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Abstract

This paper investigates the filamentation process of two co-axially propagating laser beams in collisionless plasma. On
account of the ponderomotive nonlinearity, two laser beams affect the dynamics of each other, and cross-focusing
takes place. The initial Gaussian laser beams are found to have non-Gaussian structures in the plasma. Using the laser
beam and the plasma parameters, appropriate for the beat wave process, the filaments of the laser beams have been
studied. Using these results, the Langmuir wave excitation at the beat wave frequency (when the laser beams are
having filamentary structures) has been studied. The excited LW is modeled with the help of a driven oscillator and it
is found that the excited Langmuir wave is not a plane wave; rather it has a turbulent structure. We have obtained the
power spectrum of the excited beat wave (Langmuir wave), and calculated the spectral index. The stochastic electron
acceleration has been studied in the presence of this Langmuir turbulence and relevance of these results to the beat
wave process has been pointed out.
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1. INTRODUCTION

Laser based accelerators (Tajima et al., 1979; Baiwen et al.,
2004; Giulietti et al., 2005; Kruer, 1988; Shi et al., 2007;
Karmakar & Pukhov, 2007; Liu et al., 2009) and laser
induced fusion (Canaud et al., 2004; Deutsch et al., 1996,
2008; Regan et al., 1999; Hora, 2007; Imasaki & Li, 2008;
Hong et al., 2009; Stancalie, 2009) using laser-plasma inter-
action (Hora & Hoffmann, 2008; Borghesi et al., 2007;
Laska et al., 2008; Dromey et al., 2009; Hong et al., 2009;
Kline et al., 2009; Kulagin et al., 2008; Malekynia et al.,
2009; Nakamura et al., 2008; Sharma & Sharma, 2009) are
attracting a lot of interest. The inertial fusion program
requires the anomalous absorption of laser light by the
plasma, whereas the plasma-based beat-wave accelerator
concept relies on the radiation induced high phase velocity
electron plasma (Langmuir) waves that can accelerate elec-
trons to extremely high energies. In the case of laser
induced fusion, the efficient absorption of laser light
depends on stimulated Raman scattering, and further non-
linear interaction of Langmuir wave (LW) and laser beam
affects Raman scattering and hot electron generation.

Similarly, in the beat wave process, the nonlinear properties
of generated LW at the difference frequency can affect the
particle acceleration. Therefore, in both the cases a deviation
from the coherent nature of LW can affect the laser-plasma
interaction significantly.

The coherence in LW may be deviated due to filamentation
(Kaw et al., 1973; Deutsch et al., 2008) of laser beam in
plasmas. The incident laser beam gets filamented on
account of ponderomotive nonlinearity (Hora, 1969), relati-
vistic nonlinearity (Esarey et al., 1988) or by other mechan-
isms (Sodha et al., 1976). When a high power laser beam
(having time scale t ¼ rt/cs, where rt is the initial beam
width and cs is the ion sound speed), propagates through
the plasma, the ponderomotive force becomes finite and
leads to the redistribution of the electrons. In this region,
the laser beam in under-dense plasma undergoes self-
focusing, as soon as the total power P of the laser beam
exceeds the critical value Pcr .required for self-focusing
(Akhamanov et al., 1968). A lot of theoretical and exper-
imental work has been reported related to beat wave exci-
tation by two laser beams (Darrow et al., 1986), and a
significant amount of work has been done theoretically
(Davies et al., 2009) experimentally (Tajima, 1979), and
numerically (Nicholas et al., 1986) to study the filamentation
of single and two laser beams. But the stochastic acceleration
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of the electron has not been studied extensively in laser
plasma interaction. The possible role of chaos in stochastic
heating of electrons has been pointed out by Tajima et al.
(2006) and Kanapathipillai (2006). Mulser et al. (2005)
have studied theoretically very efficient nonlinear absorption
mechanisms in clusters. Stochastic heating was evidenced by
Patin et al. (2006, 2005a, 2005b, 2007) with the help of
particle-in-cell simulation in high power laser plasma inter-
action. Sharma et al. (2007) have studied stochastic heating
due to the filamentation induced localization. But no
attempt has been done to study stochastic acceleration in
the filamentation induced turbulence in beat wave process.

Due to filamentation of the laser beam, intensity singular-
ity is built up in a finite distance, and hence, multiple hot
spots are formed. These hot spots may act as the source of
further nonlinear interaction such as parametric instabilities
or particle heating. These hot spots may affect the LW to
the extent that the LW does not remain a plane wave and it
gets highly localized in the filamentary structure of the
laser beam. This localization can take place in the presence
of single laser beam. But in the presence of two laser
beams (as used in the beat wave process), the localization
of the LW and its effects has not been studied in detail.
When two filamented laser beams is beat and the LW is gen-
erated at the difference frequency, then the response of this
LW will depend on the driver force of these filamented
laser beams. The response of the LW to this driver force is
complex and not exactly at Dk (Dk ¼ k1 2 k2, where k1 and
k2 are the wave number associated with the first and second
pump wave, respectively). Therefore, the generated LW at
difference frequency is also expected to have a very broad
spectrum. Interaction of electrons with these LW turbulent
fields leads to stochastic acceleration. This is the motivation
of this paper to study the beat wave process in the presence of
filamentary structures of the laser beams.

In this paper, the modeling of the filamentation process of
two simultaneously propagating laser beams has been done
by taking into account the ponderomotive nonlinearity. LW
excitation has been investigated at the beat wave frequency
when the laser beams are having filamentary structures.
Modeling of this LW has been done with the help of a
driven oscillator. Our results demonstrate that the LW is
having a turbulent spectrum. We calculated the spectral
index of the complex turbulent spectrum of this LW. The
mechanism of the stochastic acceleration has been presented
in the presence of this Langmuir turbulence.

The organization of this paper is as follows: The formu-
lation of the equations governing the nonlinear effective
dielectric constant of the plasma and the differential
equations governing the nature of the laser intensities is pre-
sented in Section 1. The effect of the cross-focusing of the
laser beams on the excitation of the LW is studied in
Section 2, with a discussion of the Langmuir wave turbu-
lence. Section 3 presents the theory of stochastic acceleration
in the localized Longmuir fields. A brief conclusion is sum-
marized in Section 4.

2. CROSS FOCUSING OF LASER BEAMS

Consider the propagation of two coaxial Gaussian laser
beams of frequencies v1 and v2 along the z direction. The
initial intensity distributions of the beams are given by

E1 · E∗
1

∣∣
Z=0 = E2

10e−r2/r2
1

E2 · E∗
2

∣∣
Z=0 = E2

20e−r2/r2
2

(1)

Where r is the radial coordinate of the cylindrical coordinate
system and r1 and r2 are the initial beam widths. The
expression for the ponderomotive force in the presence of
two laser beams can be written as

F = − e2

4m

DE1 · E∗
1

v2
1

+ DE2 · E∗
2

v2
2

[ ]
, (2)

and the modified electron density due to ponderomotive force
is (Sodha et al., 1976)

N0e = N0e
−

3m

4M
(a1E1 · E∗

1 + a2E2 · E∗
2)

, (3)

where a12 = e2M/18KbT0m2v2
1,2, e and m are the electric

charge and mass, respectively, M is the mass of ion, kb is
the Boltzmann’s constant, T0 is the equilibrium temperature
of the plasma and N0 is the electron density in the absence
of the laser beams.

The effective dielectric constant of the plasma at frequen-
cies v1 and v2 is given by

11,2 = 1 −
v2

p0

v2
1,2

exp −3m

4M
(a1E1 · E∗

1 + a2E2 · E∗
2)

( )
, (4)

where the plasma frequency vp0 is given by vp0
2 ¼ 4pN0e2/m.

The wave equation governing the electric vectors of the
two laser beams in plasma can be written as

∂2E1,2

∂z2
+ 1

r

∂E1,2

∂r
+ ∂E1,2

∂r2
+

v2
1,2

c2
11,2E1,2 = 0 (5)

In writing Eq. (5), we have neglected the ∇(∇ × E) term
which is justified as long as (v2

p0/v
2
1,2)(1/11,2)In11,2 ≤ 1.

Assuming the variations of the electric fields to be equal to
E1,2 ¼ A1,2 (x,y,z)e2ik1,2z, the wave equation becomes

− k2
1,2A1,2 − 2ik1,2A1,2 +

1
r

∂

∂r
+ ∂

∂r2

( )
A1,2 +

v2
1,2

c2
11,2A1,2 = 0

(6)

A1,2 is a complex function of space. Further, it is assumed that
the variation of A1,2 may be presented by (Akhmanov et al.,
1968).

A1,2 = A01,2 r, z( )e−ik1,2S1,2 r,z( ), (7)
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where A1,2 and S1,2 are real functions of space. Substituting
the value of A1,2 from Eq. (7) into Eq. (6) and separating
real and imaginary parts of the resulting equation the follow-
ing set of equations is obtained.

The real part of Eq. (6) is

2
∂S1,2

∂z
+ ∂S1,2

∂z

( )2

=
v2

1,211,2

c2k2
1,2

+ 1

k2
1,2A01,2

∂2A01,2

∂r2
+ 1

r

∂A01,2

∂r

( )
,

(8)

where

A2
01,2 = 1 + a01,2r2

r2
1,2f 2

1,2

+ a21,2r4

r4
1,2f 4

1,2

( )
E2

1,2

f 2
1,2

( )
e

−
r2

r2
1,2 f 2

1,2

( )
,

(9)

are the laser beam intensities, f1,2 are the dimensionless beam
width parameters for beam 1 and 2, respectively, and

S1,2 = r2

2f1,2

df1,2

dz
+ r4

r4
1,2

S21,2. (10)

By substituting Eqs. (4), (9), and (10) into Eq. (8) and equat-
ing the coefficient of r2 on both sides of the resulting
equation, the governing equation of beam width parameters
f1,2 is:

d2f1,2
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= 1
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2
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In a similar way, by equating the coefficient of r4 on both
sides of the resulting equation, we obtained the following
equations

∂S21,2
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01
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Again, the imaginary part of Eq. (6) is given by

∂A2
01,2

∂z
+ ∂S1,2

∂r

∂A2
01,2

∂r
+ A2

01,2
∂2S1,2

∂r2
+ 1

r

∂S1,2

∂r

( )
= 0. (13)

Substituting Eqs. (9) and (10) into Eq. (13) and equating the
coefficient of r2 on both sides of the resulting equation, we
obtained the equations for the coefficient a01,2

∂a01,2

∂z
= −

16S21,2f 2
1,2

r2
1,2

. (14)

In a similar way, by equating the coefficient of r4, the
equation for the coefficient

∂a21,2

∂z
= 8 1 − 3a01,2
( ) S21,2f 2

1,2

r2
1,2

, (15)

is obtained. Eq. (9) gives the intensity profile of the laser
beams in the plasma along the radial direction. The intensity
profile of both laser beams depends on the beam width par-
ameters f1,2 and the coefficients (a01,2 and a21,2) of r2 and r4

in the non-paraxial region. Eq. (11) determines the focusing/
defocusing of the laser beams, along with the distance of
propagation in the plasma. In order to have a numerical
appreciation of the cross-focusing in the non-paraxial
region and the effect of the changing of the parameters of
the plasma and laser beams, we have performed the numeri-
cal computation of Eqs. (11), (12), (14), and (15). We have
also solved the coupled equations and obtained the numerical
results for typical plasma and laser beam parameters. The
following set of the parameters has been used in the numeri-
cal calculation:r1 ¼ 15mm, r2 ¼ 20mm, v1 ¼ 1.776 ×
1014 rad/S, v2 ¼ 1.776 × 1014 rad/S and vpo ¼ 0.3v1. For
an initial plane wave front of the laser beams, the initial con-
dition used here is f1,2 ¼ 1, df1,2/dz ¼ 0, a01,2 ¼ a21,2 ¼ 0
and S21,2 ¼ 0 at z ¼ 0.

Figures 1a and 1b show the intensity profile in the non-
paraxial region observed for the first laser beam at incident
first laser beam intensity a1 E10

2 ¼ 0.5 and a1 E10
2 ¼ 0.7,

respectively. Figures 2a and 2b show the intensity profile
observed for the second laser beam at the incident first
laser intensity a1 E10

2 ¼ 0.5 and a1 E10
2 ¼ 0.7, respectively,

where the intensity of the second laser beam is a2 E20
2 ¼

0.9. Figures 2a and 2b explicitly illustrates the effect of the
first laser beam on the focusing/defocusing and intensity
profile of the second laser beam. It is seen that the rate of
focusing of second laser beam becomes slower and the inten-
sity of laser beam also decreases with the increase of power
of the first laser beam. This is due to the contribution of the
first laser beam in Eq. (11), which governs the beam width
profile f2.
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3. EXCITATION OF BEAT WAVE AT DIFFERENCE
FREQUENCY

In order to observe the effect of cross-focusing of both laser
beams on the LW, the excitation of the LW by the beat wave
process has been studied. To study this excitation, we start
with the following equations:
The continuity equation

∂

∂t
N +∇. N.V( ) = 0. (16)

The momentum equation

m
∂

∂t
V + V .∇( )V

[ ]
= −eE − e

c
V × B

− 2GemV − 3Kb

N
Te∇N.

(17)

Poisson’s equation

∇.E = −4peN, (18)

where N is the total electron density, E is the sum of electric
field vectors of the electromagnetic waves and the self con-
sistent field, V is the sum of drift velocities of the electron
in the electromagnetic field and self consistent field, other
symbols have their usual meanings.

Using Eqs. (16), (17), and (18), we obtain the following
equation governing the LW in a hot plasma:

∂2N

∂t2
+ 2Ge

∂N

∂t
− V2

th∇2N − e

m
∇. NE( )

= ∇. N

2
∇ V .V( ) − V

∂N

∂t

[ ]
,

(19)

where Ge is the Landau damping factor given by Krall and
Trivelpiece (1973), Vth

2 is the thermal velocity of the electron.
Therefore the equation for the LW at the difference frequency
(Dv ¼ v1 2 v2) reduces to

− (v1 − v2)2N1 + 2iGe(v1 − v2)N1

− V2
th∇2N1 + v2

p0
N1 � 1

4
N0∇2(V1.V

∗
2 ),

(20)

where N1 is the component of electron density oscillating at
frequency Dv. The drift velocities of electrons in the pump
field at the frequency v1 and v2, V1,2 are

V1,2 = eE1,2

miv1
Therefore V1.V

∗
2

= C1B1/2
1 B1/2

2 e−C2r2
e−i k1−k2( )z+ k1S1−k2S2( ){ }.

(21)

Where

C1 = e2

m2
0v1v2

.
E10E20

f1f2
, C2 = 1

2r2
1 f 2

1

+ 1

2r2
2 f 2

2

,

B1 = 1 + a01r2

r2
1 f 2

1

+ a21r4

r4
1 f 4

1

and

B2 = 1 + a02r2

r2
2 f 2

2

+ a22r4

r4
2 f 4

2

Eq. (20) contains two Langmuir waves (both at different fre-
quency), the first one is supported by the hot plasma and the
second by the source term at the difference frequency. The
solution of Eq. (20) in the Wentzel-Kramers-Brillouin
approximation can be expressed as

N1 = N10(r, z)e−i( (k1−k2)z+(k1s1−k2s2){ }. (22)

N10 is a slowly varying real functions of the space coordinate.
Using Eqs. (19), (20), (21), and (22), the governing equation
of the ion density oscillating at the difference frequency

Fig. 2. (Color online) Variation of the intensity (E2 . E2*/E100
2 ) of laser

beam 2 with normalized distance and the radial distance at different values
of laser beam 1 intensities (a) a1E10

2 ¼ 0.5 (b) a1E10
2 ¼ 0.7.

Fig. 1. (Color online) Variation of the intensity (E1
. E1*/E100

2 ) of laser
beam 1 with normalized distance and the radial distance at different values
of laser beam 1 intensities. (a) a1E10

2 ¼ 0.5 (b) a1E10
2 ¼ 0.7.
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(Dv ¼ v1 2 v2) can be written as

V2
th

∂2N10

∂z2
+ 2iDkV2

th

∂N10

∂z

+ Dv2 + 2iGeDv+ v2
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Where
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2

∂B2

∂z

( )2
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e
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1 f 2

1
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2r2
2 f 2

2

( )
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To analyze the profile of the LW at the difference frequency
(substituting N1 from Eq. (22) intp Eq. (20) and using
Poisson’s equation), one can obtain the electric vector
E (Dv) of the plasma wave excited at the difference
frequency as

E Dv( ) = −
im0v

2
poC1e−C2r2 e−i({(k1−k2)z+(s1−s2)} B1B2( )1/2

4eDk Dv2 − Dk2V2
th − v2

p0

( )

×

Dk2 + 4C2 − 4r2C2
2

− B′
1

2B1
− B′

2

2B2

( )2

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

+ 1
B1

B′′
1 + B′

1/r

2
− 2rB′

1C2 − B′
1

{ }

+ 1
B2

B′′
2 + B′

2/r

2
− 2rB′

2C2 − B′
2

{ }

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(24)

This is the expression for the electric vector of the excited by
the two laser beams LW at the difference frequency (Dv),
when the effect of cross-focusing of two laser beams and
self-focusing of plasma wave is taken into account. Eq.
(24) gives the behavior of the electric field of the excited
LW at the plasma frequency (vp0 ¼ v1 2 v2). The same
set of parameters as used in Section 1 has been used for
the numerical calculation. The results are presented in the
form of Figures 3a and 3b and it shows that the LW is also

having the splitted profile with minimum power on the
axis. Figures 3a and 3b shows the effect of change in the
power of the first laser beam on the power of the excited
LW. The power of the LW decreases with the increase of
power of the second laser beam.

As the dynamics of the LW is becoming complex, it is
further diagnosed by constructing the phase portrait of this
dynamical system. Figure 4 presents the phase-space plot
(dE/dz, E) for the LW at the difference frequency of two
laser beams and it clearly expresses the chaotic nature of
the observed phase pattern.

Eq. (22) has been solved numerically by using a finite
difference method, for the typical set of parameters as used
in Section 1. By using the Poisson equation, we have
plotted the power spectrum of the LW as shown in
Figure 5. It is observed that the power spectrum is broadened.

Fig. 4. (Color online) Phase plot (i.e. dE/dz vs E) for the electric field of the
Langmuir wave.

Fig. 3. (Color online) Variation of the normalized intensity (E . E*/E100
2 ) of

Electron Plasma Wave with normalized distance and the radial distance at
different values of laser beam 1 intensities (a) a1E10

2 ¼ 0.5 (b) a 1E10
2 ¼ 0.7.
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The observed spectrum is having a high fluctuation level in
the electric field, as it is clearly depicted in Figure 4. This
broadened spectrum of LW is at difference frequency Dv

and it is on account of the driver term in Eq. (23). The
driver term in Eq. (23) is contributed by the beating of two
laser beams, which are localized (having a hot spot/being
filamented). Therefore, the driver term is having a broadened
spectrum near Dk consequently; the driven LW (as given by
Eq. (23)) gives the spectral response of Langmuir turbulence,
as observed here. If one studies the Langmuir turbulent spec-
trum, it is easily noticeable that the spectrum is having one
breaking at k � 4.5. Although, in laser plasma interactions,
this type of breaking is not observed in the study of
Langmuir turbulence, but breaking is observed in the case
of Alfven wave turbulence in space plasmas. Our simulation
results show the breaking point in the spectrum and due to
this, the whole spectrum can be divided in two regions.
Both the regions are having a power dependence kv̄h where
h ¼ 11/2 for region 1 and h ¼ 7/2 for region 2. This LW
having broadened spectra can lead to the stochastic accelera-
tion of electrons. One mechanism of stochastic acceleration is
also suggested in Section 4.

4. STOCHASTIC ACCELERATION

It is obvious from the previous discussion that the fluctuating
electric fields of the LW are having a broad spectrum. From
an initially Maxwellian distribution, the evolution of the vel-
ocity distribution function due to the LW’s-particle inter-
action is modeled within the Fokker-Planck diffusive
formalism where major attention is drawn to the possible
shape of the diffusion operator generating energetic electron
tails in velocity space. For the quasi-linear theory to be appli-
cable, stochastic particle motion or a continuous spectrum of
fluctuating fields must be present to describe the particle
diffusion in the stochastic or fluctuating field regime,

respectively. Our numerical results show the fluctuating
chaotic electric fields in the wave number spectrum. The
interaction of electrons with the localized and fluctuating
fields can be described by the quasi-linear diffusion equation
(Ichimaru, 1973; Fuches, 1985; Rozmus, 1987)

∂f

∂t
= ∂

∂v
D(v)

∂f

∂v

( )
, (25)

where D(v) is the diffusion coefficient and f (t,v) is the vel-
ocity distribution function; the diffusion coefficient in the
quasi-linear theory form is (Fuches, 1985; Rozmus, 1987)

D v( ) = 1
4

e

me

( )2

lA
Ekmin

∣∣ ∣∣2
vkmin

. (26)

Where lA is the periodicity length and e is electronic charge.
The value of |Ek| in Eq. (26) for continuously changing
k can be found from the overall shape of the Fourier
spectrum of the electric field, and the approximate form

Ek| | = Ekmin

∣∣ ∣∣ kmin/k
∣∣ ∣∣[ ]h/2

, where kmax and kmin are the wave
numbers at the edges of the fluctuating field region, kmin ≤
k ≤ kmax, and h is the spectral index.

It is obvious from Figure 5 that the spectrum is having two
types of scaling in the region I and region II. Let us consider
the electron entering in the chaotic region from the region I
with a velocity v ¼ vp/kmax, which is almost oN the order
of vth. By the stochastic process the maximum velocity of
the electron will be vp/k after passing through this region.
In this way, particle gets the energy enhancement in accord-
ance with the difference of kmax and k. Further the particle
enters in region II with the velocity ¼ vp/k and gains
energy by the stochastic process until its velocity is ¼ vp/
kmin. In particular, in region I, the energy enhancement is
almost two times the energy of the particle at the beginning.
After passing through region II the energy of the particle is
enhanced almost four times (of the energy when the particle
enters this region). The distribution function f (v) can be
assumed to be independent of time and reaches its constant
value if the observation times tobs . td (where td is the
characteristic time of the ponderomotive nonlinearity to set
up; and this is on the order of r0/cs; where r0 is the transverse
scale size of the electrostatic plasma wave and cs is the ion
sound speed). In our simulations, this condition is very
well satisfied and hence, one can obtain from Eq. (25) and
Eq. (26) the distribution function. This is given by f (v)/
v22h; and this distribution function is sensitive to the spectral
index h.

5. CONCLUSION

In this paper, we have studied the beat wave excitation of LW
when the two laser beams are filamented. The excited LW is
modeled with the help of a driven oscillator and we found
that LW is having a turbulently broadened spectrum. We

Fig. 5. (Color online) Power spectrums (|Ek|2 vs k) for the electric field of
the Langmuir wave.
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have also proposed the stochastic acceleration process of the
electrons in the presence of this Langmuir turbulence.
Typical energy gain and distribution function of the acceler-
ated electrons (depending on the spectral index h) has also
been presented. This work should find applications in the
beat wave based plasma accelerators.
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joule. Laser Part. Beams 22, 109–114.

DARROW, C., UMSTADTER, D., KATSOULEAS, T., MORI, W.B., CLAYTON,
C.E. & JOSHI, C. (1986). Saturation of beat excited plasma waves
by electrostatic mode coupling. Phys. Rev. Lett. 56, 2629.

DAVIES, J.R., FAJARDO, M., KOZLOVA, M,. MOCEK, T., POLAN, J. &
RUS, B. (2009). filamented plasmas in laser ablation of solids.
Plasma Phys. Contr. Fusion 51, 035013.

DEUTSCH, C., BRET, A., FIRPO, M.C., GREMILLET, L., LEFEBRAVE, E. &
LIFSCHITZ, A. (2008). Onset of coherent electromagnetic struc-
tures in the relativistic electron beam deuterium–tritium fuel
interaction of fast ignition concern. Laser Part. Beams 26,
157–165.

DEUTSCH, C., FURUKAWA, H., MIMA, K., MURAKAMI, K.M. &
NISHIHARA, K. (1996). Interaction physics of the fast ignitor
concept. Phys. Rev. Lett. 77, 2483.

DRAKE, R.P., CAMPBELL, E.M. & ESTRABROOK, K.G. (1988). Direct
evidence of ponderomotive Filamentation in laser-produced
plasma. Phys. Rev. Lett. 61, 2336–2339.

DROMEY, B., BELLEI, C., CARROLL, D.C., CLARKE, R.J., GREEN, J.S.,
KAR, S., KNEIP, S., MARKEY, K., NAGEL, S.R., WILLINGALE, L.,
MCKENNA, P., NEELY, D., NAJMUDIN, Z., KRUSHELNICK, K.,
NORREYS, P.A. & ZEPF, M. (2009). Third harmonic order
imaging as a focal spot diagnostic for high intensity laser solid
interactions. Laser Part. Beams 27, 243–248.

ESAREY, E., TING, A. & SPRANGLE, P. (1988). Relativistic focusing
and beat wave phase velocity control in the plasma beat wave
accelerator. Appl. Phys. Lett. 53, 1266.

FUCHES, V., KRAPEHEV, V., RAM, A. & BERS, A. (1985). Diffusion
of electrons by coherent wave packets, Physica 14, 141–160.

GIULIETTI, D., GALIMBERTI, M., GIULIETTI, A., GIZZI, L.A., LABATE, L.
& TOMASSINI, P. (2005). The laser-matter interaction meets the
high energy physics: Laser-plasma accelerators and bright X/
g-ray sources. Laser Part. Beams 23, 309–314.

HONG, W., HE, Y., WEN, T., DU, H., TENG, J., QING, X., HUANG, Z.,
HUANG, W., LIU, H., WANG, X., HUANG, X., ZHU, Q., DING, Y. &
PENG, H. (2009). Spatial and temporal characteristics of X-ray
emission from hot plasma driven by a relativistic femtosecond
laser pulse. Laser Particle Beams 27, 19–26.

HORA, H. (1969). self focusing of laser beams in plasma by ponder-
omotive forces. Opto-electr. Z. phys. 226, 156–159.

HORA, H. (2007). New aspects for fusion energy using inertial con-
finement. Laser Particle Beams 25, 37–45.

HORA, H. & HOFFMANN, D.H.H. (2008). Using petawatt laser pulses
of picosecond duration for detailed diagnostics of creation and
decay processes of B-mesons in the LHC. Laser Part. Beams
26, 503–505.

ICHIMARU, S. (1973). Basic principles of Plasma Physics. Reading,
MA: Benjamin.

IMASAKI, K. & LI, D. (2008). An approach of laser induced nuclear
fusion. Laser Particle Beams, 26, 3–7.

KANAPATHIPILLAI, M. (2006). Nonlinear absorption of ultra short
laser pulses by clusters. Laser Particle Beams 24, 9.

KARMAKAR, A. & PUKHOV, A. (2007). Collimated attosecond GeV
electron bunches from ionization of high-Z material by radially
polarized ultra-relativistic laser pulses. Laser Particle Beams 25,
371–377.

KAW, P.K., SCHMIDT, G. & WILCOX, T. (1973). Filamentation and
trapping of electromagnetic radiation in plasmas. Phys. Fluids
16, 1522–1525.

KLINE, J.L., MONTGOMERY, D.S., ROUSSEAUX, C., BATON, S.D.,
TASSIN, V., HARDIN, R.A., FLIPPO, K.A., JOHNSON, R.P.,
SHIMADA, T. YIN, L., ALBRIGHT, B.J., ROSE, H.A. & AMIRANOFF,
F. (2009). Investigation of stimulated Raman scattering using a
short-pulse diffraction limited laser beam near the instability
threshold. Laser Particle Beams 27, 185–190.

KRALL, N.A. & TRIVELPIECE, A.W. (1973). Principles of Plasma
Physics. New-York: McGraw-Hill.

KRUER, W.L. (1988). The Physics of Laser Plasma Interaction.
New York: Addison-Wesley Publishing.

KULAGIN, V.V., CHEREPENIN, V.A., HUR, M.S., LEE, J. & SUK, H.
(2008). Evolution of a high-density electron beam in the field
of a super-intense laser pulse. Laser Particle Beams 26,
397–409.

LASKA, L., JUNGWIRTH, K., KRASA, J., KROUSKY, E., PFEIFER, M.,
ROHLENA, K., VELYHAN, A., ULLSCHMIED, J., GAMMINO, S.,
TORRISI, L., BADZIAK, J., PARYS, P., ROSINSKI, M., RYC, L. &
WOLOWSKI, J. (2008). Angular distribution of ions emitted
from laser plasma produced at various irradiation angles and
laser intensities. Laser Particle Beams 26, 555–565.

LIU, J.L., CHENG, X.B., QIAN, B.L., GE, B., ZHANG, J.D. & WANG,
X.X. (2009). Study on strip spiral Blumlein line for the pulsed
forming line of intense electron-beam accelerators. Laser
Particle Beams 27, 95–102.

MALEKYNIA, B., GHORANNEVISS, M., HORA, H. & MILEY, G.H. (2010).
Collective alpha particle stopping for reduction of the threshold
for laser fusion using nonlinear force driven plasma blocks.
Laser Particle Beams 27, 233–241.

MULSER, P., KANATHPILLAI, M. & HOFMANN, D.H.H. (2005). Two
very efficient nonlinear laser absorption mechanisms in clusters.
Phys. Rev. Lett. 95, 103401.

NAKAMURA, T., MIMA, K., SAKAGAMI, H., JOHZAKI, T. & NAGATOMO,
H. (2008). Generation and confinement of high energy electrons

Generation of Longmuir turbulence and stochastic acceleration 291

https://doi.org/10.1017/S0263034610000182 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034610000182


generated by irradiation of ultra-intense short laser pulses onto
cone targets. Laser Particle Beams 26, 207–212.

NICHOLAS, D.J. & SAJJADI, S.G. (1986). Numerical simulation of fila-
mentation in laser-plasma interaction. J. Phys. D: Appl. Phys. 19,
737–749.

PATIN, D., BOURDIER, A. & LEFEBVRE, E. (2005a). Stochastic heating
in ultra high intensity laser–plasma interaction. Laser Part.
Beams 23, 297–302.

PATIN, D., BOURDIER, A. & LEFEBVRE, E. (2007). Stochastic heating
in ultra high intensity laser–plasma interaction. Laser Part.
Beam 25, 169–180.

PATIN, D., BOURDIER, A. & LEFEBVRE, E. (2005b). Stochastic heating
in ultra high intensity laser–plasma interaction. Laser Part.
Beams 23, 599.

PATIN, D., LEFEBVRE, E., BOURDIER, A. & HUMIÈRES, E.D. (2006).
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