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Infinitary affine proofs
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Even though the multiplicative–additive fragment of linear logic forbids structural rules in

general, is does admit a bounded form of exponential modalities enjoying a bounded form

of structural rules. The approximation theorem, originally proved by Girard, states that if

full linear logic proves a propositional formula, then the multiplicative–additive fragment

proves every bounded approximation of it. This may be understood as the fact that

multiplicative–additive linear logic is somehow dense in full linear logic. Our goal is to give

a technical formulation of this informal remark. We introduce a Cauchy-complete space of

infinitary affine term-proofs and we show that it yields a fully complete model of

multiplicative exponential polarised linear logic, in the style of Girard’s ludics. Moreover, the

subspace of finite term-proofs, which is a model of multiplicative polarised linear logic, is

dense in the space of all term-proofs.

1. Introduction

1.1. Approximating the contraction rule

Mathematical truth is inexhaustible: a classical statement such as the Pythagorean theorem

is no less true today than two millennia ago, inspite of having being used countless times

in the meanwhile. This perennity of mathematical truth is reflected in formal logic by the

provability of the implication A⇒ A∧A or, in more proof-theoretic terms, by the validity

of the contraction rule
Γ, A, A � C

Γ, A � C .

These are both ways of formalising that ‘if A holds once, it holds twice’ and, therefore,

any finite number of times.

Linear logic (Girard 1987) shifts the focus from truth to proofs, i.e.to how truth is

established. In this context, the multiplicity of use takes a different meaning: having one

proof of A does not necessarily imply having two proofs of A, unless we take the two

proofs to be identical copies of the original one. However, duplication is not for free and

we must explicitly mention it by means of a modality, called exponential. Accordingly,

the linear implication A � A ⊗ A is not provable in general; instead, !A � !A ⊗ !A is

provable.

The exponential modalities (the modality ! mentioned above and its dual ?) are the

distinguishing feature of linear logic with respect to other substructural logics refusing

contraction. However, a less evident but perhaps more interesting feature is the interplay
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between the exponential layer of linear logic and its purely linear layer, known as its

multiplicative–additive fragment. Here, albeit forbidden in their general form, structural

rules still exist in a bounded form. Indeed, if !A intuitively means ‘A arbitrarily many

times,’ the multiplicative–additive fragment contains approximations of !A, namely

!nA :=

n︷ ︸︸ ︷
(A & 1)⊗ · · · ⊗ (A & 1) .

The formula !nA intuitively means ‘A atmost n times’ and is therefore a bounded form of

!A. The existence of these approximations was observed by Girard since the introduction

of linear logic:

Theorem 1 (approximation, Girard (1987)). Let !nA be defined as above and let ?nA :=

(!nA
⊥)⊥. Suppose that A is a provable propositional formula of full linear logic, containing

m occurrences of ! and n occurrences of ?. Then, for all p1, . . . , pm ∈ N , there exist

q1, . . . , qn ∈ N such that the formula A′ obtained from A by replacing the ith occurrence

of ! with !mi
and the jth occurrence of ? with ?nj is provable in the multiplicative–additive

fragment.

The approximation theorem somehow says that multiplicative–additive linear logic is

‘dense’ in full linear logic. The aim of this paper is to take Theorem 1 seriously and show

how the intuitive idea of density may be given a precise technical sense in the context of

uniform spaces (a generalisation of metric spaces).

1.2. The infinitary affine lambda-calculus

The starting point is our recent work (Mazza 2012), in which the computational content

(via Curry–Howard) of Theorem 1 is formalised: an affine λ-calculus is introduced and

a metric is defined on terms, making the set of affine terms an incomplete metric space;

the completion, which we call �Λ!
∞ in this paper, is endowed with a partial equivalence

relation ≈ and it is proved that �Λ!
∞/≈ is isomorphic to the usual λ-calculus (Corollary 10

below).

The shift from linearity to affinity allows us to replace !nA by the simpler formula A⊗n.

This does not alter the moral of the result, since affine logic still refuses contraction and

it is this latter rule which underlies perennity in logic. However, affinity is not merely

a simplification: as we underline below, in a linear calculus reduction would not be

continuous, a property which we do not use here but which is fundamental in other

contexts (such as Mazza (2014)).

The relation ≈ accounts for the concept of uniformity (Girard 2001; Melliès 2004): the

completion introduces infinitary terms which do not correspond to any algorithm (they

rather correspond to non-uniform algorithms, such as those expressed by arbitrary circuit

families (Vollmer 1999)). Only uniform infinitary terms correspond to usual λ-terms.

The infinitary affine calculus of Mazza (2012) is here endowed with primitives corres-

ponding to affine logic, in particular dealing explicitly with the ⊗ connective and the !

modality. This generalised calculus is called �Λ∞, and its finite subcalculus is called �Λ.

The calculus is endowed with a uniform-space structure, with two essential properties:
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1. �Λ∞ is Cauchy-complete and �Λ is dense in it;

2. one-step reduction, as a map on �Λ∞, is continuous.

An important technical difference with Mazza (2012) is the shift from metric spaces to

more general uniform spaces. Although not strictly necessary to validate property 1 above

or to formulate the isomorphism of Corollary 10, topological uniformity† has the benefit

of making reduction continuous, a nice property which does not hold with the metric of

Mazza (2012). Indeed, Proposition 8 of that paper erroneously claims that reduction is

continuous, so we rectify that mistake here. Although we do not use property 2 here (nor

did we in Mazza (2012)), as mentioned above continuity of reduction is fundamental for

our results of Mazza (2014), which are also based on the calculus �Λ∞.

1.3. The proof-theoretic perspective

In order to give a formal content to the topological intuition underlying Theorem 1,

we adopt the approach of Girard’s ludics (Girard 2001). Ludics reconstructs logic from

the interaction of designs, which are essentially generalised Böhm trees (Curien 1998).

Two designs of opposite polarity generate a dynamics which is an abstraction of cut-

elimination, or normalisation in the λ-calculus. If the result of this interaction is successful

(in a certain sense), the designs are said to be orthogonal. Then, given a set of designs

E, one may define E⊥ as the set of all designs orthogonal to all designs of E. A type is

defined to be a set A of designs of the same polarity such that A⊥⊥ = A. Logic is then

reconstructed by defining operations on designs and types which are shown to correspond,

in the sense of denotational semantics, to logical rules and connectives.

In Girard (2001), it is proved that a polarised version of multiplicative–additive linear

logic admits a fully complete denotational model in ludics. Here, we take as designs a

subset of the infinitary affine terms of �Λ∞. The finite designs (those belonging to �Λ)

roughly correspond to Girard’s designs (or, better, to Terui’s (2011) computational designs)

and yield a model of polarised multiplicative linear logic. Instead, infinitary designs give

a fully complete denotational semantics of the multiplicative–exponential fragment of

Laurent’s (2004) polarised linear logic (MELLP). Full completeness is based on a notion

of validity, in which uniformity plays a crucial role. More precisely:

soundness: a MELLP proof π of A yields a valid design [[π]] ∈ [[A]] which is stable under

cut-elimination;

completeness: the ≈-equivalence classes of valid designs in [[A]] correspond to cut-free

MELLP proofs of A.

Therefore, the novelty with respect to the results of Girard (2001) is that we are able to

model non-linearity, i.e.the contraction rule. Although not unheard of (full completeness

results for linear logic with exponentials already exist: let us cite Laurent (2004) for

† The term ‘uniformity’ is used in this paper with two completely unrelated meanings, one computational and

one topological. Both uses are standard in their respective fields (e.g. Vollmer (1999) for computation, or

Girard (2001) in a proof-theoretic context, and Bourbaki (1998) for topology) and we prefer not to introduce

new terminology, also considering that there is little room for confusion.
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polarised linear logic and Melliès (2005) for full linear logic, both based on games

semantics), this is a further contribution of the paper, because it gives an alternative way

of modelling exponentials in ludics, with respect to what was done by Basaldella and

Faggian (2009).

Essentially, polarised linear logic is classical logic, seen through linear eyes (Girard 1991;

Laurent and Regnier 2003). Therefore, our results may be succinctly formulated using an

intriguing slogan: classical logic is the uniform quotient of the completion of multiplicative

affine logic.

1.4. Related work

The idea of linear approximations was used implicitly or explicitly in the work of Ehrhard

(2005) on differential linear logic and of Melliès et al. (2009) on denotational semantics

of linear logic. Apart from the idea, the latter work is very different from ours because

it is of categorical nature. We will return to it at the conclusion of this paper. On the

contrary, Ehrhard’s work has a syntactic counterpart, namely the Taylor expansion of

λ-terms (Ehrhard and Regnier 2008) by means of resource λ-terms (Boudol 1993), which

is very much related to our work. The main difference is the use of affinity in our setting,

which yields simpler constructions, both at the syntactic level (no formal sums) and at

the topological level (plain uniform spaces instead of topological vector spaces). On that

note, it is interesting to observe how linearity seems to forbid a topology which allows

both approximations in the spirit of Theorem 1 and the continuity of reduction. This is

because approximations require the topology to be local, whereas in strictly linear calculi

(like the resource λ-calculus) redexes are highly non-local. In this respect, affinity seems

to be a mandatory choice.

We already mentioned the extension of ludics to exponential connectives by Basaldella

and Faggian (2009). For a comparison, we may say that their approach is akin to the

games semantics of Hyland and Ong (2000), whereas ours is closer to the work of

Abramsky et al. (2000). We must mention that, in unpublished material contained in his

PhD thesis, Basaldella (2008) did explore an Abramsky, Jagadeesan and Malacaria style

definition of exponentials in ludics, which seems to be essentially equivalent to the one

presented here. However, his results do not include full completeness and do not provide

any insight on infinitary ludics being generated by the completion of a uniform space. On

the other hand, the definition of computational uniformity (the PER ≈) is fairly standard

in the context of Abramsky, Jagadeesan and Malacaria games, see for instance Melliès

(2004).

For what concerns our infinitary affine calculus �Λ∞, it is similar to calculi considered by

Kfoury (2000) and Melliès (2006). However, the motivations, technique and development

of the first work are quite orthogonal with respect to ours, whereas the second, which is

concerned with games semantics, only considers normal forms.

More generally, we are of course far from being the first to consider infinitary calculi.

The investigation of infinitary rewriting was initiated by Dershowitz et al. (1991) and is

still a growing research field. A survey on infinitary term rewriting systems and infinitary

λ-calculi may be found in Chapter 12 of Terese (2003).
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The work which is closest to the present one is the infinitary λ-calculus of Kennaway

et al. (1997), or KKSdV for short. An immediate difference between KKSdV’s work and

our own is that we study terms which are possibly infinite in width, but are well-founded

(or even finite) in height, whereas KKSdV’s focus is exactly dual. This is because KKSdV

are interested in studying the notion of infinitary rewriting, namely reductions of possibly

infinite length, with no concern about affinity or duplication. On the other hand, our

aim is to describe finite reductions in proofs (or λ-terms) by means of non-duplicating

reductions. Other calculi which are similar, although not directly related, to ours may be

found in Rodenburg (1998) (where terms with infinite width are considered) and Révész

(1992) (where a λ-calculus with lists is introduced).

2. The infinitary affine lambda-calculus

2.1. Terms and reduction

We fix two countably infinite sets Vl and Vnl of linear and non-linear variables, respectively,

ranged over by a, b, c and x, y, z, respectively, and not including the symbol ⊥. A non-empty

pattern is either a linear variable a, or of the form !x with x ∈ Vnl , or of the form p⊗ q,
where p and q are non-empty patterns sharing no variable. A pattern, also ranged over

by p,q, is either a non-empty pattern or of the form (the empty pattern).

Pre-terms are co-inductively generated as follows:

s, t, u ::= ⊥ | a | xi | λp.t | tu | t⊗ u | ∗ | u,

where i ∈ N is called an index and u denotes a function from N to pre-terms, which is

referred to as a box. We use the notation 〈u(0), u(1), u(2), . . .〉 when we want to explicitly

describe a box. When we write u = 〈u0, . . . , un−1〉, we mean that u(i) = ⊥, for all i � n. By

‘co-inductively’ we mean that we allow pre-terms which may contain themselves as strict

subterms, for instance solutions of the equation t = λa.t.

The usual notion of free and bounded variable apply to pre-terms, with the remark

that, in λ!x.t, all of x0, x1, x2, . . . are bounded. We denote by fv(t) the set of free (linear or

non-linear) variables of t. We also consider the standard notion of α-equivalence, which

will be treated as equality in the rest of the paper. When needed, we will use Barendregt’s

convention, namely that binders in a pre-term t bind pairwise disjoint set of variables

which are also disjoint from fv(t).

A pre-term may be seen as a labelled tree on the set Σ := {⊥, a, xi, λp,@,⊗, ∗, !}, with

a ∈ Vl, x ∈ Vnl , i ∈ N and p ranging over patterns (so, inspite of our notation, Σ is an

infinite set). The symbol @ is used for application and ! for boxes. By tree we mean a

downward closed subset of N∗ (finite sequences of natural numbers, with the prefix order)

and by labelled tree we mean a function t : N∗ −→ Σ such that the set

supp t := {α ∈ N∗ | t(α) �= ⊥}

is a tree. A pre-term is then a labelled tree which further verifies that:

— if t(α) = ∗ or t(α) = a or t(α) = xi for some a ∈ Vl or x ∈ Vnl and i ∈ N , then α is

maximal in supp t (∗ and occurrences of variables may only be the label of leaves);
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— if t(α) = λp, then for all n > 0, t(α · n) = ⊥ (abstractions have atmost one sibling);

— if t(α) = @ or t(α) = ⊗, then for all n > 1, t(α · n) = ⊥ (applications and tensors have

atmost two siblings).

Definition 1 (term). A term is a pre-term t such that

affinity: under Barendregt’s convention, t(α) = a, t(β) = b and a = b imply α = β (linear

variables occur atmost once); similarly, t(α) = xi, t(β) = xj and i = j imply α = β

(distinct occurrences of non-linear variables have distinct indices);

boxes: for every box u of t, fv(u) ⊆ Vnl (the free variables of boxes are non-linear);

well foundedness: the tree supp t is well founded.

We denote by �Λ∞, the set of all terms and by �Λ, the set of all finite terms, i.e.terms t

such that supp t is a finite tree.

By definition, the strict subterm relation on terms is well-founded. This will allow us to

define notions and prove facts by Noetherian induction.

We define t � p (the term t matches the pattern p) as the smallest relation such that:

∗ � ; t � a always holds; u � !x; if t′ � p and t′′ � q, then t′ ⊗ t′′ � p⊗ q.

Given u � p, substitution t[u/p] is defined by simultaneous induction on t and p:

— t[∗/ ] := t;

— b[u/a] :=

{
u if a = b,

b if a �= b;

— xi[u/!x] := u(i);

— t[u′ ⊗ u′′/p⊗ q] := t[u′/p][u′′/q];

— ⊥[u/p] := ⊥ and ∗[u/p] := ∗;
— (λy.s)[u/p] := λy.t[u/p], (sv)[u/p] := s[u/p]v[u/p] and (s⊗ v)[u/p] := s[u/p]⊗ v[u/p];

— v[u/p] := v′ where ∀i ∈ N , v′(i) := v(i)[u/p].

Definition 2 (reduction). One-step reduction is the smallest binary relation such that

— (λp.t)u→ t[u/p], whenever u � p;

— if t→ t′, then λx.t→ λx, t′, tu→ t′u, ut→ ut′, t⊗ u→ t′ ⊗ u and u⊗ t→ u⊗ t′;

— if u(n)→ u′ and u′ is such that u′(n) = u′ and u′(i) = u(i) for all i �= n, then u→ u′.

Reduction, denoted by →∗, is the reflexive–transitive closure of →.

Reduction is trivially confluent: indeed, →= (reduction in atmost one step) satisfies

the diamond property, because redexes have atmost one residue by reduction of another

redex. It is also terminating on �Λ, because the size of finite terms shrinks under

reduction. However, infinite reductions are possible in �Λ∞: if Δ := λ!x.x0〈x1, x2, x3, . . .〉
and Ω := Δ〈Δ,Δ,Δ, . . .〉, then Ω→ Ω.

2.2. Topological considerations

Remember how terms are particular functions N∗ −→ Σ. If we endow Σ with the discrete

uniformity, the set of terms may be equipped (as a subspace of a function space) with the
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uniformity FB of uniform convergence on finitely branching trees, the set of which we

denote by FBT. A family of entourages generating FB is given by

Uτ := {(t, t′) ∈ �Λ∞ × �Λ∞ | t(α) = t′(α) for all α ∈ τ},

where τ ∈ FBT. A net (tι)ι∈I is Cauchy in the uniform space (�Λ∞,FB) if, for every

τ ∈ FBT, there exists κ ∈ I such that, whenever ι, ι′ � κ, tι and tι′ agree on τ.

The induced topology, which we abusively still denote by FB, is easily inferred: a

neighbourhood basis for t is given by the sets (Vτ(t))τ∈FBT, where

Vτ(t) := {t′ ∈ �Λ∞ | t′(α) = t(α) for all α ∈ τ}.

Therefore, a net (tι)ι∈I converges to t, if tι eventually coincides with t on every finitely

branching tree. A typical example is Δn := λ!x.x0〈x1, . . . , xn〉, for which we have that

limΔn = Δ.

The uniform structure defined above has two fundamental properties, proved below:

1. the space (�Λ∞,FB) is Cauchy-complete, with �Λ as a dense subset (Proposition 5);

2. one-step reduction is continuous (Proposition 7).

In the sequel, we denote by λp.�Λ, �Λ @ �Λ, �Λ ⊗ �Λ and !�Λ, the sets of all finite

terms of the form λp.t, tu, t ⊗ u and u, respectively. All these sets are endowed with the

subspace uniformity. We will also use the following notations:

— �Λ ×aff �Λ is the set of all pairs of finite terms (t, u) such that tu is also a term (not

just a pre-term), endowed with the subspace uniformity of the product uniformity on

�Λ× �Λ;

— (�Λ)(N) is the set !�Λ endowed with the subspace uniformity of the product uniformity

on (�Λ)N (i.e.the set of all sequences of finite terms).

The maps λp : �Λ −→ λp.�Λ, @ : �Λ×aff�Λ −→ �Λ @ �Λ and ⊗ : �Λ×aff�Λ −→ �Λ⊗�Λ,

defined by t �→ λp.t, (t, u) �→ tu and (t, u) �→ t ⊗ u, respectively, are obviously bijective.

Furthermore, they and their inverses are all uniformly continuous.

Proposition 2 (isotropy). We have the following uniform homeomorphisms:

1. λp.�Λ ∼= �Λ via λp;

2. �Λ @ �Λ ∼= �Λ⊗ �Λ ∼= �Λ×aff �Λ via @ and ⊗;

3. !�Λ ∼= (�Λ)(N) via the identity.

Proof. We consider directly point 2, and start with @−1. We have to show that for

all ξ′, ξ′′ ∈ NN , there exists ξ ∈ NN such that (tu, t′u′) ∈ Uξ implies (t, t′) ∈ Uξ′ and

(u, u′) ∈ Uξ′′ . It is easy to check that setting ξ := 1 · (ξ′ ∨ ξ′′) meets the requirement. For

@, we have ξ = n · ξ̂ and must determine ξ′, ξ′′ to get the converse implication. It is easily

seen that setting ξ′ := ξ′′ := ξ̂ is enough. The case of ⊗ is virtually identical. Point 1 is

also similar.

Before proving point 3, let us remind that the uniformity on (�Λ)(N) is given by the

following basis of entourages: we choose a finite F ⊂ N , we choose one ξi ∈ NN for each

i ∈ F , and we define the basic entourage V(ξi)i∈F := {(u, u′) | ∀i ∈ F, (u(i), u′(i)) ∈ Uξi}. Now,

in the direction from !�Λ to (�Λ)(N), we need to prove that, for all {i1, . . . , in} ⊂ N and for
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every ξi1 , . . . , ξin ∈ NN , there exists ξ ∈ NN such that (u, u′) ∈ Uξ implies (u, u′) ∈ Vξi1 ,...,ξin
.

We define the integer k := max{i1, . . . , in} and the sequence of integers ξ′ :=
∨

1�j�n ξij .

We invite the reader to check that ξ := k · ξ′ meets the requirement. The other direction

is easier: we have ξ and we need to determine a finite F ⊂ N and ξi ∈ NN for each i ∈ F .

Let ξ = n · ξ′; then, the reader may check that it is enough to set F := {0, 1, 2, . . . , n} and

ξi := ξ′ for all 0 � i � n.

Corollary 3. A net (tι)ι∈I is Cauchy iff one of the following eventually holds:

1. tι = t, where t is an occurrence of variable or ⊥ or ∗;
2. tι ∈ λp.�Λ and (λp−1(tι))ι∈I is Cauchy;

3. tι ∈ �Λ @ �Λ and both (π1(@
−1(tι)))ι∈I and (π2(@

−1(tι)))ι∈I are Cauchy;

4. tι ∈ �Λ⊗ �Λ and both (π1(⊗−1(tι)))ι∈I and (π2(⊗−1(tι)))ι∈I are Cauchy;

5. tι = uι and, for all i ∈ N , (uι(i))ι∈I is Cauchy.

Proof. That all terms are eventually of the same kind (variable, abstraction, application,

etc.) is immediate. Then, case 1 is obvious, whereas the other cases follow from the

isomorphisms with product uniformities (Proposition 2).

In the following, we consider the functions Πi : !�Λ −→ �Λ, for i ∈ N , defined by

Πi(u) := u(i). We also define the set of functions F := {λp−1, πi ◦@−1, πi ◦ ⊗−1,Πj | i ∈
{1, 2}, j ∈ N}. Let (tι)ι∈I , (t′ι)ι∈I be two Cauchy nets. We write (tι)ι∈I � (t′ι)ι∈I just if,

eventually, tι = ϕ(t′ι) for some ϕ ∈ F.

Lemma 4 (well foundedness). The relation � is well founded.

Proof. Assume the contrary, and let (t0ι )ι∈I � (t1ι )ι∈I � (t2ι )ι∈I � . . . be an infinite

descending chain. By definition, we have a sequence (ϕn)n∈N of functions in F such that,

for all n ∈ N , there exists κn ∈ I such that, for all ι � κn, t
n+1
ι = ϕn(t

n
ι ). Define ι0 := κ0

and, inductively, let ιn+1 be an element of I which is above both κn+1 and ιn (such an

element must exist because I is directed). We set un := t0ιn . Observe that, by construction,

for arbitrary n ∈ N , we have ϕn ◦ · · · ◦ ϕ0(un+1) = tn+1
ιn+1
�= ⊥. The latter disequality holds

because, since ιn+1 � κn+1, t
n+1
ιn+1

is in the domain of ϕn+1, which never contains ⊥.

Let us now define ξ ∈ NN by setting ξ(n) to be: 0 if ϕn = λp−1; i−1 if ϕn = πi ◦@−1 or

ϕn = πi ◦ ⊗−1; and i if ϕn = Πi. We denote by αn the prefix of ξ of length n+ 1. We may

prove by induction on n that (ϕn ◦ · · · ◦ϕ0(un+1))(ε) = un+1(αn), for all n ∈ N . But, (un)n∈N
is a Cauchy sequence (because it is the subsequence of a Cauchy net) and therefore there

exists k ∈ N such that, for all i, j � k and for every n ∈ N , ui(αn) = uj(αn). In particular,

uk(αn) = un+1(αn) �= ⊥ for all n � k, which is absurd, because uk is a finite term.

Proposition 5. The space (�Λ∞,FB) is the Cauchy completion of (�Λ,FB).

Proof. We remind that the completion of a uniform space X is the set of Cauchy nets

of X, quotiented under an equivalence relation which essentially says that two Cauchy

nets have the same limit (see Bourbaki (1998) for the precise definition, which is not

important here). Consider �Λ endowed with the uniformity S of simple convergence,

which is induced by the metric d(t, t′) = 2−|α|, where α is the shortest sequence such that

t(α) �= t′(α). By adapting well-known results (Arnold and Nivat 1980; Courcelle 1983;
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Kennaway et al. 1997), one may prove that the completion of the metric space (�Λ, d)

is the set T of pre-terms respecting the affinity and boxes conditions of Definition 1,

which means that these are the canonical representatives of Cauchy nets of (�Λ, d). Now,

simple convergence is the same as uniform convergence on finite trees, so S is coarser,

i.e.has more Cauchy nets than FB. Therefore, if we denote by �Λ the underlying set of

the completion of (�Λ,FB), we have �Λ ⊆ T . It is not hard to see that the relation �
defined above on Cauchy nets is precisely the subterm relation on the pre-terms of T , so

Lemma 4 allows us to conclude.

Lemma 6 (substitution). Let (uι)ι∈I be a Cauchy net such that, eventually, uι � p. In that

case, if a net (tι)ι∈I is Cauchy, then so is (tι[uι/p])ι∈I .

Proof. By well-founded induction on (tι)ι∈I , using Corollary 3.

Given α ∈ N∗, we define Rα : �Λ −→ �Λ by Rα(t) := t′ if t→ t′ by reducing a redex at

position α, or Rα(t) := t if no such reduction applies.

Proposition 7 (Cauchy continuity of reduction). For all α ∈ N∗, Rα is Cauchy continuous,

hence continuous.

Proof. We remind that a function is Cauchy continuous if it preserves Cauchy nets. It

is a stronger form of continuity. Let (tι)ι∈I be a Cauchy net, and let t′ι := Rα(tι). We need

to show that (t′ι)ι∈I is Cauchy. We do this by induction on the length of α. We start with

the inductive case, which is easy. Suppose α = n · α′. The proof depends on the value of n,

but it is similar in all cases. To give the idea, we let n = 1. Now, if we are not in one of

cases 3, 4 or 5 of Corollary 3, then eventually tι(α) = ⊥ and the result is vacuously true.

Again, to show the idea, we pick case 4, i.e.eventually tι = t′ιt
′′
ι . By Corollary 3, both (t′ι)ι∈I

and (t′′ι )ι∈I are Cauchy; by the induction hypothesis, (Rα′ (t
′′
ι ))ι∈I is Cauchy, so (t′ιRα′ (t

′′
ι ))ι∈I

is Cauchy (again by Corollary 3). But observe that, for all u, v, Rα(uv) = uRα′ (v), hence we

are done.

So we only need to prove the Cauchy continuity of Rε. We start by defining, for every

pattern p, a finite A(p) ⊂ N∗ as follows. First, we set A−( ) := A−(a) := A−(x) := {ε}
and A−(p⊗ q) := 0 · A−(p) ∪ 1 · A−(q); then, we let A(p) := 1 · A−(p). Now, observe that

t is a redex (λp.u)v precisely if: t(ε) = @; t(0) = λ; for all α′ ∈ A(p), t(α′) has a suitable

value depending on p and α′ (for instance: if p = a, there is no requirement; if p = x,

then we must have t(1) = !; for more complex patterns, we have at least t(1) = ⊗ and

the rest depends on the pattern). The essence of the above discussion is that a pattern p
induces α1, . . . , αk ∈ N∗ and σ1, . . . , σk ∈ Σ such that t is a redex of pattern p iff t(αi) = σi
for all 1 � i � k. Therefore, by extending each αi arbitrarily to get ξi ∈ NN and by setting

ξ :=
∨

1�i�k ξi, we have that αi is a prefix of ξi � ξ for all 1 � i � k and, whenever

(t, t′) ∈ Uξ , t is a redex iff t′ is.

The above means that, by virtue of the Cauchy property, either eventually tι is a redex,

or eventually none of tι is. In the latter case, (t′ι)ι∈I is trivially Cauchy. In the former

case, eventually tι = (λp.sι)uι and uι � p. Therefore, eventually t′ι = sι[uι/p]. Now, by

Corollary 3, (sι)ι∈I and (uι)ι∈I are both Cauchy, so we conclude by Lemma 6.
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We conclude this section by observing that the space (�Λ∞,FB) is not metrisable,

i.e.the uniform structure cannot be defined by means of a metric. This may be seen by

showing that the induced topology is not first-countable. Let t ∈ �Λ∞ and (Ui)i∈N be a

countable family of open neighbourhoods of t. We will show that there exists an open

neighbourhood V of t that is not generated by the family, i.e.such that Ui �⊆ V for all

i ∈ N .

We start by observing that, by virtue of (Vτ(t))τ∈FBT being a neighbourhood basis of t,

we have a family (ρi)i∈N of finitely branching trees such that Vρi (t) ⊆ Ui for all i ∈ N .

Since each ρi is finitely branching, there certainly exists mi ∈ N such that, for all α ∈ ρi
and j ∈ N , |α| = i and j � mi imply α · j �∈ ρi (we denote by |α| the length of the sequence

α). In other words, mi strictly bounds the ‘maximum branching index’ of the immediate

descendants of ρi at level i (the root being at level 0). We define ρ ∈ FBT to be such that

each node at level i has exactly mi + 1 immediate descendants (indexed by 0, . . . , mi). Now,

it is not hard to define a sequence of terms (ti)i∈N such that, for all i ∈ N:

— ti(β) = t(β) for all β ∈ ρi;

— there exists α ∈ N∗ such that |α| = i and ti(α · mi) �= t(α · mi).

In other words, ti and t coincide on ρi but differ on a position which is the immediate

successor of a node of level i of branching index mi.

By construction, Vρ(t) is the open neighbourhood V we were seeking: it is an open

neighbourhood of t and yet, by definition, for all i ∈ N we have Ui �⊆ Vρ(t), because

ti ∈ Vρi (t) \ Vρ(t).

Inspite of not being metrisable, the topology FB is sequential, i.e.sequences (rather than

general nets) are enough to describe it. In fact, it may be proved that (�Λ∞,FB) is a

Fréchet–Urysohn space (Vial 2014).

2.3. Computational uniformity and the isomorphism with the full λ-calculus

The set �Λ∞ is uncountable, it contains ‘infinite algorithms.’ These are akin to so-called

non-uniform algorithms, which are families consisting of a different finite algorithm for

each different size of the input (Vollmer 1999). In this section, which is a synthesis of

Mazza (2012), we impose a uniformity constraint and recover the usual λ-calculus.

Non-uniformity arises in �Λ∞ because boxes are arbitrary sequences. Now, a box is

morally the argument of a non-linear variable x, which may appear with several (even

infinitely many) occurrences of the form xi. During an ordinary, uniform computation,

the argument of x would be a plain term u, which is duplicated and substituted to each

xi. Here, affinity excludes duplication, which is why we have to resort to boxes. However,

the fact that boxes are arbitrary means that xi and xj may be substituted with completely

different terms. To ensure that computation is uniform, we only consider boxes of the

form 〈u0, u1, u2, . . .〉 where each ui is morally a copy of the same term u, i.e.ui and uj only

differ in the indices of their free non-linear variables. For instance, if u is closed (and

uniform), then 〈u, u, u, . . .〉 will be uniform. The terms Δ and Ω defined above are typical

examples of uniform terms.
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Definition 3 (uniformity). We define reindexing equivalence, denoted by ≈, as the smallest

partial equivalence relation on �Λ∞ such that:

— ∗ ≈ ∗, a ≈ a and xi ≈ xj for all i, j ∈ N;

— if t ≈ t′ and u ≈ u′, then λx.t ≈ λx.t′, tu ≈ t′u′ and t⊗ u ≈ t′ ⊗ u′;

— if u(i) ≈ u′(j) for all i, j ∈ N , then u ≈ u′.

A term t is uniform if t ≈ t. We denote by uΛ∞ the set of uniform terms.

All subterms of a uniform term are uniform. Hence, ⊥ cannot appear in any uniform

term. In particular, no finite term containing a box is uniform. Also note that uniform

terms are necessarily of finite height. Another interesting remark is that the quotient space

�Λ∞/≈ is discrete (we leave the easy verification to the reader).

Uniformity is not preserved under reduction. For example, if u is a closed uniform term

such that u → u′, then 〈u, u, u, . . .〉 → 〈u′, u, u, . . .〉, which has no reason to be uniform.

However, we do know that 〈u′, u′, u′, . . .〉 is uniform; the idea then is to define a notion of

reduction which allows infinitely many parallel steps, so as to preserve uniformity.

Definition 4 (infinitary reduction). We define the relations ⇒k on uΛ∞, with k ∈ N , as

follows:

— (λp.t)u⇒0 t[u/p] whenever u � p;

— if t⇒k t
′, then λp.t⇒k λp.t′, tu⇒k t

′u, ut⇒k ut
′, t⊗ u⇒k t

′ ⊗ u and u⊗ t⇒k u⊗ t′;

— if u(0)⇒k u
′
0, by uniformity the ‘same’ reduction may be performed in all u(i), i ∈ N ,

obtaining the term u′i. If we define u′(i) = u′i for all i ∈ N , we set u⇒k+1 u′.

We denote by ⇒ the union of all ⇒k , for k ∈ N .

For instance, if I = λx.x0, and t = I〈I, I, I, . . .〉, we have

a〈y0〈t, t, . . .〉, y1〈t, t, . . .〉, . . .〉 ⇒2 a〈y0〈I, I, . . .〉, y1〈I, I, . . .〉, . . .〉.

Note that ⇒k is infinitary iff k > 0. Indeed, ⇒0 is shallow reduction (a strongly confluent

extension of head reduction) and is not infinitary.

Proposition 8. Let t ∈ uΛ∞. Then:

— t⇒ t′ implies t′ ∈ uΛ∞;

— furthermore, for all u ≈ t, u⇒ u′ ≈ t′.

Proof. An immediate adaptation of Proposition 14 in Mazza (2012).

In what follows, we denote by Λ the set of usual λ-terms, ranged over by M,N. We

denote by →β usual β-reduction. The set of λ-calculus variables is assumed to be Vnl . Let

us define �Λ!
∞ to be the subset of �Λ∞ generated as follows:

t ::= xi | λ!x.t | tu.

Essentially, �Λ!
∞ is the image of Λ under Girard’s translation of intuitionistic logic in

linear logic. We denote by uΛ!
∞ the set of uniform terms of �Λ!

∞.
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We fix an injection �·	 : N∗ → N . For all α ∈ N∗, we define by induction the family of

maps �·�α : Λ→ uΛ!
∞ and the map �·� : uΛ!

∞ → Λ, as follows:

�x�α := x�α	 �xi� := x (for all i ∈ N)

�λx.M�α := λ!x.�M�α �λ!x.t� := λx.�t�

�MN�α := �M�α·0〈�N�α·1, �N�α·2, �N�α·3, . . .〉 �tu� := �t��u(0)�.

For example, if M := (λx.xx)(λz.z), then

�M�ε = (λ!x.x�00	〈x�01	, x�02	, x�03	, . . .〉)〈λ!z.z�1	, λ!z.z�2	, λ!z.z�3	, . . .〉,

which is obviously uniform, and if I := λ!z.z0, we have �M�ε ≈ Δ〈I, I, I, . . .〉.
The applicative depth of a redex in the λ-calculus is defined by induction: (λx.M)N is

at applicative depth 0; if a redex is at applicative depth k in M, then its applicative depth

is k in λx.M and MN, and k + 1 in NM. In the following, we write M →βk M
′ to denote

the fact that M →β M ′ by reducing a redex at applicative depth k (e.g.→β0 is a mild

generalisation of head reduction).

Proposition 9. For all M ∈ Λ, t ∈ uΛ!
∞, and α ∈ N∗:

1. ��M�α� = M;

2. ��t��α ≈ t;

3. M →βk M
′ implies �M�α ⇒k t

′ ≈ �M ′�α;

4. t⇒k t
′ implies �t�→βk �t′�.

Proof. See Theorem 19 in Mazza (2012).

Corollary 10. In the Curry–Howard sense, (Λ,→β) is isomorphic to (�Λ!
∞/≈,⇒).

Note that, as we remarked after Definition 3, the topology induced on Λ from the

quotient topology on �Λ!
∞/≈ is discrete. This shows that our topology is very different

from the familiar Scott topologies used in denotational semantics (such as the topology of

Böhm trees). In fact, our topology is meaningful only for approximating λ-terms by means

finite affine terms. Since finite terms disappear in the quotient (they are not uniform), the

resulting topology is trivial.

3. The proof-theoretic perspective

3.1. A non-locative version of ludics

We start by adding to �Λ∞ the constants � (convergence, called daimon in Girard (2001))

and Ω (divergence), and we denote by �Λ�,Ω
∞ the resulting set of terms.† The notion of

uniformity (Definition 3) applies to �Λ�,Ω
∞ by adding � ≈ � and Ω ≈ Ω.

Definition 5 (normal form). We define the relation t ⇓ v as the smallest such that:

— ⊥ ⇓ ⊥, ∗ ⇓ ∗, a ⇓ a, xi ⇓ xi and � ⇓ �;

— if, for all i ∈ N , u(i) ⇓ v(i), then u ⇓ v;

† We will not make any topological consideration in this section, observe however that �Λ
�,Ω
∞ is uniformly

homeomorphic to �Λ∞: occurrences of � and Ω behave like occurrences of non-linear variables.
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— if t ⇓ v and t′ ⇓ v′, then λp.t ⇓ λp.t′ and t⊗ t′ ⇓ v ⊗ v′; in case v is not an abstraction,

then we also have tt′ ⇓ vv′; instead, if v = λp′.s, then tt′ ⇓ v′′ provided that v′ � p′ and

s[v′/p′] ⇓ v′′.
Given t ∈ �Λ�,Ω

∞ , we define nf(t) := v if t ⇓ v or nf(t) := Ω if there is no such v.

Note that, if nf(u) does not match p, then nf((λp.t)u) = Ω.

Lemma 11. Let t, u ∈ �Λ�,Ω
∞ .

1. If t→ t′ and nf (t) �= Ω, then nf(t) = nf(t′).

2. If u � p and nf(t[u/p]) �= Ω, then nf(t[u/p]) = nf(nf(t)[nf(u)/p]).

Proof. Both points are established by straightforward inductions: point 1 on the

derivation that t ⇓ v for some v; point 2 on t and the derivation that t[u/p] ⇓ v.

An exponential pattern of arity n is a pattern of the form !x1 ⊗ · · · ⊗ !xn, by which we

mean the pattern if n = 0. We use �p,�q,�r to range over exponential patterns. Note that if
�p,�q are exponential patterns, then so is �p⊗�q, with the convention that �p⊗ = ⊗�p =�p.

An exponential tensor of arity n is a term of the form u1 ⊗ · · · ⊗ un, by which we mean

the term ∗ if n = 0. We use �u,�v,�w to range over exponential tensors. Note that if �u,�v are

exponential tensors, then so is �u⊗�v, with the convention that �u⊗ ∗ = ∗ ⊗�u =�u.

Definition 6 (design). A design is a term of �Λ�,Ω
∞ generated as follows:

t− ::= ⊥ | λ�p.t+ (negative designs),

t+ ::= � | a�u− | xi�u− (positive designs),

where �u− ranges over exponential tensors whose boxes contain negative designs. Observe

that the definition is inductive, which means that designs have a finite height (the height

of the underlying tree). They also have a finite depth, which is the maximum nesting of

boxes. We denote by �Λdes
∞ the set of all designs.

The arity of λ�p.t (resp. a�u or xi�u) is the arity of �p (resp. �u).

In the following, we fix a linear variable z. A design t is atomic, if it is negative and

fv(t) = � or if it is positive and either t = � or t = z�u with the designs in �u atomic.

Note that designs, by construction, are normal. Our finite designs are more or less

equivalent to a non-locative (what Girard (2001) calls ‘spiritual’) version of the usual

designs of ludics, restricted to multiplicative constructions. Indeed, our finite designs

basically coincide with normal linear multiplicative computational designs of Terui (2011).

Finite designs may be used to give a syntactic model of a polarised version of multiplicative

linear logic. We will see that our infinitary designs, inspite of being affine, are capable of

also modelling the non-linear features of linear logic, i.e.the contraction rule.

Definition 7 (orthogonality). Let t, u be atomic designs of opposite polarity, with t positive.

We say that they are orthogonal, and we write t ⊥ u (or u ⊥ t, i.e.the relation is symmetric),

if nf(t[u/z]) = �. Given a set of atomic designs E, define

E⊥ = {t′ ∈ �Λdes
∞ | ∀t ∈ E, t′ ⊥ t}.
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Note that we trivially have � ⊥ u for every negative u. By contrast, no negative design

is orthogonal to all positive designs. Indeed, for t ⊥ u to hold with u negative and t �= �,

t and u must have the same arity.

The operation of taking the orthogonal of a set of designs is easily seen to have the

following standard properties: A ⊆ A⊥⊥; A ⊆ B implies B⊥ ⊆ A⊥; hence, A⊥⊥⊥ = A⊥.

Definition 8 (type). A pre-type (ethics in Girard (2001)) is a non-empty set of atomic

designs of the same polarity. A type (behaviour in Girard (2001)) is a pre-type A such

that A⊥⊥ = A; its polarity is the polarity of the designs it contains.

It is immediate to check that the set of all negative atomic designs � and 0 := {�} are

both types, orthogonal of each other. A proper type is a type which is neither � nor 0. If

A is a proper type, and t, u ∈ A both different from �, it is easy to check that t and u

have the same arity. This is said to be the arity of A. Furthermore, observe that the arity

of A⊥ is the same as that of A.

An important example of proper positive type is 1 = {z∗}⊥⊥, of arity 0. This is easily

seen to be equal to {�, z∗}. In fact, given a negative atomic design t, the only way that t∗
reduces to � is that t = λ .� (the arities must match, and t must be closed, because it is

atomic). So we have {z∗}⊥ = {λ .�} and the remarks following Definition 7 allow us to

conclude. Note that the daimon is necessarily present in all positive types.

Definition 9 (tensor product). Let t, u be positive atomic designs. We define

t 
 u =

{
z(�u⊗�v) if t = z�u and u = z�v;

� if one of t, u is equal to �.

Let A,B be positive types. We define

A 
 B = {t 
 u | t ∈ A, u ∈ B},
A⊗ B = (A 
 B)⊥⊥.

Note that, if A and B are both proper of arity m and n, respectively, then A⊗B is proper

of arity m + n.

Lemma 12 (internal completeness of tensor product). For all positive types A,B, A⊗B =

A 
 B.

Proof. We start by observing that A 
 0 = 0 
 B = 0 = 0⊥⊥, so we may assume that

both A and B are proper. By the remarks following Definition 7, it is enough to prove

the inclusion A⊗ B ⊆ A 
 B. So let s ∈ A⊗ B. If s = �, we are done, because � ∈ A ∩ B
and �⊗ � = �. So suppose s = z�w. We actually know that the arity of s is m + n, where

m is the arity of A and n is the arity of B. Therefore, we may write �w = �u ⊗�v and

s = t 
 u, with t = z�u and u = z�v. So all that is left to do is prove that t ∈ A and u ∈ B.

We will prove the first statement, the second being perfectly symmetric. Let t′ ∈ A⊥. We

must have t′ = λ�p.v with �p of arity m. We define s′ := λ�p⊗�q.v, with �q of arity n binding

variables not appearing in v. We contend that s′ ∈ (A 
 B)⊥. Indeed, let t0 = z�u′ ∈ A
and u0 = z�v′ ∈ B. We have s′(�u′ ⊗�v′) → v[�u′/�p] =: v′. But we also have t′�u′ → v′, so

nf(v′) = �, because t′ ⊥ t0. This proves that s′ ⊥ (t0 
 u0) and, by genericity of t0 and u0,

https://doi.org/10.1017/S0960129515000298 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000298


Infinitary affine proofs 595

that s′ ∈ (A
B)⊥, as claimed. Consider now t[t′/z] = t′�u; this reduces to v[�u/�p], which is

also the reduct of s[s′/z], which has normal form �, because s ∈ (A
B)⊥⊥ by hypothesis.

Hence t ⊥ t′ and, by genericity of t′, t ∈ A, as desired.

An immediate consequence of Lemma 12 is that the tensor product is associative and

has neutral element 1. It is also commutative, but only upto isomorphism.

Definition 10 (exponentiation). Let A be a proper negative type. We define

†A = {zu | ∀i ∈ N , u(i) ∈ A} ∪ {�}
!A = (†A)⊥⊥.

Note that, independently of the arity of A, !A is always proper of arity 1.

Lemma 13 (internal completeness of exponentiation). For every proper negative type A,

!A = †A.

Proof. Again, we only have to prove the inclusion !A ⊆ †A, so let t ∈ !A. If t = �, we

trivially have t ∈ †A by definition. Hence, since !A is of arity 1, we may suppose t = zu,

and it is enough to prove that u(i) ∈ A for all i ∈ N . Let u′ = z�v ∈ A⊥, and let s := λx.xi�v,

with x �∈ fv(�v). We contend that s ∈ (†A)⊥. Indeed, let w be an arbitrary box of terms in

A. We have nf(sw) = nf(w(i)�v) = nf(u′[w(i)/z]) = � because w(i) ⊥ u′. Now, note that

t[s′/z] → u(i)�v = u′[u(i)/z], which has normal form � because t ∈ (†A)⊥⊥ by hypothesis.

Therefore, u(i) ⊥ u′ and, by generality of u′ and i, u(i) ∈ A for all i ∈ N .

3.2. A fully complete model of multiplicative exponential polarised linear logic

The formulas of (atom-free) multiplicative exponential polarised linear logic (MELLP,

Laurent (2004)) are defined as follows:

A+, B+ ::= 1 | A+ ⊗ B+ | !A−,
A−, B− ::= ⊥ | A− � B− | ?A+.

Formulas of the form A+ are positive, those of the form A− are negative. Linear negation

(·)⊥ is defined as usual through De Morgan laws, and it exchanges 1/⊥, ⊗/� and !/? (so

the negation of a positive formula is negative, and vice versa). Propositional atoms are

excluded for simplicity; we believe that the main ideas underlying the model are better

conveyed in their absence, without missing any important technical ingredient.

A polarised sequent is an expression of the form Γ � Σ where Γ and Σ are finite

(unordered) sequences of positive formulas, with Σ consisting of at most one formula. The

sequent calculus of MELLP is given in Figure 1. The usual presentation (Laurent 2004)

manipulates one-sided sequents containing at most one positive formula, and has explicit

structural rules (weakening and contraction) on all negative formulas. Our two-sided

formulation with implicit structural rules is obviously equivalent, and is best fit for our

purposes. For technical reasons, we also consider the system MELLP�, in which there is

a daimon rule that allows to prove any sequent.
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Fig. 1. The sequent calculus of MELLP�. The exchange rule is implicit. The sequent calculus of

MELLP is obtained by removing the rule (dai).

The interpretation of a formula A, denoted by [[A]], is a type defined by induction on

A, using the operations introduced in Section 3.1:

[[1]] = 1 [[⊥]] = 1⊥

[[A⊗ B]] = [[A]]⊗ [[B]] [[A � B]] = ([[A]]⊥ ⊗ [[B]]⊥)⊥

[[!A]] = ![[A]] [[?A]] = (![[A]]⊥)⊥
.

Note that the interpretation of a formula is always proper.

We now decorate the calculus of Figure 1 with terms of �Λ�,Ω
∞ . A sequent C1, . . . , Cn � Σ

will be replaced by a judgment �p1 : C1, . . . ,�pn : Cn � t : Σ, where:

1. the arity of each �pj is equal to that of [[Cj]];

2. fv(t) is contained in �p1, . . . ,�pn, with the possible exception of z when Σ �= �;

3. if Σ �= �, then t is either � or Ω or of the form z�u.

The last requirement allows us to extend Definition 9. Given t, u as in point 3 above, we

define t 
 u as follows:

— if one of t, u is Ω, then t 
 u := Ω;

— if none of t, u is Ω but one of them is �, then t 
 u := �;

— otherwise, t = z�u and u = z�v, and we set t 
 u := z(�u⊗�v).
Finally, we fix infinitely many injections ιn : N → N , n ∈ N , whose ranges are pairwise

disjoint and, given a term t, we define ιn(t) to be the term obtained by replacing each free

occurrence of non-linear variable xi with xιn(i). Also, if x ∈ fv(t), we define tx++ to be the

term obtained from t by replacing every occurrence xi with xi+1.

With the above definitions in place, the decoration of MELLP� proofs is given in

Figure 2. Now, given a MELLP� proof π of C1, . . . , Cn � Σ, by applying the above

decoration we obtain a judgment �p1 : C1, . . . ,�pn : Cn � t : Σ. Then, we define the

interpretation of π as [[π]] := λ�p1 ⊗ · · · ⊗�pn.t.

We will prove later that the interpretation of a MELLP� proof is actually a design, of

the following kind.

Definition 11 (functional design, function types). A functional design is a negative design

of the form λ�p.t where t is atomic (hence, fv(λ�p.t) ⊆ {z}).
Let A,B be positive types, with A proper. We define the set A � B as follows:

— A � 0 is defined as A⊥;
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Fig. 2. The decoration of MELLP� proofs.

— if B is proper, A � B is the set of all functional designs s such that, for all t ∈ A and

u′ ∈ B⊥, nf(t[s[u′/z]/z]) = �.

Note that the arity of the designs in A � B is always equal to the arity of A. Additionally,

if A = 1, then t ∈ 1 � B iff t = λ .u with u ∈ B, so 1 � B is essentially the same as B.

We may now interpret a polarised sequent Γ � Σ as follows: if Γ = C1, . . . , Cn, we set

[[Γ]] := [[C1]] ⊗ · · · ⊗ [[Cn]] (with [[Γ]] := 1 in case n = 0); if Σ consists of a formula B,

then [[Σ]] := [[B]], otherwise [[Σ]] := 0; then, we define [[Γ � Σ]] := [[Γ]] � [[Σ]].

Interpretations are designs but not all designs are interpretations of MELLP proofs.

To characterise them, we introduce validity:

Definition 12 (valid design). A design is valid (winning in Girard (2001)) if it is uniform

and daimon-free, i.e.it does not contain � as subterm.

Validity induces a notion of truth on types: a type is true if it contains a valid design.

This notion is non-contradictory: at most one of A and A⊥ may be true (this is because,

given t ∈ A and t′ ∈ A⊥, for t ⊥ t′ to hold one of the two must contain the subterm �,

since it cannot be created through reduction). As pointed out by Girard (2001), the result

that follows may be seen as a more general reformulation of the standard properties

relating truth (in all models) and provability:

soundness: if A is provable, then [[A]] is true;

completeness: if [[A]] is true, then A is provable.

Theorem 14 (full completeness for MELLP).

1. For every MELLP proof π of Γ � A, [[π]] is a valid design in [[Γ � A]], and if π → π′

by cut-elimination, then [[π]] = [[π′]].

2. Furthermore, for every ≈-equivalence class of valid designs of [[Γ � A]], there exists a

cut-free MELLP proof π of Γ � A such that [[π]] is a representative of that class.

The soundness part (1) of Theorem 14 is essentially the cut-elimination theorem for

MELLP, which is standard (Laurent 2004). Indeed, one starts by defining the degree degR

and the height h(R) of a cut rule R as the complexity of the cut formula and the distance

from the rule to the leaves of the proof, respectively. Then, one proceeds by induction on
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the multiset μ(π) containing all pairs (degR, h(R)) for R ranging over the cut rules of π.

If this multiset is empty, then π is cut-free and the result is obtained easily by induction

on the last rule. Otherwise, there is always a cut rule R in π which may be transformed

to obtain a proof π′ such that [[π′]] = [[π]] (this is immediate from the definitions) and

μ(π′) < μ(π), so the induction hypothesis allows us to conclude.

The completeness part (2) is an immediate consequence of Theorem 15 below. In order

to prove it, we need an auxiliary definition:

Definition 13 (rank). Let u be a design and let x ∈ fv(u) ∩ Vnl . The rank of x in u is the

non-negative integer defined as follows, by induction on u:

— rkx(�) = rkx(⊥) = 0;

— rkx(v(u1 ⊗ · · · ⊗ un)) = δ +
∑n

j=1 rkx(uj(0)), where δ = 1 if v = xi for some i, or δ = 0

otherwise;

— rkx(λ�p.t) = rkx(t).

Let u = λ!x1 ⊗ · · · ⊗ !xn.t be a negative design. Its rank is defined by rk(u) =
∑n

j=1 rkxj (t).

The rank is defined for every (negative, non ⊥) design, but it only makes sense for uniform

designs: in that case, rkx(u) is the number of free occurrences of x in the λ-term �u�.

Theorem 15 (full completeness for MELLP�). Let s ∈ [[Γ � Σ]] be uniform. Then, there

exists a cut-free proof π of MELLP� such that [[π]] ≈ s (where ≈ is reindexing equivalence,

introduced in Definition 3).

Proof. The proof is by induction on the triple (h, r, d), where: h is the height of s,

r = rk(s), and d is the size of Γ � Σ, i.e.the total number of symbols in Γ and Σ. Triples

are ordered lexicographically: (h′, r′, d′) < (h, r, d) iff h′ < h, or h′ = h and r′ < r, or h′ = h,

r′ = r and d′ < d. So we suppose that the theorem holds for all s′ ∈ [[Γ′ � Σ′]] such that

(h′, r′, d′) < (h, r, d), and we prove it for s and Γ � Σ.

Let us start with the case s = λ�r.�, in which we do not need the induction hypothesis:

the proof π consisting of a single (dai) rule trivially satisfies the requirement. Then, we

may suppose that s = λ�r.t with t �= �. The proof splits into two cases, depending on

whether Σ is empty or not.

Let Σ be empty. By definition, s ∈ [[Γ]]⊥, with [[Γ]] proper. Let n be its arity. The case

n = 0 does not apply, because then we would have s = λ .�, contrarily to our assumptions.

Then, we have Γ = C,Δ, with C �= 1, and s = λ�p ⊗�q.xi�u, with �p and �q matching the

arities of [[C]] and [[Δ]], respectively. Moreover, x is bound; we may assume without loss

of generality that x appears in �p (otherwise, if x is in �q, we simply permute the formulas

in Γ). We have two cases:

— C = A⊗B: trivially, s ∈ [[A,B,Δ �]], and h′ = h, r′ = r and d′ < d, so by the induction

hypothesis we have a proof π′ of conclusion A,B,Δ �, to which we apply a (⊗ �) rule

and conclude;

— C = !A⊥: [[C]] is of arity 1, so we actually have s = λ!x ⊗�q.xi�u. We contend that

λ!x ⊗�q.z�u ∈ [[!A⊥,Δ � A]]. Note that this satisfies h′ = h and r′ < r, so it is enough

to conclude: the induction hypothesis gives us a proof π′ to which we apply a (! �)
rule, obtaining a proof π such that [[π]] ≈ s, as desired. We need to check that, for all
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z(v ⊗�w) ∈ [[!A⊥]] ⊗ [[Δ]] and t′ ∈ [[A]]⊥, nf ((λ!x ⊗�q.t′�u)(v ⊗�w)) = �. Observe that, if

we define v′(i) := t′ and v′(j) := v(j) for j �= i, we obviously have zv′ ∈ [[!A⊥]], hence

z(v′ ⊗�w) ∈ [[!A⊥]]⊗ [[Δ]]. But s(v′ ⊗�w) and (λ!x⊗�q.t′�u)(v⊗�w) reduce to the same term,

so we conclude because s ∈ ([[!A⊥]]⊗ [[Δ]])⊥.

Let now Σ consist of the formula S . We have three cases:

— S = 1: by hypothesis we have, for all t ∈ [[Γ]] and u′ ∈ 1⊥, nf(t[s[u′/z]/z]) = �. But

1⊥ = {λ .�}, which forces s = λ�p.z∗, with �p matching the arity of [[Γ]]. Then, π is the

proof consisting of a single (� 1) rule.

— S = A⊗B: for similar reasons as above, we must have s = λ�p.z(�u⊗�v), with�p matching

the arity of [[Γ]] and�u,�v matching the arity of [[A]], [[B]], respectively. Given z�w ∈ [[Γ]],

if we define�u′ :=�u[�w/�p] and�v′ :=�v[�w/�p], the hypothesis s ∈ [[Γ � A⊗B]] gives us, for

all r′ ∈ ([[A]]⊗ [[B]])⊥, nf(s[r′/z]�w) = nf(r′(�u′ ⊗�v′)) = �. From this, using Lemma 11,

we deduce that z(nf(�u′) ⊗ nf (�v′)) ∈ [[A]] ⊗ [[B]], so by Lemma 12, z nf(�u′) ∈ [[A]]

and z nf(�v′) ∈ [[B]]. Therefore, if we define s′ := λ�p.z�u and s′′ := λ�p.z�v, then for all

z�w ∈ [[Γ]], for all t′ ∈ [[A]]⊥ and for all u′ ∈ [[B]]⊥, using Lemma 11 again we have

that nf(s′[t′/z]�w) and nf(s′′[u′/z]�w) are both equal to �, showing that s′ ∈ [[Γ � A]]

and s′′ ∈ [[Γ � B]]. For both of these we have h′ = h′′ = h, r′, r′′ � r and d′, d′′ < d, so

the induction hypothesis applies and gives us two proofs π′, π′′ of Γ � A and Γ � B,

respectively, to which it is enough to apply a (� ⊗) rule to obtain the desired π.

— S = !A⊥: again, we have s = λ�r.zu, with�r matching the arity of [[Γ]]. Given z�w ∈ [[Γ]],

if we define u′ := u[�w/�r], similar reasoning as above (using Lemma 11) gives us

z nf(u′) ∈ [[!A⊥]]. Then, by Lemma 13, nf (u′(i)) ∈ [[A⊥]] for all i ∈ N , which means

that u′(i) = λ�p.v′i with �p matching the arity of [[A]], so u(i) = λ�p.vi, with v′i = vi[�w/�r].
Now, take any i ∈ N , and define s′ := λ�p⊗�r.vi. For a generic z(�v⊗�w) ∈ [[A]]⊗ [[Γ]], we

have s′(�v⊗�w)→ v′i[�v/�p], but this latter is also the reduct of u′(i)�v, and we know that

nf(u′(i)�v) = �. We have thus proved that s′ ∈ [[A,Γ �]], and since the height of s′ is

strictly smaller than the height of s, we may apply the induction hypothesis, yielding

a proof π′ to which we apply a (� !) rule to obtain the desired π. Indeed, note that

the choice of i is irrelevant: by uniformity, vi ≈ vj for all i, j, so in any case we obtain

[[π]] ≈ s.

4. Further work: the categorical perspective

We already mentioned that Melliès et al. (2009) used the idea underlying the approximation

theorem to provide an explicit formula for constructing the free commutative comonoid

in certain symmetric monoidal categories. This offers a categorical viewpoint on our work

and yields a potentially interesting research direction.

Melliès, Tabareau and Tasson’s construction starts with a symmetric monoidal category

(C,⊗, 1) such that the free copointed object on every object A exists, is denoted by A• and

its canonical projection by πA : A• −→ 1.

We start by defining A�n to be the equaliser, if it exists, of the n! parallel isomorphisms

(A•)⊗n −→ (A•)⊗n obtained from the symmetry of C.
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Now, by the universal property of equalisers on the morphism πA, we know that there

is a canonical projection πA
n : A�n+1 −→ A�n, for all n ∈ N . Then, we define !A to be the

limit, if it exists, of the diagram

1
πA

←− A•
πA

1←− A�2
πA

2←− A�3
πA

3←− · · · .

The main result of Melliès et al. (2009) is that, under certain hypotheses of commutation

with the tensor, !A is the free commutative comonoid on A. It is known that, in a ∗-
autonomous category with finite products, the existence of the free commutative comonoid

on every object yields a denotational model of full linear logic (a result due to Lafont,

see Melliès’s survey in Curien et al. (2010)). Therefore, the above result provides a way of

building, under certain conditions, models of full linear logic starting from models of its

multiplicative–additive fragment.

Our approach suggests swapping the two steps of Melliès, Tabareau and Tasson’s

construction: first one computes a projective limit, then one equalises. This follows our

procedure for building a model of MELLP: we first complete the space �Λ to obtain

�Λ∞, then we introduce uniformity and obtain MELLP proofs as a uniform quotient.

More in detail, we start by defining pAn : (A•)⊗n+1 −→ (A•)⊗n as the morphism obtained

by composing id(A•)⊗n ⊗ πA with the iso (A•)⊗n ⊗ 1 ∼= (A•)⊗n. Then, we define Aω as the

limit (if it exists) of the following diagram, which we call D:

1
πA

←− A•
pA1←− (A•)⊗2

pA2←− (A•)⊗3
pA3←− · · · .

At this point, if we suppose that the above limit commutes with the tensor, i.e.that, for

all n ∈ N , (Aω)⊗n is the limit of the n-dimensional version of D, which we call Dn, then

it is easy to see that Aω is a cone for every Dn. Therefore, we have canonical morphisms

ϕn : Aω −→ (Aω)⊗n. We may then ask !A to be the equaliser of all combinations of ϕn

with the symmetries of C. Ongoing joint work with Pellissier (2014) shows that this is

indeed an alternative rephrasing of Melliès, Tabareau and Tasson’s construction and is

doubtlessly an interesting topic of further research.
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Université Paris 7.

Vollmer, H. (1999). Introduction to Circuit Complexity - A Uniform Approach, Texts in Theoretical

Computer Science, Springer.

https://doi.org/10.1017/S0960129515000298 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000298

