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Abstract

The current paper describes the Multidisciplinary Combinatorial Approach~MCA!, the idea of which is to develop
discrete mathematical representations, called “Combinatorial Representations”~CR! and to represent with them vari-
ous engineering systems. During the research, the properties and methods embedded in each representation and the
connections between them were investigated thoroughly, after which they were associated with various engineering
systems to solve related engineering problems. The CR developed up until now are based on graph theory, matroid
theory, and discrete linear programming, whereas the current paper employs only the first two. The approach opens up
new ways of working with representations, reasoning and design, some of which are reported in the paper, as follows:
1! Integrated multidisciplinary representation—systems which contain interrelating elements from different disci-
plines are represented by the same CR. Consequently, a uniform analysis process is performed on the representation,
and thus on the whole system, irrespective of the specific disciplines, to which the elements belong. 2! Deriving known
methods and theorems—new proofs to known methods and theorems are derived in a new way, this time on the basis
of the combinatorial theorems embedded in the CR. This enables development of a meta-representation for engineering
as a whole, through which the engineering reasoning becomes convenient. In the current paper, this issue is illustrated
on structural analysis. 3! Deriving novel connections between remote fields—new connections are derived on the basis
of the relations between the different combinatorial representations. An innovative connection between mechanisms
and trusses, shown in the paper, has been derived on the basis of the mutual dualism between their corresponding CR.
This new connection alone has opened several new avenues of research, since knowledge and algorithms from machine
theory are now available for use in structural analysis and vice versa. Furthermore, it has opened opportunities for
developing new design methods, in which, for instance, structures with special properties are developed on the basis of
known mechanisms with special properties, as demonstrated in this paper. Conversely, one can use these techniques to
develop special mechanisms from known trusses.

Keywords: Combinatorial Representations; Design; Graph Theory; Matroid Theory; Meta-Representation;
Multidisciplinary Combinatorial Approach

1. INTRODUCTION

This paper presents an overview of a general approach
called the Multidisciplinary Combinatorial Approach
~MCA!. During the research conducted with this ap-
proach, first the representations based on discrete math-
ematics, called Combinatorial Representations~CR! were
developed. At this stage, the properties, theorems and meth-
ods embedded in each of the CR were investigated thor-

oughly and the connections between the individual CR
were established. At the next stage, the CR were applied
to represent different engineering systems from different
fields and then to solve them.

From the results already achieved, it appears that the
approach contributes to both practical and theoretical as-
pects of engineering. In the current paper, a few of these
results are provided, while preserving the paper’s main ob-
jective of giving a comprehensive perspective on MCA as a
whole.

The use of graph theory in engineering and AI is widely
accepted and many related works are reported in the liter-
ature, some of which are listed below. In structural analy-
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sis, the first work was done by Kron~1963!, who used the
analogy between electrical networks and elastic structures.
Fenves was the first to develop a software program
“STRESS”~Fenves, Logcher, & Mauch, 1965!, which used
a method based on graphs and networks for the formula-
tion of the structural problems. Structure analysis and op-
timization using graph theory has been performed by Kaveh
~1991, 1997!. In machine theory, the first study of graph
theory as a representation of mechanisms was conducted
by Freudenstein and Dobrjanskyj~1964!. In dynamics, An-
drews~1971! associated vector algebra with graph theory,
and called it the “vector-network model.” Computer pro-
grams based on this formulation have been reported, among
them, VECENT ~Andrews & Kesavan, 1975!. An ap-
proach that uses graph theory in a more general perspec-
tive was published by Bjorke~Wang & Bjorke, 1989!.
Bjorke found out that network theory is probably the best
foundation for establishing a unified theory to represent a
manufacturing system.

In a similar manner, many works published in Artificial
Intelligence used graphs for knowledge representation. One
of the first applications was to represent the state-space by
graphs in which vertices corresponded to states and edges
to the operators, causing the states to be changed~Nilsson,
1971!.

The use of matroid theory to represent engineering sys-
tems is less known in the literature. In structural mechanics,
the known works are by Kaveh, who used matroid theory to
represent structures~Kaveh, 1997!. A comprehensive re-
port on the use of matroid theory in electrical networks and
in statics can be found in Recski~1989!. An extensive list
of matroid theory applications can be found in Iri~1983!.

The approach adopted in this paper is different from the
works reported above. In this approach, the research at first
was focused entirely on developing the CR and investigat-
ing their properties, their embedded methods, and the inter-
relations between them. Only then were the CR applied to
represent engineering systems and to solve the related en-
gineering problems. This conception has provided a gen-
eral engineering perspective, which enabled obtaining the
results to be reported in this paper through six sections,
each presenting a different aspect of the approach, as follows.

Section 2 starts with providing the mathematical foun-
dation for graph and matroid theories on which the CR
presented in the current paper are based. Matroid theory is
an advanced topic in discrete mathematics, which is not
familiar to the engineering community and therefore graph
theory terminology was employed in its explanation. In
the current paper, the following four graph representations
are introduced: Flow Graph Representation~FGR!, which
is applied to represent static systems; Potential Graph Rep-
resentation~PGR!, employed to represent mechanisms; Re-
sistance Graph Representation~RGR!, with its two
embedded methods, employed to represent electrical, dy-
namical, hydraulic systems, and indeterminate trusses; and
the Line Graph Representation~LGR!, employed to repre-

Notations
0 zero matrix
A incidence matrix
B scalar circuit matrix
;B vector circuit matrix

B~M ! circuit matrix of a matroid
C set of matroid circuits
D vector of scalar displacements of truss elements
dim~ ;F! dimension of the forces acting in the truss
E set of graph edges
e~G! number of edges in graph G
;F flow vector
;F~e! flow in edge e

F~e! magnitude of the flow in edge e
FI set independent subsets of a matroid
G graph
G* the dual graph of graph G
GF flow graph
GD potential graph
GR resistance graph
K ~e! scalar conductance of edge e
K ~e! matrix conductance of edge e
KR square matrix containing the conductances of the resistance

edges of a graph
K T ' conductance cutset matrix
K D conductance cutset matrix of the potential difference sources
M matroid
MQ matroid defined by matrixQ
;P vector of flows in the flow sources
;Q vector cutset matrix

Q scalar cutset matrix
Q~M ! cutset matrix of a matroid
[r~e! unit vector in the direction of edge e
R~e! scalar resistance of edge e
R~e! matrix resistance of edge e
RC' resistance circuit matrix
RP resistance circuit matrix of the flow sources
RR square matrix containing the resistances of the resistance

edges of a graph
S underlying set of a matroid
T spanning tree
T' spanning tree without sources
T set of matroid bases
<Vi relative linear velocity of linki

V set of the graph vertices
v~G! number of vertices in graph G
<D potential difference vector
<D~e! potential difference in edge e

p~i! potential of vertexi
B empty set

Abbreviations

CCM Conductance Cutset Method
CR Combinatorial Representations
FGR Flow Graph representation
PGR Potential Graph Representation
LGR Line Graph Representation
MCA Multidisciplinary Combinatorial Approach
RCM Resistance Circuit Method
RGR Resistance Graph Representation
RMR Resistance Matroid Representation

Matrices and sets in the current paper are designated by bold letters.
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sent planetary gear systems. In addition, one matroid rep-
resentation called Resistance Matroid Representation~RMR!
is introduced and shown to be a generalization of the RGR.

Section 3 introduces one of the contributions of MCA—
deriving new connections between remote engineering fields.
In this section, based on the duality connection between
FGR and PGR, a novel connection between trusses and
mechanisms is derived. This innovation opens up new av-
enues in research and practical applications, some of which
are reviewed in the following sections.

Section 4 gives a brief introduction to the contribution of
MCA to the theoretical research. It postulates that the theo-
rems embedded in the CR can be considered to be meta-
theorems, from which known theorems and methods in
engineering can be derived. This issue is demonstrated by
proving that known theorems and methods in structural me-
chanics are derived from a theorem embedded in RGR,
called Tellegen’s theorem. This enables a new method of
research where new theorems and methods will be devel-
oped on the basis of the knowledge embedded in the CR.

Section 5 highlights the contribution of MCA to dealing
with integrated multidisciplinary systems. It is based on the
fact that different engineering fields are represented by the
same combinatorial representation, in this case RGR. This
opens up the possibility of applying a unified method to
deal with integrated systems consisting of elements from
different fields. This section presents an example of a sys-
tem composed of elements from dynamics, statics, and elec-
tricity interacting with one another. The graph representation
of that system, on the other hand, does not distinguish be-
tween those different types of elements.

Section 6 introduces the further application of MCA that
allows checking the validity of the engineering problem
before applying the analysis methods to solve it. This issue
is similar to the process done in the first representation used
in AI—the logic representation, where the logic formulas
should satisfy syntax rules, and if they do, they are called
“well-formed formulas”~Genesereth & Nilsson, 1987!. MCA
deals differently with this issue: Its checking rules are based
on the knowledge embedded in the CR. Demonstration of
this ability is presented in subsection 6.5, where a problem
of checking the rigidity of a truss, which was found to be
difficult even for experts, is easily solved using MCA. This
issue enhances Herbert Simon’s postulate: “solving a prob-

lem simply means representing it so as to make the solution
transparent. If the problem solving could actually be orga-
nized in these terms, the issue of representation would in-
deed become central”~p. 153! ~Simon, 1981!.

Section 7 introduces a possibility of developing new de-
sign techniques by using properties of MCA. Here, the idea
for the design is derived from knowledge and ready designs
from other fields. This idea is carried out by using the con-
nection between mechanisms and trusses introduced in
Section 3.

2. COMBINATORIAL REPRESENTATIONS

Combinatorial Representations~CR! are special represen-
tations based on discrete mathematics and used in MCA to
represent various engineering systems. Combinatorial Rep-
resentations are based on graph theory, matroid theory, and
discrete linear programming. Table 1 lists combinatorial
representations used in this paper and the engineering sys-
tems to which they are applied.

2.1. Mathematical foundation of the Combinatorial
Representations

This section gives a brief introduction to the mathematical
topics on which the combinatorial representations devel-
oped in this paper are based. These mathematical topics are
network graphs and matroid theory. Network graphs are
used in four graph representations: Flow Graph~FGR!, Po-
tential Graph~PGR!, Resistance Graph~RGR! and Line-
Graph~LGR! Representations. The matroid theory is used
in the Resistance Matroid Representation~RMR!.

2.1.1. Network graphs

This section provides the reader with a brief survey on
graph theory terminology. More details can be found in
Shai~1997! and Shai and Preiss~1999b! or books on graph
theory, such as Swamy and Thulasiraman~1981!.

A graph is defined by the ordered pair G5 ^V,E&, where
V is the vertex set and E is the edge set, and every edge is
defined by its two end vertices. If each edge in the graph is
assigned a direction, then the graph is known as a directed
graph. The directed graph is a network graph, if each edge

Table 1. Combinatorial representations, their applications, and the corresponding sections in the current paper

The Combinatorial Representation Represented engineering systems Section

Flow Graph Representation~FGR! determinate trusses, geometric constraint systems 2.2
Potential Graph Representation~PGR! mechanisms 2.3
Resistance Graph Representation~RGR! mass-spring-damper dynamic systems, electric circuits, hydraulic systems,

multidimensional indeterminate trusses, integrated systems
2.4

Resistance Matroid Representation~RMR! indeterminate trusses 2.5
Line Graph Representation~LGR! planetary gear systems 2.6
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and vertex is assigned properties of flow and potential,
respectively.

For convenience, this paper uses linetype attributes, which
are:

A solid line—represents an edge with unknown value of
flow or potential difference.

A bold line—represents an edge for which the flow or
potential difference is known.

A dashed line—represents a chord, which is an edge not
included in the spanning tree. If the value of the flow
in the chord is known, then it is both dashed and bold.

A double line—represents a branch of a spanning tree.

In some of the graphs, one of the vertices will be chosen to
be a special vertex called a “reference vertex,” highlighted
with a gray color.

To deal with the graph representations used in this paper,
one should first define cutset and circuit matrices in their
vector and scalar forms. Given a connected network graph,
choosing a spanning tree within it defines its branches and
chords.

A cutsetin a connected graph is a minimal set of edges
whose removal results in a disconnected graph. It can be
proved~Swamy & Thulasiraman, 1981! that a cutset sepa-
rates the graph into two components~maximal connected
subgraphs!. When a cutset includes only one branch of the
spanning tree, it is called a “fundamental cutset,” since any
cutset in the graph can be obtained as a linear combination

of these cutsets. Thus, this paper deals only with fundamen-
tal cutsets; hence, for brevity, they will be called cutsets.
Each cutset is defined by the corresponding branch and is
labeled with its index. The direction of the cutset is defined
by the direction of its branch, as shown in Figure 1a.

Thevector cutset matrix ;Q is a matrix that describes all
the graph cutsets, but contains only topological informa-
tion. The matrix has e~G! columns~corresponding to the
edges of the graph! and v~G! 2 1 rows ~corresponding to
the cutsets or the branches that define them!. The value of
the matrix element@ ;Q# ij may be11, 0, or21. It is 11 if
edgej is included in the cutset that is defined by branchi
and has the same orientation as the cutset,21 if it has the
opposite orientation, and 0 if it is not included in the cutset.
The vector cutset matrix of the graph of Figure 1a is shown
in Figure 1b.

The scalar cutset matrixQ is obtained from the vector
cutset matrix ;Q by multiplying each column with a unit
vector in the direction of the edge to which it corresponds.
For example, the scalar cutset matrix of the graph of Fig-
ure 2a is given in Figure 2b.

It is well known from vector algebra that the unit vector
with anglea can also be written as

[r 5 S sina

cosa D.

This notation is extensively used in the current paper.
A circuit is a set of edges that form a closed path. A

circuit is called a fundamental circuit if it includes exactly

Fig. 1. Example of a vector cutset matrix.~a! The cutsets of the graph.~b! The vector cutset matrix.

Fig. 2. Example of scalar cutset matrix.~a! The cutsets of the graph.~b! The scalar cutset matrix.
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one chord. This paper deals only with fundamental circuits,
and for brevity they will be called circuits. Each circuit will
be labeled with the index of the chord that defines it. The
direction of the circuit is defined by the direction of its
chord, as shown in Figure 3a.

The vector circuit matrix ;B, demonstrated in Figure 3b,
has e~G! columns as for the vector cutset matrix and e~G! 2
v~G! 11 rows corresponding to the circuits. Each circuit is
defined by a chord; therefore the number of rows is equal to
the number of chords defined by the spanning tree. The
element@ ;B# ij is 11 if edgej is included in the circuit de-
fined by chordi , and has the same orientation as the circuit,
21 if it has opposite orientation, 0 otherwise.

Every edge e is assigned a vector called theflow and
designated by;F~e! that can correspond to a force, flow of
liquid, money, goods, or the like.1

Every vertex v is assigned a vector called thepotential2

and designated byAp~v!. The potential may represent a phys-
ical quantity such as displacement, pressure, or voltage, but
it can also be used for other attributes. For instance, in
the shortest path algorithm, it represents the lower bound
of the distance~or the combined weights of the edges!
from the current vertex to the target vertex~Shai, 1997!.
The potentials of the vertices of edge e5 ^v1,v2& define
the potential difference of that edge, designated<D~e!,
as follows:

<D~e! 5 Ap~v2! 2 Ap~v1! ~1!

2.1.2. Basics of matroid theory

Matroid theory is a branch of discrete mathematics that
possesses various important features, among them, the fea-
ture of generality that allows consideration of matroid theory
as a generalization of graph theory. To simplify the expla-
nation, matroid theory is introduced in this paper using ter-
minology of graph theory. Matroid representation is used in
MCA to represent various engineering systems, whereas in

this paper, it is used to represent and analyze indeterminate
trusses.

Definition. If we denoteS to be a finite set andFI to be
a collection of certain subsets ofS, then the pair M5 ^S,FI &
is called a matroid if the following properties are satisfied:

1. B [ FI

2. If X [ FI andY # X thenY [ FI must also hold.

3. If X [ FI and Y [ FI and 6X 6 . 6Y 6, then there
exists an element x[ X 2 Y, so thatY ø $x% [ FI .

S is said to bethe underlying set of matroidM. The subsets
of Swhich belong toFI are said to beindependent subsets;
otherwise they are calleddependentsubsets.

Maximal independent sets of M, that is, independent sets
that are not contained in any other independent set of M,
are calledbases ofM. For every base of M there is a cor-
respondingcobasewhich is the complement of the base to
S. It can be proved~Recski, 1989! that the sizes of all the
bases of a matroid are equal. In graph theory terminology, a
base is a spanning tree of the matroid. Thus, every matroid
can be described by the collection of all its basesT, instead
of the collection of all its independent setsFI . Minimal
dependent sets of M, that is, dependent sets which do not
contain other dependent sets, are calledcircuits of M. The
collection of all the circuits of M is denoted byC. It also
can be used instead ofFI to describe the matroid.

Definition of a matroid cutset. The subsetX # S is
called acutset of Mif and only if it satisfies the following
conditions:

1. X Þ B;

2. 6X ù Y 6Þ 1 for everyY [ C;

3. X is minimal with respect to these properties.

Since a base is a maximal possible set of independent
elements, adding an additional element to the base turns it
into a dependent set, that is, a set that contains a circuit.
Therefore every cobase element defines exactly one circuit
which contains the element itself and all the other elements
are from the base only. Such a circuit is called a fundamen-
tal circuit.

It can also be shown that every base element defines a
unique cutset that contains the element itself and all the
other elements are cobase elements. Such a cutset is called
a fundamental cutset.

2.1.2.1. Representing graph as a matroid.Consider the
graph of Figure 4a and its corresponding vector cutset ma-
trix in Figure 4b. One can define a matroid associated with
this matrix as follows: MQ 5 ^SQ, FQ

I &, where the underly-
ing set SQ is equal to the set of columns of;Q, and the
family of independent sets FQ

I is the collection of all sets of
columns which are linearly independent. According to lin-

1In control theory, this is called the “through variable,” but the word
“flow” is more suitable for the work reported here.

2The potential difference between the vertices defining an edge is known
in control theory as the “across variable.”

Fig. 3. Example of a vector circuit matrix.~a! The circuits of a graph.
~b! The corresponding vector circuit matrix.
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ear algebra, every set of graph edges that corresponds to a
minimal dependent set of columns of;Q forms a circuit in
the graph. By matroid properties, such a set is also a circuit
in the matroid. Thus, the circuits in MQ completely corre-
spond to the circuits in the graph. Moreover, a similar claim
is true for the bases of MQ and spanning trees of the graph,
cutsets in MQ and cutsets in the graph, etc.

One can see, for example, that columns 1, 2, and 3 of;Q
of Figure 4b are linearly dependent, whereas edges 1, 2,
and 3 form a circuit in the graph~Fig. 4a!. On the other
hand, columns 1, 2, 4, and 6 of the matrix form the maxi-
mum possible independent set of columns, that is, the base
of MQ, whereas edges 1, 2, 4, and 6 in the graph form a
spanning tree.

2.1.2.2. Representing matrix as a matroid.Previously, it
was explained that every vector cutset matrix of a graph can
be considered as a matroid and that such a matroid actually
represents the graph. In the current section, this issue is
expanded and it is shown that every matrix corresponds to a
matroid. This time it is possible that this matroid does not
have a corresponding graph.

Let Q be a m3 n matrix. The matroid MQ5 $SQ, FQ
I % can

be defined as follows.

1. The underlying set SQ is the set ofn column vectors
of Q.

2. Every subset of linearly independent columns ofQ
belongs to FQI .

Consider, for example, the matrix in Fig. 5.
The underlying setSQ of the matroid representing the

matrix of Figure 5 is:

SQ 5 HS 1
1D,S 2

1D,S 0
3D,S 2

2DJ .

Some of the independent subsets of FQ
I are:

HS 1
1D,S 2

1DJ , HS 0
3D,S 2

1DJ ,HS 0
3DJ ,

the first two of which are also the bases of MQ, since any
additional column fromSQ will cause a linear dependence.
And some of the circuits~elements ofCQ! are:

HS 1
1D,S 2

2DJ ,HS 1
1D,S 0

3D,S 2
1DJ .

2.2. The Flow Graph Representation (FGR)

Definition of the Flow Graph Representation
(FGR). A network graph GF is a flow graph, designated by
GF, if the flows in the edges are independent of the poten-
tial differences and satisfy the Flow Law, stated as follows:
The vector sum of the flows in every cutset of G is equal to
zero.

The flow law may be recognized as a generalization of
the well-known Kirchhoff ’s Current Law~KCL!. Note that
KCL is restricted only to one dimension, which is appro-
priate for electrical circuits, while the flow law can be
multidimensional; thus it can also be used for structures
and other engineering systems that require two or three
dimensions.

The matrix form of the Flow Law is:

;Q{ ;F 5 0, ~2!

where ;F is the vector of the flows, orFlow Vector.
The FGR can be used to represent various engineering

systems, such as simple electrical circuits, mass-cable sys-
tems in force equilibrium, and so forth.

The important property of the flow graph is that it should
not contain cutsets consisting entirely of the flow sources,
namely, edges whose flows are given. For if such cutsets of

Fig. 4. Graph to be represented by a matroid.

Fig. 5. Matrix to be represented by a matroid.
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sources existed, then, by the flow law, there would be a
linear dependence between the flows in these sources, vio-
lating the definition of the flow sources. Therefore, the span-
ning tree of the flow graph should be chosen in such a way
that it does not include the flow sources.

2.2.1. Representing mass-cable systems by the
flow graph

Figure 6a shows an example of a system of masses con-
nected by cables which is known to be in static equilibrium.
The objective is to find the gravitation force acting on the
mass B. Since the system is in static equilibrium, it is ob-
vious that it should be solved using statical equations relat-
ing the forces acting in the system. The most convenient
representation for this purpose is FGR. Each edge in FGR
corresponds to an acting force, no matter whether it is ten-
sion in the cable or an external force. Each vertex corre-
sponds to a point or a body, on which a number of forces is
acting, like a mass or a pulley. The flow graph representing
the system of Figure 6a is shown in Figure 6b.

The analysis equations for this graph are as follows.

;Q{ ;F 5 0 ] 1
1 0 0 0 1 1 1
0 1 0 0 21 0 21
0 0 1 0 0 0 1
0 0 0 1 0 1 0

21 1 0 0 0 0 0
21 0 1 0 0 0 0

2{1
T1

T2

T3

T5

T4

MAg
MBg

2
5 0 ] 1

1 0 1 1
1 0 21 21
1 0 0 1
0 1 0 0

2{1
T1

T5

T4

MBg
2 5 21

1
0
0
1
2 3 MAg.

Note, that since the engineering system of Figure 6a is one-
dimensional, its vector and scalar cutset matrices are
identical.

2.2.2. Employing the Flow Graph Representation
(FGR) in representing determinate trusses

The conventional procedure used to analyze determi-
nate trusses is based on building the force equilibrium
equation for each joint of the truss and for each coordinate
axis. This strongly correlates with the flow law, according
to which, the sum of the flows at each cutset~and thus
vertex! of the graph is equal to zero. Accordingly, one can
represent a determinate truss by d~G! one-dimensional
FGRs, each corresponding to a different coordinate axis.
For example, a plane determinate truss of Figure 7a is
represented by two flow graphs—one corresponding to
the X coordinate~Fig. 7b! and the other to the Y coordi-
nate~Fig. 7c!.

The graphs presented in Figure 7b and Figure 7c are of
the same topology as the represented truss. One can think
of FGR as if the flow comes out from vertex O, flows
through the flow sources~external forces!, then through the
edges~rods! and returns back to the vertex O through the
reaction edges. Vertex O is called the “reference vertex”
~gray vertex! since it assures that the sum of all the external
forces acting on the truss is also equal to zero. The refer-
ence vertex can be considered to be the equivalent of the
ground in electrical circuits.

One can see that if the flows in the edges of the corre-
sponding graph are equated to the correct forces in the truss,
they would be valid, that is, would satisfy the flow law.

To perform the statical analysis of the truss, there is a
need to use the angles of the rods and the external forces.
The latter knowledge affects the ratio between the flows in

Fig. 6. Example of a mass–cable system and its corresponding graph.~a! System of cables and masses in static equilibrium.~b! FGR
representing the system.
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the two FGRs corresponding to the X and Y coordinates.
The most efficient way to store such information is by merg-
ing the two one-dimensional graphs into one two-
dimensional graph, setting the angles of the flows to be
constant. In other words, instead of representing the truss
by two FGRs with one dimensional flow in each, one FGR
with multidimensional flow is used, as explained below.

The steps for representing the truss by a multidimen-
sional flow graph are:

Step 1. Create a vertex in the graph for every pinned
joint in the truss.

Step 2. For every rod create an edge in the graph, called
a “truss edge”; its end vertices correspond to the joints that
connect the corresponding rod to the truss. Assign an arbi-
trary orientation to each truss edge and a unit vector[r~e!
indicating the direction from the tail joint to the head joint.
The engineering meaning of the flow in the edge is the
force applied on the head joint by the rod in the direction of
the unit vector[r~e!. As is explained in detail in Shai~2001a!,
if the flow in the edge is positive, then the rod is in a
compression state, otherwise it is in a tension state.

Step 3. Create a reference vertex~gray vertex! or choose
one of the vertices corresponding to a joint connected to a
hinged support to be the reference vertex of the graph.

Step 4. For each externally applied force and reaction, add
an edge to the graph as follows. For each external applied
force, a “flow source edge” is added. Its tail vertex is the ref-
erence vertex and the head vertex is the vertex correspond-
ing to the joint upon which the external force acts. As was
explained earlier, these edges should always be chosen to be
chords. Since flow source edges are chords and their values
are known, they appear in the graph as bold dashed lines. For
each roller support reaction a “reaction edge” is added. Its
tail vertex is the vertex corresponding to the joint upon which
the reaction acts and the head vertex is the reference vertex.
The reaction edge is assigned a unit vector directed along the
reaction. For each hinged support~except for the one corre-
sponding to the reference vertex!, two “reaction edges” are
added, the first having the corresponding unit vector di-
rected along the X axis and the second along the Y axis.

In statically determinate trusses, the sum of forces at ev-
ery joint is equal to zero. In the terminology of the FGR,

Fig. 7. Plane determinate truss and its two one-dimensional Flow Graph Representations.~a! Plane determinate truss.~b!,~c! FGRs
corresponding to the X and Y coordinate axes.
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this means that in the graph corresponding to the truss,
the flow law is satisfied. Thus, the force analysis process
of the truss is transformed into a search for flows that sat-
isfy the flow law in the corresponding flow graph, while the
flows in the flow sources are given. An example of a truss,
its corresponding graph, and the equations written accord-
ing to the flow law@Eq. ~2!# are given in Figure 8.

2.3. The Potential Graph Representation (PGR)

Definition of a Potential Graph Representation
(PGR). A network graph G is a Potential Graph, desig-
nated GD, if the potential differences in its edges are inde-
pendent of the flows in these edges and satisfy the Potential
Law, which states: For every circuit in the graph, the sum of

Fig. 8. Example for analysis of a determinate truss using the FGR~Flow Graph Representation!. ~a! Statically determinate truss.~b!
Corresponding flow graph.~c!,~d! Force analysis equations in the vector and scalar cutset matrix forms.
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the potential differences of the circuit edges is equal to
zero. In matrix form this is written:

;B{ <D 5 0 ~3!

where <D is the vector of potential differences, orPotential
Difference Vector.

Proof of the potential law: In the summation of potential
differences of all circuit edges, the potential of each vertex
appears twice with opposite signs— either because it is once
a head vertex and once a tail vertex, or since it appears once
in the direction of the circuit and once in the opposite di-
rection. Therefore this summation is equal to zero. n

This law is a vectorial generalization to several dimen-
sions of KVL~Kirchhoff ’s Voltage Law! which is stated for
a one-dimensional or scalar system.

The important property of PGR is that there can be no
circuits consisting of only potential difference sources~the
potential differences of the edges are given!. If such circuits
of sources existed, then there would be a linear dependence
between the potential differences in these sources, thus vi-
olating the definition of potential difference sources. There-
fore, the spanning tree of PGR should be chosen so that it
includes all the potential difference sources.

2.3.1. The potential graph representation (PGR) of a
mechanism

The main property of a mechanism is that the vector sum
of the link relative velocities is equal to zero in every cir-
cuit formed by its links. This property suffices for the analy-
sis, so it is reasonable to represent it by a PGR. In this
representation, the potential difference of the edges will
correspond to the relative velocities of the links in the mech-
anism. Note that this is different from the graph represen-
tation that is commonly used for mechanisms~Erdman,
1993!.

The steps for representing a mechanism by PGR are as
follows.

Step 1. For every joint of the mechanism having individ-
ual velocity, create a corresponding vertex in the graph.

The potential of vertexi , designated Ap~i !, is equal to the
linear velocity of the corresponding joint. The velocities of
all the fixed joints in the mechanism are zero, thus all these
joints are represented by the same vertex—the reference
~gray! vertex.

Step 2. For every link of the mechanism, create a corre-
sponding edge in the graph; its end vertices correspond to
the joints that connect the link to the mechanism. The po-
tential difference of this edge, designated<D~e! is equal to
the relative velocity of the corresponding link, and can be
written <D~e! 5 <V~e! 5 V~e!{ [v~e!, where V~e! is the magni-
tude of the relative linear velocity and[v~e! is a unit vector
in the direction of the relative linear velocity of the link.

Step 3. Label the edge corresponding to the driving link
with a bold line since its potential difference~correspond-
ing to the relative velocity between its end vertices! is known.
This edge is the potential difference source edge.

Step 4. The relative velocity of a link is the velocity of
the head joint minus the velocity of the tail joint. As was
mentioned above, the property needed for analyzing the
velocities in a mechanism is that in each circuit formed by
links, the sum of their relative velocities is equal to zero.
Since the relative velocity of a link is represented by the
potential difference of the corresponding edge, the Poten-
tial Law @Eq. ~3!# is actually the implementation of this
property.

Figure 9 shows an example of a mechanism and its cor-
responding PGR.

2.3.2. The analysis algorithm

The algorithm is based on the principle that every funda-
mental circuit must satisfy the Potential Law, as follows.

Step 1. Find a spanning tree, and label each branch with
a double line. Every chord defines a circuit.

Step 2. For this spanning tree, write the vector circuit
matrix ;B, as defined in Section 2.1.1.

Fig. 9. Example of representing a mechanism by PGR~Potential Graph Representation!. ~a! The mechanism.~b! The corresponding
PGR.
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Step 3. On the basis of equation~3!, write the equations:

~ ;B ;BD!{S <D
<DD
D 5 0 r ;B{ <D 5 2 ;BD{ <DD , ~4!

where ;BD is the part of the vector circuit matrix correspond-
ing to the potential difference sources and<DD is the vector
of the potential difference sources~velocities of the driving
links!.

Step 4. Solve the 2{~e~G! 2 ~v~G! 2 dr~G! 2 1!! equa-
tions obtained in step 3.

An example of a mechanism analysis using the PGR is
shown in Figure 10.

2.4. Resistance Graph Representation (RGR)

In the representations introduced until now, there was no
relation between the flows of the edges and potentials of

Fig. 10. Kinematic analysis of a mechanism using PGR.~a! A mechanism.~b! The corresponding potential graph.~c!,~d! Sets of
vector and scalar equations for its analysis.
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the vertices. This section introduces a graph representation
that possesses such a relation. To clarify the explanation,
the representation is first applied to electrical circuits. Do-
ing so enables us to demonstrate the transition from one-
dimensional problems, which are well known in the literature,
to the multidimensional ones, thus obtaining an insight into
the generality of the approach. Moreover, since the repre-
sentation is applied to different engineering fields consist-
ing of elements with different dimensions, it is suitable to
be the representation of multidimensional integrated sys-
tems, as shown in the current section. In the next section,
this representation is extended on the basis of matroid theory.

2.4.1. Description of the representation

The Resistance Graph Representation~RGR! is a gener-
alization of FGR and PGR. RGR is a network graph, where
there are edges with a dependence between the flow and the
potential difference. Such a dependence is characterized by
either a scalar or a matrix. The scalar is used if there is an
explicit dependence between the vector magnitudes of the
flow and potential difference; otherwise the matrix is used.
For both scalar and matrix possibilities there are two
presentations—resistance presentation~designated by R~e!
andR~e! respectively! and conductance presentation~des-
ignated by K~e! andK(e) respectively!, as follows:

6 <D~e!6 5 R~e!{6 ;F~e!6; 6 ;F~e!65 K ~e!{6 <D~e!6 ~5!

<D~e! 5 R~e!{ ;F~e!; ;F~e! 5 K ~e!{ <D~e!, ~6!

where <D~e! is the potential difference in edge e and;F~e! is
the flow. In addition, flows and potential differences of the
resistance graph must satisfy the flow and potential laws,
respectively.

When dealing with resistance graph representation, an
important theorem from the graph theory, called the orthog-
onality principle, becomes essential.

Theorem 1. The orthogonality principle: Vectorial cut-
set and circuit matrices of a graph are orthogonal:

;B{ ;Qt 5 0. ~7!

n

As is shown in Swamy and Thulasiraman~1981!, from
this principle the following equations are derived:

<D 5 ;Qt{ <DT ~8!

;F 5 ;Bt{ ;FC, ~9!

where <DT is the vector of potential differences in the branches
of the spanning tree and;FC is the vector of flows in the
chords of the graph.

The edges in the resistance graph are divided into three
principal groups: flow sources, potential difference sources,
and resistance edges. Flow sources, denoted by bold dashed
lines, are edges for which the value of the flow is known

and is independent of the potential difference. Potential dif-
ference sources, denoted by bold solid lines, are the edges
in which the potential difference is known and is indepen-
dent of the flow in that edge. Resistance edges, denoted by
black solid lines, are the edges at which there is a depen-
dence between the flow and the potential difference.

2.4.2. Conductance Cutset Method (CCM) for
analyzing the RGR

The analysis problem for the resistance graph is as fol-
lows: Given the flows in the flow sources, the potential
differences in the potential difference sources, and the re-
sistances~or conductances! of the resistance edges, find the
flows and potential differences in all the e~G! edges of the
graph. The obvious method for solving the resistance graphs
is to write all the equations based on Eq.~2!, ~3!, ~5!, and
~6! and then to solve them simultaneously. This method has
a high computational complexity; thus in the current and
next sections, efficient methods based on graph theory theo-
rems will be shown, with the method called the “Conduc-
tance Cutset Method”~CCM! explained first.

The first step in solving the resistance graph is to find a
suitable spanning tree, which, for the reasons explained in
Sections 2.2 and 2.3, contains all the potential difference
sources and does not contain any flow sources. Then, using
Eq. ~10!, derived from Eqs.~2!, ~3!, ~5!, and~6!, as shown
in Shai~1999!, a set of linear equations is obtained:

~ ;QT 'R{KR{ ;QT 'R
t !{ <DT ' 5 2~ ;QT 'R{KR{ ;QDR

t !{ <DD 2 ;QT 'P{ ;FP,

~10!

whereD and P are the edges corresponding to the potential
difference and flow sources, respectively, and R are all the
other edges of the graph—the edges with resistance. T' are
those branches of the spanning tree which are not sources.

For convenience, the matrix~ ;QT 'R{K R{ ;QT 'R
t ! is desig-

nated asK T ' and is termed the “conductance matrix of the
spanning tree T'.” Matrix ~ ;QT 'R{K R{ ;QDR

t ! is designated as
K and is called “the conductance matrix of the potential
sources.” These are shown in Eq.~11!.

~K T ' !{ <DT ' 5 2~K D!{ <DD 2 ;QT 'P{ ;FP. ~11!

The values of the elements in these conductance matrices
can be derived on the basis of linear algebra considerations
as follows.@K T ' # ij equals the sum of conductances of the
edges which belong to both cutsetsi and j defined by
branches with resistance; the sign of the conductance is
taken positive if it is directed similarly relative to both cut-
sets and negative otherwise.@K D# ij also equals the sum of
conductances of the edges that belong to both cutsetsi and
j, although this timej is a branch which is a potential dif-
ference source, whilei is a branch with resistance.

After solving Eq.~10! or ~11!, all the potential differ-
ences in the branches are known. All the potential differ-
ences in the graph are obtained by using Eq.~8! and after
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that, all the flows in the graph are obtained by applying
Eq. ~5! or ~6!.

2.4.3. Resistance Circuit Method (RCM) for solving
the RGR

It is well known in graph theory~Deo, 1974!, that for
each planar graph, there exists a dual graph. This section
shows that on the basis of this dualism, Resistance Circuit
Method~RCM! for RGR analysis can be derived from CCM.
The relations between RGR and its dual graph are given in
Table 2. Thus, one can develop a new method for analysis
of resistance graphs by just rewriting the CCM method in

the terminology of the dual resistance graph. This method
is called Resistance Circuit Method~RCM! and is formu-
lated by Eq.~12! ~Shai, 1999!.

~ ;BC'R{RR{ ;BC'R
t !{ ;FC' 5 2~ ;BC'R{RR{ ;BPR

t !{ ;FP 2 ;BC'P{ <DD ,

~12!

whereRR is a square diagonal matrix, the components of
which correspond to the resistances in the resistance edges.
For convenience, the matrix~ ;BC'R{RR{ ;BC'R

t ! is designated
by RC' and is termed the resistance matrix of the chord set
C'. Matrix ~ ;BC'R{RR{ ;BPR

t ! is designated byRP and is
called the resistance matrix of the flow sources. Using those
notations we rewrite Eq.~12! in the following way:

~RC' !{ ;FC' 5 2~RP!{ ;FP 2 ;BC'D{ <DD . ~13!

The values of the elements of the resistance matrices can be
derived on the basis of linear algebra considerations of the
above dualism relation, and they are as follows.@RC' # ij is the
sum of the resistances of the edges which belong to both cir-
cuits i and j, defined by the chords which are not sources.
The sign of the resistance is positive if the corresponding edge
isdirectedsimilarly relative tobothcircuitsandnegativeother-
wise. @RP# ij is calculated in the same way, except that this
time the circuitj is defined by the chord which is a flow source.
Equation 13 is actually a set of linear equations, the un-
knowns of which are the flows in the resistance chords of the
graph.After solving it, all the flows in the graph are obtained
by using Eq.~9! and after that, all the potential differences in
the graph are obtained using Eq.~5! or ~6!.

Table 2. Correspondence between the RGR and its dual graph

RGR Dual graph

e— edge e'— edge
T—spanning tree C—set of chords
T'—branches which are not

sources
C'— chords which are not

sources
R~e!, R(e)—resistance K~e' !, K(e' )— conductance
<D~e!—potential difference ;F~e' !—flow
<DD—potential difference source ;FP—flow source
;Q—vector cutset matrix ;B—vector circuit matrix

CCM— Conductance Cutset
Method

RCM—Resistance Circuit
Method

The dualism is also applied to the sub-matrices of B and Q, for instance
;QT 'R ;BC'R

;QDR
t ;BPR

t

Table 3. Representing engineering systems with RGR

Engineering system interpretation

Engineering system Edge and flow Vertex and potential
Name of the

element
Flow–potential

difference relation

Electrical circuit Edge corresponds to electrical
elements: resistor, condenser, coil,
current and voltage sources. Flow
corresponds to electrical current
through the element

Vertex corresponds to the junction
in the circuit. Potential corresponds
to the electric potential~voltage! of
the junction.

Resistor Di 5 Fi Ri

Capacitor
Fi 5 Ci

dDi

dt
5 Ci sDi

Coil
Di 5 L i

dFi

dt
5 sLi Fi

Dynamical system Edge corresponds to dynamical
elements: mass, damper, spring
external force, initial tension or
velocity. Flow corresponds to the
internal force in the element.

Vertex corresponds to junction
having independent velocity.
Potential corresponds to the
velocity of the junction.

Mass
Di 5

Fi

mi s

Spring
Di 5

sFi

k i

Damper Di 5 bi Fi

Static system Edge corresponds to a system
element with an internal force and
the flow to the force in that
element.

Vertex is a joint connecting system
elements. The potential corresponds
to the displacement of the joint.

Rod Fi 5 K{Di

Reaction No relation
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2.4.4. Representing one-dimensional engineering
systems with Resistance Graph Representation

This section shows how to represent various engineering
systems with the resistance graph. The fact that the same
representation has been applied to represent systems that
belong to remote engineering fields opens two far ranging
possibilities: first, to use methods developed in one field
for the other field, and second, to solve integrated multidis-
ciplinary engineering systems. Both issues are described
later in the paper.

The systems that are described in this section are electri-
cal systems, dynamic systems, and multidimensional stati-
cal systems.

Table 3 gives all relevant information on how to represent
these engineering systems with RGR, including the informa-
tion that can be found in the literature~e.g., Shearer et al.,
1971! about representation of one-dimensional systems.

2.4.5. Representing one-dimensional engineering
systems with Resistance Graph Representation

In this section, RGR is applied to electrical systems, since
applications of graph theory to these systems are well known
in the literature~Balabanian & Bickart, 1969!. The two
methods embedded in this representation, CCM and RCM
~Sections 2.4.2 and 2.4.3!, are applied to analyze both elec-
trical circuits and multidimensional indeterminate trusses.
Doing so emphasizes one of the main advances of MCA,
that is, obtaining a unified perspective on systems consist-
ing of elements with different dimensions and from differ-
ent engineering fields.

The representation of an electrical circuit is quite simple:
each junction corresponds to a vertex and an element to an
edge as shown in Figure 11. The solution equations derived
by applying the CCM to the graph of Figure 11 are as
follows:

QT 'T ' 5

2

3

5

2 3 5

1
1

R1
1

1

R2
1

1

R4

1

R1

1

R4

1

R1

1

R1
1

1

R3
1

1

R6
2

1

R6

1

R4
2

1

R6

1

R4
1

1

R5
1

1

R6

2
5

2
3
5

2 3 5

S 2.5 1 1
1 2.5 21
1 21 2.5

D
QF 5

2
3
5

7

S 0
0

21
DS 2.5 1 1

1 2.5 21
1 21 2.5

D{S V2

V3

V5

D5 2S 0
0

21
D I7

2.4.6. Using Resistance Graph Representation for
analysis of multidimensional trusses

Let d~G! be the dimension of the engineering system,
that is, the dimension of potential or flow vectors. The ex-
planation provided in this section is for two dimensions,
but the approach is valid for three dimensions as well. Equa-
tion 6 can be rewritten:

;F 5 K{ <D,

whereK is built from the conductivity matrices of the re-
sistance edges, each being a square matrix of size d~G! 3
d~G!. Figure 12 shows the initial and deformed states of a
rod.

Let Di ~e! be the potential difference between the two end
vertices of edge e in coordinate directioni . As one can see
from Figure 12, under the small deflection assumption~West,
1993!, the following equation describes the scalar magni-

Fig. 11. Example of an electrical system and its corresponding graph representation.~a! The electrical circuit.~b! The resistance
graph representation.
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tude of the potential difference as a combination of its co-
ordinate components:

6 <D~e!6 5 Dx~e!{cosa 1 Dy~e!{sina, ~14!

wherea is the angle of the element.
Combining Eqs.~6! and~14! we obtain:

;F~e! 5 S Fx

Fy
D5 K ~e!{S cos2 a sina{cosa

sina{cosa sin2 a D{S Dx

Dy
D

5 K(e)S Dx

Dy
D, ~15!

where the square matrixK(e) is the “conductance matrix”
of the element.

This two dimensional conductance matrix of the graph
edges~designated byK(e)! is the product of the constant
conductivity K~e! and the transformation matrix. For edges
corresponding to hinged support reactions, the constant
should be taken as 0, since there is no dependence between
the displacement of the support and the reaction force.

In indeterminate trusses, the forces in the rods cannot be
determined by the laws of statics alone, and one must also
consider the compatibility conditions. In the terminology of
graph representation, this means that the corresponding graph
of the indeterminate truss should be analyzed by using the
flow and potential laws simultaneously.

The components of the potential vector correspond to the
displacements of the joints in the directions of the coordi-

nate axes. The flow in an edge corresponds to the internal
force in the corresponding rod.

The building process of the RGR corresponding to an
indeterminate truss can be summarized as follows: Build a
graph following the same steps as were explained in Sec-
tion 2.2.2 for building the FGR of a determinate truss. The
FGR becomes RGR when all of its edges that are not sources
are assigned conductances~or resistances!, as shown in
Table 4.

The analysis process is based on applying the CCM to
the RGR of the indeterminate truss. The first step is choos-
ing a suitable spanning tree. Since specific components of
the potential differences in the reaction edges are known to
be equal to zero, these edges are somewhat similar to the
potential difference sources. Thus, the spanning tree must
include the reaction edges and it should not include the
flow source edges.

An example of an indeterminate truss, its corresponding
graph, the spanning tree, and the equations derived from
CCM is given in Figure 13.

2.5. Resistance Matroid Representation (RMR)

The previous section showed the application of the CCM
method embedded in the graph representation to analysis of
indeterminate trusses. However, this approach has been
shown to have its limitations, one of which is the fact that
the dual of CCM–RCM is not applicable to trusses~Shai,
1999!. This is due to the fact that the conductance matrix of
a truss edge is singular. Thus, it does not have an inverse
matrix; hence the rod edge in RGR cannot be assigned a
resistance matrix.

According to the idea underlying MCA, such a limitation
can be overcome by changing the representation or, as is
done here, extending the representation. In this case, such
an extended representation is the matroid representation,
whose definitions and properties are given in Section 2.1.2.
During the research it was found that representing engineer-
ing systems by matroid theory enables one to obtain a more
general perspective. Such a generalization is demonstrated
in this section by representing indeterminate trusses by Re-
sistance Matroid Representation~RMR!. The direct conse-
quence of such a generalization is the fact that RCM in

Fig. 12. Rod deformation.

Table 4. Types of edges in the graph representation of an indeterminate truss and their conductances

Type of edge The conductance of the edge

a. Truss rod—Resistance edge with finite conductance A ~e!{E~e!

L ~e!
{S cos2 a sina{cosa

sina{cosa sin2 a D
b. Fixed and roller supports Zero, since there is no dependence between the reaction force and the displacement.
c. Force applied to the truss—Flow source edge Flow sources are not assigned conductance, since the flows in them are given, while

the potential differences are not.
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RMR is shown to be applicable to indeterminate trusses in
contrast to RCM in RGR.

2.5.1. Matroid representation for indeterminate trusses

The first step of representing an indeterminate truss by a
matroid is representing it by a resistance graph~Sec-
tion 2.4.6!. Let GR be a RGR of an indeterminate truss,
and Q~G! be its scalar cutset matrix. The scalar cutset
matrix defines the matroid MQ 5 ^S,FI & whereS is the
set of columns ofQ~G! and FI is a family of all lin-
early independent subsets ofS. The subscript Q in MQ is
used to emphasize that the matroid corresponds to the sca-
lar cutset matrixQ. Each element of MQ is a scalar cutset
matrix column that, in its turn, corresponds to a truss ele-
ment, which can be one of the following: rod, external
reaction, or external force. An example of a truss with its
corresponding matroid is given in Figure 14a and Fig-
ure 14d, respectively.

2.5.2. Structural interpretation of matroid components

2.5.2.1. Dependent sets of MQ. The flow law for RGR is
given by

Q~G!{F 5 0, ~16!

whereF is a vector of force scalar values acting in the truss
elements. Therefore the nonzero entries of the vectorF de-
fine a set of linearly dependent columns of the scalar cutset
matrix. By definition, such a set is also the set of dependent
elements in the matroid MQ. Thus, a dependent set in MQ

corresponds to a set of truss elements in which internal
forces can act simultaneously, that is, the truss elements
that have nonzero internal forces during some state of self-
stress. Such a set forms an indeterminate subset of truss
rods~a subtruss!.

2.5.2.2. Circuits of MQ. A circuit of the matroid is a
minimal dependent set, that is, removing even one of its
elements results in an independent set. Therefore, in the
terminology of structures, a circuit in MQ corresponds to a
minimal indeterminate subtruss, which is a rigid subtruss
indeterminate to the first degree. Such a subtruss has the
properties of a circuit, since removing any of the rods from
such a truss will create a determinate truss or even a
mechanism.

2.5.2.3. Base of MQ. The base of a matroid is the maxi-
mal independent subset ofS, that is, adding any element to
the base results in a dependent set. Thus, the base in MQ

corresponds to a determinate subtruss that contains all the
pinned joints of the truss. It is well known that adding a rod
to a determinate truss, without adding a pinned joint, makes
the truss indeterminate. For the sake of consistency with
the graph theory, the base of the matroid representing the
truss is chosen so that it does not contain any external forces
~flow sources! acting on the truss.

2.5.2.4. Cobase of MQ. The cobase of M, that is, the set
of elements which are not in the base is the set of external
forces and redundant rods of the truss. The notation that is
used in this paper for graphs~Section 2.1.1! is also applied
to matroids. For this reason, the base elements~the deter-

Fig. 13. Statically indeterminate truss and its resistance graph.~a! The truss.~b! Corresponding RGR.~c! CCM analysis equations.
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minate subtruss elements! are represented by double lines,
the cobase elements~redundant truss elements and external
forces! by dashed lines, whereas the cobase elements which
correspond to the external forces are both dashed and bold.

Figure 15 shows the truss from Figure 14, with high-
lighted base and cobase elements~a! and the two fundamen-
tal circuits ~circuits containing only one redundant rod or
external force! ~b! and~c!.

2.5.2.5. Circuit matrix of MQ. By definition of circuit in
matroid, each fundamental circuit in MQ corresponds to a
minimal set of linearly dependent columns inQ. In other
words, for each fundamental circuit Ci it can be written:

(
j[ci

l ij Qfj
5 0, ~17!

whereQfj is thejth column of matrixQ. In the terminology
of trusses,l ij is the force acting in the truss elementj while
the state of self-stress produced by a force in the redundant
truss elementi .

The set of fundamental circuits is represented by a spe-
cial matrixB~MQ!, calleda circuit matrix of MQ. The rows
of B~M ! correspond to the cobase elements of M and the
columns to all the elements of M. An entryij of the matroid
circuit matrix is defined:

@B~M !# ij 5 l ij . ~18!

Obviously, Eq.~17! still holds, when for somei , all l ij are
multiplied by the same arbitrary scalar. Therefore, it is le-
gitimate to “normalize” the circuit matrix, that is, to multi-
ply the rows ofB~M ! so that the matrix is written as follows:

B~M ! 5 ~B~M !T6I !, ~19!

whereI is a unit matrix whose size is equal to the number of
cobase elements, andB~M !T is a matrix with rows and
columns corresponding to the cobase and base elements,
respectively. In structural mechanics terminology the value
of @B~M !# ij becomes equal to the force in the truss rod or

Fig. 14. Example of a truss and its corresponding matroid.~a! The truss.~b! The graph.~c! The scalar cutset matrix.~d! The matroid.

Fig. 15. Example of fundamental circuits in the matroid of a truss.~a! The base and cobase of M.~b! A fundamental circuit defined
by the redundant rod 3.~c! A fundamental circuit defined by the external force P.
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reactioni when a unit force is applied in a redundant ele-
mentj and the forces in all the other redundant elements are
set to zero.

For example, the circuit matrix of matroid MQ that rep-
resents the truss of Figure 14 is developed as follows. For
cobase elements 3 and P, equations based on Eq.~17! are
written, respectively,

l3,1{Qf1 1 l3,2{Qf2 1 l3,3{Qf3

5 1{1 2
1

!2
1

!2
2 2 1.414{S 0

1D1 1{1
1

!2
1

!2
2 5 S 0

0D5 0

lP,1{Qf1 1 lP,2{Qf2 1 lP,P{QfP

5 21.414{1 2
1

!2
1

!2
2 1 1{S 0

1D1 1{S21
0 D5 S 0

0D5 0.

Hence the circuit matrix of MQ is

B~M! 5
3
P

1 2 3 P

S 1 21.414 1 0
21.414 1 0 1D.

Proposition 1. Every admissible force vectorF is a
linear combination of rows ofB~M !. n

Proof: Forces in the determinate subtruss~base! are
uniquely defined by the forces in the redundant elements.
Moreover, each row ofB~M ! corresponds to the forces in
the determinate subtruss yielded by a unit force in the
corresponding redundant element. Therefore, by the super-
position principle, every admissible force vector is derived
by summing over all the rows ofB~M ! each multiplied by
the force in the corresponding redundant element. n

Proposition 2. The matroid potential law:

B~M !{D 5 0, ~20!

where D is a vector of scalar displacements in truss
elements. n

Proof: According to the definition of matroid MQ, each
row of B~M ! corresponds to a state of self-stress, which is
a vector of admissible flows in GR. On the other hand,
vectorD corresponds to a vector of admissible scalar po-
tential differences in GR. Thus, according to the equilib-
rium between the internal strain energy of the truss and the
work done by the external forces~West, 1993!, multiplica-
tion of every row inB~M ! by vectorD is equal to zero.n

2.5.2.6. The cutset matrix of matroid.The cutsets of a
matroid are represented by a cutset matrix as explained
below.

Proposition 3. The matrixQ~M ! 5 ~I 62BT
t ! is the cut-

set matrix of matroidMQ, that is, each row ofQ~M ! de-
fines a fundamental cutset in the matroid.

Proof: To prove this property, one has to prove that every
row of Q~M ! satisfies the conditions of a cutset~given in
Section 2.1.2!.

Conditions~a! and ~c! of the Section 2.1.2 are satisfied
sinceQ~M ! contains a unit matrix, whose rows are non-
empty and do not contain other rows of the matrix. Condi-
tion ~b! requires that for any circuiti and any cutsetj the
number of common elements is not equal to one. This can
be proved by considering the forms of circuit and cutset
matrices~Fig. 16!. The number of common elements in
circuit i and cutsetj is the number of elements correspond-
ing to the nonzero entries in rowsi andj in the circuit and
the cutset matrices, respectively. From Figure 16 one can
see that this number can be either 0 or 2 depending on
whether element Bij is equal to zero or not. Thus, the num-
ber of common elements in circuit and cutset can never be
equal to one. n

Proposition 4. The orthogonality principle:

Q~M !{Bt~M ! 5 0 ~21!
n

Proof: By substituting Eq.~19! into Eq.~21!, we obtain

Q~M !{Bt~M ! 5 ~I 62B~M !T
t !S B~M !T

t

I D. ~22!

After the multiplication we getB~M !T
t 2 B~M !T

t 5 0. n

Proposition 5. Matroid flow law:

Q~M !{F 5 0 ~23!
n

Fig. 16. The form of circuit and cutset matrices.
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Proof: By proposition 1, every admissible force vectorF
is a linear combination ofB~M ! rows. According to prop-
osition 4,Q~M ! is orthogonal toB~M !; hence it is orthog-
onal to every linear combination of its rows, that is,F. n

Because of the validity of propositions 1 to 5, the flow,
potential, and orthogonality laws are all valid for matroid
MQ. Such a matroid is called a Resistance Matroid Repre-
sentation~RMR!. Since Eq.~13! was derived using only
these properties of the resistance graph, it is also valid for
the matroid MQ. Substituting to Eq.~13! the matrices cor-
responding to MQ instead of those corresponding to GR, we
obtain:

~B~M !C'R{RR{B~M !C'R
t !{FC' 5 2~B~M !C'R{RR{B~M !PR

t !

{FP 2 BC'P{DD. ~24!

2.5.3. Example of application of the RCM in RMR to
an indeterminate truss

The method derived above is demonstrated in the follow-
ing example. First, RGR representing the truss of Fig-
ure 17a is built~Fig. 17b!. At the next stage, the cutset
matrix of the RGR is found, Figure 17c. Finally the circuit
matrix of the RMR is built from the cutset matrix of the
RGR, Figure 17d. The elements of the circuit matrix
~Fig. 17e and f! were substituted into Eq.~24! and the
analysis equations were obtained~Fig. 17g!.

A base~statically determinate subtruss! is obtained by
removing from the truss the redundant rods 7 and 10. Hence
the cobase elements of the resistance matroid representing
the truss are 7, 10, and P, where the latter is the flow source.
The circuit matrix in Figure 17d is now built by calculating
three self-stresses, each having a unit force in one of the
cobase elements. Then the parts of the circuit matrix are
substituted into Eq.~24! and the analysis equations are ob-
tained ~Fig. 17g!. After solving the equations of Fig-
ure 17g, the flows in all the cobase elements are known,
and by applying Eq.~9!, the flows in all the rest of the
elements of the matroid are obtained. Then, using the resis-
tance relations, the potential differences are obtained as well.

2.6. Line Graph Representation (LGR)

Line Graph Representation~LGR! is the only graph repre-
sentation dealt with in this paper, which has no knowledge
embedded in it. LGR is a regular graph, the main property
of which is the way it is used to represent engineering sys-
tems. In contrast to FGR, PGR, and RGR, the elements of
the engineering systems are represented in LGR not by edges,
but by vertices. This enables us to use the edges of LGR to
describe the connections between the elements. LGR was
used to represent planetary gear systems, a traffic control
problem ~Shai, 1997!, and various network optimization
problems~Shai, 1997!. The current paper uses LGR to rep-
resent planetary gear systems.

2.6.1. LGR for planetary gear systems

All the links of planetary gear systems are represented by
vertices in LGR, whereas the connections between them
are represented by the edges connecting the corresponding
vertices. There are two types of connections, so there are
two types of edges, marked as bold and double as explained
below.

a. Bold edge—knowing the gear ratio between two en-
gaged gear wheels one can calculate the ratio between
the angular velocities~potentials! of the gear wheels.
In the terminology of this paper, the edge representing
the engagement between the wheels is a dependent
potential source and for this reason it appears in the
graph as a bold line.

b. Double edge—an edge which represents a turning con-
nection. It will be shown below that the turning edges
form a spanning tree.

Additional information about the labeled edges and the ver-
tices is added to the representation as follows:

c. Labeled double edge— every double edge~turning
edge! has a label, which represents the level~the lo-
cation! of the rotating connection.

d. Reference vertices—the distance between each pair
of connected gear wheels must be constant all the
time, being maintained by a link or planet carrier. The
vertex corresponding to such a link or a planet carrier
is called in the literature~Freudenstein, 1971! a “trans-
fer vertex.” In the terminology of this paper, the name
“local reference vertex” is more suitable; thus it is
highlighted by the gray color. In this representation,
all the turning edges on one side of the local reference
vertex are at the same level, and those on the opposite
side of the local reference vertex are at a different
level.

e. Labeled bold edge— every bold edge~gear engage-
ment edge! has a label that represents the planet car-
rier ~local reference vertex! that maintains the distance
between the two corresponding gear wheels. In addi-
tion, the bold line is assigned a plus~minus! sign in-
dicating that the engagement between the two gear
wheels is internal~external!.

f. Labeled gear wheel vertex— every vertex that corre-
sponds to a gear wheel has a label that represents its
center level.

Note, that Figure 18a is a standard engineering drawing
for a gear system.

3. NEW CONNECTIONS BETWEEN
ENGINEERING FIELDS

This section shows the application of MCA to obtaining
novel relationships between engineering fields. These were
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Fig. 17. Example of analysis of indeterminate truss using RMR~Resistance Matroid Representation!. ~a! Indeterminate truss.
~b! RGR of the truss.~c! Scalar cutset matrix of RGR of the truss.~d!,~e!,~f ! Circuit matrix of RMR of the truss and its components.
~g! Analysis equations based on RCM in RMR.
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obtained through the mathematical relationships between
the corresponding CR. More specifically, on the basis of
the dualism between FGR and PGR, which will be devel-
oped in Section 3.1.1, a new mutual relationship between
determinate trusses and mechanisms is established in Sec-
tion 3.1.2. This relation postulates that for every determi-
nate truss there exists a specific mechanism, called the “dual
mechanism.” In this mechanism, there is a link for every
rod of the truss, such that the force in the rod is equal to the
relative velocity of the corresponding link.

This innovation opens up a new avenue of research and
practical applications, by creating favorable conditions for
cooperation between structural and mechanical engineers.
This cooperation enables us to use information, algorithms,
and new technologies developed for one field in the other.
One of the possible applications of that research direction is
the development of a new design technique in engineering,
shown in Section 7. The potential inherent in the innova-
tions of this section can be appreciated also from its appli-
cations given in Section 6.5.

3.1. Duality between trusses and mechanisms based
on the duality of their corresponding CR

3.1.1. Duality between flow and potential graphs

This section introduces the duality connection between
the flow and potential graph representations from which the
dualism between trusses and mechanisms will be later de-
rived. FGR and PGR are shown to be dual by applying the
following inference rules:

RULE 1:

IF: G is FGR, i.e. G5 GF

THEN: ;Q~GF!{ ;F~GF! 5 0 ~equation 1!.

RULE 2

IF: G is PGR, that is, G5 GD

THEN: ;B~GD!{ <D~GD! 5 0 ~equation 2!.

FACT 1: ;Q~G! 5 ;B~G* ! ~according to duality between
graphs~Swamy & Thulasiraman, 1981!!.

CONCLUSION 1: FACT 1 AND RULE 1 r

;B~GF
* !{ ;F~GF! 5 0.

CONCLUSION 2: CONCLUSION 1 AND <D~GF
* ! 5

;F~GF! r ;B~GF
* !{ <D~GF

* ! 5 ;0.

From these inference rules it follows that the dual graph of
any FGR is a PGR, since the potential difference vector of
the latter is identical to the flow vector of the former.

3.1.2. Duality between trusses and mechanisms

On the basis of the dualism connection between FGR and
PGR given in the previous section, a new relation between
determinate trusses and mechanisms is derived. This inven-
tion has been achieved by applying the following rules.

FACT 2: For every flow graph, there exists a dual poten-
tial graph and vice versa~conclusion 2!.

FACT 3: Determinate trusses are isomorphic to flow
graphs~Section 2.2.2!.

FACT 4: Mechanisms are isomorphic to potential graphs
~section 2.3.1!.

CONCLUSION 3: FACT 2 AND FACT 3 AND FACT
4 r for every mechanism there exists a dual determi-
nate truss and vice versa.

This reasoning is outlined in Figure 19.
Description of a dual mechanism. Let T be a statically

determinate truss, GF~T! its FGR, and G*~T! be a PGR

Fig. 18. Example of a planetary mechanism and its graph.~a! The planetary mechanism.~b! Its line graph representation.
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dual to G*~T!. Mechanism M is called a “mechanism dual
to truss T” if G*~T! is its potential graph and for every edge
e in G~T! and its corresponding edge e' in the dual graph
G*~T!, the equality~25! is satisfied.

[r~e! 5 [v~e' !. ~25!

Table 5 summarizes the attributes of the duality between
trusses and mechanisms. Figure 20 shows a four-bar mech-
anism~a! and its dual truss~c!. More detail on the duality
connection between trusses and mechanisms can be found
in Shai~2001a!.

4. META LAWS AND THEOREMS

As was mentioned in Section 2, each combinatorial repre-
sentation contains combinatorial theorems called “embed-
ded theorems,” which have been thoroughly studied and
investigated. The embedded theorems are actually meta-
theorems that provide additional knowledge and enable us
to derive engineering theorems exclusively from the rep-

resentation. Therefore, when CR are used to represent an
engineering problem, their embedded theorems become
available as well. For example, when the Resistance Graph
Representation was applied to represent indeterminate
trusses~Section 2.4.6!, its two analysis methods became
available and were used. In this section, it is shown how
theorems and methods in structural mechanics can be de-
rived from a theorem embedded in RGR, called Tellegen’s
Theorem. Moreover, from the dualism law in RMR, a new
proposition is deduced stating that displacement and force
methods are actually dual methods~Shai, 1999, 2001b!.

All these results show the potential inherent in applying
MCA to allow, in the future, the derivation of new theorems
and methods from the knowledge embedded in the CR.

4.1. Tellegen’s theorem embedded in RGR

The theorem discussed in this section was developed by
Professor B. D. H. Tellegen~Tellegen, 1952! and therefore
bears his name. The main use made of this theorem nowa-
days is in electric circuit theory~Penfield et al., 1970; Chua
et al., 1987!. Since electric circuits are represented in MCA
by RGR, it is concluded that this theorem can also be em-
ployed in other engineering systems represented with RGR.
This is done in the current section. According to Sec-
tion 2.4.6, indeterminate trusses are represented by RGR;
therefore Tellegen’s theorem, which is a meta-theorem in
RGR, is applied, and engineering theorems and methods
are derived.

Theorem 2. Tellegen’s Theorem (combinatorial repre-
sentations formulation):Let GF and GD be two isomorphic
graphs, where the first is a flow graph and the second is a
potential graph; then:

(
e

all edges

;FGF

t ~e!{ <DGD
~e! 5 0. ~26!

n

The theorem deals with two isomorphic graphs, one of
which, GF, satisfies the flow law and the other, GD, satisfies
the potential law. It postulates that the sum of scalar prod-

Fig. 19. Diagram explaining the derivation of the duality between deter-
minate trusses and mechanisms.

Table 5. The duality attributes

In a mechanism link In a truss rod

<D~e! – Relative velocity of link e. ;F~e' ! – Force in rod e'.
Circuit. Cutset.
Potential difference. Flow.
Potential difference of edge e5 relative linear velocity of the corresponding
link e 5 <D~e! 5 V~e!{v~e!.

Flow in edge e5 force acting in rod e5 ;F~e! 5 F~e!{r~e!.

v~e! – relative linear velocity unit vector. r~e! – unit vector in the rod direction.
vi00 – Angular velocity of link i5 linear velocity0length. Fi

L i

– Force per unit length.
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ucts between the flows in the edges of GF and the potential
differences in the corresponding edges of GD is equal to
zero.

4.1.1. Explanation of Tellegen’s Theorem using the
electrical networks

To facilitate understanding, Tellegen’s theorem is first
applied to electrical circuits. Consider two different electric
circuits with the same topology shown in Figure 21a,b. Their
corresponding graphs appear in Figure 21c,d. Analysis of
the electrical systems gives the results shown in Figure 21
next to the edges in the corresponding graphs.

We can now choose the graph representing the system of
~a! to be GD and the graph representing the system of~b! to
be GF. These graphs satisfy the requirements of Theorem 2.
Substituting the results into Eq.~26! confirms Tellegen’s
theorem:

(
i51

10

Di ~GD!{Fi
'~GF! 5 0. ~27!

4.1.2. Applications of Tellegen’s Theorem to structures

The example that appears in the preceding section con-
cerns one-dimensional systems. However, one can deduce
from Eq.~26! that the theorem can be applied to the multi-
dimensional systems as well.

The multidimensional trusses are represented by RGR;
hence the multidimensional Tellegen’s Theorem embedded
in this representation can be employed in their analysis.
The formulation of Tellegen’s Theorem for trusses is as
follows: Given two trusses with the same topology, the sum
over multiplications of the forces in the first and the poten-
tial differences in the second is equal to zero.

When the angles of the rods of the truss are known, the
following scalar formulation can be developed~Shai, 2000b!:

(
rods of
the truss

Fi ~GF!{Di ~GD! 2 (
external
forces

Pi ~GF!{DPi ~GD! 5 0. ~28!

This equation will be referred to as the “Multidimensional
Tellegen’s Theorem” for trusses.

4.1.3. Deriving the method for analyzing joint
displacement based on Tellegen’s Theorem

This section shows the derivation of the known equation
for analyzing the displacement of a joint in a truss from the
Multidimensional Tellegen’s Theorem for trusses. To apply
Tellegen’s Theorem, PGR and FGR will be used. The steps
for building the CR are the same as those explained in
Section 2.2.2. An extra edge, called “control edge,” is added.
Its head vertex is the vertex whose displacement is to be
analyzed, and the tail vertex is the reference vertex.

The flow and potential graphs are used in two different
ways as follows. For the real potential graph GD

R, the flow
values in the source edges are the values of the external
forces. In the control edge, we put a “potential difference
measurement,” which corresponds to a potential difference
measuring device~e.g., voltmeter in electrical circuit!, which
is located between the end vertices of the corresponding
edge. The R superscript over G indicates that the potential
differences in it are due to the “real” external forces applied
to the structure, and theD subscript indicates that the struc-
ture should satisfy only the potential law.

For the virtual flow graph GFV , all the source edges which
correspond to the external forces are assigned zero flow

Fig. 20. Example of a mechanism, its dual truss, and the corresponding matrices.~a! The mechanism.~b! The potential graph and its
dual ~dashed line!. ~c! The dual truss.~d!,~e! The corresponding matrices.
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sources. One can think about it as a disconnection. In the
control edge, a unit force is applied in the direction of the
displacement that has to be measured. The V superscript
over G indicates that the flows in the graph are not the real
forces in the structure, but the forces due to a virtual exter-
nal force applied to the structure, and the F subscript indi-
cates that the structure should satisfy only the flow law.

Applying the Multidimensional Tellegen’s Theorem
@Eq. ~28!# to the two graphs, gives

(
rods of
the truss

Fi ~GF
V !{Di ~GD

R! 2 (
external
forces

0{DPi ~GD
R! 2 1{Dcontrol~GD

R! 5 0.

~29!

From here, the well-known equation~West, 1993! for ana-
lyzing the displacement of a joint is derived:

Dcontrol~GD
R! 5 (

rods of
the truss

Fi ~GF
V !{Fi ~GD

R!{L i

A i {Ei

. ~30!

An example for applying Eq.~30! is given in Figure 22,
where the horizontal displacement of joint c is to be
computed.

4.1.4. Deriving Betti’s Law from a theorem embedded
in RGR

The previous section showed an example of derivation of
a known method in structural mechanics from the knowl-
edge embedded in RGR. In the current section it is shown
that known theorems can also be derived from the embed-
ded knowledge. This is demonstrated by deriving Betti’s
Law from Tellegen’s Theorem.

Consider a truss and two different sets of external loads
applied on it. The first set of external loads,;P1, causes joint
displacementsAp1, internal forces ;F1, and deformations;D1.
The second set of external loads,;P2, causes joint displace-
ments Ap2, internal forces ;F2, and deformations;D2.

Since both sets of loads act on the same truss, and the
forces ~potential differences! satisfy the flow ~potential!
law, then according to Multidimensional Tellegen’s Theo-
rem@Eq. ~28!# , multiplication of forces from one set by the

Fig. 21. Applying Tellegen’s theorem to electrical circuits.~a!,~b! Different electrical circuits possessing the same topology.~c! PGR
of the circuit in a.~d! FGR of the circuit in b.
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potential differences from the other set is equal to zero, as
follows:

~ ;F1
t ;P1

t !{S ;D2

2 ApP2
D 5 ;0 r ;F1

t { ;D2 5 ;P1
t{ ApP2 ~31!

;P1
t{ ApP2 5 ;F1

t{ ;D2 5

resistance
relation

;F1
t{~R{ ;F2!

5 ~ ;F1
t{R!{ ;F2 5

since R is
diagonal

;D1
t { ;F2. ~32!

Another form of Tellegen’s Theorem for the two graphs
is

~ ;F2
t ;P2

t !{S ;D1

2 ApP1
D 5 0 r ;F2

t{ ;D1 5 ;P2
t{ ApP1. ~33!

Combining the last two equations gives

;P1
t{ ApP2 5 ;P2

t{ ApP1. ~34!

This is the reciprocity theorem or Betti’s Law, which is well
known in the literature~Hibbeler, 1984!.

Fig. 22. Example of analyzing joint displacements by the Multidimensional Tellegen’s theorem.~a! The truss.~b! The virtual flow
graph GF

v. ~c! The real potential graph GDR. ~d! Calculation of the displacement of joint c in the direction of the x axis.
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4.2. The relation between the Conductance Cutset
Method (CCM) for analyzing indeterminate
trusses and other known methods

In the current section it is shown that a known method in
structural mechanics is derived from CCM. Many methods
for analyzing indeterminate trusses have been reported in
the literature; most of them are based on virtual work and
minimum energy. In the displacement method~Hibbeler,
1984!, each axis along which the joint is able to move is
assigned a variable, which is designated: “unknown dis-
placement.” In the Conductance Cutset Method~CCM!, the
absolute potential of a vertex is the displacement of the
vertex relative to the reference vertex.

In the example of Figure 23, since all the cutsets are such
that they contain exactly one vertex in one of the two sides
of the cutset, the cutset conductance matrix is equal to the
incidence matrix, a well-known matrix in graph theory lit-
erature~Fenves & Branin, 1963; Deo, 1974!. Therefore, the
displacement matrix of the displacement method~Hibbeler,
1984! is the same as that obtained from the resistance graph,
as shown in Figure 23.

To derive the displacement method, one starts with the
incidence matrix, the rows of which are a linear combina-
tion of the vector cutset matrix rows. The flow law@Eq.~2!#
can be written by using the incidence matrix as follows:

:A ;FR 5 2 :AP :P. ~35!

Since any resistance edge e5 ^u,v& satisfies Eq. 6, Eq. 35
becomes

:AK R <DR 5 2 :AP ;P. ~36!

Due to Eq.~1!, this can be written in matrix form:

<DR 5 :At Ap, ~37!

which gives us

:AK R :At Ap 5 2 :AP ;P. ~38!

The matrix :AK R :At is actually the “stiffness matrix,” and
the element@ :AK R :At # ij is the sum of the conductances of
the rods that meet both jointi and joint j ~in the casei 5 j
it equals the sum of conductances of all the rods meeting
joint i !.

5. A GLOBAL MULTIDISCIPLINARY
PERSPECTIVE FOR INTEGRATED
SYSTEMS

One of the immediate contributions made by MCA is mak-
ing it possible to obtain a global perspective on various

Fig. 23. Example of indeterminate truss analysis.~a! Indeterminate truss.~b! The corresponding graph.~c!,~d! The corresponding
vector and scalar equations.
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disciplines. The general perspective is due to the fact that
the same combinatorial representation is applied to differ-
ent engineering fields. For example, Figure 24a shows a
complex system composed of interacting dynamic, electric,
and indeterminate truss elements. Even though the system
contains different types of engineering elements, some of
which have different coordinate systems, such as one-
dimensional for electrical and hydraulic systems or two-
dimensional for trusses, the integrated system is represented
by one resistance graph as shown in Figure 24b. Therefore,
all the different elements are dealt with in the same way
when an MCA analysis algorithm is applied.

6. CHECKING THE VALIDITY OF
ENGINEERING SYSTEMS ON THE BASIS OF
THE COMBINATORIAL REPRESENTATIONS

This section shows a further contribution of MCA, which is
the ability to check the validity of the engineering systems
before applying to them the analysis process or starting to
manufacture the products. The idea behind this issue is the
same as the one behind all the rest of MCA applications that
utilized the knowledge embedded in the CR. In the current
section, this knowledge is applied to check whether there
exists a contradiction between the representation of the en-
gineering system and the rules and theorems embedded in
it. The current section is concerned with checking the va-
lidity of truss topology and geometry, planetary gear sys-
tems, and geometric constrains in CAD systems.

6.1. Checking the topological validity of trusses

In Section 2.2.2, it was explained how to represent trusses
by FGR, and the knowledge embedded in the CR was ap-
plied for truss analysis. In this section, it is shown how to
use the properties of the CR to check the validity of the
truss topological rigidity. This issue contributes to other
engineering fields, such as checking the validity of mecha-
nisms~Section 6.5.2! and the validity of the geometric con-
straint systems~Section 6.4!.

Checking of the validity of a determinate truss is per-
formed on its corresponding combinatorial representation—
the FGR~Section 2.2!. Whenever the analysis equations
obtained from the flow graph are not soluble, this indicates
that the truss represented by it is not stable. The word “ri-
gidity” is used when referring to the truss structure without
its supports, and “stability” for the one including the sup-
ports. To check the validity of truss supports as well, the
following steps are to be performed.

Step 1. Create two extra vertices called X and Y and
connect them by an edge.

Step 2. For every hinged support, create two edges con-
necting the vertex corresponding to the support, with the X
and Y vertices.

Step 3. For every roller support, create an edge connect-
ing the corresponding vertex with X~or Y! if the support is
immobile on the horizontal~or vertical! plane. If the sup-
port is mobile on some inclined plane, create an additional
vertex and connect it with edges to the vertices named X
and Y and to the vertex corresponding to the support itself.

Note that edges representing applied loads do not affect the
topological consistency of the graph, so they are to be re-
moved from the graph when the validity is checked. Fig-
ure 25b shows the graph that corresponds to the truss of
Figure 25a. Since the roller supports E and G are immobile
on the Y coordinate, the corresponding two edges connect
between Y and E and G. The same reasoning applies to the
roller supports A and D.

6.1.1. Relevant theorems embedded in the FGR.

Most of the published literature on the subject of truss
rigidity deals with determinate trusses~Laman, 1970!.

There exists a fixed relation between the number of rods
e~GF! and joints v~GF! in the graph GF representing a rigid
determinate truss, as follows:

e~GF! 5 2{v~GF! 2 3. ~38!

Maxwell ~1864! proved that if the relation e~G' ! #
2{v~G' ! 2 3 holds for every subgraph G' of GF, then the
corresponding determinate truss is rigid. About 100 years
later, Laman~1970! proved that this condition is not only
necessary, but is also sufficient.

Fig. 24. Representing an integrated engineering system with RGR.~a!
The integrated system.~b! Corresponding RGR.
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The connection between the rigidity of determinate and
indeterminate trusses is established by the following
theorems.

Theorem 3. Let G be a graph that corresponds to an
indeterminate truss. Then, G is rigid if and only if there
exists in G a connected rigid determinate subgraphG' which
includes all the vertices of G. n

Proof: If G ' is a determinate truss and is rigid, adding
edges~rods! does not affect the property of rigidity. The
inverse claim follows directly from the definition of an in-
determinate truss. Suppose that in G there arek redundant
rods, G is then said to have a redundancy degree ofk. When
deleting those k edges from G, the truss represented by G'

remains rigid and determinate. n

The necessary and sufficient conditions for checking
whether a determinate truss is topologically valid is given
in the following theorem.

Theorem 4. (Lovasz & Yemini, 1982). A determinate
truss is rigid if and only if when doubling each edge in turn
in the corresponding graph, all the edges can be covered by
two edge disjoint spanning trees. n

From this theorem one can derive the algorithm of Sec-
tion 6.1.2 for checking the validity of the topology of de-
terminate trusses.

6.1.2. Algorithm for checking the validity of the graph
of a determinate truss

Step 1. Build the graph corresponding to the truss as was
explained in Section 3.1.

Step 2. For every edge in the graph double the edge and
search for two edge disjoint spanning trees using known
algorithms~Swamy & Thulasiraman, 1981!.

Step 3. If step 2 is successful for every edge in the graph,
then the graph topology is valid; otherwise it is not.

For example, Figure 26 shows a truss~a! and its correspond-
ing graph ~b!. It can be proved to be rigid, since when
doubling each edge in turn, it has two edge disjoint span-
ning trees covering all of its edges. Figure 26c shows an
example of two edge disjoint spanning trees covering the
graph when edge 1 is doubled. More details on checking
the validity of determinate trusses can be found in Shai and
Preiss~1999a!.

6.2. Checking the validity of dynamic systems

A process similar to the above for trusses can be applied to
a dynamic mass-spring-damper oscillator system. In this
section, it will be shown that one can find a contradiction in
the topological structure of a dynamic system with given
initial conditions by analyzing its corresponding RGR. Given
a dynamic system with initial conditions, there can be a
solution only if its graph is consistent with the validity rules.

6.2.1. The RGR of the dynamic system

Using the information given in Table 3, the resistance
graph corresponding to a dynamic system can be built. In-
cluding the information about the initial conditions of the
dynamic system requires performing the following steps.

Step 1. Every spring with initial tension will be repre-
sented by two parallel edges. On the basis of the superposi-
tion principle, one edge will represent the flow source with
the value of the initial tension of the spring and the other
will represent the flow~force! change in the spring caused
by the changes of the dynamic system.

Step 2. Every mass with initial velocity will be repre-
sented by two serial edges. On the basis of the superposi-

Fig. 25. Example for checking the stability of determinate truss using FGR.~a! A determinate truss.~b! The graph that represents it.
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Fig. 26. Example of a proof that a determinate truss is stable.~a! The truss.~b! The corresponding graph.~c! Two edge disjoint
spanning trees when doubling edge 1.

Fig. 27. Representing a dynamic system with RGR.~a! A dynamic system.~b! Its corresponding graph.
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tion principle, one edge represents the source of potential
difference with a value equal to the initial velocity value of
the mass, and the other represents the change in potential
~velocity! with time in the dynamic system. An example of
RGR representing a dynamic system appears in Figure 27.

6.2.2. The method for checking the validity of the
dynamic system with initial conditions

For the Flow Law and the Potential Law to be satisfied,
one has to verify the following two validity checking rules.

Validity rule of cutsets: There should be no cutset con-
taining only flow sources~bold dashed edges!.

Validity rule of circuits: There should be no circuit con-
taining only potential sources~bold solid edges!.

The reason for these restrictions is derived from the prop-
erty of the source edge. For example, if there were a cutset
of only flow source edges, the sum of flows over a cutset
might not be equal to zero, in contradiction with the Flow
Law. A similar reason holds for the potential difference
source edges.

An example of a dynamic system graph which contra-
dicts the cutset validity rule is shown in Figure 28. The
contradiction occurs because the graph of Figure 28 has a
cutset with only bold dashed lines. For such a graph, the
initial forces applied to junction C may not satisfy the flow
law.

6.3. Checking the validity of a planetary gear
system using the LGR

The work reported in this section employs the possibility
that the domain knowledge will consist of the topological
validity rules of the graph. Therefore, the process of check-
ing the validity of planetary gear systems becomes a pro-
cess of checking whether there exists a contradiction between

the domain knowledge and the graph representation of the
given system.

6.3.1. Topological validity rules of the graph

Part of the embedded properties in the graph representa-
tion of the planetary gear system, given below, is based on
Erdman~1993!, who published a set of necessary condi-
tions which were used by him for a different purpose: mech-
anism synthesis. This paper uses this knowledge to deduce
the validity of the system.

Rule 1: Planetary gear system is a kinematic chainr

There is no circuit formed exclusively by turning edges.

Rule 2: Circuit of turning edgesr locked mechanism
OR kinematic chain with degree of freedom greater
that 1.

Rule 3: Every link has at least one element around which
it rotatesr every vertex is incident to at least one
turning edge.

Rule 4: The distance between each pair of engaged gears
should be preserved during the system operationr

the subgraph of the turning edges forms a connected
subgraph.

Topological conclusion 1: Rule 1 AND Rule 2r the
turning edges constitute a spanning tree.

Rule 5: Each gear pair is located on a different turning
edge level AND the distance between the centers should
be maintained constantr there is one and only one
planet carrier in each fundamental circuit defined by
an edge corresponding to a gear pair.

Topological conclusion 2: Rule 5 AND ~planet carrier5
local reference vertex! r in each fundamental circuit,
there is one and only one local reference vertex.

Rule 6: The geometric center of a gear wheel and its
local center of rotation must coincider in each fun-

Fig. 28. Example of a dynamic system which is not valid.
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damental circuit, the levels of the vertex representing
a gear wheel and the turning edge incident to it must
be identical.

Example of deducing the validity of planetary gear sys-
tem. A computer program for checking the validity of plan-
etary gear systems that is based on this representation has
been developed~Polomodov & Gershon, 1995; Preiss &
Shai, 1996!. An example of its output to a test case with a
verbal explanation to the user is given in Figure 29. In
addition, it is possible to arrange the computer program to
advise the designer what to change in the gear kinematic
chain in order to make it valid.

6.4. Checking the validity of constraint systems in
CAD using the flow graph representation
(FGR)

One of the main topics in CAD system research is the prob-
lem of checking whether a geometric constraints system is
well defined~valid!. In other words, to determine whether
the given geometric form is uniquely and validly defined. It
was found, according to Owen~1996! and Hoffmann~1995!
that such a constraint system can be represented by a spe-
cial graph.As will be shown later, in the terminology adopted
in MCA, such a graph is actually FGR since it possesses the
same properties. The steps for representing the geometric
constraint system by a flow graph are as follows. Each ele-
ment of the geometric system, such as line, point, arc, etc.,
is represented in the graph by a vertex and each constraint
by an edge. The edge connecting two vertices corresponds
to the constraint imposed on the corresponding two elements.

Theorem 5. Geometric constraint system is valid (well
constrained) if and only if its corresponding graph is rigid
in two-dimensional space. n

Proof: To clarify the proof, suppose that all the graphic
elements are points, infinite lines, and circles. For each of
these elements, exactly two parameters are needed in order
to locate them in the plane. According to the construction of
the graph~Hoffmann, 1995!, each element is represented
by a vertex and each constraint by an edge. Thus the num-
ber of the parameters needed to describe a geometric con-
strained system or any of its subsystems is equal to 2{v~G!.
To determine all these parameters, one needs to have the
same number of independent constraints minus three~num-
ber three is dictated by freedom of location in a plane of the
whole system!. A necessary condition for the system to be
uniquely defined is that this number should be equal to the
number of constraints. Since each constraint is represented
by an edge in the graph, the necessary condition becomes

2{v~G! 2 35 e~G!. ~39!

For this condition to become sufficient, equality~39! is to
be valid not only for G as one whole, but also for any
subgraph of G.

On the basis of Section 6.1, the graph possessing such a
quality is actually an FGR. A more detailed proof can be
found in Owen~1996! and Hoffmann~1995!. n

Hence, the process of checking the validity of a geomet-
ric constraint system is as follows: 1! build the FGR repre-
senting the geometric constrained system; 2! check the
rigidity of the graph using methods explained in Section 6.1.

Fig. 29. Example of checking the validity of planetary gear system, with the computer program output.
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Moreover, since FGR is dual to PGR~Section 3.1.1!
and the latter corresponds to a mechanism, instead of check-
ing the rigidity of the FGR, one can check the mobility of
the mechanism which is dual to the truss represented by
the FGR.

Consider for example, the geometric constraints system
of Figure 30. In the geometric constraint system presented
in Figure 30a there are eight elements: four straight lines
and four points: 1,2,3,4 and A,B,C,D. There are 13 con-
straints: 8 for the interconnection between the elements
designated in the graph byi ; 1 for the distance between
points C and D; 2 for the angle between lines; 2 for the
distance between points and lines. Checking whether the
given data defines a well-constrained geometric system in
Figure 30a requires first building the corresponding flow
graph. Each element is represented by a vertex and each
constraint by an edge. The graph corresponding to the
problem given in Figure 30a appears in Figure 30b.

As was explained above, checking the rigidity of a truss
can be performed by employing one of the two methods
given in Section 6.1, for instance, the two edge disjoint
spanning trees method.

It can be verified that the graph in Figure 30b is not rigid,
that is, the geometric constraint system in Figure 30a is not
well defined. This conclusion is easily derived through the
dual mechanism shown in Figure 30c. This mechanism is
locked in the given position, since the continuations of links
meet at the same point.

6.5. Employing the connections between the CR in
checking the validity of engineering systems

One of the main contributions of MCA is the ability that it
provides to use knowledge from one field in the other on
the basis of the connections between the CR. This ability is
used in this section to turn the validity checking of mecha-
nism mobility into checking the stability of its dual truss
and vice versa. This new way was made possible by apply-
ing the knowledge and theorems from machine theory to
structural analysis and vice versa.

6.5.1. Using the duality relation to check the stability
of determinate trusses

On the basis of the mutual dualism between trusses and
mechanisms~Section 3.1.2!, one can deduce the following
necessary and sufficient rule for checking stability of trusses
and mobility of mechanisms.

Dualism validity rule : Determinate truss is valid if and
only if its dual mechanism is valid, or in other words: de-
terminate truss is stable if and only if its dual mechanism is
mobile.

Hence, instead of checking the stability of a truss directly,
one can build its dual mechanism and the problem will be-
come a problem of checking the mobility of a mechanism. In
many cases, checking the mobility of mechanisms can be car-
ried out quickly by applying known theorems and algo-
rithms from mechanism and machine theory.

Fig. 30. Geometric constraints system and the corresponding graph.~a! Geometric constraints system.~b! Corresponding graph.
~c! The dual mechanism.
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Consider as an example the truss presented in Fig-
ure 31a. While it is not easy to verify its stability, its dual
mechanism in Figure 31b is obviously stuck since links 1'

and 3' are located on the same line. Therefore, the original
truss is not valid, that is, not stable.

6.5.2. Checking the mobility of mechanisms using
structural analysis

The previous section adopted the principle that a truss is
valid if and only if its dual mechanism is also valid. The

principle was used in order to check the stability of trusses,
by checking the mobility of their dual mechanisms instead.
This subsection demonstrates the second possibility: it checks
the mobility of a mechanism by means of the stability of its
dual truss.

Consider, for example, the mechanism presented in Fig-
ure 32a. It is difficult, even for experts in this field, to
decide whether the mechanism in Figure 32a is mobile or
stuck. On the other hand, its dual truss, presented in Fig-
ure 32b, obviously possesses redundancy in its right part,

Fig. 31. Example of checking the validity of a truss by utilizing its dual mechanism.~a! A truss.~b! Its dual mechanism.

Fig. 32. Checking the validity of a mechanism by checking the validity of its dual truss.~a! A mechanism.~b! Its dual truss.
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Fig. 33. Employing truss-mechanism duality in design—diagram showing the systematic creativity technique applied to a design
problem.
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thus its left part lacks rods and hence the whole truss is
unstable. Therefore, the original mechanism of Figure 32a
is not valid, that is, stuck.

7. USING MCA FOR DESIGN

This section introduces a new application of this
approach—to design. Development of this topic has started
lately, and only a brief glance into its implementation is
introduced in this section.

As was explained above, the ability to share knowledge
between different fields is achieved by exploiting the con-
nections between the individual CR. This section shows a
new application of this property, which is developing a new
technique in design. The example given here is based on
using the connection between trusses and mechanisms, es-
tablished in Section 3.

The main idea behind this approach lies in the fact that
when a mechanism has a special property, its dual truss
should possess the same property, and vice versa. This idea
is demonstrated in the following small example.

Suppose one needs to design a truss, such that when a
small force is applied to one of its joints, a magnified force
is produced in a specific rod. Applying the approach trans-
forms the problem into a problem of creating the dual
mechanism.

The process starts with looking for a known mechanism
which has similar velocity characteristics, namely, a mech-
anism that for a small relative velocity in its driving link
produces in its other link a magnified relative velocity. One
of many mechanisms satisfying this requirement is pre-
sented in Figure 33c. The relative velocity of link 1 of this
mechanism is considerably larger than that of the link 5.
After building the PGR~Fig. 33d! representing the mecha-
nism and its dual FGR~Fig. 33e!, the truss we were seeking
is produced by reconstruction from the FGR~Fig. 33f!.

According to the duality property, the truss possesses the
same force characteristics as the velocity characteristics of
the mechanism, that is, a small external force F causes a
much greater force in the rod 1. Note, that the solution to
the design problem was obtained through applying deter-
ministic steps, thus giving rise to a new direction in system-
atic creativity.

8. CONCLUSIONS

This paper has introduced the idea behind the MCA~Multi-
disciplinary Combinatorial Approach!, which was imple-
mented as follows: First, Combinatorial Representations
~CR! were developed and the properties of each and their
interrelations were thoroughly investigated.Afterwards, these
CR were applied to represent engineering problems from
different fields, which gave rise to interesting results. Some
of these results appeared in this paper.

This paper has shown that representing engineering prob-
lems by CR enables us to get a general perspective on dif-

ferent engineering fields. Moreover, new relations between
engineering fields have been derived. This issue has been
demonstrated by introducing a new connection between
mechanisms and trusses, which had been derived from the
relation between their corresponding CR: PGR and FGR.
The theorems and methods embedded in the CR have been
found to be valuable both for theoretical research and prac-
tical applications. From the theoretical point of view, they
enable derivation of theorems and methods in engineering.
For instance, known methods, such as the displacement
method in structures, have been proven to be special cases
of the methods embedded in RGR. On this basis, new con-
nections between known methods have been derived. From
the practical point of view, this enables application of knowl-
edge, algorithms, and methods from one field in another.

The knowledge embedded in the representations has been
applied to analyze trusses and to check the validity of dy-
namic systems, planetary gear systems, trusses, and geo-
metric constraint systems in CAD. In addition, this paper
has introduced a general perspective that enables represen-
tation of integrated multidisciplinary systems as one whole
and means to deal with them in a unified way.

The concept of MCA has reaffirmed the postulate that
when encountering a difficult problem, an effective solu-
tion strategy is to change its representation so as to make its
solution transparent.
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