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1. Introduction

Let K be a field, K̄ its algebraic closure, K̄s ⊂ K̄ the separable algebraic closure of K,
and Gal(K) = Gal(K̄s/K) = Aut(K̄s/K) the absolute Galois group of K. Let X be an
abelian variety over K. Then we write EndK(X) for its ring of K-endomorphisms and put
End0

K(X) := EndK(X) ⊗ Q. We write End(X) for the ring EndK̄(X) of K̄-endomorphisms
of X and write End0(X) for the corresponding finite-dimensional semisimple Q-algebra
End(X) ⊗ Q. If Y is an abelian variety over K, then we write HomK(X,Y) for the (free)
commutative group of K-homomorphisms from X to Y.

If n is a positive integer that is not divisible by char(K), then we write Xn for the
kernel of multiplication by n in X(K̄); it is well known that Xn is a free Z/nZ-module
of rank 2dim(X) [8], which is a Galois submodule of X(K̄s). We write ρ̄n,X for the
corresponding (continuous) structure homomorphism

ρ̄n,X :Gal(K)→AutZ/nZ(Xn)∼=GL(2dim(X),Z/nZ).

In particular, if n = ` is a prime, then X` is a 2dim(X)-dimensional F`-vector space
provided with

ρ̄`,X :Gal(K)→AutF`(X`)∼=GL(2dim(X),F`).

If ` is a prime that is different from char(K), then we write T`(X) for the Z`-Tate
module of X and V`(X) for the corresponding Q`-vector space

V`(X)= T`(X)⊗Z`Q`
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226 Y. G. Zarhin

provided with the natural continuous Galois action [11]

ρ`,X :Gal(K)→AutZ`(T`(X))⊂AutQ`
(V`(X)).

Recall [8] that T`(X) is a free Z`-module of rank 2dim(X) and that V`(X) is a
Q`-vector space of dimension 2dim(X). Notice that there are canonical isomorphisms
of Gal(K)-modules

X` = T`(X)/`T`(X). (0)

There are natural algebra injections

EndK(X)⊗ Z/n ↪→ EndGal(K)(Xn), (1)

EndK(X)⊗ Z` ↪→ EndGal(K)(T`(X)), (2)

EndK(X)⊗Q` ↪→ EndGal(K)(V`(X)). (3)

It is known [13, ğ 1] that for given `,K,X,Y the map in (2) is bijective if and only if the
map in (3) is bijective.

The Tate conjecture on homomorphisms of abelian varieties [13] asserts that if K
is finitely generated over its prime subfield then the last two injections are bijective.
This conjecture was proven by Tate himself over finite fields [13], by the author for
char(K) > 2 [14, 15], by Faltings for char(K) = 0 [4, 5], and by Mori for char(K) = 2 [7].
The author, Faltings and Mori also proved (in the corresponding characteristics) that
the Galois module V`(X) is semisimple. (In the case of finite fields, the semisimplicity
result is due to Weil. See also [19].) Let us state explicitly the following two well-known
corollaries of the Tate conjecture. (Here we assume that K is finitely generated over its
prime subfield.)

(i) The isogeny theorem. If for some ` 6= char(K) the Gal(K)-modules V`(X) and V`(Y)
are isomorphic, then X and Y are isogenous over K. (See [13, ğ 3, Theorem 1(b) and
its proof] and [9, Proof of Corollary 1.3 on p. 118].)

(ii) If EndK(X)= Z, then the Gal(K)-module V`(X) is absolutely simple.

In addition, if K is finitely generated over its prime subfield and char(K) 6= 2, then for
all but finitely many primes ` the Gal(K)-module X` is semisimple and the injection

HomK(X,Y)⊗ Z/` ↪→HomGal(K)(X`,Y`)

in (1) is bijective ([16, Theorem 1.1], [18, Corollaries 5.4.3 and 5.4.5], [12, Proposition
3.4], [24, Theorem 4.4]). (See [23, Corollary 10.1] for a discussion of the case of finite
fields.) It follows immediately that, if EndK(X)= Z, then for all but finitely many primes
` the Galois module X` is absolutely simple. We discuss an analogue of the isogeny
theorem with ‘finite coefficients’ in ğ 2.

Let p be a prime, F a finite field of characteristic p, and F̄ an algebraic closure of F.
The aim of this note is to discuss the situation when the ground field L is a field of
characteristic p that (strictly) contains F̄ and is finitely generated over it. We call such
a field a geometric field of characteristic p. Geometric fields are precisely the fields of
rational functions of irreducible algebraic varieties (of positive dimension) over F̄.
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Our main results are the following four theorems.

Theorem 1.1. Let p > 2 be a prime, L a geometric field of characteristic p, and X
an abelian variety of positive dimension over L. Suppose that EndL(X) = Z. Then the
following hold.

(i) For all primes ` 6= char(L), the Galois module V`(X) is absolutely simple.
(ii) For all but finitely many primes `, the Galois module X` is absolutely simple.

Remark 1.2. When End(X) = Z, the assertion (i) of Theorem 1.1 follows from
[17, Corollary 1.4].

Remark 1.3. Theorem 1.1 gives a positive answer to a question of Gajda that was
asked in connection with [1].

Theorem 1.4. Let p> 2 be a prime, L a geometric field of characteristic p, and X and Y
abelian varieties of positive dimension over L. Suppose that EndL(X)= Z and that one of
the following two conditions holds.

(i) There exists a prime ` such that the Gal(L)-modules V`(X) and V`(Y) are
isomorphic.

(ii) The Gal(L)-modules X` and Y` are isomorphic for infinitely many primes `.

Then X and Y are isogenous over L.

Remark 1.5. There are plenty of explicit examples in characteristic p > 2 of abelian
varieties X with End(X)= Z [21, 22].

Theorem 1.6. Let p > 2 be a prime, L a geometric field of characteristic p, and X an
abelian variety of positive dimension over L. Let Z be the centre of EndL(X). Then the
following hold.

(i) For all primes ` 6= char(L), the centre Z`,X of EndGal(L)(V`(X)) lies in

Z ⊗Q` ⊂ EndL(X)⊗Q`.

(ii) For all but finitely many primes `, the centre Z̄`,X of EndGal(L)(X`) lies in

Z/`⊂ EndL(X)⊗ Z/`.

Remark 1.7. Clearly, for all `, the commutative Q`-algebra Z ⊗ Q` coincides with the
centre of EndL(X) ⊗ Q`. It is also clear that for all but finitely many primes ` the
commutative F`-algebra Z/` coincides with the centre of EndL(X) ⊗ Z/`Z. Notice also
that

EndL(X)⊗Q` ⊂ EndGal(L)(V`(X)), EndL(X)⊗ Z/`Z⊂ EndGal(L)(X`).

This implies that, for all ` 6= char(L),

Z`,X

⋂
[EndL(X)⊗Q`] ⊂ Z ⊗Q`,
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and, for all but finitely many `,

Z̄`,X

⋂
[EndL(X)⊗ Z/`] ⊂ Z/`.

It follows that, in order to prove Theorem 1.6, it suffices to check that, for all
` 6= char(L),

Z`,X ⊂ EndL(X)⊗Q`,

and, for all but finitely many `,

Z̄`,X ⊂ EndL(X)⊗ Z/`.

Remark 1.8. Compare Theorem 1.6 with [3, Corollary 4.2.8(ii)].

Theorem 1.9. Let p > 2 be a prime, L a geometric field of characteristic p, and X an
abelian variety of positive dimension over L. Then the following hold.

(i) For all primes ` 6= char(L), the Gal(L)-module V`(X) is semisimple.

(ii) For all but finitely many primes `, the Gal(L)-module X` is semisimple.

Example 1.10 (counterexample). Let K be a field of characteristic p> 2 that is finitely
generated over a finite field F, and let L= KF̄.

Suppose that X is a non-supersingular abelian variety of positive dimension over K
that is actually defined with all its endomorphisms over F. (For example, one may take
as X an ordinary elliptic curve over F.) Then all the torsion points of X are defined over
F̄⊂ L. It follows that Gal(L) acts trivially on all Xn and V`(X). In particular,

EndGal(L)(V`(X))= EndQ`
(V`(X))

has Q`-dimension [2dim(X)]2. However, the Q-dimension of End0(X) is strictly less than
[2dim(X)]2 [20, Lemma 3.1], and therefore the centralizer of Gal(L) in EndQ`

(V`(X)) is
strictly bigger than

End0(X)⊗QQ` = End(X)⊗Q` = EndL(X)⊗Q`.

This implies that the analogue of the Tate conjecture does not hold for such X over L.

The paper is organized as follows. In ğ 2, we discuss a variant of the isogeny theorem
with finite coefficients. Section 3 contains auxiliary results from representation theory of
groups with procyclic quotients. We prove the main results in ğ 4.

2. Isogeny theorem with finite coefficients

Theorem 2.1. Let K be a field that is finitely generated over its prime subfield, and let
char(K) 6= 2. Let X and Y be abelian varieties over K. Suppose that, for infinitely many
primes `, the Gal(K)-modules X` and Y` are isomorphic. Then X and Y are isogenous
over K.
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Proof. We may assume that dim(X) > 0 and dim(Y) > 0. Since, for all primes
` 6= char(K),

2dim(X)= dimF`(X`), 2dim(Y)= dimF`(Y`),

we obtained that dim(X)= dim(Y). Since, for all but finitely many primes `,

HomK(X,Y)⊗ Z/`Z=HomGal(K)(X`,Y`),

there exist a prime ` 6= char(K) and a K-homomorphism u : X→ Y such that u induces
an isomorphism between X` and Y`. In particular, ker(u) does not contain points of order
` on X, while the image u(X) contains all points of order ` on Y. This implies that ker(u)
has dimension zero while irreducible closed u(Y) has dimension dim(Y). In other words,
u : X→ Y is a surjective homomorphism with finite kernel, i.e., is an isogeny. �

Remark 2.2. It would be interesting to get an analogue of Theorem 2.1 in which,
say, a number field K is replaced by its infinite `-cyclotomic extension K(µ`∞). Some
important special cases of this analogue are investigated in [6].

3. Representation theory

Throughout this section, G is a profinite group and H is a closed normal subgroup of G
such that the quotient Γ = G/H is a procyclic group. We call G a procyclic extension
of H.

We write down the group operation in G (and H) multiplicatively and in Γ additively.
We write π : G→ Γ for the natural continuous surjective homomorphism from G to Γ .
If n is a positive integer, then nΓ is the closed subgroup (as the image of compact Γ
under Γ n→ Γ ) in Γ , whose index divides n; since the index is finite, nΓ is open in Γ .
Notice that nΓ is also a procyclic group.

Let us put Gn = π−1(nΓ ); clearly, Gn is an open normal subgroup in G, whose index
divides n. In addition, each Gn contains H, and the quotient G/Gn is canonically
isomorphic to Γ/nΓ , while Gn/H ∼= nΓ . In particular, H is a closed normal subgroup
of Gn, and the quotient Gn/H is procyclic, i.e., Gn is also a procyclic extension of H. In
particular, for each positive integer m, we may define the open normal subgroup (Gn)m of
Gn; clearly,

(Gn)m = Gmn,

because m(nΓ )= (mn)Γ .

Remark 3.1. Let c : G→ k∗ be a continuous group homomorphism (character) of G
with values in the multiplicative group of a locally compact field k that enjoys the
following properties.

(i) c kills H; i.e., c factors through G/H = Γ .
(ii) cn is the trivial character; i.e., cn kills the whole G.

Then obviously c kills π−1(nΓ ) = Gn; i.e., c factors through the finite cyclic quotient
G/Gn = Γ/nΓ .
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Let k be a locally compact field (e.g., k is finite or Q`). Let d be a positive number
and V a d-dimensional k-vector space provided with natural topology induced by the
topology on k. Let

ρ : G→Autk(V)∼=GL(d, k)

be a continuous semisimple linear representation of G. As usual, det(V) stands for the
one-dimensional G-module Λd

k (V).

Lemma 3.2. Suppose that

EndGd (V)= k.

Then the H-module V is absolutely simple. In particular,

EndH(V)= k.

Remark 3.3. Lemma 3.2 asserts that, if V is an absolutely simple Gd-module, then it
remains absolutely simple, being viewed as a H-module.

Proof. We have

k ⊂ EndG(V)⊂ EndGd (V)⊂ EndH(V).

Since EndGd (V)= k, we conclude that k = EndG(V).
By Clifford’s lemma [2, Theorem (49.2)], the H-module V is semisimple and the

Gd-module V is absolutely simple. Let us split V into a direct sum V =⊕r
i=1Vi of isotypic

H-modules. Clearly, G permutes the Vi; the simplicity of the G-module V implies that G
acts on {V1, . . . ,Vr} transitively. In particular, all the Vi have the same dimension, and
therefore

dim(Vi)= dim(V)
r
= d

r
;

in particular, r|d. Clearly, the action of G on {V1, . . . ,Vr} factors through G/H. Since
this action is transitive and G/H is procyclic, this action factors through finite cyclic
G/Gr and therefore through G/Gd; i.e., each Vi is a Gd-submodule. Since the Gd-module
V is (absolutely) simple, V = Vi. In other words, the H-module V is isotypic. Then the
centralizer

D= EndH(V)

is a simple k-algebra. Let k′ be the centre of D: it is an overfield of k. Clearly, V becomes
a k′-vector space; in particular, k′/k is a finite algebraic extension and [k′ : k]|d. On the
other hand, since H is normal in G,

ρ(g)Dρ (g)−1 = D ∀g ∈ G.

Clearly, the centre k′ is also stable under the conjugations by elements of ρ(G) and
{k′}G = k. This gives us a continuous group homomorphism G/H→ Aut(k′/k) such that
{k′}G/H = k. It follows that k′/k is a finite cyclic Galois extension and that

G/H→Aut(k′/k)=Gal(k′/k)
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is a surjective homomorphism. Since #(Gal(k′/k)) = [k′ : k] divides d, the surjection
Gal(k′/k)�Gal(k′/k) factors through G/Gd, and therefore

k′ ⊂ EndGd (V);
since EndGd (V) = k, we conclude that k′ ⊂ k, and therefore k′ = k. This means that D is
a central simple k-algebra. Let t := dimk(D). We need to prove that t = 1. Suppose that
t > 1, pick a generator in Γ , and denote by g its preimage in G. Then the map

u 7→ ρ(g)uρ (g)−1

is an automorphism of D, whose set of fixed points coincides with k. By the
Skolem–Noether theorem, there exists an element z ∈ D∗ such that

ρ(g)uρ (g)−1 = zuz−1 ∀u ∈ D.

Clearly, z itself is a fixed point of this automorphism, and therefore z ∈ k, which implies
that the automorphism is the identity map, and therefore its set of fixed points must
be the whole D, which is not the case, because t > 1. The obtained contradiction proves
that t = 1, i.e.,

EndH(V)= D= k,

and we are done. �

Lemma 3.4. Let ρ1 : G → Autk(W1) be a continuous linear d-dimensional
representation of G over k. Let ρ2 : G→ Autk(W2) be a linear finite-dimensional
continuous representation of G over k. Suppose that EndH(W1) = k and the H-modules
W1 and W2 are isomorphic. Then there exists a continuous character

χ : G/H = Γ → k∗

such that the G-module W2 is isomorphic to the twist W1(χ). In particular, the
one-dimensional G-modules det(W2) and [det(W1)](χd) are isomorphic.

Proof. It is well known that the vector space Homk(W1,W2) carries the natural
structure of a G-module defined by

g : u 7→ ρ2(g)uρ1 (g)
−1 ∀g ∈ G, u ∈Homk(W1,W2).

Since H is normal in G, the subspace HomH(W1,W2) of H-invariants is a G-invariant
subspace in Homk(W1,W2). Our conditions on the H-module W1 and W2 imply
that the k-vector space HomH(W1,W2) is one dimensional (and each of its non-zero
elements W1 → W2 is an isomorphism of H-modules). Therefore the action of G on
one-dimensional HomH(W1,W2) is defined by a certain continuous character χ : G→ k∗,
which obviously kills H, so we may view χ as a continuous character

Γ = G/H→ k∗.

This means that, if u :W1
∼=W2 is an isomorphism of H-modules, then

ρ2(g)uρ1 (g)
−1 = χ(g)u ∀g ∈ G.
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Multiplying this equality from the right by ρ1(g), we obtain that

ρ2(g)u= χ(g)uρ1(g)= u[χ(g)ρ1(g)] ∀g ∈ G,

which means that u is an isomorphism of G-modules W1(χ) and W2. It remains to notice
that det(W1(χ))= [det(W1)](χd). �

Corollary 3.5. We keep the notation and assumptions of Lemma 3.4. If, for some
positive integer N, the G-modules [det(W1)]⊗N and [det(W2)]⊗N are isomorphic, then the
character χNd is trivial.

Theorem 3.6. Suppose that the G-module V is semisimple. Then there exists a positive
integer n that depends only on d and such that the centre of EndH(V) lies in EndGn(V).

Proof. By a variant of Clifford’s lemma [24, Lemma 3.4], the H-module V is semisimple.
In particular, the centralizer D= EndH(V) is a (finite-dimensional) semisimple k-algebra.
Since H is normal in G,

ρ(g)Dρ (g)−1 = D ∀g ∈ G.

Let Z be the centre of D. Since D is semisimple, Z is isomorphic to a direct sum ⊕r
i=1ki

of finitely many overfields ki ⊃ k, where each ki/k is a finite algebraic field extension.
Clearly,

[ki : k]6 dimk(Z)6 dimk(V)= d, r 6 d,

and the k-algebra Z has exactly r minimal idempotents (the identity elements ei of the
ki. Clearly, group Autk(Z) of k-linear automorphisms of Z permutes the ei, which gives
us the homomorphism from Autk(Z) to the full symmetric group Sr, whose kernel leaves
invariant each summand ki and therefore sits in the product

∏r
i=1 Aut(ki/k), whose order

does not exceed
∏r

i=1[ki : k] 6 dd. It follows that Autk(Z) is a finite group, whose order
does not exceed d! ·dd. This implies that n := (d! ·dd)! is divisible by the order of Autk(Z).

On the other hand, clearly,

ρ(g)Zρ (g)−1 = Z ∀g ∈ G,

because every automorphism of D respects its centre. This gives us the group
homomorphism

φ : G→Autk(Z), φ(g)(z)= ρ(g)zρ (g)−1 ∀z ∈ Z, g ∈ G,

which kills H, because

Z ⊂ D= EndH(V).

Clearly, φ kills Gn, and we are done. �

4. Proofs of main results

There is a subfield K ⊂ L such that K is finitely generated over F = Fp and the
compositum KF̄ = L, while, given abelian varieties X and Y, their group laws and zeros
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are defined over K. We also require that

EndK(X)= EndL(X), EndK(Y)= EndL(Y). (4)

Let us put

G=Gal(K),H =Gal(L), Γ =Gal(L/K).

Since F̄/Fp is a Galois extension and KF̄ = L, the Galois group Γ = Gal(L/K) is
canonically isomorphic to a closed subgroup of Gal(F̄/Fp); since the latter is procyclic, Γ
is also procyclic.

Let n be a positive integer, and let us consider the open normal subgroup Gn of
G. Since Gn contains H, the subfield Kn = K̄Gn

s of Gn-invariants is a finite (cyclic)
Galois extension of K that lies in L. In particular, Kn is finitely generated over Fp

and Gal(Kn)= Gn. Since K ⊂ Kn ⊂ L, it follows from (4) that

EndKn(X)= EndL(X), EndKn(Y)= EndL(Y). (5)

If ` is a prime different from p, we write

χ̄` :Gal(K)→ (Z/`Z)∗ = F∗̀, χ` :Gal(K)→ Z∗̀ ⊂Q∗̀

for the cyclotomic characters that define the Galois action on all `th roots of unity
(respectively, all `-power roots of unity). Clearly,

χ̄` = χ` mod `. (6)

Since Kn is finitely generated over Fp, the cyclotomic characters enjoy the following
properties.

(i) The character χ` has infinite multiplicative order.
(ii) If N is a positive integer, then, for all but finitely many primes `, the character χ̄N

` is
non-trivial.

Since every Kn is finitely generated over Fp, the abelian variety X over Kn enjoys the
following properties.

(a) For all primes ` 6= char(K), the Gn-module V`(X) is semisimple, and

EndGn(V`(X))= EndKn(X)⊗Q` = EndL(X)⊗Q`.

In particular, if EndL(X)= Z, then Gn-module V`(X) is absolutely simple.
(b) For all but finitely many primes `, the Gn-module X` is semisimple, and

EndGn(X`)= EndKn(X)⊗ Z/`= EndL(X)⊗ Z/`.

In particular, if EndL(X) = Z, then Gn-module X` is absolutely simple for all but
finitely many primes `.

Proof of Theorem 1.1. Let d = dim(X). Let us consider the open normal subgroup
G2d of G.

Since EndL(X) = Z, (a) tells us that the G2d-module V`(X) is absolutely simple for
each ` 6= p; in particular,

Q` = EndG2d (V`(X))= EndG(V`(X)).
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On the other hand, (b) tells us that, for all but finitely many `, the G2d-module X` is
absolutely simple; in particular,

F` = EndG2d (X`)= EndG(X`).

Now, in order to finish the proof of Theorem 1.1, it suffices to apply Lemma 3.2 in the
following situations (taking into account that 2d = dimQ`

(V`(X))= dimF`(X`)).

(i) k =Q`, V = V`(X).

(ii) k = F`, V = X`. �

Proof of Theorem 1.4. Clearly, d := dim(X) = dim(Y). It is well known that the
existence of Galois-equivariant nondegenerate alternating bilinear (Weil–Riemann)
forms on Tate modules [10, § 1.3], [24, Proof of Proposition 2.2] implies that det(V`(X))
and det(V`(Y)) are one-dimensional G-modules defined by the character χd

` . Now,
applying Lemma 3.4, we conclude that the G-module V`(Y) is isomorphic to the twist
V`(X)(χ) for a certain continuous character χ : G/H = Γ → Q∗̀. It follows from the
corollary to Lemma 3.4 that χ2d is trivial. This implies that χ kills G2d, and therefore
the G2d-modules V`(X) and V`(Y) are isomorphic. Now, the isogeny theorem over K2d

implies that X and Y are isogenous over K2d, and therefore are also isogenous over L.
This proves (i).

Similar arguments work in case (ii). Clearly, d := dim(X) = dim(Y), and the structure
of Gal(K)-modules on the rank-1 free Z`-modules Λ2d

Z`
T`(X) and Λ2d

Z`
T`(Y) is defined by

χd
` , because

Λ2d
Z`

T`(X)⊂Λ2d
Q`

V`(X)= det(V`(X)), Λ2d
Z`

T`(Y)⊂Λ2d
Q`

V`(Y)= det(V`(Y)).

It follows from (0) that

det(X`)=Λ2d
Z`

X` =Λ2d
Z`
(T`(X)/`)= [Λ2d

Z`
(T`(X)]/`,

and therefore the structure of the Galois module on det(X`) is defined by the
character χd

`mod` = χ̄d
` . By the same token, the structure of the Galois module on the

one-dimensional det(Y`) is also defined by χ̄d
` . Now, applying Lemma 3.4, we conclude

that the G-module Y` is isomorphic to the twist Y`(χ̄) for a certain continuous character
χ̄ : G/H = Γ → F∗̀. It follows from the corollary to Lemma 3.4 that χ̄2d is trivial.
As above, this implies that χ̄ kills G2d, and therefore the G2d-modules X` and Y` are
isomorphic for infinitely many `. Now, Theorem 2.1 implies that X and Y are isogenous
over K2d, and therefore over L. This proves (ii). �

Proof of Theorem 1.6. As above, G=Gal(K),H =Gal(L).
(i) Let us put k = Q`,V = V`(X) and apply Theorem 3.6. We obtain that there exists

a positive integer n such that the centre of EndGal(L)(V`(X)) lies in EndGn(V`(X)) ⊗ Q`.
By (a),

EndGn(V`(X))= EndKn(X)⊗Q` = EndL(X)⊗Q`,

and we are done.
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(ii) Let us put k = F`, V = X`, and apply Theorem 3.6. We obtain that there exists a
universal positive integer n that depends only on 2dim(X) such that, for all but finitely
many primes `, the centre of EndGal(L)(X`) lies in EndGn(X`). By (b),

EndGn(X`)= EndKn(X)⊗ Z/`= EndL(X)⊗ Z/`,

and we are done, taking into account Remark 1.7. �

Proof of Theorem 1.9. Recall that H = Gal(L) is a normal subgroup in G = Gal(K).
By the variant of Clifford’s lemma [24, Lemma 3.4], the semisimplicity of the
Gal(K)-modules V`(X) and X` implies that they are semisimple Gal(L)-modules. �
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