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A cylindrical and inclined jet in crossflow is studied under two distinct velocity ratios,
r = 1 and r = 2, using highly resolved large eddy simulations. First, an investigation
of turbulent scalar mixing sheds light onto the previously observed but unexplained
phenomenon of negative turbulent diffusivity. We identify two distinct types of counter
gradient transport, prevalent in different regions: the first, throughout the windward shear
layer, is caused by cross-gradient transport; the second, close to the wall right after
injection, is caused by non-local effects. Then, we propose a deep learning approach for
modelling the turbulent scalar flux by adapting the tensor basis neural network previously
developed to model Reynolds stresses (Ling et al., J. Fluid Mech., vol. 807, 2016a, pp.
155–166). This approach uses a deep neural network with embedded coordinate frame
invariance to predict a tensorial turbulent diffusivity that is not explicitly available in the
high-fidelity data used for training. After ensuring analytically that the matrix diffusivity
leads to a stable solution for the advection diffusion equation, we apply this approach
in the inclined jets in crossflow under study. The results show significant improvement
compared to a simple model, particularly where cross-gradient effects play an important
role in turbulent mixing. The model proposed herein is not limited to jets in crossflow;
it can be used in any turbulent flow where the Reynolds averaged transport of a scalar is
considered.

Key words: turbulent mixing, turbulence modelling, jets

1. Introduction

The jet in crossflow is a canonical geometry in fluid mechanics, whereby fluid is ejected
from an orifice and interacts with main flow passing over that orifice (Mahesh 2013).
This configuration has several practical applications. In the turbomachinery community,
film cooling systems eject cooler air through rows of holes in the blade surface, which
ideally stays close to the surface and protects it against the hot mainstream (Bogard &
Thole 2006). In atmospheric flows some types of volcanic plumes rise from the vent while
interacting with prevailing winds. This interaction helps determine mixing and deposition
of ash (e.g. Gardner, Burgisser & Stelling 2007). Most interesting jets in crossflow
involve mixing because the jet carries a scalar contaminant, such as heat or particles, into
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the crossflow. In these problems it is imperative to analyse the resulting scalar
concentration field, denoted by c, in addition to the velocity field ui.

Different parameters determine the resulting flow in a jet in crossflow, including
geometry (such as hole shape and angle), Reynolds number and crossflow characteristics
(like incoming boundary layer thickness and turbulence). One key dimensionless
parameter in the incompressible regime is the velocity ratio r, defined as

r = Uj/Uc, (1.1)

where Uj is the bulk velocity of the jet and Uc is the bulk velocity of the crossflow. In
general, low velocity ratio jets stay close to the wall, while high velocity ratio jets penetrate
deep into the crossflow before turning.

The literature on jets in crossflow is extensive (Mahesh 2013). Fric & Roshko (1994)
used flow visualization and qualitatively described four types of vortices that appear
in transverse jets in crossflow: the counter-rotating vortex pair, jet-shear layer vortices,
horseshoe vortices and wake vortices. Su & Mungal (2004) and Schreivogel et al. (2016)
used different techniques to simultaneously measure velocity and concentration, and
then reported some turbulent mixing statistics. Computational studies have applied the
Reynolds averaged Navier–Stokes (RANS) equations, but scalar transport is not computed
accurately due to deficiencies in the available turbulence models (Acharya, Tyagi & Hoda
2001). High-fidelity simulations, on the other hand, have been shown to be much more
predictive. Yuan, Street & Ferziger (1999) performed one of the first successful large eddy
simulations of a jet in crossflow. Muppidi & Mahesh (2008) reported results from a direct
numerical simulation (DNS) that agreed well with the experiment of Su & Mungal (2004),
a transverse jet in crossflow at r = 5.7. They analysed entrainment rates and reported on
inadequacies of standard turbulent scalar mixing models, including regions of perceived
counter gradient transport.

The turbulence community has dedicated much effort to the modelling of the Reynolds
stress, and multiple models are available and commonly employed in jets in crossflow
(Hoda & Acharya 1999). Previous research also shows that errors in the turbulent mixing
models contribute decisively to poor mean scalar field predictions in these flows (Ling
et al. 2016b). Therefore, the present paper focuses solely on modelling the turbulent scalar
flux, u′

ic′, which represents the effect of turbulence on the mean scalar concentration field
and is unclosed in the Reynolds averaged scalar transport equation.

The most commonly used model, called the gradient diffusion hypothesis (GDH),
assumes that turbulence acts like isotropic diffusion on the mean concentration gradient
as shown in

u′
ic′ = −αt

∂ c̄
∂xi

. (1.2)

The spatially varying turbulent diffusivity field in (1.2) is αt, which is usually specified by
means of a turbulent Schmidt number, Sct ≡ αt/νt, where the eddy viscosity νt is given by
a baseline momentum model (Kays 1994; Combest, Ramachandran & Dudukovic 2011).

More advanced models have been proposed, but have not gained much traction outside
of research laboratories (Combest et al. 2011). Batchelor (1949) recognized that a tensor
diffusivity Dij is more appropriate:

u′
ic′ = −Dij

∂ c̄
∂xj

. (1.3)

Different authors (e.g. Tavoularis & Corrsin 1981) measured diagonal and off-diagonal
elements of Dij in simple flows. To actually solve the scalar equation, Daly &
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Harlow (1970) and Abe & Suga (2001) proposed algebraic models where Dij is specified
based on the Reynolds stress. Such formulations can theoretically improve results, but
recent work in jets in crossflow has shown that they are not necessarily superior to simpler
models and struggle with convergence issues (Ling et al. 2016b; Ryan et al. 2017).

Previous work highlighted some deficiencies of the GDH of (1.2) in jets in crossflow
(e.g. Kohli & Bogard 2005; Weatheritt et al. 2020). In the present paper we focus our
attention to a particular observation that has been reported before: regions of negative
turbulent diffusivity, or counter gradient transport. This means that at least one component
of the u′

ic′ vector has the same sign as the equivalent component of ∂ c̄/∂xi, which
directly contradicts (1.2) with a positive turbulent diffusivity. This was observed in jets
in crossflow by several authors, both numerically (Muppidi & Mahesh 2008; Salewski,
Stankovic & Fuchs 2008; Bodart et al. 2013; Milani & Eaton 2018) and experimentally
(Salewski et al. 2008; Schreivogel et al. 2016). These workers reported the phenomenon
without discussing its causes, so the present paper expands their analysis by explaining
the observed counter gradient transport. This also inspired us to devise a deep learning
approach for modelling the turbulent scalar flux that does not rely on the simple GDH
of (1.2).

Machine learning tools have been rising in popularity in the turbulence closure
literature, as evidenced by the review of Duraisamy, Iaccarino & Xiao (2019). Ling,
Kurzawski & Templeton (2016a) used deep neural networks to predict coefficients in a
basis expansion for the Reynolds stress anisotropy tensor, which became known as tensor
basis neural network (TBNN). Parish & Duraisamy (2016) proposed a modelling strategy
that couples machine learning with field inversion through adjoint optimization to develop
new models. Sandberg et al. (2018) used a genetic optimization algorithm to generate
data-driven analytical expressions for turbulent anisotropy and turbulent diffusivity, and
Maulik et al. (2019) explored the use of a neural network towards subgrid scale modelling
in large eddy simulations. The bulk of the aforementioned literature focuses on Reynolds
stress modelling, but some authors have had success in applying machine learning
techniques for closure of the passive scalar equation (Milani et al. 2018; Sandberg et al.
2018; Sotgiu, Weigand & Semmler 2018; Milani, Ling & Eaton 2020; Weatheritt et al.
2020). In the present paper a different scalar closure model is proposed, leveraging the
tensor basis neural network concept of Ling et al. (2016a) to generate a more general
model form.

The contribution of the present paper is twofold. First, we analyse and classify the
regions of counter gradient transport found in an inclined jet in crossflow. These results
suggest that an anisotropic model is needed to better capture the turbulent transport in part
of the flow. Second, we adapt the popular TBNN methodology, which originally predicts
the Reynolds stress tensor, to model the turbulent scalar flux vector. We analyse the results
of this approach, denoted TBNN-s (where the ‘s’ stands for scalar flux modelling), with
the counter gradient transport regions in mind. The paper is organized as follows: § 2
describes the flow under consideration and the high-fidelity simulations used to generate
the data; § 3 identifies and analyses the counter gradient transport regions; § 4 contains
the description and the results of the deep learning model employed; and § 5 presents
conclusions and suggestions for future work.

2. Numerical set-up

Two highly resolved large eddy simulations (LES) are used in the present work.
The simulations were described in detail and validated against experimental data in
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FIGURE 1. (a) Schematic of the inclined jet in crossflow. The coordinate frame origin is located
at the centre of the hole as it meets the bottom wall. (b) Three-dimensional view of the complete
simulation domain, with plenum feed inlet plane shown in red, outlet plane in blue and walls in
grey. Figures adapted from Milani et al. (2019a).

Milani et al. (2019a). The present paper employs those results for analysis, thus, this
section provides only a brief summary.

The geometry considered is a fully three-dimensional (3-D) inclined jet in crossflow,
shown in figure 1(a). The hole has a circular cross-section of diameter D and is inclined
30◦ with respect to the streamwise direction. The mainstream consists of a turbulent
developing flow in a square channel, whose boundary layer thickness just upstream of
the hole location is δ99/D = 1.5. The free stream turbulence level is roughly 1 %. The total
simulation domain is shown in figure 1(b). Note that the injection hole is short, with length
4.1D, and is fed from a rectangular plenum underneath the channel. This configuration was
chosen partly because it is representative of film cooling applications; it also means that
the flow inside the hole is highly non-uniform and contains secondary flows (Milani et al.
2019a).

The incompressible, filtered continuity and Navier–Stokes equations are solved in three
dimensions as shown in (2.1a,b). The tilde over a variable is shown explicitly to denote
filtered quantities; ui are the Cartesian components of the velocity and p is the pressure.
The unresolved scales are accounted for in the subgrid scale stress, τ̃ij = ũiuj − ũiũj, which
is closed using the Vreman model (Vreman 2004). The fluid density ρ and kinematic
viscosity ν are constant. The two simulations use the same geometry and main channel
inlet condition, and their difference lies in the velocity ratio r, which is varied by changing
the flow rate into the plenum. The resulting jet Reynolds number is ReD = UjD/ν = 2900
for the r = 1 case and ReD = 5800 for r = 2. The transport equations are

∂ ũk

∂xk
= 0; ∂ ũi

∂t
+ ∂

(
ũjũi
)

∂xj
= − 1

ρ

∂ p̃
∂xi

+ ν
∂2ũi

∂xj∂xj
− ∂

∂xj
τ̃ij. (2.1a,b)

The filtered equation for a passive scalar c is also solved as shown in (2.2). The
molecular Schmidt number is Sc = 1 and the subgrid scale mixing is represented by σ̃j =
c̃uj − c̃ũj, which is modelled employing the Reynolds analogy with a constant turbulent
Schmidt number, Sct = 0.85. The scalar is injected with concentration c = 1 in the jet and
c = 0 in the mainstream; all walls are adiabatic. The passive scalar transport equation is

∂ c̃
∂t

+ ∂
(
ũjc̃
)

∂xj
= ν

Sc
∂2c̃

∂xj∂xj
− ∂

∂xj
σ̃j. (2.2)

The equations are solved with the incompressible solver Vida from Cascade
Technologies. It employs the method developed by Ham (2007), which consists of
second-order accurate spatial discretization and explicit time advancement, based on
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FIGURE 2. Scalar concentration results c on the centreplane (z = 0, a,c) and in an axial plane
located at x/D = 2 (b,d). Colour contours show an instantaneous snapshot of c and lines indicate
isocontours of mean concentration, c̄ = 0.2, 0.4, 0.6, 0.8.

second-order Adams–Bashforth. The mesh is block-structured and contains exclusively
hexahedral elements, either 40.1M (r = 1) or 48.3M (r = 2). The y+ values in the hole
and bottom walls are around 1, so no wall models are employed there. Throughout the
whole jet-crossflow interaction, the subgrid scale viscosity is significantly smaller than the
molecular viscosity, so the present large eddy simulations have almost DNS-like resolution
in the regions of interest. Therefore, we subsequently omit the tilde over grid-filtered
quantities. Thus, ui and c will refer to the (filtered) results from the LES, overbars
will represent time averages of filtered quantities, and primes will denote fluctuating
quantities in the filtered sense (so c′ ≡ c − c̄). The inlet conditions are generated using
a method based on that from Xie & Castro (2008) and are chosen to match a concomitant
experimental set-up. The validation is performed against 3-D magnetic resonance imaging
(MRI) data for both velocity and scalar concentration and the agreement is excellent. More
details including grid and time convergence studies are in Milani et al. (2019a).

Figure 2 shows contour plots of scalar concentration c in the r = 1 and r = 2 cases
to provide some physical insight into the flows. In both cases the jet detaches from the
bottom wall as soon as it is injected; it re-attaches in the lower velocity ratio case, but
remains detached under the higher velocity ratio. As the y–z planes show, the mean profile
assumes a typical kidney shape due to the influence of the counter rotating vortex pair
(CVP), a distinguishing feature of this flow (Mahesh 2013). More detailed results are in
Milani et al. (2019a).

3. Counter gradient transport

In this section we use the validated high-fidelity simulations to study turbulent mixing.
The focus is two distinct regions of negative turbulent diffusivity (or counter gradient
transport) which we classify as type 1 and type 2.

3.1. Type 1
Figure 3(a) shows vertical profiles of the streamwise components u′c′ and ∂ c̄/∂x for
r = 1. These are located at x/D = 5 on the centreline (z/D = 0). There is a region, marked
in grey, where both u′c′ < 0 and ∂ c̄/∂x < 0. Figure 3(b) presents profiles of the mean
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FIGURE 3. Vertical profiles at x/D = 5 and z/D = 0 from the r = 1 (a,b) and r = 2 (c,d) LES.
(a,c) Streamwise turbulent scalar flux and mean concentration gradient. (b,d) Mean streamwise
velocity and concentration. The grey area shows a region of implied negative diffusivity in the
streamwise direction. (a) r = 1. (b) r = 1. (c) r = 2. (d) r = 2.

streamwise velocity and concentration, ū and c̄, in the same location. It shows that the
region with implied streamwise counter gradient transport is located just above the jet
centreline, which is a similar observation to that of Schreivogel et al. (2016) and Bodart
et al. (2013). Here, the likely cause of that phenomenon is not turbulent motion in the
x-direction, but instead turbulent motion in the y-direction. In the grey area turbulent
eddies of sufficiently small size that bring fluid from above (v′ < 0) tend to bring weaker
concentration (c′ < 0) and higher streamwise velocity (u′ > 0) since locally ∂ c̄/∂y < 0
and ∂ ū/∂y > 0. Similarly, eddies that bring fluid from below (v′ > 0) correlate c′ > 0
with u′ < 0. That causes u′c′ to be negative, which implies negative diffusivity since
∂ c̄/∂x < 0.

The same phenomenon manifests itself in higher velocity ratio jets, with slight
differences. Figure 3(c) shows vertical profiles at x/D = 5 and z/D = 0 from the r = 2
LES. As is clear in figure 3(d), the jet core is faster than the free stream flow, so the y
gradients of mean streamwise velocity and mean scalar gradient are roughly aligned in the
top half of the jet, unlike when r = 1. Through a similar argument as before, vertical
turbulent transport produces positive u′c′ in that region. Thus, the perceived negative
diffusivity region should occur when ∂ c̄/∂x > 0. The streamwise mean scalar gradient
is controlled by two main, competing effects: the spreading of the jet (which causes the
concentration in the core to decrease), and the fact that the jet as a whole is moving
up, away from the wall. Positive mean concentration streamwise gradients do not happen
immediately above the jet centreline, but instead are present further up in the windward
shear layer, as seen in figure 3(c). So, the grey band is located higher up and is wider when
compared to the one shown in figure 3(a) for r = 1.
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FIGURE 4. Vertical profiles at x/D = 5 and z/D = 0 of u′c′ from the LES. Different averages
are performed: unconditional or conditioned on high/low values of |v′| at the centre of the grey
band. (a) r = 1. (b) r = 2.

To support these explanations, consider figures 4(a) and 4(b). They show three
differently averaged profiles of u′c′ in the same location as shown in figure 3 for r = 1
and r = 2. For the solid line, the quantity u′c′ is averaged over all available time steps
to produce the same quantity shown in figures 3(a) and 3(c). For the other two lines,
the average is conditioned on the local value of the magnitude of the vertical velocity
fluctuation, |v′|, at the centre of the grey band (y/D = 0.91 and y/D = 2, respectively).
The average is taken either when |v′| is high (top 20 % of samples) or low (bottom 20 %
of samples). Away from the shaded region, the three lines converge as expected since the
value of v′ is uncorrelated with u′c′ at long distances. However, in the grey band, the three
lines are significantly different: u′c′ has much higher magnitude when |v′| is high, and
much smaller magnitude when |v′| is low. This shows that vertical transport indeed plays
an important role in setting the value of u′c′ in this region and that events of high |v′|
accentuate the perceived negative diffusivity in the streamwise direction.

To investigate the behaviour of u′
ic′ in more detail, it is useful to examine its transport

equation, shown in (3.1). This equation is exact, and can be derived by multiplying u′
i to the

(unaveraged) scalar transport equation and c′ to the (unaveraged) Navier–Stokes equation,
adding the results, and performing a time average. Capital letters U and C stand for time
averages exactly like overbars (thus, c̄ = C), but are used here for a leaner notation. Here
δij is the Kronecker delta and α is the molecular diffusivity of the scalar, so α = ν/Sc.
Note that these equations are mostly analogous to the Reynolds stress transport equations.
Term A is the advection due to the mean velocity. Term I is the production term and shows
how mean velocity and scalar gradients can locally generate u′

ic′. Term II is the viscous
destruction term. Term III consists of different mechanisms of turbulent transport, and
term IV is a source term due to the pressure-scalar gradient correlation. For more details
and modelling ideas, consult Younis, Speziale & Clark (2005). The equation is

∂u′
ic′

∂t
+

A︷ ︸︸ ︷
∂
(

Uju′
ic′
)

∂xj
=

I︷ ︸︸ ︷
−u′

jc′ ∂Ui

∂xj
− u′

ju
′
i
∂C
∂xj

II︷ ︸︸ ︷
−(ν + α)

∂c′

∂xj

∂u′
i

∂xj

III︷ ︸︸ ︷
− ∂

∂xj

(
u′

ju
′
ic′ + p′c′

ρ
δij − αu′

i
∂c′

∂xj
− νc′ ∂u′

i

∂xj

) IV︷ ︸︸ ︷
+p′

ρ

∂c′

∂xi
. (3.1)
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FIGURE 5. Vertical profiles of different components of the u′c′ production term (marked as I
in (3.1)). The profiles are shown at x/D = 5, z/D = 0 and the grey band represents the area of
negative diffusivity. Terms are non-dimensionalized by Uc and D. (a) r = 1. (b) r = 2.

As further evidence that vertical velocity and concentration gradients are responsible for
the streamwise negative diffusivity shown in figure 3, we consider the production terms
of (3.1) for u′c′. In figure 5 vertical profiles of the six different components of term I are
shown. Note that the GDH considers only the effects of the mean concentration gradient
in the x-direction on u′c′, which is reflected on the production term −u′u′(∂C/∂x).
However, in the regions where counter gradient transport is observed, the production
term is dominated by the components containing the vertical gradients: −v′c′(∂U/∂y) and
−u′v′(∂C/∂y). These terms are indeed negative in figure 5(a) and positive in figure 5(b),
which explains the sign of u′c′ in the grey regions.

There is one important caveat in our discussion of type 1 counter gradient transport. In
shear flows the resulting mean scalar concentration is not a strong function of the modelled
u′c′ since the mean advection typically dominates the scalar transport in the streamwise
direction. This point is discussed in more detail in appendix A. So, a turbulence model
that fails to capture this phenomenon might still produce acceptable mean scalar field
results in jets in crossflow. We believe the present analysis is still relevant for two reasons.
First, it builds physical understanding of the turbulent transport in 3-D jets in crossflow
by showing a concrete instance of the failure of the GDH and explaining the underlying
cause. Such understanding is necessary to design improved and robust mixing models, and
could be useful to interpret turbulence results in other flows as well. Second, in different
contexts the correct prediction of these type 1 transport regions might be more relevant.
For example, cross-gradient transport could be more important in different 3-D turbulent
flows; or the quantity of interest might not be the mean scalar field, and instead be more
sensitive to the streamwise scalar flux.

3.2. Type 2
A second region where counter gradient transport is present is near the wall, right
after injection. In this case, negative diffusivity is observed in the vertical component:
both v′c′ and ∂ c̄/∂y are positive there. Figures 6(a) and 6(b) show vertical profiles at
x/D = 2 and x/D = 5 for both r = 1 and r = 2, with grey bands indicating counter
gradient transport regions. In general, it seems that the simple GDH could be useful: the
solid lines approximately track the negated dashed lines throughout most of the plot, so a
moderately non-uniform diffusivity could model v′c′. However, this pattern breaks down
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FIGURE 6. Vertical profiles at the centreplane of the y-component of scalar gradient and
turbulent scalar flux. The grey band indicates regions where both have the same sign; for r = 2
and x/D = 5, no consistent region of counter gradient transport is observed (thus, no grey band),
but v′c′ is very near zero close to the wall. (a) r = 1. (b) r = 2.

close to the wall in all cases, where v′c′ either has the same sign as ∂ c̄/∂y or is much
smaller in magnitude than expected.

The first hypothesis to explain this instance of counter gradient transport is that it is
similar in nature to the one described before, i.e. that gradients in directions orthogonal to
y cause a positive correlation between v′ and c′. However, this is not the case. Averages
that are conditional on u′ or w′ are inconclusive, and the v′c′ production term is dominated
by mean gradients in the y-direction. So, the negative diffusivity observed in figure 6 is
caused by a different physical mechanism. To help explain it, figure 7 shows a complete
budget of v′c′, with vertical profiles of all terms of (3.1).

As the plots show, the production term is consistently negative in the grey band, which
means that local effects act as a sink and, therefore, favour a negative value of v′c′.
Since the resulting scalar flux is positive, other effects are overwhelming the production.
In particular, close to injection (x/D = 2), term III is the most positive term. This
is the turbulent transport of v′c′, which unlike the production is inherently non-local.
The breakdown of term III (not shown) shows that the molecular terms are negligible
throughout the domain, and close to the wall the pressure-scalar correlation is dominant.
This suggests that non-local turbulent effects, chiefly through fluctuating pressure, are
responsible for generating a positive correlation between v′ and c′ in this region. Physically,
this could be explained by the large scale stirring mentioned by Bodart et al. (2013):
turbulent eddies with much larger length scales than the length scales over which ∂ c̄/∂y
varies act in those regions, meaning that they can induce turbulent fluctuations that
cannot be explained by local information. Note, however, that Bodart et al. (2013) pointed
out locations of type 1 counter gradient transport in their data but provided a physical
reasoning that is more appropriate for type 2.

Another interesting observation is on the role of mean flow advection (term A) in the
balance. Since A is on the left-hand side of (3.1), a positive value represents a net outflow
and a negative value represents a net inflow. Even though term A is not as important
as some other terms in the grey band, it seems to enter the balance as a net outflow at
x/D = 2 and as a net inflow at x/D = 5 for both velocity ratios. Since this is mostly
due to mean streamwise advection, it suggests that non-local effects generate a positive
v′c′ close to the wall right after injection, which then is advected downstream. In other
words, those non-local effects are not as strong at x/D = 5, but v′c′ remains positive
there partly because it is being advected from upstream (i.e. due to memory effects).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

82
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.820


906 A27-10 P. M. Milani, J. Ling and J. K. Eaton

1.5

1.0

0.5

0

–0.2 –0.1 0 0.1

2.0

1.5

1.0

0.5

A

I

II

III

IV0

–0.03 –0.02 –0.01 0 0.01

2.5

2.0

1.5

1.0

0.5

0

–0.10 –0.05 0 0.05

y/
D

1.5

1.0

0.5

0

–0.4 –0.2 0 0.2

y/
D

(a) (b)

(c) (d )

FIGURE 7. Terms from (3.1) in the channel centreline, non-dimensionalized using D and Uc.
For r = 1, the zoomed in version shows 0 < y/D < 0.25. For r = 2, it shows 0 < y/D < 0.3.
The grey band indicates counter gradient transport in the vertical direction. (a) r = 1, x/D = 2.
(b) r = 1, x/D = 5. (c) r = 2, x/D = 2. (d) r = 2, x/D = 5.

This explanation is consistent with figure 6: the positive v′c′ close to the wall is more
intense and concentrated at x/D = 2, and it is more diffuse at x/D = 5.

3.3. Three-dimensional perspective
In the previous subsections we highlighted locations where a particular component of the
turbulent scalar flux had the same sign as the equivalent component of the mean scalar
gradient. We did so for two reasons. First, that is how many previous authors reported
counter gradient transport in this flow. For example, Muppidi & Mahesh (2008), Bodart
et al. (2013) and Schreivogel et al. (2016) noted regions where u′c′ and ∂ c̄/∂x have the
same sign, while Salewski et al. (2008) and Milani & Eaton (2018) highlighted regions
where v′c′ and ∂ c̄/∂y have the same sign; their results are consistent with the locations
and mechanisms we explained as type 1 and type 2, respectively. Second, starting with
a one-dimensional perspective permits an easier visualization of the turbulent scalar flux
transport equation budgets as done in figures 5 and 7. However, despite providing useful
insights, that methodology is dependent on the particular choice of axis; in fact, unless the
mean scalar gradient and the negative turbulent scalar flux vectors are perfectly aligned,
it is possible to construct a coordinate frame where one of the components will indicate
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apparent counter gradient transport. So, in this subsection we study the same locations
by considering the angle between the vectors −u′

ic′ and ∂ c̄/∂xi, given by θ in (3.2). This
measure takes all of the 3-D information into account and is independent of the choice of
axis. In places where the simple GDH of (1.2) is valid exactly, we should have θ = 0; in
places of ‘true’ counter gradient transport, θ > 90◦. The angle θ is given by

θ = arccos

⎛⎜⎜⎝ −u′
ic′ ∂ c̄

∂xi√
u′

ic′ u′
ic′
√

∂ c̄
∂xi

∂ c̄
∂xi

⎞⎟⎟⎠. (3.2)

Figure 8(a,b) shows colour contours of the angle θ in the r = 1 LES. Figures 8(c,d) and
8(e, f ) contain the same planes showing the regions of type 1 and type 2, respectively,
as described previously. In general, the angle θ is highest close to the wall, whose
presence induces strong anisotropy into the turbulent mixing. Interestingly, there are key
differences between type 1 and type 2 regions identified previously. On the windward shear
layer, where cross-gradient effects give rise to type 1 transport, the overall misalignment
indicated by θ is not too high, with angles between 20◦ and 50◦ being common. On
the other hand, regions of type 2 transport shown in figure 8(e, f ) coincide with severe
misalignment of −u′

ic′ and ∂ c̄/∂xi, and in such areas the angle θ is frequently higher than
90◦. This shows that type 1 transport, caused mainly by local effects, actually translates to
a consistent but small misalignment between the vectors when seen in three dimensions.
The non-equilibrium, non-local causes of type 2 transport actually lead to a more than
90◦ misalignment between the flux and gradient vectors in three dimensions, which can
be seen as a ‘true’ counter gradient transport that is independent of the coordinate frame.
Figure 9, which presents the same plots for the r = 2 dataset, leads to similar conclusions.

From a modelling perspective, regions where θ is significantly above zero cannot be well
captured with the simple GDH of (1.2) irrespective of the diffusivity chosen. Moving to a
tensor diffusivity Dij, as shown in (1.3), can capture cross-gradient effects (since turbulent
transport in the x-direction can be a function of the y gradient) and would thus be expected
to model well the turbulent mixing in regions of type 1. This is further supported by the fact
that θ in those regions is less than 90◦, so the matrix diffusivity Dij is only required to rotate
the concentration gradient vector by an acute angle. Thus, a positive semi-definite matrix
Dij can be used, guaranteeing numerical stability. In locations where type 2 transport is
found, the non-local effects on u′

ic′ preclude a purely local model, such as (1.3), from
capturing all the relevant physics. Even if a diffusivity Dij where chosen such that u′

ic′
is matched, that matrix would not be positive semi-definite since θ > 90◦ in those areas.
Therefore, the equation would be numerically unstable, akin to using a negative value of αt
in (1.2). For locations of type 2 counter gradient transport, only a non-local model, based
potentially on solving separate transport equations for u′

ic′, could hope to reproduce the
appropriate physics.

4. Deep learning modelling

In this section we transition to the question of modelling the u′
ic′ vector using deep

learning. For simplicity, this section makes heavy use of matrix notation instead of index
notation: a lower case bold letter indicates a vector (first-order tensor) and an upper case
bold letter indicates a 3 × 3 matrix (second-order tensor).
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FIGURE 8. Counter gradient transport in the r = 1 case. (a,c,e) Centreplanes (z = 0) and
(b,d, f ) axial planes at x/D = 2. Lines indicate isocontours of c̄ = 0.2, 0.4, 0.6, 0.8. (a,b)
Contains colour contours of θ in degrees. (c,d) Shows, in red, places where u′c′(∂ c̄/∂x) > 0
(with arrows highlighting type 1 transport). (e, f ) Identifies regions where v′c′(∂ c̄/∂y) > 0 (with
arrows highlighting type 2 transport).

y/
D 2

2

1

0

1

0

1

0

10 30 50 70 90 110 130 150 170

0

y/
D 2

0

y/
D

x /D
z /D

2

0
0 5 10 15

0 5 10 15

0 5 10 15

1 0 –1

1 0 –1

1 0 –1

(a)

(c)

(e)

(b)

(d)

( f )

FIGURE 9. Counter gradient transport in the r = 2 case. Same description as figure 8.
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4.1. Tensor basis neural network for scalar flux modelling
Given the promise of the tensor basis neural network proposed by Ling et al. (2016a),
we would like to use a similar method to model the vector u′c′. In summary, we aim to
employ a neural network architecture that is designed to respect rotational invariance while
predicting a tensorial output. However, the architecture described in Ling et al. (2016a) is
designed to prescribe the Reynolds stress anisotropy tensor B, which is a symmetric and
traceless second-order tensor. The approach must be modified for the turbulent scalar flux
vector u′c′, which does not have those characteristics.

We start by assuming that the turbulent scalar flux is a general vector-valued function
of the mean velocity and scalar gradients, ∇ū and ∇c̄. The velocity gradient tensor is
split into a symmetric and an anti-symmetric part, S and R, respectively, such that ∇ū =
S + R. As is done in previous work that models turbulent scalar fluxes (Milani et al. 2018),
two additional dimensionless quantities are also used to regress u′c′: the Reynolds number
based on wall distance, Red = √

kd/ν, and the eddy viscosity ratio, νt/ν, where d is the
distance to the nearest wall, k is the turbulent kinetic energy and νt is the eddy viscosity
from a baseline turbulence model. So, the functional dependence is

− u′c′ = f (S, R,∇c̄, νt/ν, Red). (4.1)

Note that the model in (4.1) depends on a baseline turbulence model for the momentum
equations, which provides field quantities such as k and νt. This is a design choice that
makes the model more usable in practice, since one would not have access to high-fidelity
simulation values for these quantities in a practical RANS simulation. A similar approach
was taken by other authors who worked in scalar flux modelling with machine learning
techniques (e.g. Sandberg et al. 2018; Sotgiu et al. 2018). As is done in Ling et al. (2016a),
(4.1) is cast as a summation of an appropriate tensor basis, where each basis element is a
vector and is multiplied by a scalar factor g(n). This quantity, in turn, can be an arbitrary
function of invariants λj, which are scalar quantities derived from the tensors S, R and ∇c̄
that are reference frame independent. Thus, u′c′ becomes

− u′c′ =
6∑

n=1

g(n)(λ1, λ2, . . . , λ15)t(n). (4.2)

When the function is written in this form, it is guaranteed to be unchanged under any
coordinate frame rotation and reflection as explained in Ling et al. (2016a). The neural
network’s eventual goal will be to approximate the functions g(n)(λ1, λ2, . . . , λ15).

For this problem, we cannot use the same basis and invariants used in Pope (1975)
or Ling et al. (2016a), since the quantity of interest is a vector (u′c′) that depends
upon one symmetric matrix (S), one anti-symmetric matrix (R) and one vector (∇c̄).
Turning to the review of Zheng (1994), one can find the appropriate vector basis,
given as

t(1) = ∇c̄, t(2) = S∇c̄, t(3) = R∇c̄,

t(4) = S2∇c̄, t(5) = R2∇c̄, t(6) = (SR + RS)∇c̄,

}
(4.3)
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and the appropriate invariants for the incompressible case, given as

λ1 = tr(S2), λ2 = tr(S3), λ3 = tr(R2), λ4 = tr(SR2), λ5 = tr(S2R2),

λ6 = tr(S2R2SR), λ7 = ∇c̄T∇c̄, λ8 = ∇c̄TS∇c̄, λ9 = ∇c̄TS2∇c̄,

λ10 = ∇c̄TR2∇c̄, λ11 = ∇c̄TSR∇c̄, λ12 = ∇c̄TS2R∇c̄,

λ13 = ∇c̄TRSR2∇c̄, λ14 = Red, λ15 = νt/ν.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (4.4)

Note that the first 13 invariants are obtained from the tensor inputs, and the last two
are purely the scalar quantities Red and νt/ν (which are automatically invariant to the
choice of coordinate frame). In (4.3) and (4.4) products denote standard matrix-matrix or
matrix-vector products, and tr() denotes the trace of a matrix.

Under this formulation, given a vector basis and the invariants, the neural network
directly prescribes the vector u′c′ whose divergence acts as a source term in the Reynolds
averaged scalar transport equation. As discussed in Wu et al. (2019), such an approach can
lead to an ill conditioned equation, which is difficult to solve numerically. To mitigate this,
they suggest that whenever possible data-driven closures should aim to predict diffusivity
coefficients instead of source terms. With that in mind, we note that all basis elements
shown in (4.3) consist of a matrix multiplying the mean concentration gradient. So, we
can define a different basis T (n) where t(n) = T (n)∇c̄. Thus, we rewrite (4.2) as

− u′c′ =

D︷ ︸︸ ︷[
6∑

n=1

g(n)(λ1, λ2, . . . , λ15)T
(n)

]
∇c̄, (4.5)

with the matrix part of the basis given by

T (1) = I, T (2) = S, T (3) = R,

T (4) = S2, T (5) = R2, T (6) = SR + RS,

}
(4.6)

where I is the 3 × 3 identity matrix.
In (4.5) the term in square brackets is naturally interpreted as a 3 × 3 turbulent

diffusivity matrix D. Thus, we recover an equation of the same form as (1.3) that is
amenable to be learned via a neural network with embedded rotational invariance.

Before the full model architecture is discussed, there remains the issue of
non-dimensionalization. To obtain relevant scales and values for the eddy viscosity νt,
a baseline turbulence model is run on the original mesh utilizing the frozen mean velocity
field from the LES calculation. Any model that yields length and time scales and a value
for the eddy viscosity could be employed with the current framework; in the present paper
we use the realizable k − ε model of Shih, Zhu & Lumley (1995). So, given the mean
LES velocity and pressure fields, the transport equations for k and ε are solved, which also
generates νt as a by-product. This approach to non-dimensionalization has been used by
others such as Sandberg et al. (2018) and Milani et al. (2020). Then, S, R and ∇c̄ in (4.4)
and (4.6) are non-dimensionalized using local values of k and ε before being fed as inputs
to the network. To guarantee that the neural network maps from dimensionless inputs to a
dimensionless output, a non-dimensional diffusivity tensor D∗ is explicitly introduced as
D = νtD∗.

The architecture proposed, henceforth referred to as tensor basis neural network for
scalar flux modelling, or TBNN-s, is presented in figure 10. The network receives as
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λ1, λ2, ..., λ15
Basis coefficients

–u′c′+ ×

FIGURE 10. Schematic of TBNN-s architecture. Blue cells represent inputs to the network,
green cells represent the hidden layers containing tuneable parameters and red cells denote
different levels of outputs.

inputs the mean flow invariants (listed in (4.4)) non-dimensionalized by k and ε and
processes them through a sequence of hidden layers. These are fully connected layers,
which sequentially perform a linear transformation (matrix multiplication plus an offset)
followed by a nonlinear activation function (the simple rectified linear unit, or ReLU,
is employed). The last hidden layer does not use a ReLU function and transforms its
inputs into a six-dimensional vector containing the values of g(n), the dimensionless
basis coefficients. Note that the hidden layers are responsible for explicitly providing
the functions g(n)(λ1, . . . , λ15) and contain all the tuneable parameters of the model,
which are learned from training data. Then, the coefficients g(n) multiply elementwise
their respective dimensionless basis tensor T (n) shown in (4.6) and the result is summed
producing the dimensionless diffusivity matrix D∗. Finally, the diffusivity is made
dimensional via multiplication by νt and its matrix-vector product with the mean scalar
gradient produces −u′c′.

Note that this modelling framework is similar to that of Weatheritt et al. (2020), who
also expanded the turbulent scalar flux vector as a sum of tensor basis that maintains
rotational invariance. Our model has two key differences. First, we use a deep neural
network to approximate the functions g(n)(λi), while Weatheritt et al. (2020) use gene
expression programming, a different regression tool (see Weatheritt et al. (2017) for a
discussion of their differences). Second, their basis also involves the Reynolds stress
tensor. In theory this allows for more accurate representation of the scalar flux, as they
confirm. However, in a typical RANS framework one does not have access to the true
values of the Reynolds stress; as such, we preferred to develop models that are based
solely on the mean velocity gradient. In future work it would be useful to compare their
model to ours under the same conditions in order to analyse strengths and weaknesses of
different data-driven turbulence modelling strategies.

4.2. Loss function and implementation
Neural networks are trained via gradient descent-like algorithms. A loss function J is
defined to capture how inadequate the present solution is compared to the known results
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from training data. Given multiple batches of training data, the loss function is calculated
together with its gradient with respect to each trainable parameter. The gradient, a key
component for training neural networks, is calculated using backpropagation, which is
sequential application of the chain rule starting at the loss function J and progressing back
through the layers all the way to the first hidden layer. For backpropagation to work, every
operation defined in the network must be differentiable which is the case for figure 10.
Note that the loss function is defined based on the mismatch between the predicted value
of the turbulent scalar flux, u′c′

PRED, and the turbulent scalar flux given in the training
data, u′c′

LES. We experimented with a few different options, including the common sum of
squared differences and sum of absolute differences:

JL1 = 1
Ndata

Ndata∑
i=1

‖u′c′(i)
PRED − u′c′(i)

LES‖1, (4.7)

JL2 = 1
Ndata

Ndata∑
i=1

‖u′c′(i)
PRED − u′c′(i)

LES‖2
2. (4.8)

Here ‖ ‖1 indicates vector 1-norm, ‖ ‖2 indicates vector 2-norm, Ndata is the number of
data points over which the loss is computed and a superscript i indicates the i-th training
point. These definitions of the loss have the disadvantage that they depend on a particular
non-dimensionalization and scaling to compare points from different datasets and different
locations from the same dataset. Instead, if we desire a loss function whose gradient with
respect to model parameters is independent of the scaling used, the mean of the natural
logarithms of the vector norms is a possible choice:

Jlog = 1
Ndata

Ndata∑
i=1

log

(
‖u′c′(i)

PRED − u′c′(i)
LES‖2

‖u′c′(i)
LES‖2

)
. (4.9)

In (4.9) the factor that scales the loss at each point is the ‖u′c′(i)
LES‖2 in the denominator.

Because the logarithm of the ratio becomes a difference of logarithms, this term vanishes
when the gradient of Jlog with respect to the neural network parameters is calculated. This
scaling is chosen so that the loss attains readily interpretable values (for example, a loss
around 0 indicates that the vectorial discrepancy between predicted and given scalar fluxes
has roughly the same norm as the LES scalar flux itself).

We experimented with the three loss definitions shown in (4.7), (4.8) and (4.9). The
results on the mean scalar field c̄ were similar among the three, so a comparison will
not be shown for brevity. For the results in the present paper, the function Jlog of (4.9)
is employed. We also added an L2 regularization term to the loss, which penalizes high
magnitude parameters in the model. This is commonly done to prevent overfitting. The
loss is optimized with a widely used algorithm based on stochastic gradient descent, called
adaptive moment estimation (Adam) from Kingma & Ba (2014). Part of the reason for the
current popularity of this method is that it has been shown to be reasonably robust to the
choice of hyperparameters, especially the learning rate.

To choose the different hyperparameters for the TBNN-s, we used validation points
that were not used during training. Milani et al. (2019a) presents data on the geometry
of figure 1 for a third value of velocity ratio, r = 1.5. In the current paper the TBNN-s is
trained exclusively on the r = 2 dataset and the hyperparameters are chosen such that good
values of the loss function are obtained on points taken from the r = 1.5 case. We observed
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that the quality of the model generated is not a strong function of the hyperparameters
considered within a reasonable range. Besides, the validation aims to find hyperparameters
that minimize the loss in (4.9), when the true test for the model is how well it predicts the
mean scalar field c̄ after the Reynolds averaged equations are solved. Thus, not much
emphasis should be placed on the specific choice of hyperparameters, and we picked a
set that performed well on the validation set after manual tuning. In the current work we
use a learning rate of 10−3 and other default parameters for Adam; we employ 10 hidden
layers with 30 nodes each, roughly in line with the network size of Ling et al. (2016a);
we use an L2 regularization strength of 10−2; we use an additional regularization method
called dropout (Srivastava et al. 2014) with a drop probability of 0.2; and the batch size
in which training data is fed into the Adam optimizer is 50. Training a neural network is
not a deterministic exercise because results depend on a random initialization and on the
stochastic nature of the optimization algorithm. To mitigate this, several training runs were
executed with the same hyperparameters and the network that was saved and employed
in this paper is the one that, at any point during each training procedure, produced the
minimum loss in the validation set.

The network as shown in figure 10 is implemented in Python using the Tensorflow
package (Abadi et al. 2016) and the code can be found online in the following GitHub
repository: https://github.com/pmmilani/tbnns. The TBNN-s discussed in following
subsections was trained on 100k randomly sample points from the inclined jet in crossflow
with r = 2. Only points where the mean scalar gradient is significant (‖∇c̄‖2/(ε/k1.5) >

10−3) are considered at training time.

4.3. Results
The architecture described in § 4.1 is used in its entirety when the network is being trained
and a correct value of u′c′ is available. Once the network has been trained, it is applied up
to the prediction of D. In other words, the network learns to predict a turbulent diffusivity
tensor that best matches the turbulent scalar flux presented at training time even though it
has never seen an input turbulent diffusivity tensor. When applied to a test set, it predicts
a D field over the whole domain which is then used to solve the Reynolds averaged scalar
equation

∂

∂xi
(ūic̄) = ∂

∂xi

(
ν

Sc
∂ c̄
∂xi

)
+ ∂

∂xi

(
Dij

∂ c̄
∂xj

)
, (4.10)

where the last term on the right-hand side consists of the model for the turbulent scalar flux
involving the turbulent diffusivity matrix. To test the model independent of any velocity
field errors, (4.10) is solved with the mean velocity field provided by the LES and with the
matrix turbulent diffusivity D provided by the TBNN-s. Note that the TBNN-s is run only
once, using LES results with k and ε fields from the baseline turbulence model (realizable
k − ε) as inputs, and then the diffusivity matrix is fixed and (4.10) is solved on the LES
mesh. We employ ANSYS Fluent for the baseline turbulence model and for solving the
scalar transport equation.

Before discussing the results, there is one important consideration to be made about
the diffusivity matrix D. An arbitrary scalar (isotropic) diffusivity could be numerically
unstable, namely if it were ever negative. Analogously, a matrix diffusivity D produced
by the TBNN-s could also lead to an unstable partial differential equation under some
conditions, so it must be post processed before we use it in (4.10). In particular, we
require that the diffusivity D be a positive semi-definite matrix. Note that this is a
requirement for stability for any closure of the form given in (1.3), including higher-order
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FIGURE 11. Angle between modelled and true turbulent scalar flux in degrees, given in θTBNN-s.
(a,c) Centreplane (z = 0) and (b,d) axial planes at x/D = 2; black lines indicate isocontours of
c̄ = 0.2, 0.4, 0.6, 0.8.

algebraic closures. See appendix B for a more detailed explanation of this point. Therefore,
we post process the diffusivity D∗ output: in locations where the predicted matrix is not
positive semi-definite, it is replaced by a diagonal matrix that uses the GDH with fixed
Sct = 0.85 as the model.

4.3.1. A priori results
A priori results directly test the TBNN-s predictions of the scalar flux. All the results

shown are for a network trained on the r = 2 dataset only.
Figure 11 shows the alignment between the predicted turbulent scalar flux vector and

the ground truth scalar flux vector from the LES for both datasets. The angle in degrees is
calculated as

θTBNN-s = arccos

⎛⎜⎜⎜⎜⎝
−u′

ic′
(

Dij
∂ c̄
∂xj

)
√

u′
ic′ u′

ic′

√(
Dij

∂ c̄
∂xj

)(
Dij

∂ c̄
∂xj

)
⎞⎟⎟⎟⎟⎠, (4.11)

where Dij is the matrix turbulent diffusivity predicted by the TBNN-s.
Note that these plots should be compared to the misalignment that would arise from

a baseline GDH model shown in § 3 in figures 8(a,b) and 9(a,b). In figure 11 we see
significant improvement in the full domain for both cases, r = 2 (where the model was
trained) and r = 1 (where the model’s generality is tested). In the windward shear layer,
where type 1 counter gradient transport was observed, the alignment is now excellent, with
values below 10◦ being prevalent. This supports the argument made in § 3 that this physical
process would be amenable to be modelled with a local, but anisotropic model. The
alignment near the wall is also significantly superior to that shown in figures 8(a,b) and
9(a,b). However, some higher values of θTBNN-s are still present there. First, this reflects the
fact that whenever the original misalignment, between −u′

ic′ and ∂ c̄/∂xj, is more than 90◦

it cannot be fully fixed with a positive semi-definite diffusivity matrix. Second, as argued
in § 3, the turbulent scalar flux in this near-wall region is affected by non-equilibrium,
non-local effects which cannot be satisfactorily captured with a purely local model.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

82
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.820


Turbulent scalar flux in inclined jets in crossflow 906 A27-19

–1.5
D∗

12(r = 1)
–0.9

2
1

0

1

0

2

1

0

2

1

0
1 0

0

–0.3 0.3 0.9 1.5

D∗
22(r = 1)

D∗
22(r = 2)

y/
D

2

0

y/
D

2

0

y/
D

2

0
0 5 10 15

0 5 10 15

0 5 10 15

0 5 10 15

y/
D

x /D
z /D

–1

1 0 –1

1 0 –1

1 0 –1

D∗
12(r = 2)

(a) (b)

(c) (d )

(e)
( f )

(g) (h)

FIGURE 12. Dimensionless components of the diffusivity matrix D predicted by the TBNN-s
in r = 1 and r = 2 cases. (a,c,e,g) Centreplane (z = 0) and (b,d, f,h) axial planes at x/D = 2;
black lines indicate isocontours of c̄ = 0.2, 0.4, 0.6, 0.8.

Figure 12 shows two different components of the turbulent diffusivity matrix predicted
by the TBNN-s in the r = 1 and r = 2 cases. Here D∗

12 is an off-diagonal component
that controls the effect of wall-normal gradients on the streamwise transport (and, thus, is
relevant for prediction of type 1 transport as described in § 3), and D∗

22 is the wall-normal
diagonal element. Note that a standard GDH model would have uniform components, with
D∗

12 being zero and D∗
22 being 1/Sct.

The component D∗
12 has low magnitude in most regions of the flow, showing that

cross-gradient effects are not important everywhere. But it is particularly active where
the wall-normal mean velocity gradient is significant. This is to be expected, since strong
vertical gradients in ū would cause vertical eddies to correlate u′ with c′ in the presence
of vertical concentration gradients. Close to the wall, this term is largest in magnitude
because of the high velocity gradient due to the no-slip condition. It is also active in the
windward shear layer, in locations of type 1 transport. While interesting from a physical
perspective, these improvements by themselves do not lead to a significant improvement in
mean scalar concentration, as discussed in appendix A. Note that the TBNN-s prediction
of D∗

12 in the windward shear layer has different signs in the r = 1 and r = 2 cases,
which is the correct behaviour since ∂ ū/∂y is positive for r = 1 and negative for r = 2
in that region. This showcases the capacity of the model to learn physics rather than just
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regurgitate the training data; in this case, this is due to the basis expansion in (4.5), which
explicitly multiplies the data-driven functions, g(i), by terms such as S which are sensitized
to the local mean flow gradients.

The component D∗
22 is positive everywhere as it should be, due to the positive

semi-definite requirement on D. It does contain some spatial variation. In general, it is
lower in the bottom half on the jet and higher in the top half, except for very near the
wall where it attains the highest values. These results are consistent with the experimental
results of Kohli & Bogard (2005) who reported smaller vertical heat diffusivity below the
jet’s centreline compared to above it. Relatively high values of D∗

22 right above the wall
and after injection appear in both the training set and in the test set, which is inconsistent
with the regions of type 2 transport. This is because from the argument in § 3.2, we would
expect D∗

22 to be physically very small or even negative in this region since the counter
gradient turbulent transport in the wall-normal direction is not caused by cross-gradients
in the mean concentration. A possible reason for this inconsistency is that in those regions
both the turbulent transport and the mean scalar gradients have very low magnitude, so
the diffusivity entries are, in a sense, a ratio between two very small numbers. Thus, the
TBNN-s which attempts to predict this ratio might fail to obtain satisfactory results.

4.3.2. A posteriori results
Finally, we show a posteriori results which test the ability of the model integrated

into a computational fluid dynamics code to predict the mean concentration distribution.
Appendix A includes a discussion on the relative importance of different components of
the turbulent scalar flux on the a posteriori results discussed here. We compare results
from two different models. The baseline is a simple, isotropic GDH where the turbulent
diffusivity is prescribed with a fixed turbulent Schmidt number, Sct = 0.85 (Kays 1994).
The second is the TBNN-s model which is proposed in the current paper and trained on
the r = 2 dataset. Both modelled results use the mean velocity from the LES and depend
on a baseline turbulence model for the momentum equations, which is the two-equation
realizable k − ε model in the present work.

Figures 13 and 14 contain two-dimensional contours of the mean scalar concentration
c̄ in the r = 1 and r = 2 cases, respectively. In figure 13 the LES results indicate that the
r = 1 jet detaches from the wall after injection and reattaches at approximately x/D = 4.
The mean profile is distorted by the presence of the counter-rotating vortex pair as the axial
(y–z) plane shows. The isotropic model, shown in figure 13(c,d), broadly overestimates
mixing which transports scalar towards the wall immediately downstream of injection and
speeds up the decay of the jet. In the axial view, the extent of the jet is larger in the spanwise
direction due to the increased mixing. The TBNN-s model, as shown in figure 13(e, f ),
converges to a smooth solution, which is already an achievement for a tensorial and
data-driven model. This solution is also significantly more accurate than the baseline
model of figure 13(c,d): the streamwise decay of the concentration profile is predicted
much more accurately and the extent of the jet’s shear layer is more consistent with the
LES data. As hinted by a priori results, the near-wall behaviour of the TBNN-s is still
lacking, even though it represents an improvement over the simple GDH. This warrants
future work to adapt the TBNN-s model to regions where non-local effects dominate and
lead to counter gradient transport.

Figure 14 shows the same results for the r = 2 dataset. Here, since the jet is further from
the wall, non-equilibrium effects are less significant so both models perform relatively
better. The standard GDH model seems to slightly underpredict the streamwise decay of
the jet, opposite from what was observed in r = 1. The TBNN-s model in figure 14(e, f )
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FIGURE 13. Mean scalar concentration contours in the r = 1 case, with (a,c,e) showing
centreplane (z = 0) and (b,d, f ) showing axial (y–z) planes at x/D = 2. Isocontours at c̄ =
0.2, 0.4, 0.6, 0.8 are also shown. (a,b) Contains LES results, (c,d) shows results from baseline
GDH model, and (e, f ) presents results from the TBNN-s.
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FIGURE 14. Mean scalar concentration contours in the r = 2 case, with same legend
as figure 13.

manages to correct for that. This is encouraging because by employing a tensorial
diffusivity, the data-driven model manages to correct the baseline model in both directions
(by broadly decreasing the decay rate for r = 1 and increasing the decay rate in r = 2).
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FIGURE 16. Horizontal profiles of c̄ at x/D = 5 plotted for two distinct vertical stations.
(a) r = 1. (b) r = 2.

This suggests that generalizable physics are indeed learned by the model during training
and carry over to a different velocity ratio. As was observed in r = 1, the near-wall
transport, particularly right after injection, is not captured accurately. Physically, as was
discussed in § 3, this is due to the prevalence of non-equilibrium effects in this area, which
cannot be modelled with a local diffusivity-based model (as evidenced by type 2 counter
gradient transport).

For a more quantitative comparison between the same results, figure 15 shows vertical
profiles of mean scalar concentration at three different streamwise locations. Despite its
shortcomings, it is worth noting that the GDH with Sct = 0.85 does a reasonably good
job at capturing broad qualitative features of the scalar field given its simplicity. The
TBNN-s model, however, presents clear improvements: it does a good job at predicting
the streamwise decay of the peak jet concentration and the vertical concentration gradient
in the windward shear layer. The highest discrepancy between the TBNN-s model and
LES data is exactly where type 2 gradient transport was found. Figure 16 shows spanwise
profiles of mean scalar concentration at x/D = 5 and further reinforces the points made in
this section, especially the accuracy with which the data-driven tensorial diffusivity can
predict the jet shear layer profiles.

4.3.3. Basis coefficients results
Lastly, we would like to gain some further understanding of the TBNN-s model.

Deep neural networks are notoriously powerful but hard to interpret (Goodfellow, Bengio
& Courville 2016) and physical understanding of machine-learned turbulence models
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FIGURE 17. Colour contours of the basis coefficients g(i) predicted by the TBNN-s model in
the r = 2 jet. (a,c,e,g) Centreplane (z = 0) and (b,d, f,h) axial planes at x/D = 2; black lines
indicate isocontours of c̄ = 0.2, 0.4, 0.6, 0.8.

remains an important open question (Duraisamy et al. 2019), so we do not intend to exhaust
that question here. One method to interpret the model takes advantage of the TBNN-s
structure which writes the turbulent diffusivity matrix as a weighted sum of simpler tensor
basis elements. By analysing the relative contributions of such simpler elements, one can
gain useful insight into the model. Thus, in the current subsection we look at the tensor
basis weights g(i) prescribed by the TBNN-s in these flows. Recall that the structure in
figure 10 outputs a dimensionless turbulent diffusivity matrix D∗ which has O(1) entries,
and the diffusivity basis elements T (n) (see (4.6)) are also non-dimensionalized such that
in practice they have O(1) entries. Thus, the predicted values of tensor basis weights g(i)

should be dimensionless, O(1) quantities.
Figure 17 contains contours of four different basis coefficients (g(1), g(2), g(3) and g(6))

in the r = 2 jet in crossflow. Since the TBNN-s was trained on the r = 2 data, this is the
machine-learned model’s attempt at reproducing its training data within the tensor basis
decomposition. The coefficients g(4) and g(5) are not shown because the TBNN-s assigns
very low values for both of these compared to the other weights. This suggests that the
quadratic and symmetric basis elements, T (4) = S2 and T (5) = R2, are not employed by
the network to match the training data. All the coefficients shown have well-defined signs
as learned by the deep neural network: g(1), g(3) and g(6) are positive, while g(2) is negative.
Also note that while g(1) and g(2) multiply symmetric tensors, g(3) and g(6) multiply
anti-symmetric basis elements. This suggests that the strictly symmetric diffusivity matrix
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FIGURE 18. Colour contours of the basis coefficients g(i) predicted by the TBNN-s model in
the r = 1 jet. (a,c,e,g) Centreplane (z = 0) and (b,d, f,h) axial planes at x/D = 2; black lines
indicate isocontours of c̄ = 0.2, 0.4, 0.6, 0.8.

hypothesized by some previous authors (e.g. Daly & Harlow 1970) is insufficient to capture
the data in this case, even in locations where the turbulent scalar flux is mostly locally
determined such as in the windward shear layer.

Other features can be observed in figure 17. For example, the basis coefficients seem
to attain generally higher magnitudes in locations of highest shear, such as right above
the wall and in the windward shear layer. The coefficient g(1) determines the isotropic
contribution and is the only coefficient allowed in the simple GDH of (1.2); the TBNN-s
prescribes values roughly between 0.5 and 1.5 to that coefficient, with lower magnitudes
in locations of type 2 transport (compare figures 9e, f and 17a,b) which would be the
expected behaviour if the turbulent transport in those locations is to be captured. On the
other hand, g(1) is highest in the windward shear layer, indicating that the standard GDH
underestimates the isotropic mixing in those locations.

Figure 18 shows equivalent results for the r = 1 jet in crossflow, where the model is
tested outside of its training data. The overall patterns are very similar from before; the
coefficients g(4) and g(5) are significantly smaller and thus not shown. The similarity in the
coefficients between the calibration data and the test data indicates that the modelling
framework, in particular the tensor basis expansion, is indeed sound. One difference
between the r = 1 and r = 2 results is that the former seem to have slightly lower
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magnitudes, indicating that differences in the modelled eddy viscosity νt are not enough
to capture the increased turbulent mixing from the r = 1 to r = 2 jet.

This opportunity for interpretation naturally arises from the tensor basis expansion
described in § 4.1. The patterns indicated here can be used to further improve and simplify
the models. For example, future work could remove the T (4) and T (5) bases, or leverage
the overall structure of figures 17 and 18 to prescribe uniform ratios g(2)/g(1), g(3)/g(1)

and g(6)/g(1). We also believe that interpretation work should proceed in the direction of
understanding the functional form g(n)(λi) so that one can answer the question of why the
deep neural network is predicting its results. The approaches exemplified in Ling et al.
(2017) and Milani, Ling & Eaton (2019b) could provide a useful starting point for this
endeavour. As mentioned before, this is a major open question in the field of deep learning
particularly for physical applications.

5. Concluding remarks

Two highly resolved large eddy simulations of inclined jets in crossflow are used
to analyse turbulent scalar transport. In § 3 we discuss physical origins and modelling
implications of counter gradient turbulent transport. Counter gradient turbulent transport
is classified into two types. Type 1 arises in the streamwise component of the turbulent
scalar flux in the windward shear layer, and is caused by cross-gradient effects, whereby
gradients in the wall-normal and spanwise direction control the scalar flux. This
phenomenon is mostly local and is consistent with the reports of previous authors such
as Muppidi & Mahesh (2008), Bodart et al. (2013) and Schreivogel et al. (2016). Type 2
transport, on the other hand, is governed chiefly by non-local contributions to the scalar
flux budget. It is observed close to the wall, after injection, and in the wall-normal
component of the turbulent transport, consistent with the observations of Salewski et al.
(2008) and Milani & Eaton (2018). Despite multiple reports of counter gradient transport
in these flows, authors have not carefully examined its causes. For example, Bodart et al.
(2013) reported observations consistent with type 1 transport in their windward shear layer,
but erroneously alluded to non-local effects as possible causes (which actually cause type 2
transport as shown presently). These discussions show that type 1 and type 2 phenomena
would require models of different complexities. The former could be modelled with a local
formulation, but would require a tensorial diffusivity to capture cross-gradient effects. The
latter cannot be modelled adequately with any diffusivity-based model since it is inherently
non-local; it might require, for example, solving separate transport equations for the scalar
flux components.

Given the implementation difficulties associated with non-local models (Combest et al.
2011), we choose to use a matrix turbulent diffusivity with a machine learning approach.
We adapt the tensor basis neural network of Ling et al. (2016a) to model the scalar flux,
and denote this approach TBNN-s (tensor basis neural network for scalar flux modelling).
Our deep learning model obeys rotational invariance through a tensor basis expansion, and
is able to predict a tensorial diffusivity D that can be used in the Reynolds averaged scalar
transport equations even though the training data do not contain this matrix explicitly.
As expected, the turbulent diffusivity matrix improves the alignment of the turbulent
scalar flux vector, and also increases the accuracy of the mean scalar concentration field.
This happens not just in the training set, but also in the test flow. The TBNN-s model
proposed herein can be applied in any other problem where scalar transport is of interest
given adequate training data. We expect that this modelling approach could be particularly
useful to practitioners who are interested in one specific class of turbulent flow and have
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a few high-fidelity datasets to train their models. Note that unlike many other machine
learning works in the recent fluid mechanics literature, this model can be directly applied
to arbitrarily complex 3-D turbulent flows and computational meshes. The results in this
paper show that our framework is a good candidate to be employed in turbulent shear
flows, where cross-gradient transport effects are important. As discussed in § 4.3.3, future
workers might focus on further developing the model by simplifying it; or on further
interpreting deep neural networks used in physical applications, to understand how the
input invariants are mapped to output turbulence quantities of interest.

Acknowledgements

The authors would like to acknowledge A. Mani for useful discussions and suggestions
that strengthened this paper. Financial support from Honeywell Aerospace is gratefully
acknowledged.

Declaration of interests

The authors report no conflict of interest.

Appendix A. Relative magnitude of the turbulent scalar flux

One noteworthy aspect of modelling the turbulent scalar flux is that its contribution to
the overall transport of the passive scalar varies with location and direction within the
flow. In general, the passive scalar equation balances the mean advection and the turbulent
scalar flux (assuming that molecular diffusion is negligible in such flows) as show in

∂

∂xi
(ūic̄) = ∂

∂xi

(
−u′

ic′
)

. (A 1)

In shear flows such as the jet in crossflow, length scales and mean velocities in the
streamwise (x) direction are much larger than in the transverse directions (y and z),
so streamwise mean advection is usually thought as balancing turbulent mixing in the
transverse direction. This means that the computation of the mean scalar field through
the RANS (A 1) is more sensitive to errors in the transverse components of the turbulent
scalar flux (v′c′ and w′c′) than it is to errors in the streamwise component u′c′. For a
visualization, figure 19 shows the magnitude of the turbulent scalar flux components
relative to the equivalent mean advection component from the r = 1 jet LES. As the
conceptual discussion suggests, v′c′ is relatively more important than u′c′; its magnitude
is particularly high in the shear layer all around the jet and in some places close to the wall
and right after injection.

This suggests that accurately capturing type 1 transport does not impact significantly
the predicted mean scalar field in this particular flow; on the other hand, capturing type 2
is much more important. The goal of discussing type 1 transport in § 3.1 is to explain the
exact observations of previous authors regarding counter gradient transport (Muppidi &
Mahesh 2008; Bodart et al. 2013; Schreivogel et al. 2016) and show a specific physical
mechanism that causes qualitatively incorrect predictions in the turbulent scalar flux
in jets in crossflow (namely, cross-gradient transport). This physical analysis leads us
to investigate machine-learned models that incorporate cross-gradient transport effects
through a tensorial diffusivity, which is the focus of § 4. This improved model is not only
able to capture specifically type 1 transport (as shown in figure 20a), but it also improves
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FIGURE 19. Magnitude of turbulent scalar flux components relative to the equivalent mean
advection component in the r = 1 jet. Black lines showing isocontours at c̄ = 0.2, 0.4, 0.6, 0.8
are also shown. (a,b) The streamwise component |u′c′/(ūc̄)| and (c,d) the wall-normal
component |v′c′/(v̄c̄)|.
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FIGURE 20. Vertical profiles of the turbulent scalar flux in the r = 1 jet at the centreplane
(z/D = 0) and two different streamwise locations. Lines compare LES results to the baseline
model (GDH with Sct = 0.85) and to the TBNN-s model trained on the r = 2 jet (as discussed
in § 4.3). (a) The streamwise component u′c′ of the flux, and (b) the wall-normal component
v′c′.

the prediction of the more important components such as v′c′, as shown in figure 20(b).
This explains its significant improvement over the baseline model.

Appendix B. Stability of a tensorial diffusivity

In this appendix we discuss the requirement for stability of a matrix turbulent diffusivity
used to model the scalar flux in the Reynolds averaged advection diffusion equation.
If the diffusivity were a scalar, it would have to be non-negative; for a matrix diffusivity,
there is an analogous requirement: that the 3 × 3 matrix be positive semi-definite. To see
this, we multiply both sides of (4.10) by c̄ to derive a transport equation for the squared
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concentration φ = c̄2/2, as shown in

c̄ ×
[

∂

∂xi
(ūic̄) = ∂

∂xi

(
ν

Sc
∂ c̄
∂xi

)
+ ∂

∂xi

(
Dij

∂ c̄
∂xj

)]
. (B 1)

The first term in (B 1) can easily be manipulated since we assume the mean velocity
field is divergence free, and simply becomes an advection of φ = c̄2/2. The two terms
on the left-hand side require a slightly more sophisticated application of the chain rule of
differentiation, namely

c̄
∂

∂xi

(
ν

Sc
∂ c̄
∂xi

)
= ∂

∂xi

(
ν

Sc
∂
(

1
2 c̄2
)

∂xi

)
− ν

Sc

(
∂ c̄
∂xi

∂ c̄
∂xi

)
(B 2)

and

c̄
∂

∂xi

(
Dij

∂ c̄
∂xj

)
= ∂

∂xi

(
Dij

∂
(

1
2 c̄2
)

∂xj

)
− Dij

(
∂ c̄
∂xi

∂ c̄
∂xj

)
. (B 3)

Now, using (B 2) and (B 3) we rewrite (B 1) as

∂

∂xi
(ūiφ) = ∂

∂xi

(
ν

Sc
∂φ

∂xi

)
+ ∂

∂xi

(
Dij

∂φ

∂xj

)
− ν

Sc

(
∂ c̄
∂xi

∂ c̄
∂xi

)
− Dij

(
∂ c̄
∂xi

∂ c̄
∂xj

)
. (B 4)

Note that the first three terms of (B 4) are the regular mean advection and diffusion terms
of quantity φ. The last two act as source terms. For the diffusion of c to be stable, it must
act to dissipate the quantity φ (the same way that momentum diffusion acts to dissipate
kinetic energy), thus, the source terms must be non-positive. For the molecular diffusion,
this is true if the diffusion coefficient ν/Sc is non-negative. The last term of (B 4) is a
quadratic form of matrix D and will be non-positive if ∇c̄TD∇c̄ ≥ 0. For this to hold
for any mean concentration field, we require that D be positive semi-definite (which by
definition means that the quadratic form of D with any vector is non-negative).

The remaining question is, given an arbitrary matrix diffusivity D, how to test whether
it is positive semi-definite? For a symmetric 3 × 3 matrix, the simplest test lies in its
eigenvalues: a symmetric matrix is positive semi-definite if and only if all its eigenvalues
are non-negative. For a general matrix, with complex eigenvalues, one extra step is needed.
First, we split D into symmetric and anti-symmetric components A and W , respectively:

D =
A︷ ︸︸ ︷

1
2(D + DT)+

W︷ ︸︸ ︷
1
2(D − DT) . (B 5)

Then, we recognize that the quadratic form of an anti-symmetric matrix with any real
vector is zero. Thus, the quadratic form of D with an arbitrary vector v is identical to that
of its symmetric part A = (D + DT)/2 with v, as shown in (B 6). From that, we see that D
is positive semi-definite if and only if its symmetric part A is positive semi-definite, since

vTDv = vTAv +�����0
vTWv. (B 6)

In summary, to check whether an arbitrary turbulent diffusivity matrix D is positive
semi-definite, we look at its symmetric part: D will be positive semi-definite if and only if
(D + DT)/2 contains only non-negative eigenvalues. This criterium is used to post process
the output of the TBNN-s, which leads to a stable advection diffusion equation with
a matrix turbulent diffusivity. Note that having only non-negative diagonal entries is a
necessary but not sufficient condition for D to be positive semi-definite. On the other hand,
a positive semi-definite matrix can have positive, zero or negative off-diagonal entries.
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