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A theoretical model based on linear potential flow theory and an eigenfunction matching
method is developed to analyse the hydroelastic interaction between water waves and
multiple circular floating porous elastic plates. The water domain is divided into the
interior and exterior regions, representing the domain beneath each plate and the rest,
which extends towards infinity horizontally, respectively. Spatial potentials in these two
regions can be expressed as a series expansion of eigenfunctions. Three different types
of edge conditions are considered. The unknown coefficients in the potential expressions
can be determined by satisfying the continuity conditions for pressure and velocity at the
interface of the two regions, together with the requirements for the motion/force at the
edge of the plates. Apart from the straightforward method to evaluate the exact power
dissipated by the array of porous elastic plates, an indirect method based on Green’s
theorem is determined. The indirect method expresses the wave-power dissipation in terms
of Kochin functions. It is found that wave-power dissipation of an array of circular porous
elastic plates can be enhanced by the constructive hydrodynamic interaction between the
plates, and there is a profound potential of porous elastic plates for wave-power extraction.
The results can be applied to a range of floating structures but have special application in
modelling energy loss in flexible ice floes and wave-power extraction by flexible plate

wave-energy converters.
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1. Introduction

In recent years, due to industrial and residential applications, the demand for the
development and utilisation of artificial marine structures nearshore and offshore has
increased significantly (Lamas-Pardo, Iglesias & Carral 2015). Among the wide variety
of nearshore and offshore artificial structures, some can be identified as floating porous
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elastic plates with small draught relative to their horizontal dimensions, e.g. floating
flexible breakwaters (Michailides & Angelides 2012), artificial floating vegetation fields
(Kamble & Patil 2012) and extensive aquaculture farms (Wang & Tay 2011). The floating
elastic plate model is the basis for understanding this process (Squire 2020). In particular,
the scattering characteristics are best analysed by considering multiple ice floes to account
for interactions (Bennetts ez al. 2010; Montiel, Squire & Bennetts 20154, 2016; Montiel &
Squire 2017). However, these elastic plate scattering models cannot account for the loss
of energy, and there are several models which propose that a porous or equivalent layer
can account for the observed energy loss (Zhao & Shen 2018; Sutherland et al. 2019).
These models motivate the study of flexural deformations of floating porous elastic plates
subject to water waves and to evaluate carefully the wave-energy dissipation caused by
their porosity.

The water-wave scattering of floating elastic plates has been comprehensively
investigated by numerous researchers, and there are several reviews that relate to this topic
(e.g. Squire 2008, 2011, 2020). To evaluate the interaction of waves with a horizontal
floating semi-infinite elastic plate, Sahoo, Yip & Chwang (2001) used the analytic
representation based on the eigenfunction expansion method of Fox & Squire (1994),
in the context of two-dimensional (2-D) linear potential flow theory. The influence of
various edge conditions, i.e. a free edge, a simply supported edge and a built-in edge,
on the hydrodynamic behaviour was investigated. The free-edge condition was shown to
result in the maximum plate deflection. Squire & Dixon (2000) studied wave propagation
across a narrow straight-line crack in an infinite thin plate floating on water of infinite
depth with a Green’s function model. The reflection and transmission coefficients were
observed to depend significantly on the wave frequency. Evans & Porter (2003) provided
an explicit solution for the wave scattering of an infinite thin plate with a crack for finite
water depth. They obtained a more straightforward approach by splitting the higher-order
conditions to be satisfied at the edge of each plate into the sum of even and odd solutions.
These models (Squire & Dixon 2000; Evans & Porter 2003) for the single-crack problem
were later extended to an elastic plate with multiple cracks (Squire & Dixon 2001; Porter
& Evans 2006), but where all the plates have identical properties. Then, Kohout et al.
(2007) studied a 2-D fluid covered by a finite number of elastic plates, which were of
arbitrary characteristics. Williams & Porter (2009) introduced an eigenfunction expansion
method based on deriving an integral equation, which was then solved using the Galerkin
technique, to determine the problem of wave scattering by two semi-infinite plates. These
two semi-infinite plates can have different properties, including variable submergence
following Archimedes’ principle. A similar problem was later investigated by Zhao & Shen
(2013) in which the plates were considered to have viscoelastic material properties. More
recently, Kalyanaraman et al. (2019) considered wave interactions with a land-attached
elastic plate of constant thickness and non-zero draught. The solution was found to be
strongly influenced by the draught. Koley, Mondal & Sahoo (2018) investigated wave
scattering of a flexible plate composed of porous materials floating in water of finite and
infinite depths employing the Green’s function procedure. The porosity was modelled
using Darcy’s law, and the porous-effect parameter was taken as a complex number to
account for both the resistance and inertia effects. The dissipation of the wave power due
to structural porosity reduced the wave transmission on the lee side of the plate, which led
to the creation of a tranquil zone.

In order to understand the hydroelastic problem of elastic plates floating in ocean waves
when the plate length along the crest line of the incident waves is not much larger than
the wavelength, three-dimensional effects must be considered. Meylan & Squire (1996)
studied the behaviour of a solitary, circular, flexible ice floe brought into motion by the
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action of long-crested sea waves. Two independent methods were developed in their model,
i.e. an expansion in the eigenfunctions of a thin circular plate, and the more general method
of eigenfunctions used to construct a Green’s function for the plate, enabling a check
to be carried out on the model. Zilman & Miloh (2000) developed a three-dimensional
closed-form solution based on the angular eigenfunction expansion method for water-wave
interaction with a circular thin elastic plate floating in shallow water. Their method was
based on the roots of the dispersion equation. Since the shallow-water approximation
was considered, only three roots in the plate-covered region and one root in open water
were required in their model. The potential was matched at the edge of the plate,
and the plate boundary conditions were applied to solve the wave scattering problem.
Peter, Meylan & Chung (2004) extended the earlier study (Zilman & Miloh 2000) to a
theoretical solution for a circular elastic plate floating in finite-depth water, i.e. without
the restriction of the shallow-water approximation. Therefore, more roots of the dispersion
equation for both the plate-covered region and the open-water region were required.
The potential throughout the water depth, rather than at a point, was matched and the
plate boundary conditions were applied. Since the plate geometry was circular (Zilman
& Miloh 2000; Peter e al. 2004), the angular eigenfunctions can be decoupled. Hence
each angular eigenfunction can be solved separately, and the matching problem becomes
2-D, similar to the method of Sahoo et al. (2001) and others. Montiel et al. (2013a,b)
reported a series of wave basin experiments and analytical simulations that investigated
the flexural response of one or two circular floating thin elastic plates to monochromatic
waves. The plate—plate hydrodynamic interactions were observed in the two-plate tests.
Recently, Meylan, Bennetts & Peter (2017) carried out an analytical study on wave
scattering by a circular floating porous elastic plate. A quantity proportional to the energy
dissipated by the plate due to porosity was calculated by integrating the far-field amplitude
functions, but the exact dissipated power was not given. The hydroelastic characteristics
of elastic plates in other situations, such as a horizontal elastic plate submerged in the
water (Mahmood-Ul-Hassan, Meylan & Peter 2009; Mohapatra, Sahoo & Guedes Soares
2018a), a submerged horizontal flexible porous plate (Behera & Sahoo 2015; Renzi 2016;
Mohapatra, Sahoo & Guedes Soares 20185), submerged multilayer horizontal porous plate
breakwaters (Fang, Xiao & Peng 2017), multiple floating elastic plates with a body floating
or submerged in the water (Li, Wu & Ji 2018a,b) have also been investigated.

The methods used to calculate the scattering from a single body can be extended to
multiple bodies, but there is a rapid growth in the computational cost. For this reason,
methods based on a scattering matrix (or diffraction transfer matrix) have been developed
to solve for multiple floating bodies, using the theory of Kagemoto & Yue (1986). This
has been particularly true for the case of floating elastic plates used to model ice floes.
The first application of this theory was by Peter & Meylan (2004) and this remains the
only application of the theory to ice floes where they were not assumed circular. The
circular floe case has been extended in a number of steps, first by considering arrays
(Peter & Meylan 2009; Bennetts e al. 2010) and then to random layers using a quasi-2-D
representation (Montiel ef al. 20154, 2016; Montiel & Squire 2017).

Although water-wave interaction with floating elastic plates has been widely studied,
most of these plates were non-porous. Until now only a few research works on porous
elastic plates have been reported, among which the investigation carried out by Koley
et al. (2018), Meylan et al. (2017) and Zheng et al. (2020) was focused on a single
porous elastic plate. For an array of such porous elastic plates, especially with the
individual plates deployed close to one another, the hydrodynamic interaction between
them can significantly influence their responses. To the best of the authors’ knowledge,
the hydrodynamic interaction between multiple floating porous elastic plates has not been
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investigated yet. In this paper, a theoretical model is developed based on linear potential
flow theory and an eigenfunction matching method to investigate wave scattering by
multiple circular floating porous elastic plates with three different types of edge conditions,
i.e. free edge, simply supported edge and clamped edge. Two methods for evaluating the
exact power dissipated by the array of porous plates are proposed.

The rest of this paper is organised as follows. Section 2 outlines the mathematical
model for wave scattering problem. Section 3 presents the theoretical solutions of spatial
velocity potentials in the water domain. The methods for evaluating the scattered far-field
amplitude function and power dissipation are supplied in § 4. Validation of the present
theoretical model is presented in § 5. The validated model is then applied to carry out a
multiparameter study, the results of which can be found in § 6. Finally, conclusions are
outlined in § 7.

2. Mathematical model

The scattering problem of an array of circular floating porous elastic plates is considered
(figure 1). The water domain is divided into two parts, (a) interior region, i.e. the region
beneath each plate and (b) the exterior region, i.e. the remainder extending towards infinite
distance horizontally. A Cartesian coordinate system Oxyz is applied to describe the wave
scattering problem with z = 0 at the mean water surface and Oz pointing upwards. Here,
N local cylindrical coordinate systems O,r,0,z forn = 1,2,3, ..., N are also introduced
corresponding to the nth plate (see figure 15). In addition, one more cylindrical coordinate
system Ory6yz (not plotted in figure 1) is defined with its origin coinciding with the
Cartesian coordinate system. The mean wetted surface of the nth plate is denoted by £2,.

An array of circular porous elastic plates are set in motion by a plane incident wave.
The water is assumed to be homogeneous, inviscid and incompressible, and its motion
irrotational and time harmonic with a prescribed angular frequency w. The velocity
potential in the fluid domain can be expressed as Re[¢(x, y, 2) e~i], where ¢ is the
complex spatial velocity potential, 1 denotes the imaginary unit and ¢ is the time.

The spatial velocity potential ¢ is a solution of the governing equations

(37 4 0; +97)¢ =0 in the fluid domain 2.1

with
0.0 =0, onz=—h (2.2)

and
—w*p+g3.0=0 onz=0 (2.3)

at the water surface of the exterior region.

The floating porous elastic plate is modelled as a thin plate of constant thickness and
shallow draft, which is assumed to be in contact with the water at all times following
Meylan (2002). Kirchhoff-Love thin-plate theory, modified to include porosity, is used
to model the plate motions. The velocity potential is coupled to the plate displacement
function via kinematic and dynamic conditions, respectively,

0.0 = —iwn™ +icp, glxA*+1—(*/g)yIn™ —iwp =0, for2,, (2.4ab)

where n™ denotes the complex vertical displacement of the lower surface of the nth plate;
g represents the acceleration of gravity; ¢ = wKp/(uh) denotes the porosity parameter,
in which K represents the permeability of the plate, p and p are the density and dynamic
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FIGURE 1. Schematic of an array of circular floating porous elastic plates: (a) side view;
(b) plan view.

viscosity of water, respectively; y and x denote the mass per unit area and the flexural
rigidity of the plate, respectively, scaled with respect to the water density; A is the
Laplacian operator in the horizontal plane. With the employment of the Laplace equation
as given in (2.1), the kinematic and dynamic conditions as given in (2.4a,b) can be
combined into

@/ =[x + 1 — (@*/9)y1(3. — i0)¢. (2.5)

Additionally, in the far-field horizontally, the scattered wave potential, ¢s = ¢ — ¢y,
where ¢, is the velocity potential of the undisturbed incident waves whose expression
will be given in § 3, is subject to the Sommerfeld radiation condition.

The boundary conditions at the edge of each plate should be satisfied as well, which are
dependent on the type of plate edge. In this paper, three different edge types, i.e. a clamped
edge, a simply supported edge and a free edge, are considered.

For a clamped edge, both displacement and slope vanish at the edge, providing

™ =0 and 9,7 =0, (2.6a,b)

where n™ can be expressed in terms of ¢ by using the first component of (2.4a,b) and
0, represents the derivative operator corresponding to the normal vector on the edge 71 =
(cos o, sinw,), in which «, is a function of the parameter s defining locations on the
boundary of the nth plate (Meylan et al. 2017).

For a simply supported edge, both displacement and moment vanish at the edge,
providing

n™ =0 and Fx) =0, (2.7a,b)
where

da, azn(n) v 32,7(") v an(n)
Fy) = An®™ — (1 —v) (9] + ——8,n" — - (28
" = (L= ) | 9™ + = 0um 512 +R% 267 +Rn ar (2.8)

in which v denotes the Poisson ratio, d, represents the derivative operator corresponding
to the tangential vector on the plate edge s = (— sinq,, cos ;).
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For a free edge, both moment and shearing stress vanish at the edge, providing
F =0 and FJ =0, (2.9a,b)
where
Fy) = 8,An" + (1 — v)2,0,0,n"
Fn™  2—-v) g™ 18" B-v)on™ 1 ap"™

= — - . 2.10
o7 TR 9ra60 R, or & e R 20

3. Theoretical solution to velocity potentials

The velocity potentials in the exterior region and interior region beneath the nth plate

are denoted by ¢,,; and ¢m, , respectively. Expressions for them are given as follows.
3.1. Exterior region
Here
bert = G1 + Z Z ZA“”H (ki) Zi(2) €™, 3.1)

n=1 m=—o0 =0

where the accumulative term denotes the scattered wave potential, ¢s; A("  are the
unknown coefficients to be determined; Z;(z) = cosh[k;(z + h)]/cosh(k;h); ko € R* and
k; € iRT for 1=1,2,3,... support the propagating waves and evanescent waves,
respectively, and they are the positive real root and the infinite positive imaginary roots
of the dispersion relation for the exterior region

w® = gk, tanh(kh); (3.2)

H,, is the Hankel function of the first kind of the mth order; ¢; denotes the undisturbed
incident wave velocity potential, which can be expressed as

igA
¢i(x,y,2) = ——Zo(Z) gik(xcospysinf) (3.3a)
igA ik, cOS Bty sin B) m—imp imé
D1, O, D) = ——=—Z(2) O et Z i" e g, (kr,) €M, (3.3b)
@ m=—00

where (3.3a) and (3.3b) are written in the general Cartesian coordinate system Oxyz and
the local cylindrical coordinate systems O,r,6,z, respectively, in which J,, denotes the
Bessel function of the mth order. The second term on the right-hand side of (3.1), i.e. the
accumulation term, represents the scattered wave potential, ¢s = ¢ — ¢;, as mentioned in
§ 2, which is subject to the Sommerfeld radiation condition.

After using Graf’s addition theorem for Bessel functions (Abramowitz & Stegun 1972;
Zheng, Zhang & Iglesias 2018; Zheng et al. 2019), (3.1) can be rewritten in the cylindrical
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coordinates O, 1,0,z as

¢ext(rna 9,1, Z) = ¢l —+ Z ZA;(nn,)]Hm(klrn)Zl(Z) eimé,,

m=—o00 [=0

N 00 [} ()
+3° 33402 Y ()" Hype kiR ) (ki)
j=1, m=—o00 =0 m'=—00
JEn
% ei(mol/.n—m’an,j) eim't?n for r, < min Rn,j- (34)
J=LN;
J#Fn

3.2. Interior region

Here

¢,§:lt) (rn7 9117 Z) == Z Z B;(:,l,)ljm(Klrn)Yl(Z) eimﬁ,,’ (35)

m=—00 [=—2

where BZ’), are the unknown coefficients to be determined; Y, = cosh[x;(z + h)]/cosh(k;h);
ki forl=—-2,—-1,0,1,2,...are the roots of the dispersion relation for the interior region

[xx) + 1 — (@*/9)y ]k tanh(i;h) — ic] = w’/g. (3.6)

Forc=0,kp € R"andk; € iR* for/ =1, 2, 3, ... can be obtained, which support the
propagating waves and evanescent waves, respectively. The remaining two roots, x_, and
Kk_1, support damped propagating waves, and satisfy k_; € R +iR* and k_, = —«*,
in which * denotes the complex conjugate. For ¢ #0, the structure of «; is perturbed.
In general, neither pure real nor pure imaginary roots exist, and the symmetry between «_,
and x_; is not valid either (Meylan et al. 2017). The method to compute them efficiently is
given in Meylan et al. (2017) and Zheng et al. (2020).

Note that the spatial velocity potentials as given in (3.4) and (3.5) already satisfy all
the governing equation and boundary conditions as listed in § 2, except at the plate edges.
In addition, continuity of pressure and the radial velocity at the interfaces between the
exterior region and interior regions should also be satisfied. These continuity conditions
can be expressed as follows.

(1) Continuity of pressure at the boundary r, = R,:

beu|, g =P |, pr —h<z<0. (3.7)
(i1) Continuity of radial velocity at the boundary r, = R,:
d¢en Lo
L (3.8)
ru |, —g, ary, -

The continuity conditions, i.e. (3.7)—(3.8), together with the edge type dependent
edge conditions, i.e. (2.6a,b), (2.7a,b) or (2.9a,b), can be used to derive a complex
linear matrix equation by using the orthogonality characteristics of Z;(z) and e, and
the eigenfunction-matching method. The unknown coefficients A,(,;’), and B,(,:'), can then
be calculated by solving the complex linear matrix equation. Detailed derivation and
calculations for the unknown coefficients are given in appendix A.
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4. Far-field coefficients, Kochin functions and wave-power dissipation

We present here two derivations of the wave-power dissipation due to the porosity.

4.1. Wave-power dissipation: direct method
The energy dissipated by the N plates due to the porosity, P, can be calculated by

N N
0
Piss = 2,0La) ”EZI /Qn IpI*ds = % ,,Ezl //g |¢|* ds
2
p(l)c Z// 2 : z :B’(:)IJ (K[rn) eimgn

ds, 4.1)
m=—00 [=—2
where p denotes the hydrodynamic pressure under the plates, p = iwp¢.
The dimensionless quantity of P, can be defined by

Ndiss = deiss/Pim (42)

in which P;, is the incoming wave power per unit width of the wave front given by

o pgA? w 1+ 2kh 43)
"2 2k sinh(2kh) | ° ’

4.2. Wave-power dissipation: indirect method

We present here another, more general, derivation of the power dissipation identity. In this
expression, we use the very general equations of motion which govern a floating elastic
plate of arbitrary geometry.

Firstly, let us consider the far-field coefficients and Kochin functions. In the fluid
domain, far away from an array of porous elastic plates, only the propagating modes exist
in the scattered waves. With the asymptotic forms of H,, for ry — o0,

H,, (kro) = /2/me " /247D (fp ) 712 0 for ry — o0, (4.4)

where k is employed to represent k, for simplification, the scattered wave potential, i.e. the
accumulative term in (3.1), can be rewritten as

\/%ZO(Z)Z Z A,(:)O —l(mﬂf/2+1'[/4)(krn)—1/2 eikr/, eimf),,’ ro — 00, (45)
n=1 m=—o0

which can be further expressed in the global polar coordinate system Oyry6yz as

N o]
d)S — /2/7[(](7'0)_1/2 eikr[)ZO (Z) Z Z A’(:LI)O e—lkR()_n cos(ao.,—0) e—i(mn/2+rr/4) eim&g

n=1 m=—00

= Ag(0o) (kro) " €% Zy(2), 1y — o0, (4.6)


https://doi.org/10.1017/jfm.2020.508

https://doi.org/10.1017/jfm.2020.508 Published online by Cambridge University Press

Hydroelastic analysis of floating porous elastic plates 900 A20-9

where Ay is the so-called far-field coefficient that is independent of ry and z, and can be
expressed as

AR(Q()) _\/2/72 Z A;(:)() —ikRy., cos(to., —60) —1(mn/2+n/4) 1m(90 (47)

n=1 m=—o00

The Kochin function, Hg, which is a scale version of the far-field coefficient, can be
obtained from Ay as follows (Falnes 2002):

Hg(60) = v2me ™ Ar(6))

_22 Z A(n) lkRg(,,Cos(an_,,700)(_i)m+1 elrmbo (4.8)

n=1 m=—o00

In the water domain enclosed by §£2; U £2, U - - - U 2y U $2%, free water surface and the
sea bed, using Green’s theorem (Falnes 2002; Fabregas Flavia & Meylan 2019), we have

0" 0]

ﬁ(‘%n _¢_>

_ 9" 09 LT P
Z//( az)dH//fZR(‘par ar)d 0, (4.9)

where §2; represents an envisaged vertical cylindrical control surface with its radius
denoted by ry = Ry, which is large enough to enclose all the plates.
With utilisation of the first component of (2.4a,b), (4.9) can be rewritten as

Z// i (pn"™* + ¢*n™) — 2icl¢|’] ds—l—// <¢M —¢*%) ds =0. (4.10)
2 or ar

We are setting out to show that the accumulation of the terms within the first parentheses
in (4.10) vanishes.

The response of the nth plate can be expressed by a series of natural modes of vibration
of the plate in vacuo as (Meylan et al. 2017)

Q
n™ > uln, (4.11)

where the modes nf;‘) satisfy the eigenvalue problem for the biharmonic operator
A = A, (4.12)

together with the edge conditions as given in §2; n;’” are orthogonal for different
eigenvalues A,, and Q denotes the truncated numbers of the infinite modes.
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The dynamic motion of the plates can be coupled with the hydrodynamics by

2
<K +c- “’—M) u= ia)p/ on ds, (4.13)
g Qo

where 2, = 2, U2, U---U 2y, K, C and M are (NQ) x (NQ) square matrices that
represent stiffness, hydrostatic-restoring and mass matrices, respectively,

= <)(/lq> ; C=1, M=vyl, (4.14a—c)
(n—1)0+q

in which (c;); denotes a diagonal matrix with diagonal entries c; at the position (j, j), I is
the identity matrix and

u= [u;”)] , n= [nf{”):| , (4.15a,b)
(n—1)0+q (n—1)0+q

where [c¢;]; represents a vector with entries ¢; at the jth row.
With the employment of (4.11) and (4.13), it can be proved that

0 0
Zf/ (n)* + d)* (n) ds = Z // ¢ Zu;n)*n;n) + ¢* Zu;n)n;n) ds
g=1 g=1

n=1 n=1

2 -1 T
o (x) |:(K +Cc— ﬂm) iwp / o (F)n(F) ds:| n(x) $ ds
8 Lyum
=0, (4.16)
where we used the symmetry of the matrix (K + C — (w®/g)M)~" and reversed the order

of integration.
Therefore, (4.10) reads

Z// 21C|<1>| ds+// ( LA %) 5 =0, @.17)

hence the power dissipation can be expressed as

Py = pch// || ds // ( 50" _ a“:)ds, (4.18)

which, from the view of energy identities, presents an approach to evaluate the power
dissipation based on the spatial potentials in the exterior region.



https://doi.org/10.1017/jfm.2020.508

https://doi.org/10.1017/jfm.2020.508 Published online by Cambridge University Press

Hydroelastic analysis of floating porous elastic plates 900 A20-11

When ry = Ry — o0, (4.18) holds as well with the control surface £2; replaced by £2.,
i.e. rop = 00. An expression for the integral in (4.18) in terms of Kochin functions (Falnes
2002) is

bt 9 2iAgD (kh iD(kh) [
// ( 3¢ ¢> ds = ﬂRC[HR(,B)] _ 1D |Hg(0)|” 6,
rO 8r() a)k ZTCk 0
(4.19)

where

D(kh) = [1 + i| tanh(kh). (4.20)

sinh(2kh)
Therefore, the power dissipated by the array of porous elastic plates can be evaluated by
using an indirect method based on Kochin functions

D (kh 1 [
Piss = pr() ( —Re[HR(B)] — — / |HR(90)|2d90) . (4.21)
0

Compared with the straightforward method, i.e. (4.1), which includes the surface
integrals over all the plates with both propagating and evanescent waves considered, the
indirect method as given in (4.21) consists of only one angular integral regardless of the
number of plates, and uses the propagating waves only to achieve an accurate evaluation
of the wave-power dissipation. Moreover, (4.21) is derived without any employment of the
‘circular-shape’ restriction, therefore the indirect method applies to the floating porous
elastic plates with non-circular shapes as well. Finally, the existence of two different
identities gives a method to check the accuracy of the numerical solution, in much the
same way that energy conservation can be used in the case of a floating body which does
not dissipate energy.

5. Validation

If the spacing between the porous elastic plates is large, the hydrodynamic interaction
between them can be neglected. Therefore the response of every plate will be close to that
of the plate in isolation. Figure 2 presents the comparison of the displacements of a circular
porous elastic plate in isolation (Meylan et al. 2017) and a pair of the same plates arranged
far away from one another, where ¢, x and y are non-dimensionalised with respect to
the water depth as ¢ = ch, x = x/h* and y = y /h, respectively. Additionally, the energy
dissipated due to porosity as a function of ¢/N is provided in figure 3, where E is a quantity
proportional to the wave-energy dissipated due to the porosity, which was calculated by
integrating the far-field amplitude functions based on a coupled boundary-element and
finite element method (Meylan et al. 2017). The present results agree well with those of
Meylan et al. (2017) and Zheng et al. (2020).

We have also compared our model with the experimental data in the case of non-porous
plates. Montiel ef al. (2013a) carried out a series of wave basin experiments on a pair
of circular floating elastic plates and observed strong hydrodynamic interaction between
them. One of the cases tested by Montiel et al. (2013a), is plotted in figure 4, where four
motion tracking markers were placed on each plate. Figure 5 illustrates the theoretical and
experimental deflection of the four markers for the two plates. The results show that the
present conceptual model can be used to predict the response of the two elastic plates
accurately and that it provides insights into the interaction between the two plates.
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FIGURE 2. (a—c) Displacements of a circular plate in isolation (Meylan et al. 2017), where a
typo of the incident wave direction existed (i.e. 8 was typed as O rather than n); (d—f) and (g—i)
displacements of plate-1 and plate-2 in a pair of plates (present results) at t = O for different
porosity parameter ¢ = 0,0.5and 1.0. (Ry = R, =R, x; =x2 =0,y1/R=—y2/R=50,R/h =
20,8 =7, ho*/g =2.0and § = 7 = 0.01, free edge.)
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FIGURE 3. Wave-power dissipation by floating circular plates with a free edge versus the
porosity parameter for R/h = 2.0, = 7, hw?/g = 2.0and ¥ = 7 = 0.01 (lines: present results
withN =2,Ri =Ry =R, x1 = x2 =0, y1/R = —y>/R = 50; symbols: Zheng et al. (2020) and
Meylan et al. (2017) with N = 1).
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FIGURE 4. Deployment of two circular elastic plates. Four markers are labelled in each plate
for reference. (¢ = 0, x = 3.55 x 1074, y =2.79 x 1073, free edge.)
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FIGURE 5. Deflection of (a) marker 1; (b) marker 2; (¢) marker 3 and (d) marker 4 for the
two-plate arrangement as given in figure 4, as a function of frequency. Each figure contains the
present theoretical results and the experimental data (Montiel et al. 2013a) associated with both
plates. (c =0, x = 3.55 x 1074, y =2.79 x 1073, free edge.)
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FIGURE 6. Wave-power dissipation of two plates with different edge conditions evaluated by
using direct method (lines) and indirect method (symbols): (a) variation of 74 With ¢ for
B = m/6; (b) variation of 14 with g forc = 1.0. (N =2, —x1/h =x2/h =3.0, y1 = y» =0,
R/h=2.0,ho*/g=2.0,% =7 =0.0L)

In addition to the comparison of the present theoretical results with the published data,
wave-power dissipation by two porous elastic plates is evaluated by using both direct and
indirect methods (figure 6). The excellent agreement of the results (figure 6), together with
those plotted in figures 2, 3 and 5 gives clear validation of the present theoretical model
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FIGURE 7. Contour plot for the variation of n4is as a function of porosity parameter ¢ and
incident wave direction B: (a) free edge; (b) simply supported edge; (c¢) clamped edge. (N = 2,
—x1/h=x2/h=3.0,y1 =y =0,R/h =2, hw*/g =2.0, ¥ =7 = 0.01.)

0.1

for solving wave scattering and evaluating wave dissipation by an array of circular floating
porous elastic plates.

6. Results and discussion
6.1. Effect of porosity and incident wave direction

The response of an array of circular floating porous elastic plates and their performance
in terms of wave-power dissipation are strongly affected by both the porosity, ¢, and the
incident wave direction, B. In this subsection, a pair of plates deployed along the x-axis
with R/h = 2.0, R ,/h = 6.0, x = 7 = 0.01 and hw?/g = 2.0 is taken as an example to
examine the influence of ¢ and S. Figure 7 presents how 7, varies with the incident wave
direction S and also with the porosity parameter ¢ for the cases with free edges, simply
supported edges and clamped edges.

When ¢ — 0, the plates become non-porous and no power will be dissipated. When
¢ — 00, on the other hand, there is no resistance to flow by the plate, and in this limit, there
is also no dissipation of power. For this reason, there exists an optimal porosity parameter ¢
to maximise the dissipated wave power. As shown in figure 7, for any given wave incident
direction, the more strictly the plate edge is constrained, the larger the optimal ¢ for
maximising wave-power dissipation. Although 7,y varies dramatically with the change
of ¢ for ¢ < 0.5 for all the three cases, it becomes less sensitive to ¢ for 1.0 < ¢ < 4.0
compared with ¢ < 1.0, especially for the simply supported and clamped edge cases.

For the pair of plates with a fixed porosity, the wave-power dissipated is minimum when
incident waves propagate along the two plates, i.e. § = 0. This minimal case results from
the significant reduction of the wave power dissipated by the leeward plate due to the
‘shadowing effect’ of the wave-ward plate. For R, ,/h = 6.0, as § increases from 0 towards
1t/2, nass first increases and then decreases after reaching its peak value, regardless of the
types of edge conditions. The wave incident direction corresponding to the maximum
wave-power dissipation, as illustrated in figure 7 remains around 8/w = 0.3 for all three
cases. The largest wave-power dissipation in terms of 1y for these cases are 15.79,
12.24 and 11.63, occurring at (¢, /7) = (1.05, 0.30), (1.35,0.31) and (2.10,0.32),
respectively.
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FIGURE 8. Contour plot for the variation of 14 as a function of porosity parameter ¢ and
distance between the centres of the plates Ry »: (a) free edge; (b) simply supported edge;
(¢) clamped edge. (N = 2, —x1/h = x/h = 0.5R1 2/h, y1 = y» = 0, R/h = 2.0, hw? /g = 2.0,
B=mn/2,x =y =0.01)

6.2. Effect of the distance between the plate centres

The distance between the plate centres is a pivotal parameter affecting the response
and wave-power dissipation of an array of porous elastic plates. The two plates, as
studied in § 6.1, with their centre distance R, ,/h ranging from 5.0 to 8.0, together with
different porosity parameters in wave condition hw?/g = 2.0, B = 1/2, are examined in
this section, the results of which are plotted in figure 8.

In the computed range of ¢ and R, ,/h there are two peaks of 74, one occurring at
Ry ,/h = 5.0 and the other at R, ,/h = 8.0, in which the former one is higher than the aft
one regardless of the types of plate edge condition. More specifically, the largest values of
Naiss are 16.49, 12.79, 12.38, for the free, simply supported and clamped cases, occurring
at (¢, Ry »/h)=(1.25, 5.0), (2.25, 5.0) and (3.00, 5.0), respectively, which are caused by the
hydrodynamic interaction between the plates — the so-called array effect. Different regimes
of wave interaction with the pair of plates are obtained as the spacing changes. The second
peak is an effect of constructive interference, which can be analysed from the infinite array
problem (see e.g. Peter, Meylan & Linton 2006). As R ,/h continues to increase until it
is large enough, hydrodynamic interaction between the plates will be negligible, and each
of the plates will ultimately work as a plate working in isolation (see § 5). Case studies
will be carried out with the centre distance between two adjacent plates as R; /A = 5.0
due to the corresponding larger wave-power dissipation compared with the other values of

Rjjs1/h.

6.3. Effect of the number of plates

Figure 9 presents the variation of the wave-power dissipation of a line array of porous
elastic plates in terms of 14,,/N with the porosity parameter ¢ for hw?/g = 2.0, B = 7/2
and Rj,j+1/h =5.0.

For ¢ < 0.25, the curves of n4;,/N with different values of N nearly overlap with each
other, denoting the negligible impact of the number of plates in the array on wave-power
dissipation. This is a case of the long array behaviour (see e.g. Montiel, Squire & Bennetts
2015b) being well approximated by a small array. For the rest of the computed range of
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FIGURE 9. Variation of ng;s/N with porosity parameter ¢ for different number of plates in
the array, N: (a) free edge; (b) simply supported edge; (¢) clamped edge. ((xj+1 — x;)/h = 5.0,
i =0,R/h=2.0, ho?/g =20, =7/2, 5 =y = 0.01.)

Edge condition N=1 N=2 N=3 N=4 N=5

Free (7.40, 1.0) (8.25,1.2) (8.55, 1.3) (8.69, 1.4) (8.79, 1.4)
Simply supported (5.21, 1.7) (6.40,2.2) (6.82,2.5) (7.02, 2.6) (7.15, 2.6)
Clamped (4.95,2.5) (6.19, 3.0) (6.63,3.2) (6.84,3.2) (6.97,3.3)

TABLE 1. The peak value of wave-power dissipation and the corresponding optimal porosity
parameter, (14iss/N, ¢), for the array consisting of different number of plates with different edge
conditions. ((xj+1 — x;)/h = 5.0, y; =0,R/h = 2.0, ho?/g =2.0, =n/2, ¥ =y =0.01.)

¢, i.e. ¢ > 0.25, the ngs/N — ¢ curve rises with an increase of N. The most significant
improvement of 7ny,/N occurs when N increases from 1 to 2. For larger values of N,
the increase in n4;,,/N is weaker. This holds for all the edge conditions, i.e. free edges,
simply supported edges and clamped edges, as plotted in figure 9. For instance, in the
free-edge case with ¢ = 1.0, the 5,;,/N corresponding to N = 1 ~ 5 are 7.40, 8.19, 8.45,
8.56 and 8.63, with the increasing percentage 10.7%, 3.1%, 1.3% and 0.9%, respectively.
It can also be observed that the more plates the array contains, the larger the value of
¢ required to achieve maximum wave-power dissipation. The peak value of 7,,/N and
the corresponding optimal ¢ for the array consisting of different numbers of plates with
different edge conditions are listed in table 1.

Figure 10 presents the frequency response of the wave-power dissipation of an array of
porous elastic plates in terms of 1, /N for ¢ = 1.0, § = w/2. For the free-edge condition
(figure 10a), the ng/N increases monotonically as kR increases from O towards 8.0
regardless of the plate numbers included in the array. While for the N =5 cases with
the simply supported and the clamped-edge conditions (figures 106 and 10c¢), a flat valley
can be observed around kR = 6.0. As shown in figure 10, the array which contains more
plates is found to lead to a larger value of 5,,,/N for the whole computed range of
wave conditions, except for the very long waves, e.g. kR < 1.0, where, on the contrary,
the largest value of 74,,/N is obtained when N = 1. Similar to the results illustrated in
figure 9, the frequency response of 7,/N as given in figure 10 indicates that for most of
the computed range of wave conditions, e.g. kR > 1.5, the most apparent increment of the
wave-power dissipation in terms of 7,;,/N is obtained when N increases from 1 to 2.


https://doi.org/10.1017/jfm.2020.508

https://doi.org/10.1017/jfm.2020.508 Published online by Cambridge University Press

Hydroelastic analysis of floating porous elastic plates 900 A20-17

@nrF—————— ) R ——————1— (012 ———F———
10 {1 1o} 1
8| . 8t .

Niss IN

FIGURE 10. Variation of ng;s/N with wave number kR for different number of plates in the
array, N: (a) free edge; (b) simply supported edge; (c) clamped edge. ((xj31 — x;)/h = 5.0,
yi=0,R/h=20,c=10,=7/2, x =y =0.01)

The variation of 74/N with incident wave direction 8 in the range of 0 < 8 < 0.5x
for different numbers of plates in the array, N, with hw?/g = 2.0, ¢ = 1.0 is plotted in
figure 11. As expected, the wave power dissipated by a single circular porous elastic
plate, i.e. N =1, is independent of 8, regardless of the edge conditions. For the cases
with N > 2, an overall growth of 74y,/N is observed as § increases from 0 to 0.5w. For
B varying from a specified value, e.g. 0.297 for the free-edge condition, to 0.57, the
more plates included in the array, the larger the wave-power dissipation per plate, ny;ss/N,
becomes. Whereas when g is smaller than the specified value, the number of plates plays a
negative role in the wave-power dissipation. It means that for the incident direction roughly
perpendicular to the row of plates, the hydrodynamic interaction between the plates plays
a constructive role in dissipating wave power. Moreover, this effect gets stronger as more
plates are included in the array. However, if the incident waves propagate along the row
of plates, a destructive effect of hydrodynamic interaction on wave-power dissipation is
obtained, and the negative influence gets stronger correspondingly as the number of plates
in the array increases. This is reasonable from the point of view of the shadow effect. The
front plate creates a shadow, and the plates behind it do not respond as much. The more
plates included in the array, the stronger the shadow effect for the plates at the back.

To demonstrate the effect of the number of plates on their response, the plate deflections
for different edge conditions for various values of N with ¢ = 1.0, hw?/g = 2.0, B = /2
are plotted in figures 12—14. For the sake of simplicity, only the results of the first half of
the plates in the array are displayed, including the middle one if N is odd.

As shown in figure 12, for the isolated single plate with free-edge condition, the largest
deflection (|9™|,ex /A = 0.93) occurs at the front edge, i.e. the wave-ward edge. Moreover,
there is an internal region near the leeward edge, where the response is weaker than the
other regions of the plate, with the smallest deflection |1|,,;,/A = 0.02. When another
plate with the same physical properties is placed nearby (i.e. N = 2), the weak response
internal region shifts towards the array side slightly. The largest and smallest deflection
(.e. 7™ |nax /A = 0.99 and |7 ,in /A = 0.03) are both larger than those for N = 1. What
is more, apart from the largest deflection at the front edge, there is a second peak response
(In™]/A = 0.78) observed at the edge close to the other plate, which is excited by the
hydrodynamic interaction between them and contributes to the increase of 7,;,/N. For
the three-plate array, the side plates response is similar to those of the array with N = 2.
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FIGURE 11. Variation of ng4s/N with incident wave direction g for different number of plates
in the array, N: (a) free edge; (b) simply supported edge; (c) clamped edge. ((xj+1 — x;)/h = 5.0,
yj=0,R/h=2.0,c=1.0, ho?/g =2.0, ¥ =y =0.01.)
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FIGURE 12. Deflection of the plates with a free edge in different cases for different number of
plates in the array, N: (@) N =1, (b)) N =2;(c) N =3, (d) N =4;(e) N =5. ((xj41 — xj)/h =
5.0,y =0,R/h=20,¢ = 1.0, ho?/g =2.0, 8 =1/2, x =y = 0.01.)

The central plate holds a larger overall deflection with |7, /A = 1.05, [7"|,n/A =
0.07 and two other peak responses (|7 |/A = 0.79) occurring at the edges close to the
two side plates. As N increases, responses of the two side plates remain approximately the
same, as do the remaining plates in the middle.

Similar changes also apply to the array of plates with a simply supported or
clamped-edge condition as shown in figures 13 and 14. In contrast to the free-edge
condition, the largest deflection for the simply supported and clamped conditions occurs
in the interior of the plate. For the cases of simply supported and clamped-edge conditions
with N > 3, there is an obvious valley of the deflection contour at the central region of each
plate except the two side plates, and this valley disappears for the plate with a free-edge
condition.

In this paper, a porosity parameter is used to consider the resistance effect induced by the
porosity. In fact, this ‘resistance effect’ acts in much the same way as the ‘damping effect’,
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FIGURE 13. Deflection of the plates with a simply supported edge in different cases for different
number of plates in the array, N: (a) N = 1; (D) N = 2; (¢c) N = 3; (d)N = 4;(e) N = 5. ((xj+1 —
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FIGURE 14. Deflection of the plates with a clamped edge in different cases for different number

of plates in the array, N: (a) N = 1; (D) N = 2;(c)N =3;(d)N = 4;(e) N = 5. (xj1 — xj)/h =

50,y;=0,R/h=2.0,c=1.0, ho?/g =20, =7/2, 5 =y = 0.01.)

which has been widely employed to simulate the power takeoff (PTO) of wave-energy
converters (WECs). It should be pointed out that the present model for porous elastic
plates may be used to simulate the performance of elastic plate-shaped WECs, provided
that a special PTO system is designed, which satisfies the surface boundary condition, i.e.
(2.4a,b) or (2.5). Indeed, the surface boundary condition employed here is similar to the
one Renzi (2016) derived for a piezoelectric plate WEC and also the one Garnaud & Mei
(2010) derived for arrays of small buoys. Thus, the corresponding wave-power dissipation
can be used to denote the corresponding wave-power absorption of the elastic plate-shaped
WECs being consumed by the PTO damping. For a conventional single WEC consisting
of an axisymmetric rigid body with heave motion as the only mode of oscillation, the
maximum relative absorption width, i.e. 74, is 1.0 (see, e.g., Budal & Falnes 1975;
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Evans 1976). Note that when a porous elastic plate works as a WEC, 14, > 2.0 and even
Naiss > 4.0 are obtained over a large range of circumstances, such as porosity parameters
(figure 9), wave frequencies (figure 10) and incident wave direction (figure 11), absorbing
more than twice, and even four times, as much wave power as a conventional heaving
cylinder can ever achieve. The wave-power absorption can be further enhanced when
several elastic circular plates deployed in an array due to the constructive hydrodynamic
interaction between them (i.e. the wave power absorbed by the array is larger than that
produced by those plates working in isolation), indicating the profound potential of elastic
plates for wave-power extraction.

A typical case of an elastic plate-shaped WEC is the piezoelectric plate WEC, which
consists of piezoelectric layers bonded to both faces of a flexible substrate. The tension
variations at the plate—water interface can be converted into a voltage by the piezoceramic
layers owing to the piezoelectric effect, and in this way, the elastic motion excited by water
waves is transformed into useful electricity (see e.g. Renzi 2016).

7. Conclusions

A theoretical model based on linear potential flow theory and the eigenfunction
matching method has been developed to investigate the interaction of waves with an array
of circular floating porous elastic plates. This model can be used to represent artificial
marine structures, such as floating flexible breakwaters, artificial floating vegetation fields,
and large aquaculture farms with small draught relative to their horizontal dimension. It
also provides a possible model for ice floes or flexible plate WECs in which the energy
dissipation or wave-power absorption and scattering can be included in a unified way.
Graf’s addition theorem was applied to consider the hydrodynamic interaction between
the plates. The edge condition of the plates can be free, simply supported or clamped.

The response of a pair of porous/non-porous elastic plates predicted by the present
theoretical model agreed well with the published theoretical and experimental data, which
gave confidence in the current model for solving wave scattering by an array of circular
floating porous elastic plates.

Using Green’s theorem, it has been proved that the exact wave power dissipated by the
plates due to porosity can be evaluated indirectly by using the spatial potentials in the
exterior region in terms of the Kochin functions, without consideration of the evanescent
waves. This indirect method was shown to produce the same wave-power dissipation as the
straightforward method, which takes the area integrals of the unit area dissipated power
over all plates with the effect of both propagating and evanescent waves included. The
excellent agreement between them gives confidence in the ability of the present theoretical
model to calculate wave dissipation by multiple circular floating porous elastic plates.

A multiparameter impact analysis was carried out by applying the validated theoretical
model. The main findings are as follows.

(i) For a pair of plates with R/h =2.0, R, ,/h = 6.0 and hw?/g = 2.0, the wave
incident direction corresponding to the maximum wave-power dissipation remains
around B/m = 0.3 for all the three different edge conditions.

(ii) In the computed range of ¢ (i.e. ¢ < 4.0) and R, ,/h (i.e. 5.0 < R;,/h < 8.0) with
R/h = 2.0, hw?/g = 2.0, B = 1/2, the largest 14, occurs at Ri,/h =5.0 regardless
of the types of the plate edges.

(iii) For a row of plates with R/h = 2.0, R;j+1/h = 5.0, ho?/g = 2.0 and B = 7/2, the
Naiss/N — ¢ curve rises with the increase of N. The most significant improvement
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of nss/N occurs when N increases from 1 to 2. This also applies to the frequency
response of 714,/N with ¢ = 1.0.

(iv) For the incident waves incoming roughly perpendicular to the row of plates,
hydrodynamic interaction between the plates plays a constructive role in dissipating
wave power, and the effect strengthens with more plates included in the array. By
contrast, if the incident waves propagate along the row of plates, a destructive effect
of hydrodynamic interaction on wave-power dissipation is obtained, and the negative
influence becomes stronger as the array size increases.

(v) There is a profound potential of elastic plates for wave-power extraction provided
that a special PTO system is designed. An elastic plate-shaped WEC is found to
capture more than twice, and even four times, as much wave power as a conventional
axisymmetric heaving cylinder can ever achieve over a large range of circumstances.
Due to the constructive hydrodynamic interaction between the plates in an array,
wave-power absorption of the plates can be further enhanced.

Finally, we note that the present theoretical model is developed in the framework
of potential flow theory; hence it may not be suitable for the extreme wave—structure
interactions.
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Appendix A. Derivation process of the formulas and calculation for the unknown
coefficients Afr':’)l and Bf"l',)l

Here we take the case of an array of circular floating porous elastic plates with free-edge
condition as an example to show how to determine the unknown coefficients Af;'), and Bf,’f ).
Inserting the expression of the spatial potentials for both the exterior and interior regions,
i.e. (3.4)—(3.5), into continuity conditions at the interfaces and the free-edge boundary
conditions, (2.9a,b) and (3.7)—(3.8), gives
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N 00 [ee] 00
+ Y AYZ@) DY (D" Hypy (kiR ) (KiR,) €700
j=1, m=—o00 [=0 m'=—00
J#Fn


https://doi.org/10.1017/jfm.2020.508

https://doi.org/10.1017/jfm.2020.508 Published online by Cambridge University Press

900 A20-22 S. Zheng, M. H. Meylan, G. Zhu, D. Greaves and G. Iglesias
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where

m

fv(m,m, 1) = R} T (kiR,) — (2 — v)R,m’ k], (kiR,,)

m

+ R} T (kiR,) — (U — 3)m*],,(k,R,) — Ry, (iiR,). (A 6)

fu(n,m, 1) = R:«}J! (kiR,) — m*vJ,, (kiR,) + Rukcvd., (iR,), (AS)

After multiplying both sides of (A 1)~(A 2) by Z (z) e~""%, integrating in z € [—h, 0] and
0, € [0, 27t] and using their orthogonality characteristics, (A 1)—(A 2) can be rewritten as
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where
A /0 2 dz = sinh(k;h) COSh2(k1h) + k,h, A9)
—h 2k; cosh”(k;h)
v /o Y02 dz = Ky sinh(k;h) cosh(k.h) — k, cosh(k;h) sinh (k. h) (A 10)
’ —h (ki — kz) cosh(k;h) cosh(k;h)

In a similar way, after multiplying both sides of (A 3)-(A 4) by e % and integrating in
6, € [0, 27t], (A 3)-(A 4) can be rewritten as

i B")fu(n, 7, D) _
xk!+1—(0?/g)y

=2
i ngr,ll)fV(na T, l) _
Xk +1—(@*/9)y

1==2

0, (A1)

(A12)

(n)

In order to evaluate the unknown coefficients AZ’), and B,,;, we truncate all infinite

m,l°
series of vertical eigenfunctions at L, ie. (L+ 1) terms (/=0,1,...,L) for Af:)l
and (L+3) terms (/=-2,-1,0,1,...,L) for Bf,;’,)l, and we take (2M + 1) terms

(m=-M,...,0,...,M), resulting in 2N(2M + 1)(L + 2) unknown coefficients to be
determined. After taking (r = —M,...,0,...,M)and (¢ =0,1,...,L) in (A7)~(A8)
and (A11)—~(A12), a 2N(2M + 1)(L + 2)-order complex linear equation matrix is
obtained, which can be used to determine the exact same number of unknown coefficients.
Here, M and L should be chosen large enough to lead to accurate results. In all the
theoretical computations as given in this paper, M = 10 and L = 10 are used.
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