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A compact nonlinear expression for the velocity spectra of homogeneous mean shear
flow is derived by means of a simplified two-point closure. It applies to all scales
and times. The derived equation can be viewed as a nonlinear extension of the
linear, rapid-distortion-theory (RDT) equation. The principal simplification is to model
the nonlinear pressure–strain rate as first-order in the spectral anisotropy: a spectral
Rotta-equation. This simplified equation and its solution are expressed in terms of
the RDT solution. That solution helps reveal the role of nonlinearity. An equation
for the velocity spectrum is then obtained at all scales and times. A dominant
characteristic predicted for nonlinear behaviour is that the turbulence energy grows
exponentially with time, with the spectrum simultaneously moving to smaller and
smaller wavenumbers. The nonlinear growth rate is determined. Other analytical
predictions of the derived equation include: the conditions for self-similarity; local
isotropy; various properties of mean shear flow, including characteristic energy, length
and temporal growth scales; and a critique of perturbation theory. Comparisons are
made with laboratory experiments and direct numerical simulations. Although the
theory applies to all scales and times, including an exact expression for RDT, the
calculations are focused on nonlinear behaviour at large times. Several approximations
used in this work are examined.
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1. Introduction
1.1. Background and purpose

Homogeneous turbulence subject to mean shear is a classical problem of turbulence. 
It is also among the simplest of real turbulent flows. These flows have been studied 
extensively by laboratory experiments for a half-century (e.g. Uberoi 1957; Rose 
1966; Champagne, Harris & Corrsin 1970; Tavoularis & Corrsin 1981; Rohr et al. 
1988, and many others), and, more recently, by direct numerical simulations (DNS)
(Rogers, Moin & Reynolds 1986; Lee, Kim & Moin 1990; Gotoh & Kaneda 1991; 
Ishihara, Yoshida & Kaneda 2002). One early theory of such flows was formulated
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by Deissler (1961) and is sometimes referred to as rapid distortion theory (to be
referred to as RDT). Nonlinearity was ignored. That theory is therefore limited to
times and Reynolds numbers that are not large enough to trigger nonlinear cascade
(Lee et al. 1990; Clark & Zemach 1995, and others). At the other extreme are two-
point closure theories that treat mean shear as a perturbation of steady Kolmogorov
turbulence at large Reynolds number: these studies include Leslie (1973), Rubinstein
(1996), Ishihara et al. (2002) and Yoshida, Ishihara & Kaneda (2003). Such studies
are generally confined to small scales (in the inertial range) and to large times. In
contrast, Cambon, Jeandel & Mathieu (1981) derived a pragmatic simplification of
the eddy-damped quasi-normal Markovian (EDQNM) closure (Orszag 1970; Pouquet
et al. 1975). The predicted root-mean-square (RMS) statistics compared favourably
with laboratory measurements, and has had other applications (e.g. Bos & Bertoglio
2007). An even simpler spectral model was developed by Besnard et al. (1996) and
applied by (Clark & Zemach 1995). That model is more ad hoc, relying on Leith’s
(1967) diffusion approximation for spectral energy transfer in addition to an assumed
spectral Rotta-type equation for the scalar pressure–strain rate. A review of work on
homogeneous turbulence is given by Cambon & Sagaut (2008).

The situation then, to our knowledge, is that no expression yet exists for the
velocity spectrum of homogeneous mean shear turbulence without limitations on time
or wavenumber. Nor is it understood, by theory, how such turbulence would evolve in
time when nonlinearity does become important. The purpose of our work is to derive
an analytical, although approximate, nonlinear expression that determines the velocity
spectrum and its temporal evolution at any scale and time.

Our method is based on a simplified two-point spectral closure. The principal
simplification is to model the spectrum of the nonlinear pressure–strain rate (referred
to as the PSR) to be first-order in the anisotropic velocity spectrum: a spectral Rotta-
equation. That model PSR is ad hoc. This model is used in the interest of obtaining
a computable solution of the fully anisotropic closure. No model is assumed for the
spectra themselves. Such a PSR model was used previously by Besnard et al. (1996)
for the same reason, but for scalar spectra. Here, it is used for vector spectra. It has
the feature that, at the least, its average value is correct, i.e. the RMS of this model
yields the original Rotta (1951) equation in real space, as extended by the present
author (Weinstock 1982). The other approximation is to neglect the anisotropic part
of the nonlinear energy transfer function. That part is small in comparison with the
PSR term. Such a neglect (of energy transfer anisotropy) to simplify application
of the direct interaction approximation (DIA) to anisotropic flow was originally
suggested by Leslie (1973). A related anisotropic energy transfer approximation has
been justified numerically (e.g. Herring 1974; Schumann & Herring 1976). A critique
of our approximations is given in § 7.

With these approximations, the major part of our work is independent of previous
closures. Only for the calculation of scalar energy spectra and numerical coefficients is
the EDQNM closure used.

The derived closure equation may be viewed as a nonlinear extension of the RDT.
Owing to its relative simplicity, the derived nonlinear equation is expressed in terms
of the RDT equation, and its nonlinear solution is expressed in terms of the RDT
solution. However, our focus is not on the RDT of which much is already known, but,
rather, on its nonlinear extension.
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258 J. Weinstock

2. Analytical closure for shear flows
To derive an equation for the spectral tensor R(k, t) we begin with the

Navier–Stokes equation. This derivation has been often been given (e.g. Townsend
1976; Cambon et al. 1981) except that, here, the PSR term is divided into isotropic
and anisotropic parts. We repeat the derivation for the sake of completeness and to
establish the nomenclature. The fluid velocity is first divided into a fluctuation part u
and a mean part U . An equation for u is then given by the following fluctuation part
of the Navier–Stokes equation:

∂u
∂t
=−(u+ U) ·∇u+ 〈u ·∇u〉 − u ·∇U − ∇p

ρ0
+ ν∇2u, (2.1)

where u ≡ u(x, t) is the velocity fluctuation at position x at time t, p = p(x, t) is the
pressure fluctuation at x and t, ρ0 is the fluid density assumed to be constant, ν is
the molecular viscosity, U ≡ U(x) denotes the mean velocity at x, assumed constant
in time, and the gradient ∇U is assumed constant in space. Additionally, the angle
brackets denote an ensemble average (as does an overbar). The Cartesian coordinate
components of our system are denoted by x1, x2, x3 so that x≡ {x1, x2, x3}.

The Fourier transform of both sides of (2.1) gives

∂uk

∂t
=−uk ·∇U + k · (∇U)T ·

∂

∂k
uk − (u ·∇u)k −

(∇p)k
ρ0
− νk2uk, (2.2a)

where

uk ≡
∫

dx u(x, t) exp(−ik · x),

pk ≡
∫

dx p(x, t) exp(−ik · x)

(u ·∇u)k ≡ (2Π)−3

∫
dp k ·uk−pup

 (2.2b)

denote the Fourier transform of u(x, t), p(x, t) and u(x, t) · ∇u(x, t), respectively, and
we use the condensed notation uk ≡ uk(t) and pk ≡ pk(t). For the Fourier transforms,
it is assumed that the fluid volume of the system consists of a box with periodic
boundaries or that V is so large that u, p and their first derivatives vanish at the
boundaries. The superscript T in (∇U)T denotes the transpose of ∇U (e.g. Tkp ≡ pk,
Tk1p2 ≡ p2k1). The Cartesian directional components of k and p are denoted by
k1, k2, k3, and p1, p2, p3, respectively. To arrive at (2.2a) use was made of the relation
U ≡ x ·∇U , where ∇U is constant.

For our incompressible flow, the following expression for p ≡ p(x, t) is obtained
from the divergence of both sides of (2.1):

∇2p

ρ0
=−∇ · (u ·∇u)− 2(∇u :∇U), (2.3)

The Fourier transform of this expression can be written as

pk = pL
k + pNL

k , (2.4a)

pL
k

ρ0
≡ 2iuk ·∇U · k/k2, (2.4b)

pNL
k

ρ0
≡−(2Π)−3

∫
dp

kk
k2
:uk−pup. (2.4c)
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Substitution of (2.4a) into (2.2a) yields the fluctuation equation (e.g. Cambon et al.
1981)

∂uk

∂t
=−uk ·∇U ·

(
I − 2

kk
k2

)
+ k · (∇U)T ·

∂uk

∂k

−
⌊
(u ·∇u)k +

(∇pNL)k

ρ0

⌋
− ν k2uk, (2.5)

where I is the identity matrix (it satisfies I · uk = uk) and pNL denotes the nonlinear
part of p. (We ask the readers’ indulgence for our initial use of dyadic notation
rather than coordinate indices. The former notation is convenient for our inclusion of
general mean shear ∇U . Indices are afterward used for the case of transverse mean
shear.) The velocity tensor R(k, t) is related to the more commonly used coordinate
component notation Rij(k, t) by Rij(k, t) ≡ x̂i · R(k, t) · x̂j, where x̂i and x̂j denote unit
vectors along Cartesian coordinates xi and xj and i, j= 1, 2 or 3. Equivalently, one has
R(k, t)≡∑3

i,j=1Rij(k, t)x̂ix̂j.
As is standard to obtain an equation for R ≡ R(k, t), or for Rij(k, t), we post-

multiply (2.5) by the complex-conjugate velocity u∗k, pre-multiply the complex-
conjugate of (2.5) by uk, and then add the ensemble averages of the two resulting
equations. The result, a condensed form of previous work (e.g. Townsend 1976;
Cambon et al. 1981), is

∂R(k, t)

∂t
=−L0(k) ·R(k, t)− V−1(1+ T∗)

〈
(u ·∇u)ku

∗
k +

(∇pNL)k

ρ0
u∗k

〉
− νk2R(k, t),

(2.6a)

L0(k) ·R ≡ (1+ T)R ·∇U ·
(

I − 2
kk
k2

)
− k · (∇U)T ·

∂

∂k
R. (2.6b)

R(k, t)≡ V−1
〈
uk(t)u∗k(t)

〉
. (2.6c)

where R ≡ R(k, t) is the tensor velocity spectrum, V is the volume of the system, T∗

denotes the complex conjugate of the transpose (e.g. T∗kp≡ p∗k∗) and the tensor L0(k)
is a Liouville operator. (The components of L0(k) for the case of transverse mean
shear are the same as the tensor components Nij(k, t) used by Leslie (1973) except
for the transposed term.) The angle-bracketed term in (2.6a) is nonlinear. We note that
deletion of this nonlinear term gives the RDT exactly.

Next, the superscripts I and A are defined to denote the isotropic and anisotropic
parts of any correlation function. With that definition, the PSR term in (2.6a) is
formally divided into isotropic and anisotropic parts as follows:〈

ρ−1
0 (∇pNL)ku

∗
k

〉= 〈ρ−1
0 (∇pNL)ku

∗
k

〉I + 〈ρ−1
0 (∇pNL)ku

∗
k

〉A
, (2.6d)

where the isotropic part is defined by〈
ρ−1

0 (∇pNL)ku
∗
k

〉I ≡ (4Π)−1

∫
dΩ

1
2

〈
ρ−1

0 (∇pNL)ku
∗
k

〉
ii
. (2.6e)

Here ∫
dΩ ≡

∫ 2Π

0
dφ
∫ Π

0
dθ sin θ (2.6f )
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260 J. Weinstock

denotes the spherical integral with θ denoting the angle between k and the x̂2-direction
(so that k · x̂2 = k cos θ), φ denoting the azimuthal angle (i.e. the angle that the x̂3-axis
makes with the projection of k upon the x̂1, x̂3 plane).

The anisotropic part is formally defined by (2.6d) as the following difference:〈
ρ−1

0 (∇pNL)ku
∗
k

〉A ≡ 〈ρ−1
0 (∇pNL)ku

∗
k

〉− 〈ρ−1
0 (∇pNL)ku

∗
k

〉I
. (2.7)

Substitution of (2.6d) in (2.6a) yields the desired condensed form for R(k, t):

∂R(k, t)

∂t
=− L0(k) ·R(k, t)

Linear non-dissipation terms
− ΦA(k, t)

Nonlinear pressure–strain rate

− T (k, t)
Nonlinear advection

− 2νk2R(k, t)
Dissipation

, (2.8a)

where

ΦA(k, t)≡ V−1(1+ T∗)
〈
(∇pNL)ku

∗
k/ρ0

〉A
, (2.8b)

T (k, t)≡ V−1(1+ T∗)
⌊〈
(u ·∇u)ku

∗
k

〉+ 〈ρ−1
0 (∇pNL)ku

∗
k

〉I
⌋
. (2.8c)

We note in (2.8a) that the isotropic PSR term
〈
(∇pNL)ku

∗
k/ρ0

〉I
has been included

within the energy transfer term T (k, t).
Thus far, (2.8a) differs from previous work in that the nonlinear term has been

divided into two parts: the anisotropic part of the PSR term and an energy transfer
term.

2.1. The nonlinear terms ΦA(k, t) and T (k, t)

To complete the closure of (2.8a), the two nonlinear terms ΦA(k, t) and T (k, t) must
be expressed in terms of R(k, t): to do this, we will use simplifying approximations as
follows.

The PSR term ΦA(k, t)
A formal closure expression of ΦA(k, t) is complicated, containing multiple integrals

over time and over the wave vector components of all R(k, t). For arriving at a
computable model, we assume that ΦA(k, t) is first-order in spectral anisotropy – a
spectral Rotta-equation (Rotta 1951) – given by

ΦA(k, t)≈−ϕ(k, t)
[
R(k, t)− RI(k, t)

]
, (2.9a)

where RI(k, t) denotes the isotropic part of R(k, t) defined by

RI(k, t)≡ 2Π 2k−2E(k, t)P(k),
P(k)≡ I − kk/k2,

E(k, t)≡ k2

2Π 3

∫
dΩ 1

2 Rii(k, t) (summed on i).

 (2.9b)

Here, the coefficient ϕ(k, t) is an eddy viscosity that may vary with k and t. It is
determined next. Equation (2.9a) is the main approximation of our paper.

A closure expression for ϕ(k, t) is derived in appendix A and is given there as
follows:

ϕ(k, t)≈ 1
5Π

∫ ∞
0

p2 dp
∫

dΩΘkpq(t)
k4E(p, t)E(q, t)

p2q2E(k, t)

[
1− (k · q)

2

k2q2

]
, (2.9c)
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Θkpq(t)≡ 1− exp
(−t

[
η(k, t)+ ζ(p, t)+ ζ(q, t)+ ν(k2 + p2 + q2)

])
η(k, t)+ ζ(p, t)+ ζ(q, t)+ ν(k2 + p2 + q2)

, (2.9d)

η(k, t)≈ 0.36
[∫ k

0
dp p2E(p, t)

]1/2

, (2.9e)

ζ(k, t)≈ η(k, t), (2.9f )
k+ p+ q= 0. (2.9g)

Here η(k, t) notes the temporal decay rate of a response function (Kraichnan
1959, 1976), ζ(k, t) denotes the inverse correlation time of the velocity self-correlation
function (e.g. Orszag 1970; Kraichnan 1976; André & Lesieur 1977) and the spherical
integral is defined by (2.6f ). A distinction between η(k, t) and ϕ(k, t) is that the
former is a decay rate of a two-time spectrum whereas the latter is the decay rate of
the (single-time) spectrum, itself. The two are proportional in the inertial range at large
k, i.e. in that range (2.9c) reduces to ϕ(k, t) ≈ 2η(k, t) ≈ 0.8k2/3ε2/3, where ε denotes
the energy dissipation rate.

The energy transfer function T (k, t)
The other nonlinear quantity needed to complete (2.8a) is a closure expression for

T (k, t). First, it is divided into isotropic and anisotropic parts as follows:

T (k, t)≡ T I(k, t)+ T A(k, t),

T I(k, t)≡ 2Π 2

k2
T(k, t)P(k)

T(k, t)≡ k2

(2Π)3

∫
dΩ 1

2 Tii(k, t),

 (2.10a)

where T I(k, t) and T A(k, t) ≡ T (k, t) − T I(k, t) denote the isotropic and anisotropic
parts of T (k, t) respectively, and T(k, t) is the scalar energy transfer function.
This anisotropic part is neglected in (2.8a) in comparison with ΦA(k, t), an
approximation required to arrive a computable model. Neglect of T A(k, t) in order
to simplify application of the DIA (direct interaction approximation, Kraichnan 1959)
to anisotropic flow was originally suggested and used by Leslie (1973). With this
approximation (2.10a) reduces to

T (k, t)≈ 2Π 2

k2
T(k, t)P(k). (2.10b)

What remains now is the transfer function T(k, t). A closure expression for it taken
from the literature (e.g. Kraichnan 1959; Orszag 1970) is given by

T(k, t)= 1
2Π

∫ ∞
0

p2 dp
∫

dΩΘkpq(t)b(k, p)
k2E(p, t)

p2

[
k2

q2
E(q, t)− E(k, t)

]
, (2.10c)

b(k, p)≡
(
1− cos2θp

) [
1− 2(p/k) cos θp + (p/k)3 cos θp

]
1+ (p/k)2 − 2(p/k) cos θp

(polar coordinates),

(2.10d)

where θp is the angle between k and p so that cos θp ≡ k ·p/(kp), and the definition and
limits of the spherical integral

∫
dΩ are given by (2.6f ). This expression for T(k, t) is

common to many closures, differing only in the decay time Θkpq(t). The decay time
to be used in our work is given by (2.9d), which is found in the EDQNM closure
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262 J. Weinstock

(Orszag 1970; Pouquet et al. 1975; Cambon et al. 1981). That decay time is consistent
with a k−5/3 scalar energy spectrum in the inertial range, but is ad hoc.

Finally, the completed closed equation for R(k, t) is obtained by substitution of
(2.9a) and (2.10b) into (2.8a) with the following result:[

∂

∂t
+ 2νk2 + ϕ(k, t) + L0(k) ·

]
R(k, t)

Linear
damping

Nonlinear
damping

Linear production
+ Linear PSR
+ Linear transport

= 2Π 2

k2
[T(k, t)+ ϕ(k, t)E(k, t)] P(k)

Nonlinear k-transfer

. (2.11a)

Equation (2.11a) is a nonlinear extension of the RDT. It is the principal result of our
work. This equation determines the vector spectrum R(k, t) as a function of E(k, t),
since ϕ(k, t) and T(k, t) are functions of E(k, t) given by (2.9c) and (2.10c), while
E(k, t), itself, is defined in terms of R(k, t) by

E(k, t)≡ (2Π)−3k2

∫
dΩ Rii(k, t)/2, (2.11b)

so that (2.11a) and (2.11b) are a closed set of equations for R(k, t). They apply to all
scales and times.

A formally exact solution of (2.11a) for R(k, t) in terms of E(k, t) is given next for
the special case of transverse mean shear.

3. Formal solution of the closure equation for R(k, t)

3.1. Solution of (2.11a) for R(k, t)

Although (2.11a) can now be solved for general mean shears, the purpose of this
section is to solve it for the special case of a transverse mean shear flow given
by ∇U = (∂U1/∂x2)k̂2k̂1, the flow for which, as previously mentioned, the temporal
development seems clearest and has been investigated by experiments and DNS. Here,
k̂1 and k̂2 denote unit vectors along Cartesian directions 1 and 2, the longitudinal and
transverse and directions, respectively. For this shear the linear term L0(k) · R(k, t) in
(2.6b) reduces to

L0(k) ·R(k, t)≡ S

⌊
k1
∂R(k, t)

∂k2
− (1+ T)R(k, t) · k̂2

(
k̂1 − 2

kk1

k2

)⌋
, (3.1)

S≡ ∂U1/∂x2. (3.2)

Upon substitution of (3.1) into the closure (2.11a) and then converting the result to
coordinate notation we obtain⌊

∂

∂t
− k1S

∂

∂k2
+ 2νk2 + ϕ(k, t)

⌋
Rij(k, t)

=−S

[(
δi1 − 2

kik1

k2

)
Rj2(k, t)+

(
δj1 − 2

kjk1

k2

)
Ri2(k, t)

]
+ 2Π 2

k2
[T(k, t)+ ϕ(k, t)E(k, t)] Pij(k), (3.3)
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where δij denotes the Kronecker delta. This expression consists of a set of coupled
partial-differential equations for the individual spectral components Rij(k, t) in terms of
E(k, t).

The simplest component equation of (3.3) is that for R22(k, t) owing to its being
uncoupled from the other equations. Being uncoupled, this equation is the key
equation for our nonlinear set, as it was for the RDT. The other components Rij(k, t)
can afterwards be easily derived in terms of the solution of R22(k, t).

3.2. Solution of (3.3) for R22(k, t)

To solve (3.3) for R22(k, t) we first note that it has the form of a linear, first-order
inhomogeneous partial differential equation for R22(k, t) in the independent variables t
and k2. This equation is re-written as⌊

∂

∂t
− k1S

∂

∂k2
+ νk2 + ϕ(k, t)− 4S

k1k2

k2

⌋
R22(k, t)

= 2Π 2

k2
[T(k, t)+ ϕ(k, t)E(k, t)] P22(k), (3.4)

so that, the left side is the homogeneous part. A formal solution of (3.4) can be
written down almost immediately in terms of the solution of the homogeneous part by
integrating along the k2-space trajectories of the differential operator ∂/∂t − k1S∂/∂k2;
i.e. by recognizing that if f (k1, k2, k3, t) denotes any function of k at time t then the
solution of the homogeneous equation(

∂

∂t
− k1S0

∂

∂k2
+ νk2 + ϕ(k, t)− 4S

k1k2

k2

)
f (k1, k2, k3, t)= 0 (3.5)

is given by the following (trajectory displaced) initial value:

f (k1, k2, k3, t)= f (k1, k2 + k1St, k3, 0)

× exp
(
−
∫ t

0
dt1

{
2νk2(t − t1)+ ϕ [k(t − t1), t1]− 4S

k1k2(t − t1)

k2(t − t1)

})
, (3.6)

where the k(t) trajectory is defined by

k(t)≡ k1x̂1 + k2(t)x̂2 + k3x̂3, (3.7a)
k2(t)≡ k2 + tSk1. (3.7b)

Upon integrating both sides of (3.4) along the trajectory in k2-space, we obtain the
formal solution:

Quasi-Linear

R22(k, t)=
(

k(t)

k

)4

R22 [k(t), 0] exp
(
−
∫ t

0
dt1

{
2νk2(t1)+ ϕ [k(t1), t − t1]

})
Nonlinear

+2Π 2

k2

∫ t

0
dt2

k2(t2)

k2
P22 [k(t2)] {T [k(t2), t − t2]

+ ϕ [k(t2), t − t2] E [k(t2), t − t2]} (3.8)
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where R22(k, 0) denotes the initial value of the spectrum (the spectrum at the time it is
first observed), ϕ[k(t − t1), t1] denotes ϕ(k, t1) evaluated at trajectory k = k(t − t1), and
the integration variables were changed as in

∫ t
0 dt1ϕ[k(t − t1), t1] =

∫ t
0 dt1ϕ[k(t1), t − t1].

Additionally, we used the following integration:

exp
(∫ t2

0
dt14S

k1k2(t1)

k(t1)
2

)
=
(

k(t2)

k

)4

. (3.9)

Equation (3.8) gives R22(k, t) for any value of S, ν, t, k and initial values in terms
of E(k, t) (since the quantities ϕ(k, t) and T(k, t)) are explicitly known functions of
E(k, t). The initial value R22[k, 0] is arbitrary. The first term on the right-hand side
of (3.8) is the same as the RDT expression of R22(k, t) except for the additional,
nonlinear damping ϕ[k(t − t1), t1]. This term is referred to as being ‘quasi-linear’ in
keeping with the terminology used in theories of strong wave interactions and in
plasma turbulence (e.g. Kadomtsev 1965). The second term on the right-hand side of
(3.8) is purely nonlinear. It is new.

3.3. Formal solution of (3.3) for all components of Rij(k, t)

Equation (3.3) can now be solved formally for all the components of Rij(k, t) by
successive time integrations of each component over trajectories in k2-space. The result
is

Rij(k, t)=
Quasi-Linear

Qij(k, t)

+

Nonlinear

2Π 2

k2

∫ t

0
dt2Aij(k̂, t2) (T [k(t2), t − t2]+ ϕ [k(t2), t − t2] E [k(t2), t − t2])

× exp
(
−
∫ t2

0
dt1

{
νk2(t1)+ ϕ [k(t1), t − t1]

})
, (3.10a)

where the dimensionless coefficients Aij(k̂, t2) are given by

A11

(
k̂, t2

)
≡
(

1− k2
1

k(t2)
2

)
k2

k(t2)
2

Term 1

+ 2
k1k2(t2)k2

k(t2)
4 J11(k̂, t2)

Term 2

+ 2
k2
⊥k(t2)

2

k4
J(2)11 (k̂, t2)

Term 3

,

A22

(
k̂, t2

)
≡ k2

⊥
k2
,

A33(k̂, t2)≡
(

1− k2
3

k(t2)
2

)
k2

k(t2)
2

Term 1

− 4
k3k2(t2)k2

k(t2)
4 J33(k̂, t2)

Term 2

+ 8
k2

1k2
3k2
⊥

k6
J(2)33 (k̂, t2)

Term 3

,

A12

(
k̂, t2

)
A23

(
k̂, t2

)
≡

{
P12 [k(t2)]
P23 [k(t2)]

}
− k2

⊥
k2

{
J12(k̂, t2)

J23(k̂, t2)

}
,


(3.10b)

k2
⊥ ≡ k2

1 + k2
3, (3.10c)
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J11(k̂, t2)≡
∫ t2

0
dt3S H11 [k(t3)] ,

J33(k̂, t2)≡
∫ t2

0
dt3S H13 [k(t3)] ,

J(2)11 (k̂, t2)≡
∫ t2

0
dt3

∫ t3

0
dt4

S2k6H11 [k(t3)] H11 [k(t4)]

k(t3)
4k(t4)

2 ,

J(2)33 (k̂, t2)≡
∫ t2

0
dt3

∫ t3

0
dt4

S2k8

k(t3)
4k(t4)

4 ,{
J12(k̂, t2)

J23(k̂, t2)

}
≡
∫ t2

0
dt3S

k2

k(t3)
2

{
H11 [k(t3)]
H13 [k(t3)]

}
,



(3.10d)

Hij(k)≡ δij − 2
kikj

k2
. (3.10e)

In addition, the time integrals Jij(k̂, t2), J(2)11 (k̂, t2) and J(2)33 (k̂, t2) have all been evaluated
analytically in terms of elementary functions of t2, θ and φ (the polar and azimuthal
angles of k) by means of Mathematica software. The notation Term 1, 2, or 3 refers,
respectively, to the number of time integrations of the coupled solution of (3.3). It can
be seen from (3.10b) and (3.10d) that as t2→ 0+ the factor Aij(k̂, t2) reduces to the
simple isotropic form

Aij(k̂, t2)→ δij − kikj/k
2 ≡ Pij(k) (t2→ 0+). (3.10f )

The quasi-linear term Qij(k, t) in (3.10a) can be expressed as follows:

Qij(k, t)≡ RRDT
ij (k, t) exp

{
−
∫ t

0
ϕ[k(t1), t − t1]

}
(3.10g)

where RRDT
ij (k, t) denotes the RDT spectrum (e.g. Deissler 1961; Fox 1964; Lee,

Piomelli & Reynolds 1986; Lee et al. 1990, and others). Qij(k, t) is seen to be the
RDT spectrum multiplied by a nonlinear exponential damping. For convenience, and
because the RDT term has previously been investigated, its components are relegated
to the appendix B. However, it will be useful to give the trace of Qij(k, t) here as
follows:

Qii(k, t)= k(t)2

k2
Rii[k(t), 0]

k(t)2

k2
+ 1+ k2

3k2

k2
1(k

2
1 + k2

3)

×
[

tan−1 k2

(k2
1 + k2

3)
1/2 − tan−1 k2 + Sk1(t)

(k2
1 + k2

3)
1/2

]2


× exp
{
−2νt

[
k2 + Sk1k2t + 1

3 S2k2
1t2
]− ∫ t

0
dt1ϕ[k(t1), t − t1]

}
. (3.10h)

Equation (3.10a) is a formally exact solution of (2.11a) for Rij(k, t). It determines
that spectrum for all scales and times as a function of E(k, t). The latter spectrum is
determined by (2.11b), a closed set of equations. Before solving this set of equations;
we consider a qualitative feature.
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3.4. Quasi-linear and nonlinear terms

Equation (3.10a) divides Rij(k, t) in two parts with their two distinct temporal
behaviours: the quasi-linear term Qij(k, t) which governs the early turbulence growth,
the eventual diminution of growth being a consequence of the nonlinear damping
quantity

∫ t
0 dt1ϕ[k(t1), t − t1] in (3.10g); and the second term which is nonlinear and

governs the growth at large times. It is entirely new. Theoretically, then, (3.10a)
implies a temporal transition from RDT-dominated growth to nonlinear growth.

The sequence in time from RDT to nonlinear cascade is expected intuitively. It is
described theoretically by (3.10a). The transition time varies with k.

However, our objective in this subsection was not to investigate the RDT itself, but,
rather, to point out that a time t exits beyond which nonlinearity is dominant.

3.5. Closed equation for E(k, t): completion of the solution for Rij(k, t)

To complete the formal solution for Rij(k, t) we obtain a closed equation for E(k, t).
This is accomplished by merely substituting (3.10a) into the right-hand side of (2.11b)
to obtain

E(k, t)=
Quasi-linear

1
2

Qii(k, t)

+
Nonlinear

1
2

∫
dΩ
4Π

∫
t

0
dt2Aii(k̂, t2) {T [k(t2), t − t2]+ ϕ [k(t2), t − t2] E [k(t2), t − t2]}

× exp
(
−
∫ t2

0
dt1

{
νk2(t1)+ ϕ [k(t1), t − t1]

})
, (3.11)

where Qii(k, t) ≡ k2(2Π)−3
∫

dΩQii(k, t) is the integral of Qii(k, t) over a spherical
shell of radius k.

This equation is closed for E(k, t). Together, (3.10a) and (3.11) determine the details
of transverse mean shear turbulence: (3.10a) gives Rij(k, t) in terms of the scalar
spectrum E(k, t) and that spectrum is determined by solution of (3.11). The latter is
the only differential equation that need be solved.

Numerical solutions of the nonlinear equations at large St (large Reynolds number)
Our numerical solution of (3.11) and (3.10a) makes use of the Liouville–Neumann

method of successive approximations (e.g. Whittaker & Watson 1952). Briefly, the
initial approximation for E(k, t) was first required to satisfy the analytical solutions of
(3.11) in three ranges: the inertial, dissipation and small-k ranges, and additionally to
be equal to the derived value of E(k, t) at a familiar integral scale k0(t) defined next.
An algebraic form of E(k, t) was initially assumed between the mentioned asymptotic
ranges of k. This approximation for E(k, t) was substituted into the right-hand side
of (3.11) to obtain a second approximation for E(k, t). The second approximation was
then substituted into the right-hand side of (3.11) to obtain yet a third approximation
and so on. An analitical solution is available on request.

The results of that solution are given in figures 1 and 2. In figure 1 is plotted the
relative directional energy spectrum Eαα(k, t)/E(k, t) versus k/k0(t) for St = 60, large
enough for the nonlinear term to dominate in the energy-containing range. Here α

denotes a directional index 1, 2 or 3. The directional kinetic energy spectrum Eαα(k, t)
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FIGURE 1. Graph of theoretically predicted Eαα(k, t)/E[k0(t), t] versus k/k0(t), for
α = 1, 2, 3 at St = 60 (Reynolds number of ReT ≈ 100 000).
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FIGURE 2. Graph of theoretical (a) E11(k, t)/E[k0(t), t], (b) E22(k, t)/E[k0(t), t], (c)
E33(k, t)/E[k0(t), t], and (d) E(k, t)/E[k0(t), t], versus k/k0(t) at various S0t.

and integral scale k0(t) are defined by

Eαα(k, t)≡ (2Π)−3k2

∫
dΩ Rαα(k, t) (α = 1, 2 or 3),

k0(t)≡
∫

dkE(k, t)

/∫
dk k−1E(k, t) (integral wavenumber).

 (3.12a)
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The values of S, ν and initial spectrum Eαα(k, 0) used in our computation are taken
from a DNS (‘run’ C128R of Rogers et al. 1986; S = 28.3, ν = 0.01 and a ‘top hat’
initial spectrum). The value St = 60 corresponds to Reynolds number ReT ≡ ν−1ε(t)−1

q4(t) of about 100 000 where q2(t)≡ (3/2) ∫ dk E(k, t) and ε(t)≡ 2ν
∫

dk k2E(k, t).
We note that for the large value of St considered here the RDT is confined to small

k while most of the contribution to
∫

dk E(k, t) comes from the nonlinear terms, our
nonlinear limit. Our reason for confining figure 1 to the range 0.4 6 k/k0(t) 6 7 is to
emphasize the shape of the spectra in the energy-containing range, the range which is
least known by theory when nonlinearity is dominant. The inertial–dissipation range is
considered separately in § 5.2.

The computed theoretical Reynolds stresses 〈ui(t)uj(t)〉 ≡
∫

dkEij(k, t), roughly equal
to the area under the curves in figure 2 for diagonal components, are given by

〈uα(t)2〉
q2(t)

= {0.53, 0.18, 0.29}, St > 20, (3.12b)

−〈u1(t)u2(t)〉
q2(t)

= 0.11

(
1+ 5.7Re−1/2

T

)
(
1+ 3.2Re−1

T

) . (3.12c)

The predicted diagonal relative Reynolds stresses are within 10 % of the DNS
(Rogers et al. 1986 for runs C128R, C128X and RR128 when St > 6); they are closer
to the laboratory experiments of Harris, Graham & Corrsin (1977) and Tavoularis &
Corrsin (1981). The off-diagonal relative stress in (3.12c) is 15 % smaller than the
DNS runs but it, too, is closer to experiment.

In contrast to (3.12b), the DNS at lower Reynolds number (e.g. run C128V and
C128W of Rogers et al. 1986) or with strong shear (Lee et al. 1990) resemble
the RDT; e.g. they approach one-dimensionality of kinetic energy in the streamwise
direction, as discussed further at the end of § 4.2.

With regard to the relative stress −〈u1(t)u2(t)〉/q2(t), its slow decrease with
increasing ReT (or, equivalently, with increasing time) seen in (3.12c) is also found
in DNS (Rogers et al. 1986; Lee et al. 1990). Other comparisons with DNS and
laboratory experiments are given in §§ 4.2 and 6.1.

Various properties of shear flow are next determined by analytical solutions of
(2.11a). They begin with conditions for self-similarity and local isotropy.

4. Self-similarity and derivation of energy-containing scales
4.1. Self-similarity

The purpose of this section is to derive conditions for which the spectrum k2Rij(k, t) is
self-similar: by self-similar we specifically mean that k2Rij(k, t) varies with k solely in
the ratio k/k0(t).

To derive this behaviour in a time-varying turbulence the following self-similar form
is first assumed for E(k, t) (e.g. Lesieur & Shertzer 1978; Lesieur 1987):

E(k, t)= S2k0(t)
−3G1[k/k0(t)] (range of k to be determined), (4.1a)

and, afterwards, its validity is determined by substitution in (2.11a), the defining
equation of Rij(k, t). For present purposes, the function G1[k/k0(t)] need not be known
except that it is dimensionless. To show that the nonlinear terms ϕ(k, t) and T(k, t) are
themselves self-similar we first substitute (4.1a) into (2.9c) and (2.10c): the result of
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those substitutions, followed by elementary changes of variables, can be expressed as

ϕ(k, t)= SG2[k/k0(t)], (4.1b)

T(k, t)= S3k0(t)
−3G3[k/k0(t)], (4.1c)

where the quantities G2[k/k0(t)] and G3[k/k0(t)] are dimensionless and vary with k
only in the ratio k/k0(t), within some range of k to be determined. For convenience,
expressions for G2[k/k0(t)] and G3[k/k0(t)] are relegated to appendix C; they are not
needed for present purposes. Substitution of (4.1b) and (4.1c) in (2.11a) results in(

∂

∂(St)
+ 2νk2

S
+ G2 [k/k0(t)]

)
Rij(k, t)+Mnj [k/k0(t)] Rni(k, t)

= 2Π 2

k2
S2k0(t)

−3 (G3 [k/k0(t)]+ G2 [k/k0(t)] G1 [k/k0(t)])Pij [k/k0(t)] , (4.1d)

where

Mjn(k)≡
[
δnjk1

∂

∂k2
− (1+ T)

(
δ1j − 2

k1kj

k2

)
δn2

]
. (4.1e)

In addition, we used the identities Mjn(k) ≡ Mjn[k/k0(t)], Pij(k) = Pij[k/k0(t)] and
k1∂/∂k2 ≡ [k1/k0(t)]∂/∂[k2/k0(t)].

It can be seen that, except for the dissipation range, the terms in (4.1d) depend
on k only in the combination k/k0(t), which includes k/k0(t). Therefore, outside the
dissipation range, the solution of (4.1d) can be written in the form

k2Rij(k, t)= S2k0(t)
−3Gij[k/k0(t)], (self-similar) (2νk2� S), (4.1f )

where Gij[k/k0(t)] is dimensionless and varies with k in only the combination k/k0(t).
This self-similar equation was the goal of this section. For our purpose, the actual
expression of Gij[k/k0(t)] is not needed; it can be obtained by solution of (3.10a). We
emphasize that, owing to the temporal growth factor k0(t)

−3 in (4.1f ), Rij(k, t) varies
with time independently of its variation with k/k0(t).

The absence of self-similarity in the dissipation range confirms the same finding
by Lesieur & Shertzer (1978) in their EDQNM calculation, albeit for a case of
decaying turbulence. Other investigations of self-similarity include Kida & Murakami
(1987), Besnard et al. (1996) and Clark & Zemach (1995) for decaying turbulence and
Rubinstein & Clark (2005) for a forced turbulence.

An illustration of the evolution of spectra towards self-similarity is given in
figure 2(a–d) in § 3.5. As was done for figure 1, the range of figure 2 is limited to
0.4 6 k/k0(t)6 5 so as to emphasize the shape of the spectra in the energy-containing
range.

As we have mentioned, the increase of turbulence energy with time is accompanied
by the increase of Reynolds number. An approximate expression for that number
is ReT ≈ 70(S/νk0(0)

2) exp[0.11 St], obtained by numerical solutions of (3.10a) and
(3.11) for the nonlinear conditions of DNS (Rogers et al. 1986 Run C128R at St
exceeding 6).
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4.2. Derivation of k0(t) and E[k0(t), t]
We have seen in the previous section that the spectrum varies in time as k0(t)

−3.
The purpose of this section is to derive analytically both k0(t) defined by (3.12a),
and the spectrum E[k0(t), t], but limited to the case of transverse mean shear and
asymptotically large St. The quantity E[k0(t), t] is a value of the spectrum near its
maximum (e.g. see figure 2d). Being near the maximum it will help to estimate the
scaling of the RMS turbulence velocity at all t; a scaling which, by itself, provides a
direct comparison between theory and experiment.

To obtain k0(t) and E[k0(t), t], we substitute k0(t) for k everywhere in (3.11) and, in
addition, take the asymptotic limit St ∼∞ (which corresponds to asymptotically large
Reynolds number for growing turbulence). For that scale and time, both dissipation
and Qii[k0(t), t] can be neglected. Additionally, for that scale and time one can show
that k(t2) ≈ k for the main part of the t2-integration in (3.11). Upon making those
approximations (3.11) reduces to

E[k0(t), t] =
∫ t

0
dt2C1(t, t2)E[k0(t − t2), t − t2] exp(−t2ϕ[k0(t), t]) (St ∼∞), (4.2)

where, for convenience of notation, we defined C1(t, t2) by

C1(t, t2)≡ (T[k0(t), t]/E [k0(t), t]+ ϕ[k0(t), t])
∫

dΩ
4Π

Aii(k̂, t2)

2
. (4.3)

Equation (4.2) is not difficult to solve since ϕ[k0(t), t]/S and T[k0(t), t]/E[k0(t), t] are
both constant in time; i.e.

ϕ [k0(t), t] /S= constant (St ∼∞), (4.4a)
T[k0(t), t]/E [k0(t), t] /S= constant (St ∼∞). (4.4b)

These self-similarity relations for ϕ(k, t) and T(k, t) follow from (4.1b) and (4.1c).
Owing to these constancies, a solution of (4.2) for E[k0(t), t] is an exponential in time,
which can be written as follows:

E[k0(t), t] = E[k0(t0), t0] exp[aS(t − t0)] (St > St0� 1), (4.5)
k0(t)= k0(t0) exp[−3−1aS(t − t0)], (4.6)

where t0 is an arbitrary large time and (4.6) follows from (4.5) and (4.1a). The growth
rate a in (4.5) is determined implicitly by the integral∫ t→∞

t0

dt2C1(t, t2) exp[−(aS+ ϕ[k0(t), t])t2] = 1 (St ∼∞). (4.7)

We emphasize that a approaches its asymptotic value when t is asymptotically large;
more precisely, when t� 1/ϕ[k0(t), t]. The following value of this growth rate was
calculated by numerical solution of (4.7) combined with (2.9c), (2.10c), (3.11) and the
definition of k0(t) in (3.12a):

a= 0.17 (St ∼∞), (4.8)

a calculation for which the EDQNM closure expressions for ϕ(k, t) and T(k, t) (given
by (2.9c) and (2.10c)) are used.

The energy spectrum in (4.5) at k0(t) can be expressed with (4.1a) by

E[k0(t), t] = G1[1]S2 exp[0.11(t − t0)]
k0(t)= k0(t0) exp[−0.057S(t − t0)],

}
(St ∼∞), (4.9)
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where G1[1] ≡ G1[k0(t)/k0(t)] is a numerical constant. The value of this constant is
calculated by numerical solution of (3.11) combined with the definition of k0(t) in
(4.6), which results in

G1[1] ≈ 0.53. (4.10)

We note from (4.1a) and (4.6) that the spectrum at any k can be written as

E(k, t)= exp(0.17St)G1[k/k0(t)]. (4.11)

This equation states that the energy spectrum E(k, t) grows exponentially with time as
exp(0.17St) while, simultaneously, the spectrum evolves self-similarly to smaller and
smaller k; the latter evolution is due to the decrease of k0(t) in time. The exponential
growth is limited only by the size of the system: the largest eddy may not exceed that
size.

Let us digress to show that (4.5) conforms to observations of turbulence growth.

Universal scalings implied by (4.5) and (4.6)

An observed temporal scaling can be obtained by combining the relation
(3/2)u0(t)

2 ≡ ∫ dkE(k, t)≈ 2k0(t)E[k0(t), t] with (4.9) so as to arrive at

k0(t)
2u0(t)

2/S2 ≈ 4G[1]/3≈ 0.71 (large t). (4.12)

This self-similarity has been reached in the experiments of Tavoularis & Corrsin
(1981) and Rohr et al. (1988).

The quantitative growth rate of u0(t) is obtained by substitution of (4.6) in (4.12) to
yield

u0(t)= u0(t0) exp[0.057S(t − t0)] (St > St0� 1). (4.13)

Such exponential growth is observed experimentally by Tavoularis (1985) at ReT ≈ 104

and is consistent with measurements of Rohr et al. (1988), although for less than a
decade in time for both experiments. A comparison of theory with experimental results
of Tavoularis (1985) is given in figure 3. Theory and experiment are close, perhaps
fortuitously so. An explanation of the small difference in the two measurements is that
their Reynolds numbers are not quite large enough to reach the asymptotic limit of
theory.

Exponential growth of turbulence energy is also observed in DNS of Rogers et al.
(1986), runs C128R, C128U and C128X. The observed DNS energy growth rate of
2a/3= 0.125 when 6 6 St 6 14 fairly well confirms the theoretical 2a/3≈ 0.115 given
by (4.13).

In contrast, DNS for the particular runs C128V and C128W of Rogers et al. (1986)
exhibit a much smaller growth rate. The difference between the different sets of
runs is, we surmise, that the latter two behave linearly whereas the former (e.g.
run C128R) behaves practically nonlinearly for St > 6. For example, 〈u2(t)u2(t)〉,
〈u3(t)u3(t)〉 � 〈u1(t)u1(t)〉 in runs C128V and C128W. This approach toward one-
dimensionality of kinetic energy was found in the high-shear DNS of Lee et al. (1990).
It was also predicted by Fox (1964).
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FIGURE 3. q(t)2/q(0)2 versus S0t: –◦–◦– and –4–4–, experiment (Tavoularis 1985);
– – –, theory.

5. Local isotropy and the inertial–dissipation range
5.1. Local isotropy

The previous section, § 4, considered the solution of (2.11a) in the energy-containing
range. The purpose of this section is to determine the solution of (2.11a) for the
inertial and dissipation ranges, including a condition for local isotropy.

To derive that condition we first substitute (2.6b) into (2.11a), and then rearrange
terms to obtain

R(k, t)=
[

1+ T(k, t)/E(k, t)− 2νk2

2νk2 + ϕ(k, t)

]
RI(k, t)

− (1+ T)R(k, t) ·∇U · (I − 2k̂ k̂)
2νk2 + ϕ(k, t)

− 1
2νk2 + ϕ(k, t)

[
∂

∂t
− k · (∇U)T ·

∂

∂k

]
R(k, t). (5.1)

Equation (5.1) is still formally exact. For the approach to local isotropy, we take k
sufficiently large to satisfy |∂Uj/∂xi|/[2νk2 + ϕ(k, t)] � 1 in (5.1), where | | denotes
the absolute value, and so obtain

R(k, t)=
⌊

1+ T(k, t)/E(k, t)− 2νk2

2vk2 + ϕ(k, t)

⌋
RI(k, t)

( |∂Uj/∂xi|
2νk2 + ϕ(k, t)

� 1
)
. (5.2)

Taking the spherical integral of the trace of both sides of (5.2) followed by use of
(2.9b) leads to the established relation (e.g. Kraichnan 1959, 1965; Lesieur 1987) for
isotropic turbulence.

T(k, t)=−2νk2E(k, t) (large k). (5.3)
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Substitution of (5.3) back into (5.2) gives the local isotropy relation

R(k, t)→ RI(k, t)

(
local isotropy

2νk2 + ϕ(k, t)� |∂Uj/∂xi|

)
. (5.4)

The approach to isotropy can be seen from (5.1) to be slow in the inertial range, the
deviation from isotropy varying as k−2/3 since, in that range, ϕ(k, t)≈ 0.8k2/3ε2/3.

5.2. Expressions for E(k, t) and ε(t) at large k

Returning to (5.3), we note that it is a closed equation for E(k, t) (e.g. Kraichnan
1959, 1965) since T(k, t) is a function of E(k, t) given by (2.10c). It applies to the
inertial–dissipation range. A previous approximate analytical solution of (5.3) (e.g.
Kolmogorov 1941; Kraichnan 1965, 1959, and others), confirmed by DNS (e.g. Chen
et al. 1993; She et al. 1993, and others), is given by

E(k, t)≈ 1.5ε(t)2/3k−5/3(1+ [k/kd(t)]5) exp[−7.1k/kd(t)] (large k), (5.5)

where kd(t) ≡ [ε(t)/ν3]1/4 is the Kolmogorov dissipation wavenumber and the
numerical coefficients 5 and 7.1 were determined by the DNS of Chen et al. (1993).
Implicit in this relation is that E(k, t) grows with time proportional to ε(t)2/3.

An expression for ε(t) is derived by combination of the inertial-range form of (5.5)
with the inertial-range form of (4.1a): the latter form is given, approximately, by

E(k, t)≈ G[1]S2k0(t)
−3[k/k0(t)]−5/3 (inertial range). (5.6)

Combination of (5.6) with (5.5), together with use of G[1] = 0.53, gives the
dissipation rate as

ε(t)≈ 0.22S3k0(t)
−2 (large ReT and St). (5.7)

This relation predicts the value of ε(t) in transverse mean shear flow at very large
St . Comparison of (5.7) with related DNS expressions by Rogers et al. (1986) and by
(Lee et al. 1990) is made in the next section.

6. Spectral anisotropy at large k, comparison with a perturbation theory and
dimentionless coefficients

The purpose of this section is derive an analytical expression for the spectral
anisotropy at large k. Comparisons are afterwards made with Leslie’s (1973)
perturbation theory.

It is convenient to begin this derivation with (5.1), which is equivalent to (2.11a). In
the formal solution of (5.1) the operator [∂/∂t − k · (∇U)T · ∂/∂k] displaces k along a
trajectory k(t2), as is shown explicitly in (3.10a) for the case of transverse mean shear.
Moreover, this t2-integral of displacement is found (by means of pedestrian expansions
of the integrand of (3.10a) in powers of t2) to approach zero as S/[2νk2 + ϕ(k, t)] with
increasing k. The operator term can therefore be neglected in (5.1) when k is large,
sufficiently large that [2νk2 + ϕ(k, t)] � S. This proportionality of the operator term to
S2/[2νk2 + ϕ(k, t)]2 is also found for general ∇U . Generally, then, (5.1) reduces to

R(k, t)= RI(k, t)−
(1+ T)R(k, t) ·∇U ·

(
I − 2k̂ k̂

)
2νk2 + ϕ(k, t)

(large k), (6.1)
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where we also substituted (5.3) to eliminate T(k, t)/E(k, t) − 2νk2 in the RI(k, t)
of (5.1) term. A further simplification we make is to replace R(k, t) by RI(k, t)
in the second term on the right of (6.1), justified since RA(k, t) is of the order
∇U/[2νk2 + ϕ(k, t)]. With that approximation (6.1) reduces to

R(k, t)= RI(k, t)− 2Π 2

k2

(1+ T)P(k) ·∇Ū · (I − 2k̂ k̂)
2νk2 + ϕ(k, t)

E(k, t) (large k). (6.2)

This equation determines RA(k, t) to first-order in mean shear ∇U . It corresponds to
small-shear perturbation theory (Leslie 1973; Ishihara et al. 2002, and others), but is
more general since it applies to the dissipation range and to arbitrary ∇U and, most
significantly, is not limited to stationary spectra. Additionally, it can be seen that the
shear need not be small for (6.2): all that is required is that k be sufficiently large.

For the case of transverse mean shear (6.2) reduces to

Rij(k, t)= RI
ij(k, t)− 2Π 2

k2
S

[
Pi2(k)

(
δj1 − 2

kjk1

k2

)

+ Pj2(k)
(
δi1 − 2

kik1

k2

)]
E(k, t)

2νk2 + ϕ(k, t)

(
transverse shear

at large k

)
. (6.3)

This relation is next compared with a previous perturbation theory.

6.1. Comparison with a perturbation theory
The purpose of this section is to compare Leslie’s (1973) perturbation theory at large k
with our theory: specifically, to compare (15.36) of Leslie with our (6.3). To facilitate
this comparison, (15.36) of Leslie is written here as follows:

RA
ij
(k, t)(L) = S

⌊{
−Pi1(k)Pj2(k)− Pi2(k)

2
k1kj

k2

}
q(0)(k, 0)
η + ζ

+ Pij(k)
2

k1k2

k2

{
k

η + ζ
∂q(0)(k, 0)

∂k
− kq(0)(k, 0)

(η + ζ )2
∂ζ

∂k

}⌋
, (6.4)

where RA
ij
(k, t)(L) denotes Leslie’s expression for the anisotropic part of

Rij(k, t), q0(k, t) ≡ 2Π 2E(k, 0)k−2,E(k, 0) denotes the stationary Kolmogorov spectrum
and the eddy quantities η and ζ are defined in (2.9d).

Leslie’s equation, (6.4), has the same variation with k as does our (6.3) in the
inertial range, taking into account that η and ζ are approximately equal to 0.5ϕ(k, t) in
that range. However, their respective numerical coefficients do differ a little.

Another difference is that perturbation theory contains the derivative ∂ζ/∂k whereas
(6.3) does not. We do not know whether this derivative term is valid. Its absence in
our theory might be due to the assumptions of our model PSR term. A refinement
of our PSR model might explain this difference but is beyond the scope, and would
defeat the purpose, of our present paper; it will be considered in a future work. In
any event, the magnitude of this derivative term is small, much smaller than the other
terms in (6.4) and in (6.3).

The stationary restriction of (6.4) as well as of previous perturbation theories may
be appropriate to small scales in flows other than homogeneous mean shear. Our
theory is not subject to that restriction.

Among the agreements of perturbation theory (6.4) with (6.3) in the inertial range
are: the predicted stress 〈u1(x, t)u2(x, t)〉 = (2Π)−3

∫
dkR12(k, t)(L) is non-zero and
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FIGURE 4. Relative scalar stress spectrum −E12(k, t)/E(k, t) versus k(2ν/S0)
1/2 displaying

the inertial-range k−2/3 behaviour and the dissipation-range k−2 behaviour at S0t = 100.

sizable since RA
12(k, t)(L) is symmetric in k1 and k2; the scalar stress spectrum E12(k, t)

varies as k−7/3 in the inertial range; and local isotropy is approached relatively slowly.

6.2. Spectral power laws and dimensionless coefficients
Equation (6.2) almost immediately gives the following asymptotic power laws
for the relative scalar stress spectrum E12(k, t)/E(k, t), where E12(k, t) ≡
(2Π)−3k2

∫
dΩR12(k, t):

E12(k, t)

E(k, t)
∝
{
−(Sε−1/3)k−2/3 (inertial range)
−(S/ν)k−2 (dissipation range)

(6.5)

taking into account that (2.9c) reduces in the inertial range to

ϕ(k, t)≈ 0.8k2/3ε1/3 (inertial range), (6.6)

and where the far dissipation range is described by 2νk2� ϕ(k, t). These k behaviours
are illustrated in figure 4. To our knowledge, the power law in the dissipation range
has not been derived previously. Here, it can be seen from (6.2) to apply to all ∇U .

6.2.1. The Lumley coefficient
In Lumley’s (1967) expression for the scalar stress spectrum, given by E12(k, t) ≈
−CSε1/3k−7/3, the dimensionless coefficient C was undetermined. However, its
numerical value was calculated by DNS of Ishihara et al. (2002). This coefficient
is easily obtained analytically from (6.3) by taking the spherical integral over both
sides: the result is

E12(k, t)=− 4
15

S
E(k, t)

2νk2 + ϕ(k, t)
. (6.7)

In the inertial range (where E(k, t)= 1.5ε(t)2/3k−5/3, ϕ(k, t)≈ 0.8k2/3ε(t)1/3 and 2νk2 is
negligible) this relation reduces to Lumley’s expression

E12(k, t)=−0.5Sε(t)1/3k−7/3 (inertial range) (6.8)

and predicts its constant to be 0.5
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This theoretical value is close to that obtained by DNS (Ishihara et al. 2002). The
latter work also finds a second dimensionless constant for the Reynolds stress spectra.

6.2.2. Ratio of stress to energy
The ratio of stress to kinetic energy is of special interest because it has been

widely measured and is fairly well known. These quantities are defined, respectively,
by 〈u1(t)u2(t)〉 ≡ (2Π)−3

∫∞
0 dkE12(k, t) and 〈ui(t)ui(t)〉/2≡ (2Π)−3

∫∞
0 dkEii(k, t)/2. A

heuristic, rough estimate of their ratio can be quickly obtained from (6.7) and (5.5) by
extrapolating both relations to k = k0(t) and cutting off both k-integrals at k0(t). The
result is

〈u1(t)u2(t)〉
〈ui(t)ui(t)〉/2 ≈ 0.28

(
extrapolated

spectra

)
. (6.9)

This value is fortuitously close to the measured value of ∼0.3.
A less heuristic value for the ratio of stress to energy can be obtained by numerical

solution of (3.10a) and (3.11) for all k. The ratio found in this way varies from 0.3
to 0.27 as ReT increases from 300 to 800. These values are about 15 % less than the
ratios obtained by DNS, but closer to laboratory values (e.g. Tavoularis & Corrsin
1981).

6.2.3. Shear rate parameter
The shear rate parameter Sq2/ε is a measure of the shear strength that has been

determined by DNS (e.g. Rogers et al. 1986; Lee et al. 1990). For our nonlinear case
of large St , it is obtained by combination of (4.12) with (5.7) with the result

Sq2/ε ≈ 10 (Large St and ReT). (6.10)

This value is fairly close to the DNS runs RR128, C128R and C128X for St > 8; the
DNS values vary from ∼9 to 11 for 8 6 St 6 14 peaking at ∼11. Theoretically, the
(nonlinear) shear rate parameter is time-invariant at large St as are (4.12) and (5.7)
from which it is derived.

Much larger values of this parameter were found in the large shear DNS of Lee
et al. (1990). A possible explanation for this difference is that DNS of Lee et al.
(1990) is nearly linear whereas the mentioned DNS runs of Rogers et al. (1986) are
nearly nonlinear.

7. Approximations of the theory
Sources of errors or uncertainties in the theory are: (a) modelling of the nonlinear

PSR as first-order in the anisotropic part of the vector spectrum; (b) neglect of mean
shear for the PSR model; (c) neglect of T A(k, t); (d) use of the formal EDQNM
closure (Orszag 1970) for T(k, t). An assessment of these uncertainties in our work is
as follows:

(a) A Rotta-like model of the nonlinear pressure–strain rate is used as a first
approximation for the sake of obtaining a computable model. This is our main
approximation. Other authors (e.g. Cambon et al. 1981; Clark & Zemach 1995;
Besnard et al. 1996) have previously used this model for the same reason. The
plausibility of this model is that it conforms to the physical considerations given
by Rotta (1951) for his original expression in real space, and, relatedly, correctly
reduces to that expression when both sides are integrated over all k (Weinstock 1982).
Nevertheless, it remains ad hoc for individual values of k. It is most uncertain for
k/k0� 1.
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(b) Neglect of mean shear in the PSR coefficient ϕ(k, t) may cause the theory to
be too nonlinear at early times where shear terms are still comparable to, or exceed,
nonlinear terms.

(c) One justification of neglect of T A(k, t) is that it is small in comparison with
ΦA(k, t) in (2.8a)): the latter dominates the anisotropy of the turbulence. A related
anisotropy approximation has been verified numerically (e.g. Herring 1974; Schumann
& Herring 1976). Neglect of T A(k, t) was originally suggested and used by Leslie
(1973) to simplify the application of the DIA to anisotropic flow.

(d) The accuracy of the EDQNM for shear flow turbulence is not established for
general scales. Its accuracy may be estimated by comparison with experiment. Such
a comparison made by Cambon et al. (1981) found the EDQNM in good agreement
with measurements of stationary turbulence. Additionally, an EDQNM prediction of
the Rotta coefficients by the present author (Weinstock 1982) agreed with DNS by
Rogers et al. (1986).

8. Summary and discussion

(a) Our principal result is (2.11a), a compact nonlinear equation for the velocity
spectrum of mean shear turbulence at all scales and times. This equation can be
viewed as a nonlinear extension of the RDT.

(b) The main simplification was to model the spectrum of the nonlinear PSR
as first-order in the anisotropic velocity spectrum: a spectral Rotta equation. This
simplification was made for the sake of arriving at a computable model. It is ad hoc,
but plausibility arguments are given in § 7. The coefficient ϕ(k, t) of this Rotta-like
equation was derived rationally.

(c) Equation (2.11a) determines the temporal evolution of turbulence from the initial
state onwards. Initially, an RDT term emerges that governs the early evolution of
turbulence. The initial growth is followed by steady nonlinear exponential growth that
continues indefinitely, restricted only by the size of the system.

The nonlinear terms cause cascade to smaller scales while the RDT terms produce
larger scales. A theoretical ‘transition’ time predicts when both terms become
competitive. That time varies with wavenumber. This work focuses on conditions for
which nonlinear terms dominate the energy of the system: very large St and Reynolds
numbers.

(d) The solution of (2.11a) is obtained for the case of transverse mean shear. That
solution is given by (3.10a). It consists of a formally exact expression for Rij(k, t) in
terms of E(k, t), while E(k, t) itself is determined by (3.11), a closed integral equation.
Both numerical and analytical solutions of the latter equation are given.

The analytical solution is available on request.
(e) The velocity spectrum is proven to be self-similar for k−1 larger than dissipation

wavenumbers; i.e. when k satisfies 2νk2 > S in the case of transverse shear.
Local isotropy is proven to occur when k is large enough to satisfy ϕ(k, t)+ 2νk2�
|∂Uj∂xi|, the inertial and dissipation range.

(f ) Analytical expressions are derived for the total kinetic energy, the integral scale,
the growth rate of turbulence spectra and various coefficients; e.g. these expressions
show that the scalar spectra E(k, t) and integral length scale k0(t)

−1 grow exponentially
in time as exp(0.17St) and exp(0.057St), respectively. Simultaneously with growth,
the spectrum shifts to smaller and smaller wavenumber. Such growth was observed
in laboratory experiments and in DNS but was limited to less than a decade in time.
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Theory predicts that this growth continues indefinitely, subject only to the size of the
system.

(g) Equation (2.11a) asymptotically reduces to a simple expression for Rij(k, t) in
the inertial–dissipation ranges for all ∇U and time t. This asymptotic equation is given
by (6.3). The relative scalar stress spectra are predicted to vary as k−2/3 in the inertial
range, as found previously, and to vary as k−2 in the dissipation range. The latter
behaviour has not been previously derived so far as we know.

(h) Comparisons are made between our theory and the perturbation theory of Leslie
(1973) for large k. The stress spectra of the two theories agree qualitatively for large k
but differ a little in their respective numerical coefficients. This difference may be due
to the assumed PSR model of our work. A discussion is given in § 6. The principal
differences are that the perturbation theory is limited to large wavenumbers and to
an assumed stationary condition whereas the present theory shows energy grows in
time. Because of its stationary condition, perturbation theory may be confined to small
scales in inhomogeneous flows.

Appendix A. Equation for ϕ(k, t)

To derive (2.9c) for ϕ(k, t) we substituted the following definition of the directional
scalar kinetic energy spectrum:

Eαα(k, t)≡ (2Π)−3k2

∫
dΩRαα(k, t), (A 1)

into the integrand on the right-hand side of (27) of Weinstock (1982) and substituted
(2Π)−3

∫
dkϕ(k, t)[Rαα(k, t)− RI

αα(k, t)] for 2AN
αα in the left-hand side of that equation,

where the directional index α equals 1, 2 or 3. Additionally, we used η(k, t) and ζ(k, t)
instead of k〈u(r, t)u(r, t)〉1/2; the latter is the small-k limit of the inverse correlation
time whereas the former is an inertial-range expression. The wavevector notation of
Weinstock was changed from k, k1, k2 to k, p, q, respectively,

Appendix B. The components of RRDT
ij [k, t]

The components of the RDT spectrum RRDT
ij [k, t] can be written as follows:

RRDT
ij (k, t)≡

(
Rij(k, 0)

{
k(t)4

k4
δi2δj2 + k(t)2

k2
δi2(δj1 + δj3)+ δi1δj1 + δi3δj3

}
− S

∫ t

0
dt2

{
2
k(t)2

k2
(H11[k(t2)]R12[k(t), 0]δi1δj1

+H13[k(t2)]R23[k(t), 0]δi3δj3)

+ k(t)4

k2k(t2)
2 (H11[k(t2)]δi1δj2 + H13[k(t2)]δi2δj3)R22[k(t), 0]

}
+ 2S2

∫ t

0
dt2

∫ t2

0
dt3

k(t)4

k(t2)
2k(t3)

2 {H11[k(t3)]P12[k(t2)]δi1δj1

+ H13[k(t3)]P23[k(t2)]δi3δj3}R22[k(t), 0]
)

exp
(
−
∫ t2

0
dt1νk2(t1)

)
. (B 1)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

13
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2014.13


Analytical theory of homogeneous mean shear turbulence 279

Appendix C. The dimensionless functions G2[k/k0(t)] and G3[k/k0(t)]
The functions G2[k/k0(t)] and G3[k/k0(t)] are straightforwardly obtained by

substitution of (4.1a,b,c) in (2.9c) and (2.10c) to obtain

G2[k/k0(t)] ≡ 0.5
∫

dp

k0(t)
3

(
Θkpq(t)

S

)
k4/k0(t)

4

q2/k0(t)
2

k0(t)
2

k2 + p2

×G1[p/k0(t)] × G1[q/k0(t)]
G1[k/k0(t)] ×

[
1− (q · k)

2

q2k2

]
(C 1a)

G3[k/k0(t)] = 1
2Π

∫
dp

k0(t)
3

Θkpq(t)

S
b

(
k

k0(t)
,

p
k0(t)

)
k2/k0(t)

2

p2/k0(t)
2

×
⌊

k2/k0(t)
2

q2/k0(t)
2 G1

[
q

k0(t)

]
− G1

[
k

k0(t)

]⌋
, (C 1b)

Θkpq(t)

S
= 0.36


√∫ k/k0(t)

0
dyy2G1[y] +

√∫ p/k0(t)

0
dyy2G1[y] +

√∫ q/k0(t)

0
dyy2G1[y]


+ dissipation terms of order νk2/S, (C 2)

where use was made of the identity b(k, p) = b(k/k0(t), p/k0(t)). Equations (C1) and
(C 2) confirm that G2[k/k0(t)] and G3[k/k0(t)] vary with k only in the combination
k/k0(t).
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