rows. The flow ld®&q. (2)] One of the immediate contributions made by MCA is mak-
can be written by using the incidence matrix as follows: ing it possible to obtain a global perspective on various

Ap = A7, (37)

2
2
3 6
5
N 1
A
(@) (b)
K., +K, +K, +K, -K, -K, Aj,, 0)
-K, K, +K, +K, -K, A, |=-{0|-P
-K; -K, K, +K, +K{ )| A, 1
©
-0.035 -01 0 -0035 0035 0
0.135+0.(-0.035) 0 0 0035 -0035|| " 0
0+0-(-0.1) 0135 0035 0 0 A’* o
0+0-(0) 0.035 0135 0 =01 | "o
0.035+0.(-0.035) 0 0 0135 -0035|| “ P,
-0.035+0-(0.035) 0 -01 -0035 0135 i P,
(d)

Fig. 23. Example of indeterminate truss analydia). Indeterminate trusgb) The corresponding grapkc),(d) The corresponding
vector and scalar equations.
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6.1. Checking the topological validity of trusses

In Section 2.2.2, it was explained how to represent trusses
by FGR, and the knowledge embedded in the CR was ap-
plied for truss analysis. In this section, it is shown how to
use the properties of the CR to check the validity of the
truss topological rigidity. This issue contributes to other
engineering fields, such as checking the validity of mecha-
nisms(Section 6.5.2and the validity of the geometric con-
straint systems$Section 6.4.

Checking of the validity of a determinate truss is per-
formed on its corresponding combinatorial representation—
the FGR(Section 2.2. Whenever the analysis equations
obtained from the flow graph are not soluble, this indicates
that the truss represented by it is not stable. The word “ri-
gidity” is used when referring to the truss structure without
its supports, and “stability” for the one including the sup-
ports. To check the validity of truss supports as well, the
following steps are to be performed.

StEP 1. Create two extra vertices called X and Y and
connect them by an edge.

StTEP 2. For every hinged support, create two edges con-

Fig. 24. Representing an integrated engineering system with R@R. necting the vertex corresponding to the support, with the X
The integrated systenib) Corresponding RGR. and Y vertices.

SteP 3. For every roller support, create an edge connect-

ing the corresponding vertex with ¢or Y) if the support is

disciplines. The_gene_ral perspective_ is glue to _the fact_ thaﬂnmobile on the horizontalor vertica) plane. If the sup-
the same combinatorial representation is applied to differ- ort is mobile on some inclined plane, create an additional

ent engineering fields. For exlample,.Flgure 24,"" show; gertex and connect it with edges to the vertices named X
complex system composed of interacting dynamic, electrlcand Y and to the vertex corresponding to the support itself.
and indeterminate truss elements. Even though the system

contains different types of engineering elements, some 0l(lote that edges representing applied loads do not affect the

W.h'Ch have different .coordmate systems, such as Onet’opological consistency of the graph, so they are to be re-
dimensional for electrical and hydraulic systems or two-

. . . . moved from the graph when the validity is checked. Fig-
dimensional for trusses, the integrated system is represent%qje 25b shows the graph that corresponds to the truss of

by one re_13|stance graph as shown in F_|gu_re 24b. Therefor%igure 25a. Since the roller supports E and G are immobile
all the different elem(_-:'nts are de?'t W'th. in the same WaY%n the Y coordinate, the corresponding two edges connect
when an MCA analysis algorithm is applied. between Y and E and G. The same reasoning applies to the
roller supports A and D.
6. CHECKING THE VALIDITY OF
ENGINEERING SYSTEMS ON THE BASIS OF 6.1.1. Relevant theorems embedded in the FGR.
THE COMBINATORIAL REPRESENTATIONS Most of the published literature on the subject of truss

This section shows a further contribution of MCA, which is rgidity deals with determinate trusséisaman, 1970

the ability to check the validity of the engineering systems There exists a fixed relation between the number of rods
before applying to them the analysis process or starting t§(Gg) and joints Gg) in the graph G representing a rigid
manufacture the products. The idea behind this issue is théeterminate truss, as follows:

same as the one behind all the rest of MCA applications that

utilized the knowledge embedded in the CR. In the current e(Gg) = 2-v(Gg) — 3. (38)
section, this knowledge is applied to check whether there

exists a contradiction between the representation of the etMaxwell (1864 proved that if the relation &') =
gineering system and the rules and theorems embedded tlv(G’) — 3 holds for every subgraph’®f G, then the

it. The current section is concerned with checking the vacorresponding determinate truss is rigid. About 100 years
lidity of truss topology and geometry, planetary gear sysdater, Laman(1970 proved that this condition is not only
tems, and geometric constrains in CAD systems. necessary, but is also sufficient.
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(@) (b)

Fig. 25. Example for checking the stability of determinate truss using F@RA determinate trusgb) The graph that represents it.

The connection between the rigidity of determinate and StEp 3. If step 2 is successful for every edge in the graph,
indeterminate trusses is established by the followinghen the graph topology is valid; otherwise it is not.
theorems.

For example, Figure 26 shows a triasand its correspond-

TueorEM 3. Let G be a graph that corresponds to an ing graph(b). It can be proved to be rigid, since when
indeterminate truss. Then, G is rigid if and only if there doubling each edge in turn, it has two edge disjoint span-

exists h G a connected rigid determinate subgraphwhich ~ ning trees covering all of its edges. Figure 26c shows an
includes all the vertices of G. m example of two edge disjoint spanning trees covering the

graph when edge 1 is doubled. More details on checking

Proof: If G" is a determinate truss and is rigid, adding the validity of determinate trusses can be found in Shai and
edges(rods does not affect the property of rigidity. The preisg(19994.

inverse claim follows directly from the definition of an in-
determinate truss. Suppose that in G therekaredundant
rods, G is then said to have a redundancy degréeWhen  6.2. Checking the validity of dynamic systems

deleting those k edges from G, the truss represented’by G o )
remains rigid and determinate. m  Aprocess similar to the above for trusses can be applied to

a dynamic mass-spring-damper oscillator system. In this
The necessary and sufficient conditions for checkingsection, it will be shown that one can find a contradiction in
whether a determinate truss is topologically valid is giventhe topo]ogicaj structure of a dynamic system with gi\/en
in the following theorem. initial conditions by analyzing its corresponding RGR. Given
a dynamic system with initial conditions, there can be a
THEOREM 4. (Lovasz & Yemini, 1982). A determinate solution only if its graph is consistent with the validity rules.
truss is rigid if and only if when doubling each edge in turn
in the corresponding graph, all the edges can be covered bg.2.1. The RGR of the dynamic system

two edge disjoint spanning trees. u Using the information given in Table 3, the resistance

From this theorem one can derive the algorithm of Sec9raph corresponding to a dynamic system can be built. In-
tion 6.1.2 for checking the validity of the topology of de- cluding the information about the initial conditions of the

terminate trusses. dynamic system requires performing the following steps.
6.1.2. Algorithm for checking the validity of the graph Step 1. Every spring with initial tension will be repre-
of a determinate truss sented by two parallel edges. On the basis of the superposi-

tion principle, one edge will represent the flow source with
StEP 1. Build the graph corresponding to the truss as waghe value of the initial tension of the spring and the other
explained in Section 3.1. will represent the flow(force) change in the spring caused

STEeP 2. For every edge in the graph double the edge angy the changes of the dynamic system.

search for two edge disjoint spanning trees using known Step 2. Every mass with initial velocity will be repre-
algorithms(Swamy & Thulasiraman, 1981 sented by two serial edges. On the basis of the superposi-
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Fig. 26. Example of a proof that a determinate truss is stafdeThe truss.(b) The corresponding graplic) Two edge disjoint
spanning trees when doubling edge 1.

kp
WH

i Compression

b
- b1
pu g |

Tension

@

Fig. 27. Representing a dynamic system with RGR.A dynamic system(b) Its corresponding graph.
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tion principle, one edge represents the source of potentidhe domain knowledge and the graph representation of the
difference with a value equal to the initial velocity value of given system.
the mass, and the other represents the change in potential
(velocity) with time in the dynamic system. An example of 6.3.1. Topological validity rules of the graph
RGR representing a dynamic system appears in Figure 27. part of the embedded properties in the graph representa-
tion of the planetary gear system, given below, is based on
6.2.2. The method for checking the validity of the Erdman(1993, who published a set of necessary condi-
dynamic system with initial conditions tions which were used by him for a different purpose: mech-
For the Flow Law and the Potential Law to be satisfied,anism synthesis. This paper uses this knowledge to deduce
one has to verify the following two validity checking rules. the validity of the system.

Validity rule of cutsets: There should be no cutset con-  Rule 1 Planetary gear system is a kinematic chain

taining only flow sourcegbold dashed edggs There is no circuit formed exclusively by turning edges.
Validity rule of circuits: There should be no circuitcon-  Rule 2 Circuit of turning edges— locked mechanism
taining only potential sourcedold solid edges OR kinematic chain with degree of freedom greater
that 1.

The reason for these restrictions is derived from the prop-
erty of the source edge. For example, if there were a cutset
of only flow source edges, the sum of flows over a cutset
might not be equal to zero, in contradiction with the Flow
Law. A similar reason holds for the potential difference Rule 4 The distance between each pair of engaged gears
source edges. should be preserved during the system operation

An example of a dynamic system graph which contra-  the subgraph of the turning edges forms a connected
dicts the cutset validity rule is shown in Figure 28. The subgraph.
contradiction occurs because the graph of Figure 28 has a Topological conclusion :1Rule 1 AND Rule 2— the
cutset with only bold dashed lines. For such a graph, the  tyring edges constitute a spanning tree.
initial forces applied to junction C may not satisfy the flow

Rule 3 Every link has at least one element around which
it rotates— every vertex is incident to at least one
turning edge.

Rule 5 Each gear pair is located on a different turning

law. edge level AND the distance between the centers should
be maintained constarb there is one and only one
6.3. Checking the validity of a planetary gear planet carrier in each fundamental circuit defined by
system using the LGR an edge corresponding to a gear pair.

Topological conclusion:2Rule 5 AND (planet carrier=
local reference vertgx— in each fundamental circuit,
there is one and only one local reference vertex.

The work reported in this section employs the possibility
that the domain knowledge will consist of the topological

validity rules of the graph. Therefore, the process of check-
ing the validity of planetary gear systems becomes a pro- Rule 6: The geometric center of a gear wheel and its
cess of checking whether there exists a contradiction between local center of rotation must coincide in each fun-

M;
b Compression
k2
Mz | v v
Tension
(a) (b)

Fig. 28. Example of a dynamic system which is not valid.
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The system is not _valid because there is a contradiction with rule 4.
In circuits {6,0,3} and {6,0,3,4} there is no_Tocal reference vertex.
The Tevel of the turning edge (06) is ‘c’ while the level of vertex 6
is ‘d’, which contradicts rule 6.

The explanation to the user is: The connection between wheels 6 and 3
is not Tegal because the distance between their centers is zero.
The same problem occurs with the connection between wheels 6 and 4.

Fig. 29. Example of checking the validity of planetary gear system, with the computer program output.

damental circuit, the levels of the vertex representing ThHEoOREM 5. Geometric constraint system is valid (well
a gear wheel and the turning edge incident to it mustconstrained) if and only if its corresponding graph is rigid
be identical. in two-dimensional space. [

Example of deducing the validity of planetary gear sys-Proof: To clarify the proof, suppose that all the graphic
tem A computer program for checking the validity of plan- elements are points, infinite lines, and circles. For each of
etary gear systems that is based on this representation hi{{$se elements, exactly two parameters are needed in order
been developedPolomodov & Gershon, 1995; Preiss & to locate them in the plane. According to the construction of
Shai, 1996. An example of its output to a test case with a the graph(Hoffmann, 1995, each element is represented
verbal explanation to the user is given in Figure 29. InPY @ vertex and each constraint by an edge. Thus the num-
addition, it is possible to arrange the computer program td€r of the parameters needed to describe a geometric con-

advise the designer what to change in the gear kinematigtrained system or any of its subsystems is equal W@.
chain in order to make it valid. To determine all these parameters, one needs to have the

same number of independent constraints minus ttmes-
ber three is dictated by freedom of location in a plane of the

6.4. Checking the validity of constraint systems in whole system A necessary condition for the system to be
CAD using the flow graph representation uniquely defined is that this number should be equal to the
(FGR) number of constraints. Since each constraint is represented

by an edge in the graph, the necessary condition becomes
One of the main topics in CAD system research is the prob-
lem of checking whether a geometric constraints system is 2.v(G) — 3= e(G). (39)
well defined(valid). In other words, to determine whether
the given geometric form is uniquely and validly defined. It For this condition to become sufficient, equal{B9) is to
was found, according to Owé®996 and Hoffmanr(1995  be valid not only for G as one whole, but also for any
that such a constraint system can be represented by a spgtbgraph of G.
cial graph. As will be shown later, in the terminology adopted  On the basis of Section 6.1, the graph possessing such a
in MCA, such a graph is actually FGR since it possesses thguality is actually an FGR. A more detailed proof can be

same properties. The steps for representing the geometrigund in Owen(1996 and Hoffmann(1995. ]
constraint system by a flow graph are as follows. Each ele-

ment of the geometric system, such as line, point, arc, etc., Hence, the process of checking the validity of a geomet-
is represented in the graph by a vertex and each constraint constraint system is as follows) fild the FGR repre-
by an edge. The edge connecting two vertices correspondsenting the geometric constrained system;cBeck the
to the constraint imposed on the corresponding two elementsigidity of the graph using methods explained in Section 6.1.
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Moreover, since FGR is dual to PGfSection 3.1.1  6.5. Employing the connections between the CR in
and the latter corresponds to a mechanism, instead of check- checking the validity of engineering systems

ing the rigidity of the FGR, one can check the mobility of , L . o ,
the mechanism which is dual to the truss represented b9ne of the main contributions of MCA is the ability that it

the FGR. provides to use knowledge from one field in the other on

Consider for example, the geometric constraints systerf'€ Pasis of the connections between the CR. This ability is
of Figure 30. In the geometric constraint system presentelfS€d in this section to turn the validity checking of mecha-
in Figure 30a there are eight elements: four straight line&1SM mobility into checking the stability of its dual truss
and four points: 1,2,3,4 and A,B,C,D. There are 13 con-2nd vice versa. This new way was made possible by apply-
straints: 8 for the interconnection between the elementid the knowledge and theorems from machine theory to
designated in the graph Ly 1 for the distance between Structural analysis and vice versa.
points C and D; 2 for the angle between lines; 2 for the
distance between points and lines. Checking whether th€.5.1. Using the duality relation to check the stability
given data defines a well-constrained geometric system in of determinate trusses
Figure 30a requires first building the corresponding flow On the basis of the mutual dualism between trusses and
graph. Each element is represented by a vertex and eachechanismgSection 3.1.2 one can deduce the following
constraint by an edge. The graph corresponding to theecessary and sufficient rule for checking stability of trusses
problem given in Figure 30a appears in Figure 30b. and mobility of mechanisms.

As was explained above, checking the rigidity of a truss Dualism validity rule : Determinate truss is valid if and
can be performed by employing one of the two method=nly if its dual mechanism is valid, or in other words: de-
given in Section 6.1, for instance, the two edge disjointterminate truss is stable if and only if its dual mechanism is
spanning trees method. mobile.

It can be verified that the graph in Figure 30b is not rigid, Hence, instead of checking the stability of a truss directly,
that is, the geometric constraint system in Figure 30a is nobne can build its dual mechanism and the problem will be-
well defined. This conclusion is easily derived through thecome a problem of checking the mobility of a mechanism. In
dual mechanism shown in Figure 30c. This mechanism isnany cases, checking the mobility of mechanisms can be car-
locked in the given position, since the continuations of linksried out quickly by applying known theorems and algo-
meet at the same point. rithms from mechanism and machine theory.

Fig. 30. Geometric constraints system and the corresponding gfaplGeometric constraints systerth) Corresponding graph.
(c) The dual mechanism.
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@

Fig. 31. Example of checking the validity of a truss by utilizing its dual mechanig@nA truss.(b) Its dual mechanism.

Consider as an example the truss presented in Figprinciple was used in order to check the stability of trusses,
ure 31a. While it is not easy to verify its stability, its dual by checking the mobility of their dual mechanisms instead.
mechanism in Figure 31b is obviously stuck since links 1 This subsection demonstrates the second possibility: it checks
and 3 are located on the same line. Therefore, the originathe mobility of a mechanism by means of the stability of its

truss is not valid, that is, not stable. dual truss.
Consider, for example, the mechanism presented in Fig-
6.5.2. Checking the mobility of mechanisms using ure 32a. It is difficult, even for experts in this field, to
structural analysis decide whether the mechanism in Figure 32a is mobile or

The previous section adopted the principle that a truss istuck. On the other hand, its dual truss, presented in Fig-
valid if and only if its dual mechanism is also valid. The ure 32b, obviously possesses redundancy in its right part,

Fig. 32. Checking the validity of a mechanism by checking the validity of its dual tr{@% mechanism(b) Its dual truss.
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The dual problem: find a kinematical
system such that the ratio of relative
velocities of its two links is large.

This is a known problem in the
mechanism community, and one of the 4
known mechanisms is: 4

Mechanisms and
determinate trusses
are dual

Thy din
© PG; corresponding
®
The corresponding
truss
&\,e P lal Ta

¢

PGR and FGR
are dual
©
@
Fig. 33. Employing truss-mechanism duality in design—diagram showing the systematic creativity technique applied to a design

problem.
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thus its left part lacks rods and hence the whole truss i$erent engineering fields. Moreover, new relations between
unstable. Therefore, the original mechanism of Figure 32&ngineering fields have been derived. This issue has been
is not valid, that is, stuck. demonstrated by introducing a new connection between
mechanisms and trusses, which had been derived from the
relation between their corresponding CR: PGR and FGR.
The theorems and methods embedded in the CR have been
This section introduces a new application of thisfound to be valuable both for theoretical research and prac-
approach—to design. Development of this topic has startetical applications. From the theoretical point of view, they
lately, and only a brief glance into its implementation is enable derivation of theorems and methods in engineering.
introduced in this section. For instance, known methods, such as the displacement
As was explained above, the ability to share knowledgemethod in structures, have been proven to be special cases
between different fields is achieved by exploiting the con-of the methods embedded in RGR. On this basis, new con-
nections between the individual CR. This section shows aections between known methods have been derived. From
new application of this property, which is developing a newthe practical point of view, this enables application of knowl-
technique in design. The example given here is based oadge, algorithms, and methods from one field in another.
using the connection between trusses and mechanisms, es-The knowledge embedded in the representations has been
tablished in Section 3. applied to analyze trusses and to check the validity of dy-
The main idea behind this approach lies in the fact thahamic systems, planetary gear systems, trusses, and geo-
when a mechanism has a special property, its dual trussetric constraint systems in CAD. In addition, this paper
should possess the same property, and vice versa. This ideas introduced a general perspective that enables represen-
is demonstrated in the following small example. tation of integrated multidisciplinary systems as one whole
Suppose one needs to design a truss, such that whenaad means to deal with them in a unified way.
small force is applied to one of its joints, a magnified force The concept of MCA has reaffirmed the postulate that
is produced in a specific rod. Applying the approach transwhen encountering a difficult problem, an effective solu-
forms the problem into a problem of creating the dualtion strategy is to change its representation so as to make its
mechanism. solution transparent.
The process starts with looking for a known mechanism
which has similar velocity characteristics, namely, a mech-
anism that for a small relative velocity in its driving link REFERENCES

produces in its other link a magnified relative velocity. One ,
Andrews, G.C.(1971). The Vector-Network Model—A Topological Ap-

of ma”y m_eChamsmS Sat'Sfy'r_'g this r?qu"ement IS p_re- proach to MechanicsPh.D. Thesis. Waterloo, Ontario: University of

sented in Figure 33c. The relative velocity of link 1 of this  waterloo.

mechanism is considerably larger than that of the link 5Andrews, G.C., & Kesavan, H.K1975. The vector-network model: A
new approach to vector dynamidglechanism and Machine Theory

After building the PGRFig. 33d representing the mecha- 1557275
nism and its dual FGRFig. 339, the truss we were seeking Balabanian, N., & Bickart, T.A(1969. Electrical Network TheoryNew

is produced by reconstruction from the FGRg. 33f). York: John Wiley & Sons. _ _
. . Chua, L.O., Desoer, C.A., & Kuh, E.§1987). Linear and Nonlinear
According to the duality property, the truss possesses the " i icits. McGraw-Hill. New York.

same force characteristics as the velocity characteristics @feo, N.(1974. Graph Theory with Applications to Engineering and Com-

the mechanism, that is, a small external force F causes a Puter SciencePrentice-Hall, Englewood Cliffs. _
h f in th d1. N h h uti Erdman, A.G(1993. Modern Kinematics—Developments in the Last Forty
much greater force in the rod 1. Note, that the solution t0™ " vears New York: John Wiley & Sons.

the design problem was obtained through applying deterrenves, S.J., & Branin, F.H1963. Network topological formulation of
m|n|St|C StepS, thus glVlng rlse to a new dn‘ec“on |n System_ structural anaIyS|s. J. of the Structural Division., ASCE, 1989.
. .. Fenves, S. J., Logcher, R.D., & Mauch, S(P965. STRESS—A User’s
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