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Abstract

We investigate unbounded, linear operators arising from a finite sum of composition operators on Fock
space. Real symmetry and complex symmetry of these operators are characterised.
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1. Introduction

Function composition is an operation that takes two functions f and ϕ and produces
a function g such that g(x) = f (ϕ(x)). If f varies in a linear space of functions
defined on the range of ϕ, then the mapping Cϕ sending f into f ◦ ϕ is a linear
transformation, called a composition operator. Although the composition operation
is basic to mathematics and its studies have been pursued for a long time, the study
of composition operators as a part of operator theory has a relatively short history,
starting in the mid 1960s with Nordgren’s paper [16].

The books by Cowen and MacCluer [4] and Shapiro [18] describe composition oper-
ators on Hardy and Bergman spaces. On Fock space, Carswell et al. [2] found that only
the class of affine transformations ϕ(z) = az + b, |a| ≤ 1 and b = 0 whenever |a| = 1
induces bounded composition operators. They characterised compactness of Cϕ by
the strict requirement |a| < 1. In [14], Le described all bounded composition operators
that are normal. Later, the author [10] extended Le’s result to unbounded composition
operators and also obtained conditions that are more general than the bounded case.

Berkson [1] initiated the study of a sum of composition operators and this was taken
further by Shapiro and Sundberg [19], who investigated the topological structure of the
space of composition operators acting on Hardy space. For Fock spaces, Choe et al.
[3] showed that a linear sum of two composition operators is bounded (respectively,
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compact) if and only if both composition operators are already bounded (respectively,
compact). Other properties have been studied such as conditions for a sum to be
bounded on Bloch spaces [12] or completely continuous on Hardy and Bergman
spaces [5].

A second source of our study is the theory of complex symmetric operators initiated
by Garcia and Putinar [8, 9]. A complex symmetric operator is an unbounded, linear
operator T : dom(T) ⊆ H → H on a Hilbert space H with the property that T =
CT∗C, where C is an isometric involution (in short, conjugation) onH . To indicate the
dependence on conjugation, this case is called C-selfadjoint. A long list of well-known
operators have been proven complex symmetric: normal operators, Hankel matrices
and compressed Toeplitz operators (including the compressed shift). For more on
complex symmetry, see [7–9].

Recently, there has been interest in the problem of classifying composition operators
that are complex symmetric. The papers [6, 13] studied the problem on Hardy spaces
of the unit disk corresponding to the conjugation

Q f (z) = f (z).

The conjugation Q inspired the author and Khoi [11] to study this problem in Fock
space.

In this paper, we are interested in unbounded, linear operators arising from the
expression E(ϕ, d) f =

∑d
j=1 f ◦ ϕj, where the functions satisfy

ϕt � ϕs whenever t � s. (1.1)

Our research is conducted on Fock space

F 2 =

{
f (z) =

∞∑
n=0

fnzn is entire with
∞∑

n=0

n! | fn|2 < ∞
}
,

the reproducing kernel Hilbert space with the reproducing kernel K[m]
z (u) = umeuz,

equipped with the inner product

〈 f , g〉 =
∞∑

n=0

n! fngn, where f (z) =
∞∑

n=0

fnzn, g(z) =
∞∑

n=0

gnzn.

The maximal operator corresponding to E(ϕ, d) over F 2 is defined by

dom(Sϕ,d,max) = { f ∈ F 2 : E(ϕ, d) f ∈ F 2},
Sϕ,d,max f = E(ϕ, d) f for all f ∈ dom(Sϕ,d,max).

The operator Sϕ,d is called a nonmaximal operator if Sϕ,d � Sϕ,d,max. We characterise
the real symmetry and complex symmetry of Sϕ,d.
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2. Some initial properties

We list notation used in the present paper. Let [1, d]Z = { j ∈ Z : 1 ≤ j ≤ d}. The
symbol Ck[z] denotes the set of all polynomials with degree at most k and complex
coefficients. For two unbounded operators A, B, writing A � B means that dom(A) ⊆
dom(B) and Ax = Bx for x ∈ dom(A).

2.1. Elementary observations. These observations are used in Lemmas 3.1 and 4.1.

LEMMA 2.1. Let {Cj : j ∈ [1, d]Z} and {Dj : j ∈ [1, d]Z} be sets of distinct numbers. Let
λ1, . . . , λd, γ1, . . . , γd be nonzero complex numbers. If the equality

d∑
j=1

λjKCj =

d∑
j=1

γjKDj

holds, then for each t ∈ [1, d]Z there exists a unique s ∈ [1, d]Z such that

Ct = Ds, λt = γs.

PROOF. Assume, towards a contradiction, that there is t ∈ [1, d]Z for which Ct � Dj for
every j ∈ [1, d]Z. Set

f (z) =
d∏
�=1

(z − D�) ·
∏
μ�t

(z − Cμ).

It is clear that f ∈ F 2 and f (Ct) � 0. We have

λt f (Ct) =
〈

f ,
d∑

j=1

λjKCj

〉
=

〈
f ,

d∑
j=1

γjKDj

〉
= 0;

but this is impossible. Thus, there exists s ∈ [1, d]Z such that Ct = Ds. Since the set
{Dt : t ∈ [1, d]Z} consists of distinct numbers, this number s is unique. Setting

g(z) =
∏
��s

(z − D�) ·
∏
μ�t

(z − Cμ),

λtg(Ct) =
〈
g,

d∑
j=1

λjKCj

〉
=

〈
g,

d∑
j=1

γjKDj

〉
= γsg(Ds) = γsg(Ct),

which implies, as g(Ct) � 0, that λt = γs. �

2.2. Action on kernel functions. The next lemma describes how the adjoint S∗ϕ,d
acts on kernel functions.

LEMMA 2.2. Let {ϕj : j ∈ [1, d]Z} be a set of distinct, entire functions; that is, condition
(1.1) holds. Let Sϕ,d be the densely defined operator arising from the expression
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E(ϕ, d). Then for every z ∈ C, Kz ∈ dom(S∗ϕ,d) and

S∗ϕ,dKz =

d∑
j=1

Kϕj(z).

PROOF. For every f ∈ dom(Sϕ,d),

〈Sϕ,d f , Kz〉 = Sϕ,d f (z) =
d∑

j=1

〈 f , Kϕj(z)〉 =
〈

f ,
d∑

j=1

Kϕj(z)

〉
,

which gives the desired conclusion. �

2.3. Closed operators. As it turns out, the maximal operator is always closed.

PROPOSITION 2.3. The maximal operator Sϕ,d,max is always closed on Fock space F 2.

PROOF. Let (un) ⊂ F 2 and u, v ∈ F 2 be such that un → u and Sϕ,d,maxun → v in F 2. It
follows that un(z)→ u(z) and Sϕ,d,maxun(z)→ v(z) for all z ∈ C and, consequently,

Sϕ,d,maxun(z) =
d∑

j=1

un(ϕj(z))→
d∑

j=1

u(ϕj(z)) for all z ∈ C.

Thus,
d∑

j=1

u(ϕj(z)) = v(z) for all z ∈ C.

Since v ∈ F 2, we conclude that u ∈ dom(Sϕ,d,max) and Sϕ,d,maxu = v. �

COROLLARY 2.4. The maximal operator Sϕ,d,max is bounded on Fock space F 2 if and
only if its domain dom(Sϕ,d,max) = F 2.

2.4. Dense domain. In the next result, we characterise the maximal operatorSϕ,d,max
when it is densely defined.

PROPOSITION 2.5. Let R be the linear operator defined by

dom(R) = span{Kx : x ∈ C}, RKx =

d∑
j=1

Kϕj(x).

Then Sϕ,d,max = R∗. Moreover, the operator Sϕ,d,max is densely defined if and only if the
operator R is closable.

PROOF. Let u =
∑n

j=1 λjKxj ∈ dom(R). For every v ∈ F 2,

〈Ru, v〉 =
n∑

j=1

d∑
t=1

λj〈Kϕt(xj), v〉 =
n∑

j=1

d∑
t=1

λjv(ϕt(xj)) =
n∑

j=1

λjE(ϕ, d)v(xj).
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By the Riesz lemma, v ∈ dom(R∗) if and only if there exists ω = ω(v) > 0 such that

|〈Ru, v〉| ≤ ω‖u‖ for all u ∈ dom(R)

or, equivalently,
∣∣∣∣∣

n∑
j=1

E(ϕ, d)v(xj)λj

∣∣∣∣∣
2
≤ ω2

n∑
j,�=1

λjλ�Kxj (x�).

It was proven in [20] that this is equivalent to saying that E(ϕ, d)v ∈ F 2. Consequently,
the domain dom(R∗) = dom(Sϕ,d,max) and

〈Ru, v〉 = 〈u,E(ϕ, d)v〉 = 〈u,Sϕ,d,maxv〉 for all u ∈ dom(R), v ∈ dom(Sϕ,d,max),

which yields Sϕ,d,max = R∗. The second assertion follows from [17, Proposition
1.8(i)]. �

3. Real symmetry

An unbounded, linear operator T is called real symmetric on a complex, separable
Hilbert space if the equality T = T∗ holds; meaning that dom(T) = dom(T∗) and Tx =
T∗x for x ∈ dom(T).

In this section, we are interested in how the real symmetry of Sϕ,d impacts the
function-theoretic properties of ϕj, for j ∈ [1, d]Z, and vice versa. For the necessary
condition, we apply the real symmetry to kernel functions and this step leads to
Lemma 3.1. As it turns out, the real symmetry significantly restricts the possible
functions for the operator Sϕ,d. For the sufficient condition, we need a computation
regarding the adjoint S∗ϕ,d.

LEMMA 3.1. Let {ϕj : j ∈ [1, d]Z} be a set of distinct, entire functions, that is, condition
(1.1) holds. Suppose that

d∑
j=1

exϕj(z) =

d∑
j=1

eϕj(x)z for all x, z ∈ C. (3.1)

Then the functions ϕj have the form

ϕj(z) = Ajz, j ∈ [1, d]Z, (3.2)

where the coefficients satisfy the two conditions

{Aj : j ∈ [1, d]Z} = {Aj : j ∈ [1, d]Z} (3.3)

and

At � As for all t � s. (3.4)
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PROOF. Step 1: We show that for each k ∈ [1, d]Z,
d∑

j=1

ϕj(z)
k
exϕj(z) =

d∑
j=1

( k∑
t=1

ωt,j,k(x)zt
)

eϕj(x)z for all x, z ∈ C, (3.5)

where
ω1,j,1(x) = ϕ′j(x) if j ∈ [1, d]Z,
ω1,j,k+1(x) = ω′1,j,k(x) if j ∈ [1, d]Z,
ωt,j,k+1(x) = ω′t,j,k(x) + ϕ′j(x)ωt−1,j,k(x) if t ∈ [2, k]Z and j ∈ [1, d]Z,
ωk+1,j,k+1(x) = ϕ′j(x)ωk,j,k(x) if j ∈ [1, d]Z.

Indeed, differentiating (3.1) with respect to the variable x,
d∑

j=1

ϕj(z)exϕj(z) =

d∑
j=1

ϕ′j(x)zeϕj(x)z =

d∑
j=1

ω1,j,1(x)zeϕj(x)z,

which means that equality (3.5) holds when k = 1. Now suppose that (3.5) holds for k
and consider k + 1. We have

d∑
j=1

ϕj(z)
k
exϕj(z) =

d∑
j=1

( k∑
t=1

ωt,j,k(x)zt
)

eϕj(x)z,

which implies, after differentiating with respect to the variable x, that
d∑

j=1

ϕj(z)
k+1

exϕj(z) =

d∑
j=1

( k∑
t=1

ω′t,j,k(x)zt + ϕ′j(x)z
k∑

t=1

ωt,j,k(x)zt
)
eϕj(x)z

=

d∑
j=1

( k+1∑
t=1

ωt,j,k+1(x)zt
)

eϕj(x)z.

Step 2: We claim that ϕj(0) = 0 for every j ∈ [1, d]Z. Assume, towards a contradic-
tion, that ϕt(0) � 0 for some t ∈ [1, d]Z. Set

Ωt = { j : ϕj(0) = ϕt(0)}, f (z) = z
∏
j�Ωt

(z − ϕj(0)).

Letting x = 0 in (3.1), we find that
∑d

j=1 Kϕj(0) = d = dK0 and so

0 = d〈 f , K0〉 =
d∑

j=1

〈 f , Kϕj(0)〉 =
(∑

j∈Ωt

+
∑
j�Ωt

)
f (ϕj(0)) = |Ωt | f (ϕt(0)),

where the notation |Ωt | stands for the cardinality of Ωt; but this is impossible.
Step 3: We claim that

∑
1≤j1<j2<···<jk≤d

k∏
�=1

ϕj� (z) = (−1)kqd−k(z) for some qm ∈ Cd−m[z]. (3.6)
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Let k ∈ [1, d]Z. Evaluating (3.5) at x = 0 and using ϕj(0) = 0 from Step 2 gives∑d
j=1 ϕj(z)k = pk(z) for some pk ∈ Ck[z]. Denote the left-hand side of (3.6) by q̃k(z).

By Newton’s identities [15],

kq̃k(z) =
k−1∑
j=1

(−1)j−1q̃k−j(z)pj(z).

By induction on k, we have q̃k ∈ Ck[z]. Setting qd−k(z) = (−1)kq̃k(z) gives (3.6).
With these preparations in place, we prove the conclusion of the lemma as follows.

By Vieta’s formulas, ϕ1(z), . . . ,ϕd(z) are solutions of the algebraic equation

Xd +

d−1∑
j=0

qj(z)Xj = 0.

Hence, for |z| > R sufficiently large, we can find a constant C = C(R) with the property
that

|X|d ≤ C|z|d
( d−1∑

j=0

|X|j
)
≤ C|z|d(1 + |X|)d−1.

By Liouville’s theorem, this means that the functions ϕ1, . . . ,ϕd are polynomials with
degrees at most d. Since ϕt(0) = 0, we can write ϕt(z) = zgt(z), where gt ∈ Cd−1[z].
Since the product

ϕ1(z) · · ·ϕd(z) = zd
d∏

j=1

gj(z)

lies in Cd[z], the polynomials gj are constants, giving the required form for the ϕj in
(3.2). Substituting these forms back into (3.1) gives

d∑
j=1

exAjz =

d∑
j=1

eAjxz for all x, z ∈ C.

Consequently, taking into account the explicit form of the kernel functions,

d∑
j=1

KAj (u) =
d∑

j=1

KAj
(u) for all u ∈ C.

Now we can apply Lemma 2.1 to get (3.3). Finally, (3.4) follows from (1.1). �

The next result concerns real symmetric operators with maximal domains.

THEOREM 3.2. Let {ϕj : j ∈ [1, d]Z} be a set of distinct, entire functions, that is,
condition (1.1) holds. Let Sϕ,d,max be the maximal operator arising from the expression
E(ϕ, d). Then the operator Sϕ,d,max is real symmetric if and only if the functions ϕj have
the form (3.2) with conditions (3.3) and (3.4).
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PROOF. Suppose that the operator Sϕ,d,max is real symmetric. This implies, in
particular, that

S∗ϕ,d,maxKz(x) = Sϕ,d,maxKz(x) for all x, z ∈ C

and, by Lemma 3.1, we get the necessary condition.
For the sufficient condition, take the functions as in the statement of the theorem.

A computation shows that Kz ∈ dom(Sϕ,d,max) and moreover

Sϕ,d,maxKz(x) =
d∑

j=1

KAjz(x) for all z, x ∈ C.

First, we prove the inclusion

S∗ϕ,d,max � Sϕ,d,max. (3.7)

Indeed, for u ∈ dom(S∗ϕ,d,max) and z ∈ C,

S∗ϕ,d,maxu(z) = 〈S∗ϕ,d,maxu, Kz〉 = 〈u,Sϕ,d,maxKz〉

=

〈
u,

d∑
j=1

KAjz

〉
=

〈
u,

d∑
j=1

KAjz

〉
(by (3.3))

=

d∑
j=1

u(Ajz) = Sϕ,d,maxu(z).

Next, we show that equality occurs in (3.7), meaning that

〈Sϕ,d,maxg, h〉 = 〈g,Sϕ,d,maxh〉 for all g, h ∈ dom(Sϕ,d,max).

Take arbitrary g(z) =
∑∞

n=0 gnzn, h(z) =
∑∞

n=0 hnzn ∈ dom(Sϕ,d,max) with Taylor coeffi-
cients gn, hn ∈ C. We have

Sϕ,d,maxg(z) =
d∑

j=1

∞∑
n=0

gnAn
j zn =

∞∑
n=0

gn

( d∑
j=1

An
j

)
zn.

Since (zn) is an orthogonal basis,

〈Sϕ,d,maxg, h〉 =
∞∑

n=0

gnhn

( d∑
j=1

An
j

)
‖zn‖2 =

∞∑
n=0

gnhn

( d∑
j=1

Aj
n
)
‖zn‖2 = 〈g,Sϕ,d,maxh〉. �

The next result relaxes the domain to show that the real symmetry cannot be
separated from the maximality of the domain.

THEOREM 3.3. Let {ϕj : j ∈ [1, d]Z} be a set of distinct, entire functions, that is,
condition (1.1) holds. Let Sϕ,d be the operator arising from the expression E(ϕ, d).
Then the following assertions are equivalent.

(1) The operator Sϕ,d is real symmetric.
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(2) The operator Sϕ,d satisfies both the following conditions:

(a) the operator Sϕ,d is maximal, that is, Sϕ,d = Sϕ,d,max;
(b) the functions ϕj have the form in (3.2) with conditions (3.3) and (3.4).

PROOF. The implication (2)=⇒(1) follows directly from Theorem 3.2. We prove
the reverse implication (1)=⇒(2) as follows. Suppose that the operator Sϕ,d is real
symmetric. Since Sϕ,d � Sϕ,d,max, it follows from [17, Proposition 1.6] that

S∗ϕ,d,max � S∗ϕ,d = Sϕ,d � Sϕ,d,max.

In particular,

S∗ϕ,d,maxKz(x) = Sϕ,d,maxKz(x) for all z, x ∈ C.

Lemma 3.1 yields (2b). Hence, by Theorem 3.2, the operatorSϕ,d,max is real symmetric.
Then (2a) follows from

Sϕ,d � Sϕ,d,max = S∗ϕ,d,max � S
∗
ϕ,d = Sϕ,d. �

4. Complex symmetry

In this section, we describe precisely when the functions ϕj, j ∈ [1, d]Z ensure that
the operator Sϕ,d is complex symmetric corresponding to the conjugation

Qω f (z) = f (ωz).

As a consequence, we obtain the interesting fact that real symmetry implies complex
symmetry; namely, if the operator Sϕ,d is real symmetric, then it is complex symmetric
with respect to Qω.

We start this section with an algebraic observation that is analogous to Lemma 3.1.
We include a proof for the sake of completeness.

LEMMA 4.1. Let ω ∈ T. Suppose that condition (1.1) holds. If

d∑
j=1

eωxϕj(ωz) =

d∑
j=1

eϕj(x)z for all x, z ∈ C, (4.1)

then the functions ϕj have the form (3.2) with condition (3.4).

PROOF. Letting x = 0 in (4.1),

d∑
j=1

Kϕj(0) = d = dK0.

Using arguments similar to those used in Step 2 of Lemma 3.1, we also have ϕj(0) = 0
for j ∈ [1, d]Z.

For k ∈ [1, d]Z, differentiating (4.1) k times with respect to the variable x and then
evaluating it at the point x = 0 gives

∑d
j=1 ϕj(z)k = pk(z) for some pk ∈ Ck[z]. By an
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inductive argument, we can find polynomials qm ∈ Cd−m[z] for which

∑
1≤j1<j2<···<jk≤d

k∏
�=1

ϕj� (z) = (−1)kqd−k(z).

By Vieta’s formulas, ϕ1(z), . . . ,ϕd(z) are solutions of the equation

Xd +

d−1∑
j=0

qj(z)Xj = 0.

Hence, for |z| > R large enough, |X|d ≤ C|z|d(1 + |X|)d−1, which means that the func-
tions ϕ1, . . . ,ϕd are polynomials with degrees at most d. Since ϕt(0) = 0, we can
write ϕt(z) = zgt(z), where gt ∈ Cd−1[z]. Since ϕ1(z) · · ·ϕd(z) ∈ Cd[z], the polynomials
gj are constant. Hence, the functions ϕj have the form in (3.2). Condition (3.4) follows
directly from (1.1). �

Now we use Lemma 4.1 to characterise maximal operators that are complex
symmetric corresponding to the conjugation Qω.

THEOREM 4.2. Let {ϕj : j ∈ [1, d]Z} be a set of distinct, entire functions, that is,
condition (1.1) holds. Let Sϕ,d,max be the maximal operator arising from the expression
E(ϕ, d). Then the operator Sϕ,d,max is Qω-selfadjoint if and only if the functions are of
the form in (3.2) with condition (3.4).

PROOF. Suppose that the operator Sϕ,d,max is Qω-selfadjoint. This implies, in
particular, that

QωS∗ϕ,d,maxQωKz(x) = Sϕ,d,maxKz(x) for all x, z ∈ C

and the necessary condition follows from Lemma 4.1.
For the sufficient condition, take functions as in the statement of the theorem. A

computation shows that Kz ∈ dom(Sϕ,d,max) and moreover

QωSϕ,d,maxQωKz(x) =
d∑

j=1

KAjz(x) for all z, x ∈ C.

First, we prove that

QωS∗ϕ,d,maxQω � Sϕ,d,max. (4.2)

Indeed, for u ∈ dom(S∗ϕ,d,max) and z ∈ C,

QωS∗ϕ,d,maxQωu(z) = 〈QωS∗ϕ,d,maxQωu, Kz〉 = 〈u,QωSϕ,d,maxQωKz〉

=

〈
u,

d∑
j=1

KAjz

〉
=

d∑
j=1

u(Ajz) = Sϕ,d,maxu(z).
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Next, we show that equality occurs in (4.2), meaning that

〈QωSϕ,d,maxg, h〉 = 〈QωSϕ,d,maxh, g〉 for all g, h ∈ dom(Sϕ,d,max).

Take arbitrary g(z) =
∑∞

n=0 gnzn, h(z) =
∑∞

n=0 hnzn ∈ dom(Sϕ,d,max) with Taylor coeffi-
cients gn, hn ∈ C. We have

QωSϕ,d,maxg(z) =
d∑

j=1

∞∑
n=0

gnAn
jω

nzn =

∞∑
n=0

gnωn
( d∑

j=1

Aj
n
)
zn.

Since (zn) is an orthogonal basis,

〈QωSϕ,d,maxg, h〉 =
∞∑

n=0

gnhnωn
( d∑

j=1

Aj
n
)
‖zn‖2 = 〈QωSϕ,d,maxh, g〉. �

As with real symmetry, a complex symmetric operator must be maximal.

THEOREM 4.3. Let {ϕj : j ∈ [1, d]Z} be a set of distinct, entire functions, that is,
condition (1.1) holds. Let Sϕ,d be the operator arising from the expression E(ϕ, d).
Then the following assertions are equivalent.

(1) The operator Sϕ,d is Qω-selfadjoint.
(2) The operator Sϕ,d satisfies both the following conditions:

(a) the operator Sϕ,d is maximal, that is, Sϕ,d = Sϕ,d,max;
(b) the functions ϕj have the form in (3.2) with condition (3.4).

PROOF. The implication (2)=⇒(1) follows directly from Theorem 4.2. We prove
the reverse implication (1)=⇒(2) as follows. Suppose that the operator Sϕ,d is
Qω-selfadjoint. Since Sϕ,d � Sϕ,d,max, it follows from [17, Proposition 1.6] that

S∗ϕ,d,max � S
∗
ϕ,d = QωSϕ,dQω � QωSϕ,d,maxQω.

Thus, QωS∗ϕ,d,maxQω � Sϕ,d,max. In particular,

QωS∗ϕ,d,maxQωKz(x) = Sϕ,d,maxKz(x) for all z, x ∈ C.

Lemma 4.1 yields (2b). Hence, by Theorem 4.2, the operator Sϕ,d,max isQω-selfadjoint.
Then (2a) follows from

Sϕ,d � Sϕ,d,max = QωS∗ϕ,d,maxQω � QωS∗ϕ,dQω = Sϕ,d. �

COROLLARY 4.4. Let {ϕj : j ∈ [1, d]Z} be a set of distinct, entire functions, that is,
condition (1.1) holds. Let Sϕ,d be the operator arising from the expression E(ϕ, d). If
the operator Sϕ,d is real symmetric, then it is Qω-selfadjoint for every ω ∈ T.
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