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We consider semilinear elliptic problems on two-dimensional hyperbolic space. A
model problem of our study is

−∆g
B2 u = f(x, t), u ∈ H1(B2),

where H1(B2) denotes the Sobolev space on the disc model of the hyperbolic space
and f(x, t) denotes the function of critical growth in dimension 2. We first establish
the Palais–Smale (PS) condition for the functional corresponding to the above
equation, and using the PS condition we obtain existence of solutions. In addition,
using a concentration argument, we also explore existence of infinitely many
sign-changing solutions.
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1. Introduction

In this paper we are concerned with the existence and multiplicity of solutions of
the problem

−∆g
BN

u = f(x, u), u ∈ H1(BN ), (1.1)

where H1(BN ) denotes the Sobolev space on the disc model of the hyperbolic space
B

N endowed with the Poincaré metric gBN , ∆g
BN

denotes the Laplace–Beltrami
operator on B

N , and f : B
N × R → R is a C1 function with f(x,−t) = −f(x, t).

Equation (1.1) has been the subject of intensive research in the past few years
after its connection with various geometrical problems was discovered. For example,
(1.1) with f(x, t) = λt + |t|p−2t, 2 < p � 2N/(N − 2) when N � 3 and 2 < p < ∞
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when N = 2, arises in the study of the Grushin operator [9], the Hardy–Sobolev–
Maz’ya equation [14, 15, 23], and in the prescription of Webster curvature on the
Heisenberg group. In this case, great attention has been devoted to the study of
positive solutions. More precisely, existence, uniqueness, regularity, symmetry and
non-degeneracy properties of positive solutions have been thoroughly investigated
in [12,20,23].

In the seminal paper [23], with the above choice of f and p subcritical, it was
shown that the problem always admits a positive solution. The solutions were also
shown to be unique up to hyperbolic isometries except in the case of dimension
2. However, when N � 3 and p = 2N/(N − 2), i.e. the critical case, the study of
existence of solutions becomes more interesting due to the lack of compactness of
the Sobolev embedding in the hyperbolic space. It has been shown that (1.1) admits
a positive solution provided that

N(N − 2)
4

< λ �
(

N − 1
2

)2

.

This is in contrast with the Euclidean case, where a positive solution exists if and
only if λ = 0, it is unique up to translations and dilations, and is explicitly known.

The next step is to characterize all sign-changing solutions. Existence of sign-
changing solutions has been investigated in [11, 12]. Furthermore, the extension
to general manifolds was also discussed in [10]. The results in [10] hold for quite
general nonlinearities f and non-energy solutions are also dealt with. However, in
the critical case in which p = 2N/(N − 2), the problem becomes more delicate and
has been thoroughly studied in [19]. One of the important results obtained in [19]
is the existence of infinitely many sign-changing radial solutions for N � 7. The
question remains open for N � 6.

In this paper we are interested in problem (1.1) when N = 2 and the nonlinearity
is ‘critical’. Criticality comes from the critical Sobolev embedding or, more precisely,
the Moser–Trudinger (MT) inequality (see [27]).

First let us recall the MT inequality on the hyperbolic space. Recently, Mancini
and Sandeep [24] and Adimurthi and Tintarev [3] proved that MT holds true in
the hyperbolic space. In fact they proved the following theorem.

Theorem (Mancini and Sandeep [24]). Let D be the unit open disc in R
2, endowed

with a conformal metric h = ρgE, where gE denotes the Euclidean metric and
ρ ∈ C2(D), ρ > 0. Then

sup
u∈C∞

0 (D),∫
D

|∇hu|2�1

∫
D

(e4πu2 − 1) dvh < ∞, (1.2)

holds true if and only if h � cgB2 for some positive constant c.

Inequality (1.2) is sharp in the sense that the ‘critical’ constant 4π cannot be
improved. We refer the reader to [8, 25, 26] for the MT inequality in the higher-
dimensional hyperbolic space. However, the existence of extremals of the MT in-
equality is still an open question. In this direction some partial results were obtained
by Manicini et al . [26]. They showed the existence of extremals for a modified MT
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inequality. In particular, they proved that

S̃ := sup
‖u‖H�1

∫
B2

(e4πu2 − 1 − 4πu2) dvg
B2

is finite and attained or, in other words, that the corresponding Euler–Lagrange
equation

−∆g
B2 u − 1

4u = βu(e4πu2 − 1), β =
1∫

B2 u2(e4πu2 − 1) dvg
B2

(1.3)

admits a positive (radial) solution in H, where H denotes closure of C∞
0 (B2) with

respect to the norm

‖u‖2
H =

∫
B2

[|∇g
B2 u|2 − 1

4 |u|2] dvg
B2 .

Now, it is important to remark that the solution of (1.3) u satisfies

|u(x)| � C(1 − |x|2)1/2,

and hence is not an element of H1(B2).
Motivated by the Euler–Lagrange equation (1.3) satisfied by the MT inequality,

we plan to address the question of existence of solutions to problem (1.1) in dimen-
sion 2 and involving exponential nonlinearity. In particular, we are interested in the
existence of positive solutions, sign-changing solutions, and their multiplicity when
N = 2 and

f(x, t) = h(x, t)(eλt2 − 1)

is a function of critical growth (see definition 1.1). Hence, from here onwards we
shall consider the following problem:

−∆g
B2 u = h(x, u)(eλu2 − 1), u ∈ H1(B2). (1.4)

In the Euclidean setting, i.e. when (1.4) is posed on Ω ⊂ R
2, a bounded domain,

many important existence results were obtained; see, for example, [1,4,7,13,17,18,
31,32]. Adimurthi [1] proved existence of non-trivial solutions and also established
the Palais–Smale (PS) condition for the functional corresponding to (1.4). There-
after the focus had been on the existence of sign-changing solutions. Adimurthi and
Yadava [4] obtained existence of sign-changing solutions when supx∈Ω̄ f ′(x, 0) <
µ1(Ω), where µ1(Ω) denotes the first eigenvalue of a Dirichlet boundary-value prob-
lem involving the Euclidean Laplacian. In addition, they also proved, when Ω is
a Euclidean ball, that (1.4) admits infinitely many radial sign-changing solutions.
Also, in the critical case Adimurthi et al . [6] obtained non-existence results under
some suitable conditions for the Euclidean setting. However, a complete study of
the borderline between existence and non-existence was provided by Adimurthi and
Prashanth [2]. All these results use the variational approach in order to tackle exis-
tence results. The key step in using such a theory is the verification of conditions
that allow the use of the PS condition. Recently, Guozhen and Nguyen [29] obtained
existence of solutions of (1.4) without assuming the Ambrosetti–Rabinowitz condi-
tion.
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Before going further, we first introduce the definition of a critical growth function.
In view of the MT embedding in the Euclidean setting, the notion of functions of
critical growth was first introduced by Adimurthi [1]. However, in the same spirit we
intend to generalize the concept to the hyperbolic setting. The recent development
of the MT inequality in the hyperbolic space [24] enables us to define the following
class of critical growth functions.

Definition 1.1. Let h : B
2 × R → R be a C1-function and let λ > 0. The function

f(x, t) = h(x, t)(eλt2 −1) is said to be a function of critical growth on B
2 if f(x, t) >

0 for t > 0, if f(x,−t) = −f(x, t), and if it satisfies the following growth conditions.
There exists a constant M1 > 0 such that, for every ε > 0 and for all (x, t) ∈

B
2 × (0,∞), the following hold:

(C1) h(·, ·) ∈ L∞(B2 × [−L, L]) for all L > 0, and

sup
x∈B2

h(x, t) = O(ta) near t = 0 for some a > 0;

(C2) f ′(x, t) >
f(x, t)

t
, where f ′(x, t) =

∂f

∂t
(x, t);

(C3) F (x, t) � M1(g(x) + f(x, t)), where

F (x, t) =
∫ t

0
f(x, s) ds and g ∈ L1(B2, dvg

B2 );

(C4) for any compact set K ⊂ B
2, it holds that

lim
t→∞

inf
x∈K

h(x, t)eεt2 = ∞ and lim
t→∞

sup
x∈B2

h(x, t)e−εt2 = 0.

For examples of functions of critical growth, we refer the reader to § 2. Moreover,
the class of critical growth functions defined above does not depend on the choice
of the origin, that is, the assumption of radiality can be posed with respect to an
arbitrary point in the hyperbolic space, and changing this point to the origin by a
Möbius transformation will not change the assumptions in definition 1.1.

Now we will briefly discuss some of the hurdles we may encounter in dealing
with the problem in the hyperbolic space. First of all, we have to deal with the
infinite volume case, which makes the problem very different from the bounded
one. Secondly, one of the major difficulties comes from the lack of compactness.
The lack of compactness can occur due to the concentration phenomenon as well
as through the vanishing of mass in the sense of the concentration-compactness of
Lions (see [21]). In the Euclidean case, by dilating a given sequence we can assume
that all the functions involved have a fixed positive mass in a given ball, and hence
we can overcome the vanishing of the mass, but in the case of the hyperbolic space
B

2 this is not possible as the conformal group of B
2 is the same as the isometry

group. We will overcome this difficulty by using the growth estimates near ∞.
To the best of our knowledge, this is the first paper that deals with the critical

growth function in the two-dimensional hyperbolic space. We establish the PS con-
dition for the functional corresponding to (1.4) (see theorem 4.1), which leads us
to the following existence theorem.
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Theorem 1.2. Let f be a function of critical growth. Furthermore, assume that f
is radial and that for any K ⊂ B

2 compact there holds

lim
t→∞

inf
x∈K

h(x, t)t = ∞. (1.5)

Then (1.4) admits a positive solution.

Remark. If we write (1.4) in the Euclidean local coordinate, then theorem 1.2 tells
us that

∆u =
(

2
1 − |x|2

)2

h(|x|, u)(eλu2 − 1) (1.6)

has a radial solution in H1
0 (B2) under the assumption that h(x, u) = O(ua) for

some a > 0 near u = 0. This allows us to consider the quadratic singularity (or
integrability) at the boundary, i.e. that of order 1/(1 − |x|2)2.

Remark. Theorem 1.2 is also true for f non-radial with some assumption on the
growth of f . Please see theorem B.1 for further details.

Also, using variational methods and a concentration argument we obtain the
following result.

Theorem 1.3. Let f be a function of critical growth, radial, and given any N > 0
and compact set K ⊂ B

2, there exists tN,K > 0 such that

inf
x∈K

h(x, t)t � eNt ∀t � tN,K (1.7)

holds. Then (1.4) has a radial sign-changing solution.

Remark. In theorem 1.3, condition (1.7) is necessary in order to get a radial sign-
changing solution. If we consider f(x, t) = (1 − |x|2)2tet2+|t|a , 0 < a � 1, then
by conformal invariance, (1.4) does not admit any radial sign-changing solution
(see [5]).

Once we obtain existence of a radial sign-changing solution, we can go further
and investigate their multiplicity. The main idea is the following: for a positive
integer k, one can divide B

2 into k annuli and, considering functions satisfying
certain conditions on each annuli, one can get existence of solution(s) having k
nodes. More precisely, we have the following theorem.

Theorem 1.4. Let f be a function of critical growth, radial, and satisfying condi-
tion (1.7). Then (1.4) has infinitely many radial sign-changing solutions.

Remark. Theorem 1.4 gives an affirmative answer to the question of existence of
infinitely many sign-changing radial solutions for problem (1.1) in dimension 2.

We also give existence of non-radial solutions to the above problem. Please see
theorem B.1 for a discussion and the proof of existence of non-radial solutions.

The paper is organized as follows. We divide the paper into seven sections. The
preliminaries and some technical frameworks are discussed in §§ 2 and 3. The PS
condition and several convergence results are devoted to § 4. The results of § 4 are
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used to prove the main existence theorems (theorems 1.2–1.4) in § 5. In appendix A
we give a sketch of the proof of lemma 5.2. The final section, appendix B, is devoted
to the existence of non-radial solutions.

2. Notation and functional analytic preliminaries

In this section we introduce some of the notation and definitions used in this paper
and also recall some of the embeddings related to the Sobolev space in the hyper-
bolic space. We also obtain estimates for radial functions.

We will denote by B
2 the disc model of the hyperbolic space, i.e. the unit disc

equipped with the Riemannian metric

gB2 :=
2∑

i=1

2
(1 − |x|2)2 dx2

i .

To simplify our notation we will denote gB2 by g.
The corresponding volume element is given by

dvg =
2

(1 − |x|2)2 dx,

where dx denotes the Lebesgue measure on R
2. The hyperbolic gradient ∇g and

the hyperbolic Laplacian ∆g are given by

∇g =
(

1 − |x|2
2

)2

∇, ∆g =
(

1 − |x|2
2

)2

∆.

Notation (Sobolev space). We will denote by H1(B2) the Sobolev space on the
disc model of the hyperbolic space B

2.
Throughout this paper we denote the norm of H1(B2) by

‖u‖ :=
( ∫

B2
|∇gu|2 dvg

)1/2

.

2.1. A sharp Poincaré–Sobolev inequality (see [23])

For N � 3 and p ∈ (1, (N +2)/(N −2)] there exists an optimal constant SN,p > 0
such that

SN,p

( ∫
BN

|u|p+1 dvBN

)2/(p+1)

�
∫

BN

[
|∇BN u|2 − (N − 1)2

4
u2

]
dvBN (2.1)

for every u ∈ C∞
0 (BN ). If N = 2, any p > 1 is allowed.

A basic fact is that the bottom of the spectrum of −∆g on B
2 is

1
4

= inf
u∈H1(B2)\{0}

∫
B2 |∇gu|2 dvg∫

B2 |u|2 dvg
. (2.2)

Also, from conformal invariance we have the following lemma.
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Lemma 2.1. If u ∈ H1(B2), then∫
B2

|∇gu|2 dvg =
∫

B2
|∇u|2 dx, (2.3)

where ∇ denotes the Euclidean gradient on R
2.

Proof. In local coordinates we have
∫

B2
|∇gu|2 dvg =

∫
B2

(
1 − |x|2

2

)2

|∇u|2
(

2
1 − |x|2

)2

dx

=
∫

B2
|∇u|2 dx. (2.4)

Let H1
R(B2) denote the subspace

H1
R(B2) := {u ∈ H1

R(B2) : u is radial}.

Since the hyperbolic sphere with centre 0 ∈ B
2 is also a Euclidean sphere with

centre 0 ∈ B
2 (see [33]), H1

R(B2) can also be seen as the subspace consisting of
hyperbolic radial functions.

Proposition 2.2. Let u ∈ H1
R(B2). Then

|u(x)| � ‖u‖
(4π)1/2

(1 − |x|2)1/2

|x|1/2 . (2.5)

Proof. Since u ∈ H1
R(B2), we have u(x) = u(|x|) by denoting the radial function by

u. For u radial, in hyperbolic polar coordinates |x| = tanh 1
2 t and we have∫

B2
|∇gu|2 dvg = ω2

∫ ∞

0
sinh t|u′(t)|2 dt < ∞.

Thus, for u ∈ H1
R(B2) and t < τ ,

|u(τ) − u(t)| =
∣∣∣∣
∫ τ

t

u′(s) ds

∣∣∣∣ �
( ∫ ∞

0
(sinh s)|u′(s)|2 ds

)1/2( ∫ ∞

t

ds

sinh s

)1/2

� ‖u‖H1

(
1

2π sinh t

)1/2

. (2.6)

Since ∫
B2

u2 dvg = ω2

∫ ∞

0
u2 sinh t dt < ∞,

this implies that lim infτ→∞ u(τ) = 0, and we obtain

|u(t)| � ‖u‖H1

(
1

2π sinh t

)1/2

. (2.7)
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Now, substituting t = 2 tanh−1(|x|),

sinh t =
et − e−t

2
=

e2 tanh−1(|x|) − e−2 tanh−1(|x|)

2

=
(

exp
(

2 log
(

1 + |x|
1 − |x|

))
− 1

)(
2 exp

(
log

(
1 + |x|
1 − |x|

)))−1

=
2|x|

(1 − |x|2) , (2.8)

and hence, substituting (2.8) into (2.7), we get

|u(x)| � ‖u‖
(4π)1/2

(1 − |x|2)1/2

|x|1/2 .

This completes the proof of the proposition.

Remark. The above proposition is redundant. Instead one can use the standard
estimate

|u(r)| � 1
(2π)1/2

√
log

1
r

‖∇u‖2

on the ball (see [34]), which is sharper than (2.5) as r := |x| → 1. However, for the
sake of notational brevity we use estimate (2.5), which does not weaken the results
we obtain in this paper.

2.2. Compactness lemma

Next we shall prove the compactness lemma of Lions [22] in the hyperbolic setting.
The main ingredient of the proof is using a suitable covering of hyperbolic space
with a Möbius transformation developed by Adimurthi and Tintarev [3]. Adopting
their approach we prove the following lemma.

Lemma 2.3 (hyperbolic version of Lions’s lemma). Let {uk : ‖uk‖ = 1} be a se-
quence in H1(B2) converging weakly to a non-zero function u. Then for every p <
(1 − ‖u‖2)−1,

sup
k

∫
B2

(e4πpu2
k − 1) dvg < ∞. (2.9)

Proof. Let us fix an open set U in B
2 such that Ū ⊂ B

2 and define

‖u‖2
U =

∫
U

|∇u|2 dx +
∫

U

u2
(

2
1 − |x|2

)2

dx. (2.10)

Then, following [3], we can conclude that there exists a number q > 0 such that for
all u ∈ H1(B2) with ‖u‖U < 1 there holds∫

U

(equ2 − 1) dvg � C
‖u‖2

U

1 − ‖u‖2
U

. (2.11)
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Let us fix a uk. Let {φi}i be a countable family of Möbius transforms such that
{φi(U)}i covers B

2, having finite multiplicity, say R0. Then define

Sk :=
{

i : ‖uk ◦ φi‖2
U >

q

8πp

}
. (2.12)

Proceeding as in [3], we can show that number of elements in Sk is less than
40πpR0/q + 1 and ∑

i/∈Sk

∫
φi(U)

(e4πpu2
k − 1) dvg � C, (2.13)

where C is independent of uk. Also we have∑
i∈Sk

∫
φi(U)

(e4πpu2
k − 1) dvg � C

∑
i∈Sk

∫
B2

(e4πp(u◦φi)2k − 1)

� C

(
40πpR0

q
+ 1

)
, (2.14)

by ‖v◦φi‖ = ‖v‖ for all v ∈ H1(B2), and the Euclidean version of Lions’s lemma [22].
Therefore, from (2.13) and (2.14) we get (2.9).

Finally, we end this section with some examples of functions having critical
growth and the definition of a Moser function.

Examples (functions of critical growth).

(i) f(x, t) = t(eλt2 − 1) is an example of a function of critical growth. This
example suggests that we can allow the singularity at the boundary of the
ball of order 1/(1 − |x|2)2.

(ii) Let h(x, t) ∈ C1(B2 × (0,∞)) be a positive function satisfying (C1), (C4) and
h′(x, t) � h(x, t)/t. Then f(x, t) = h(x, t)(eλt2 − 1) is a function of critical
growth.

Proof. One can easily show that f ′(x, t) > f(x, t)/t. It remains to show that f
satisfies (C3).

For t � 1/
√

λ we have, from the definition of F (x, t),

F (x, t) =
∫ t

0
f(x, s) ds � tf(x, t) � 1√

λ
f(x, t).

For t > 1/
√

λ we have

F (x, t) =
∫ t

0
h(x, s)(eλs2 − 1) ds

=
1
2λ

∫ t

0

h(x, s)
s

d
ds

(eλs2 − λs2) ds

=
1
2λ

∫ t

0

1
s

[
h(x, s)

s
− h′(x, s)

]
(eλs2 − λs2) ds +

1
2λ

h(x, t)
t

(eλt2 − λt2).
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Therefore, using h′(x, t) � h(x, t)/t, we get

F (x, t) � Cf(x, t).

This proves that f satisfies (C3).

Definition (Moser function). For 0 < l < R0 < 1, ml,R0(x) is the Moser function
defined by

ml,R0(x) =
1√
2π

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(log(R0/l))1/2 if 0 < |x| < l,

log(R/|x|)
(log(R0/l))1/2 if l < |x| < R0,

0 otherwise.

Then ∫
B2

|∇gml,R0 |2B2 dvg =
∫

B2
|∇ml,R0 |2 dx = 1.

3. Variational framework

We use variational methods in order to prove the main theorems. Taking advantage
of the MT inequality and the radial estimate (2.5), we shall derive a variational
principle for (1.4) in the Sobolev space H1

R(B2). The solutions of (1.4) are the
critical points of the energy functional given by

Jλ(u) = 1
2

∫
B2

|∇gu|2 dvg −
∫

B2
F (x, u) dvg. (3.1)

Indeed, by proposition 3.1 and lemma 4.2, Jλ is a well-defined C1 functional on
H1

R(B2). Assuming f to be radial in its first variable, it is enough to find critical
points of Jλ on H1

R(B2) by the principle of symmetric criticality [30]. Hence, from
now on we shall denote f(x, t) := g(|x|, t) by f .

Proposition 3.1. If u ∈ H1
R(B2), then∫

B2
F (x, u) dvg < ∞. (3.2)

Proof. Without loss of generality we can assume that u � 0. By (C2) we have for
all t > 0,

F (x, t) � 1
2 tf(x, t). (3.3)

Hence, using radial estimate (2.5) and (3.3), we have∫
B2

F (x, u) dvg <
1
2

∫
B2

uf(x, u) dvg

=
∫

B2∩{|x|>1/2}
uf(x, u) dvg +

∫
B2∩{|x|<1/2}

uf(x, u) dvg. (3.4)
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Consider the first integral of (3.4):∫
B2∩{|x|>1/2}

uf(x, u) dvg =
∫

B2∩{|x|>1/2}
uh(x, u)(eλu2 − 1) dvg

=
∫

B2∩{|x|>1/2}
uh(x, u)

(eλu2 − 1)
(1 − |x|2)2 dx

� C‖u‖3/2
∫

B2∩{|x|>1/2}
(1 − |x|2)−1/2 dx < ∞. (3.5)

The second integral of (3.4) is finite by using the Euclidean version of the MT
inequality (1.2). Hence, this proves the proposition.

Before going further, we need some notation and definitions. Let f be a function
of critical growth on B

2. Define

M =
{

u ∈ H1
R(B2) \ {0} : ‖u‖2 =

∫
B2

f(x, u)u dvg

}
,

M1 = {u ∈ M : u± ∈ M},

Iλ(u) = 1
2

∫
B2

f(x, u)u dvg −
∫

B2
F (x, u) dvg,

1
2η(f)2 = inf

u∈M
Jλ(u), 1

2η1(f)2 = inf
u∈M1

Iλ(u).

We show the existence of solutions of (1.4) by minimizing the functional Jλ over
M. However, the main difficulty lies in the validity of the PS condition. The next
section is devoted to the study of the PS condition.

4. Palais–Smale condition and some convergence results

In this section we study the PS condition of the problem

−∆gu = f(x, u) in B
2,

u ∈ H1(B2),

}
(4.1)

where f(x, u) denotes the function of critical growth. We say that uk ∈ H1(B2) is
a PS sequence for Jλ at a level c if Jλ(uk) → c and J ′

λ(uk) → 0 in H−1(B2). We
show that if we restrict Jλ to H1

R(B2), then Jλ satisfies the (PS)c condition for all
c ∈ (0, 2π/λ). To be precise, we state the following theorem.

Theorem 4.1. Let f(x, t) = h(x, t)(eλt2 − 1) be a function of critical growth on B
2

and let Jλ : H1
R(B2) → R be defined as in (3.1). Then

(i) Jλ satisfies the PS condition on (0, 2π/λ);

(ii) moreover, if h satisfies

lim
t→∞

inf
x∈K

h(x, t)t = ∞ for any compact subset K of B
2, (4.2)

then
0 < η(f)2 <

4π

λ
.
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Theorem 4.1 will play a crucial role in the study of existence of solutions. The
main difficulties in studying the PS condition come from the concentration phe-
nomenon and through vanishing of mass. However, vanishing can be handled by
using the radial estimate proved in § 2 (lemma 2.5). Keeping this in mind, we plan
to address some important propositions involving convergence of critical growth
functions. The propositions and lemmas needed in the proof of theorem 4.1 are
collected below.

Lemma 4.2. Let f(x, t) = h(x, t)(eλt2 − 1) be a function of critical growth. Then
we have the following.

(i) f(x, u) ∈ Lp(B2, dvg) for all p ∈ [1,∞) and u ∈ H1(B2).

(ii) Iλ(u) � 0 for all u and Iλ(u) = 0 if and only if u ≡ 0. Moreover, given ε > 0,
there exists a constant C0(ε) > 0 such that for all u ∈ H1

R(B2),∫
B2

f(x, u)u dvg � C0(ε)(1 + Iλ(u)) + ε‖u‖2. (4.3)

Proof. (i) By (C4), for a given ε > 0 there exists an N0 > 0 such that for all t � N0
we have

f(x, t) � C(e(λ+ε)t2 − 1).

For p ∈ [1,∞), using the inequality (et − 1)p � (ept − 1) for t � 0 and the
hyperbolic version of the MT inequality (1.2), we have∫

B2
|f(x, u)|p dvg �

∫
{|u|>N0}

|f(x, u)|p dvg +
∫

{|u|�N0}
|f(x, u)|p dvg

� C

∫
B2

(ep(λ+ε)u2 − 1) dvg + C

∫
B2

(eλpu2 − 1) dvg,

< +∞.

(ii) By (C2), f(x, t)t − 2F (x, t) � 0 and equal to 0 if and only if t = 0; hence, this
implies that

Iλ(u) � 0 and Iλ(u) = 0 ⇐⇒ u ≡ 0.

For the second part it is enough to prove the inequality for all u ∈ H1
R(B2) with

u � 0. Fix ε > 0. By (C3), F (x, t) � M1(g(x) + f(x, t)) for some positive function
g ∈ L1(B2, dvg). Then

2Iλ(u) =
∫

B2
[f(x, u)u − 2F (x, u)] dvg

�
∫

B2
[f(x, u)u − 2M1(g(x) + f(x, t))] dvg

=
∫

B2
f(x, u)(u − 2M1) dvg − 2M1

∫
B2

g(x) dvg

�
∫

B2
f(x, u)(u − 2M1) dvg − C. (4.4)
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Observing that u − 2M1 � 1
2u on {u � 4M1}, we have∫

B2
f(x, u)(u − 2M1) dvg

=
∫

B2∩{u�4M1}
f(x, u)(u − 2M1) dvg +

∫
B2∩{u>4M1}

f(x, u)(u − 2M1) dvg

�
∫

B2∩{u�4M1}
f(x, u)(u − 2M1) dvg + C

∫
B2∩{u>4M1}

f(x, u)u dvg. (4.5)

Therefore, from (4.4) and (4.5) we have∫
B2∩{u>4M1}

f(x, u)u dvg � C

∣∣∣∣
∫

B2∩{u�4M1}
f(x, u)(u − 2M1) dvg

∣∣∣∣
+ C

∫
B2

f(x, u)(u − 2M1) dvg

� C

∣∣∣∣
∫

B2∩{u�4M1}
f(x, u)(u − 2M1) dvg

∣∣∣∣ + C(1 + Iλ(u)).

(4.6)

Next we estimate ∣∣∣∣
∫

B2∩{u�4M1}
f(x, u)(u − 2M1) dvg

∣∣∣∣.
Let δ > 0 be a small number, depending on ε, whose smallness will be decided

later. By the radial estimate (2.5), there exists a compact set K0 such that the set
{u > δ} is contained in K0 for every u ∈ H1

R(B2). We can write∫
{u�4M1}

f(x, u) dvg =
∫

{δ<u�4M1}
h(x, u)(eλu2 − 1) dvg

+
∫

{u�δ}
h(x, u)(eλu2 − 1) dvg

� C +
∫

{u�δ}
h(x, u)(eλu2 − 1) dvg. (4.7)

Now, by (C1) we can estimate the last integral in (4.7) as∫
{u�δ}

h(x, u)(eλu2 − 1) dvg � C

∫
{u�δ}

ua(eλu2 − 1) dvg

� Cδa

∫
B2

u2 dvg

� Cδa‖u‖2, (4.8)

where the constant C in (4.8) does not depend on u. Now, choosing 6M1Cδa < ε/2
we get ∣∣∣∣

∫
B2∩{u�4M1}

f(x, u)(u − 2M1) dvg

∣∣∣∣ � C +
ε

2
‖u‖2. (4.9)
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Similarly, it follows that∫
B2∩{u�4M1}

f(x, u)u dvg � C +
ε

2
‖u‖2. (4.10)

Hence, from (4.6), (4.9) and (4.10) we get∫
B2

f(x, u)u dvg =
∫

B2∩{u�4M1}
f(x, u)u dvg +

∫
B2∩{u>4M1}

f(x, u)u dvg

� C0(1 + Iλ(u)) + ε‖u‖2.

Lemma 4.3. Let f(x, t) = h(x, t)(eλt2 − 1) be a function of critical growth. Then

c̃2 := sup

{
c2 : sup

u∈H1
R(B2),

‖u‖�1

∫
B2

f(x, cu)u dvg < +∞
}

=
4π

λ
.

Proof. Fix α ∈ (0, 1) and ε > 0. By (C4), there exist constants t1, t2, C1(ε), C2(ε) >
0 such that

f(x, t)t � C1(ε)(eλ(1+ε)t2 − 1) for all t � t1, (4.11)

f(x, t)t � C2(ε)(eλ(1−ε)t2 − 1) for all t � t2 and |x| � α. (4.12)

Now assume c > 0 to be such that

sup
u∈H1

R(B2),
‖u‖�1

∫
B2

f(x, cu)u dvg < +∞.

Then, using (4.12),∫
B2

f(x, cu)u dvg =
1
c

∫
B2

f(x, cu)(cu) dvg

� 1
c

∫
{|x|�α}∩{u�t2/c}

f(x, cu)(cu) dvg

� C2(ε)
c

∫
{|x|�α}∩{u�t2/c}

[eλ(1−ε)c2u2 − 1] dvg (4.13)

and ∫
{|x|�α}∩{u�t2/c}

[eλ(1−ε)c2u2 − 1] dvg � C(α, t2, c). (4.14)

Therefore, (4.13) and (4.14) together give∫
{|x|�α}

(eλ(1−ε)c2u2 − 1) dvg � C(α, ε, c)
∫

B2
f(x, cu)u dvg + C(α, t2, c). (4.15)

Define

C̃ =
1√
4π

[
1 − α2

α

]1/2

.
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Now, by the radial estimate we have that for all u ∈ H1
R(B2) with ‖u‖ � 1,

|u(x)| � C̃ whenever |x| > α.

Therefore, we have∫
{|x|>α}

(eλ(1−ε)c2u2 − 1) dvg �
∫

{|u|�C̃}
(eλ(1−ε)c2u2 − 1) dvg

� C

∫
{|u|�C̃}

u2eλ(1−ε)c2u2
dvg

� C

∫
B2

u2 dvg

� C‖u‖2

� C. (4.16)

Taking into account (4.15) and (4.16), we obtain

sup
u∈H1

R(B2),
‖u‖�1

∫
B2

(eλ(1−ε)c2u2 − 1) dvg < +∞. (4.17)

Now, using the hyperbolic version of the MT inequality (1.2), we have (1 − ε)c2 �
4π/λ. Since ε > 0 was arbitrary, we deduce that c̃2 � 4π/λ.

Now, suppose that c̃2 < 4π/λ. Choose ε > 0 such that (1 + ε)3c̃2 < 4π/λ. Then
for all u ∈ H1

R(B2) with ‖u‖ � 1 we have∫
B2

f(x, (1 + ε)c̃u)u dvg � C

∫
{|u|>t1/(1+ε)c̃}

f(x, (1 + ε)c̃u)(1 + ε)c̃u dvg

+ C

∫
{|u|�t1/(1+ε)c̃}

f(x, (1 + ε)c̃u)(1 + ε)c̃u dvg

� C

∫
B2

(eλ(1+ε)3c̃2u2 − 1) dvg

+ C

∫
{|u|�t1/(1+ε)c̃}

(eλ(1+ε)2c̃2u2 − 1) dvg

� C + C

∫
{|u|�t1/(1+ε)c̃}

u2eλ(1+ε)2c̃2u2
dvg

� C + C

∫
B2

u2 dvg

� C + C‖u‖2. (4.18)

As a consequence, we derive that

sup
u∈H1

R(B2),
‖u‖�1

∫
B2

f(x, (1 + ε)c̃u)u dvg < +∞,

which contradicts the definition of c̃. So we must have c̃2 = 4π/λ.
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Proposition 4.4. Let {uk} be a sequence in H1
R(B2) such that uk converges weakly

to some u in the space H1
R(B2) and assume that

sup
k

∫
B2

f(x, uk)uk dvg < +∞.

Then we have the following convergence results:

(i) lim
k→∞

∫
{|x|<α}

f(x, |uk|) dvg =
∫

{|x|<α}
f(x, |u|) dvg for any α < 1,

(ii) lim
k→∞

∫
B2

F (x, uk) dvg =
∫

B2
F (x, u) dvg.

Proof. (i) Fix α > 0. Then we have∫
{|x|<α}∩{|uk|>N}

f(x, |uk|) dvg � 1
N

∫
B2

f(x, |uk|)|uk| dvg � C

N
.

Therefore,∫
{|x|<α}

f(x, |uk|) dvg =
∫

{|x|<α}∩{|uk|�N}
f(x, |uk|) dvg

+
∫

{|x|<α}∩{|uk|>N}
f(x, |uk|) dvg

=
∫

{|x|<α}∩{|uk|�N}
f(x, |uk|) dvg + O

(
1
N

)
.

Hence, using the dominated convergence theorem, letting k → ∞ followed by N →
∞ we have

lim
k→∞

∫
{|x|<α}

f(x, |uk|) dvg =
∫

{|x|<α}
f(x, |u|) dvg. (4.19)

(ii) Fix some α ∈ (0, 1) close to 1. Since uk ⇀ u in H1
R(B2) we have

sup
k

‖uk‖ � C < +∞.

So by radial estimate (2.5),

sup
k

|uk(x)| � C(1 − |x|2)1/2 for |x| > α

so that
F (x, uk) � C(1 − |x|2)3/2 for |x| > α. (4.20)

Since (1−|x|2)3/2 ∈ L1({|x| > α}, dvg), by the dominated convergence theorem we
get

lim
k→+∞

∫
{|x|>α}

F (x, uk) dvg =
∫

{|x|>α}
F (x, u) dvg. (4.21)

For {|x| < α}, we can use (C3) and (4.19) to conclude that

lim
k→+∞

∫
{|x|<α}

F (x, uk) dvg =
∫

{|x|<α}
F (x, u) dvg. (4.22)

So (4.21) and (4.22) together prove the lemma.
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Proposition 4.5. Let {uk} and {vk} be bounded sequences in H1
R(B2) converging

weakly to u and v, respectively. Furthermore, assume that

sup
k

‖uk‖2 <
4π

λ
.

Then, for every l � 2,

lim
k→+∞

∫
B2

f(x, uk)
uk

vl
k dvg =

∫
B2

f(x, u)
u

vl dvg. (4.23)

Proof. Fix δ > 0. Since vk converges weakly to v, we have supk ‖vk‖ < +∞. Let
C̃2 > 4π/λ be such that

sup
k

‖vk‖ � C̃.

Define

α =
1
C̃

[√
C̃2 +

(
2πδ2

C̃

)2

− 2πδ2

C̃

]
.

Then, by the radial estimate, it holds that

sup
k

|uk(x)| � δ whenever |x| > α (4.24)

and

sup
k

|vk(x)| � C̃√
4πα

(1 − |x|2)1/2 whenever |x| > α. (4.25)

Now, since supk ‖uk‖2 < 4π/λ, we can choose ε > 0 sufficiently small and p > 1
such that

(λ + ε)p‖uk‖2 < 4π for all k. (4.26)

By (C4), there exists N0 > 0 such that for all t � N0,

h(x, t) � Ceεt2 for all x.

Therefore, for all N � N0, it holds that∫
{|uk|>N}

|f(x, uk)|p dvg =
∫

{|uk|>N}
|h(x, uk)|p(eλu2

k − 1)p dvg

� C

∫
{|uk|>N}

eεpu2
k(eλpu2

k − 1) dvg

� C

∫
{|uk|>N}

(e(λ+ε)pu2
k − 1) dvg

� C

∫
B2

(e(λ+ε)p‖uk‖2(uk/‖uk‖)2 − 1) dvg

� C1. (4.27)

Let q be the conjugate exponent of p. Then

sup
k

∫
B2

|vk|lq dvg � C sup
k

‖vk‖lq � C(l, q). (4.28)
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By (4.27), (4.28) and Hölder’s inequality, we have∫
{|uk|>N}

f(x, uk)
uk

vl
k dvg = O

(
1
N

)
. (4.29)

Now, using (4.24) and (4.25), we get∣∣∣∣
∫

{|uk|�δ}

f(x, uk)
uk

vl
k dvg

∣∣∣∣ �
∫

{|uk|�δ}
|h(x, uk)| (e

λu2
k − 1)

|uk| |vl
k| dvg

�
∫

{|uk|�δ}
|h(x, uk)| |uk| (e

λu2
k − 1)

|u2
k| |vl

k| dvg

� C

∫
{|uk|�δ}

|uk| |vl
k| dvg

� C

∫
{|x|>α}

(1 − |x|2)(1+l)/2 dvg + O(δ)

= ◦(1) as δ → 0. (4.30)

From (4.29) and (4.30) we get∫
B2

f(x, uk)
uk

vl
k dvg =

∫
{δ�|uk|�N}

f(x, uk)
uk

vl
k dvg + O

(
1
N

)
+ O(δ). (4.31)

Now the proof follows by the dominated convergence theorem, and thereafter by
letting N → ∞, δ → 0.

Remark. By taking vk = uk and l = 2, we see that if supk ‖uk‖2 < 4π/λ, then∫
B2

f(x, uk)uk dvg →
∫

B2
f(x, u)u dvg.

In general it is difficult to prove that supk ‖uk‖2 < 4π/λ from the functional itself.
However, we need this compactness criterion in order to get the existence of a
minimizer on M, and hence a solution of (1.4).

Next we will investigate under which circumstances we can pass to the limit
without the condition mentioned in the above remark. We use the hyperbolic version
of Lions’s lemma (lemma 2.3) in order to give an affirmative answer on passing to
the limit.

Proposition 4.6. Let {uk} be a sequence converging weakly to a non-zero function
u in H1

R(B2) and assume that

(i) there exists c ∈ (0, 2π/λ) such that Jλ(uk) → c,

(ii) ‖u‖2 �
∫

B2
f(x, u)u dvg,

(iii) sup
k

∫
B2

f(x, uk)uk dvg < +∞.
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Then

lim
k→∞

∫
B2

f(x, uk)uk dvg =
∫

B2
f(x, u)u dvg.

Proof. Arguing as in the proof of [1, lemma 3.3] and using the hyperbolic version
of Lions’s lemma (lemma 2.3), we get

sup
k

∫
B2

(e(1+ε)λu2
k − 1) dvg < +∞.

By (C4), we can assume that

M2 = suph(x, t)te−λεt2/2 < +∞,

so that∫
{|uk|>N}

f(x, uk)uk dvg =
∫

{|uk|>N}
h(x, uk)uk(eλu2

k − 1) dvg

�
∫

{|uk|>N}
(h(x, uk)uke−λεu2

k)(e(1+ε)λu2
k − 1) dvg

� M2e−λεN2/2
∫

B2
(e(1+ε)λu2

k − 1) dvg

� Ce−λεN2/2 (4.32)

holds.
Fix δ > 0 and let C̃ be such that supk ‖uk‖ � C̃ and let α depending on C̃ be as

before. Then α = 1 − O(δ) as δ → 0, and there holds

|uk(x)| � C(1 − |x|2)1/2 whenever |x| > α.

By using the above, we have∫
{|uk|�δ}

f(x, uk)uk dvg �
∫

{|uk|�δ}
h(x, uk)uk(eλu2

k − 1) dvg

� C

∫
{|x|>α}

|uk|3 dvg + O(δ)

� C

∫
{|x|>α}

(1 − |x|2)3/2 dvg + O(δ)

� C(1 − α2)1/2 + O(δ)

= O(δ). (4.33)

Thus, from (4.32) and (4.33) we get∫
B2

f(x, uk)uk dvg =
∫

{δ�|uk|�N}
f(x, uk)uk dvg + O(e−λεN2/2) + O(δ).

So the lemma follows by letting k → ∞ and then letting N → ∞, δ → 0
successively.
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Lemma 4.7. Let f(x, t) = h(x, t)(eλt2 − 1) be a function of critical growth. Fix
0 < R0 < 1 and 0 < l0 < R0. Define

h0,l0(t) := inf
x∈Bl0 (0)

h(x, t) and M0 := sup
t�0

h0,l0(t)t,

and

k0 =

⎧⎨
⎩

2
M0(R2

0 − l20)
if M0 < +∞,

0 if M0 = +∞.

Let a � 0 be such that

sup
‖u‖�1

∫
B2

f(x, au)u dvg � a.

If k0/λ < 1, then a2 < 4π/λ.

Proof. From lemma 4.3, we have a2 � 4π/λ. Suppose, if possible, that a2 = 4π/λ.
Let ml,R0 be the Moser function defined in § 2. Then ml,R0 is constant in {|x| < l}.

Let t = aml,R0 when |x| < l, and note the following trivial inequality:

1 � 1
(1 − |x|2)2 � 1

(1 − l2)2
for 0 < |x| < l.

Then we have

a2 �
∫

B2
f(x, aml,R0)(aml,R0) dvg

�
∫

{|x|<l}
f(x, t)t dvg

�
∫

{|x|<l}
h(x, t)(eλt2 − 1)t dx

� 2πh0,l0(t)t(e
λt2 − 1)l2. (4.34)

Now, by our assumption that a2 = 4π/λ, using eλt2 = R2
0/l2 and (4.34) we get

4π

λ
� 2πh0,l0(t)t(R

2
0 − l2) � 2πh0,l0(t)t(R

2
0 − l20) � 2πM0(R2

0 − l20).

This gives λ � 2/M0(R2
0 − l20) = k0, which is a contradiction. Hence, we must have

a2 < 4π/λ.

Now we can prove theorem 4.1.

Proof of theorem 4.1. Let {uk} be a sequence in H1
R(B2) such that

lim
k→+∞

Jλ(uk) = c,

lim
k→+∞

J ′
λ(uk) = 0 (4.35)

for some c ∈ (0, 2π/λ).
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Claim. {uk} is a bounded sequence in H1
R(B2).

Proof of claim. As Jλ(uk) → c and J ′
λ(uk) → 0, we have

Jλ(uk) � M0 and 〈J ′
λ(uk), uk〉 � M0(1 + ‖uk‖) for all k,

where M0 > 0 is a constant. Also,

Jλ(uk) − 1
2 〈J ′

λ(uk), uk〉 = Iλ(uk), (4.36)

which gives Iλ(uk) � M1(1 + ‖uk‖). Hence, from lemma 4.2(ii) we have, for ε > 0
small, ∫

B2
f(x, uk)uk dvg � M2(ε)(1 + ‖uk‖) + ε‖uk‖2. (4.37)

Therefore, from (C2) it follows that∫
B2

F (x, uk) dvg � C0(ε)(1 + ‖uk‖) + C̃ε‖uk‖2.

Now using the boundedness of Jλ(uk), and choosing ε such that 1 − C̃ε > 0, we
have

(1 − C̃ε)‖uk‖2 � C0(1 + ‖uk‖),

which proves that the ‖uk‖s are bounded. This proves the claim.

We also infer from (4.37) that

sup
k

∫
B2

f(x, uk)uk dvg < +∞. (4.38)

By extracting a subsequence (if necessary) we may assume that uk converges to
a function u ∈ H1

R(B2) weakly. Now we shall consider two cases.

Case 1 (c � 0). Using (4.36) and lemma 4.2(ii) we have

0 � Iλ(u) � lim inf
k→∞

Iλ(uk)

= lim inf
k→∞

{Jλ(uk) − 1
2 〈J ′

λ(uk), uk〉}

= c.

It follows that no PS sequence exists if c < 0. If c = 0, then from proposition 4.4(ii)
we have

lim
k→∞

‖uk‖2 = 2 lim
k→∞

{
Jλ(uk) +

∫
B2

F (x, uk) dvg

}
= 0,

and hence uk converges strongly to 0 in H1
R(B2).
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Case 2 (c ∈ (0, 2π/λ)). First we shall show that u �≡ 0. Suppose, if possible, that
u ≡ 0. From (4.38) and proposition 4.4(ii) we have

lim
k→+∞

‖uk‖2 = 2 lim
k→+∞

{
Jλ(uk) +

∫
B2

F (x, uk) dvg

}
= 2c

<
4π

λ
.

It follows that uk satisfies the hypothesis of proposition 4.5 with vk = uk, l = 2,
and hence we have

lim
k→+∞

∫
B2

f(x, uk)uk dvg =
∫

B2
f(x, u)u dvg = 0.

This gives

lim
k→+∞

Iλ(uk) = lim
k→+∞

{
1
2

∫
B2

f(x, uk)uk dvg −
∫

B2
F (x, uk) dvg

}
= 0.

But from (4.36) we get

c = lim
k→+∞

Jλ(uk) = lim
k→+∞

{Iλ(uk) + 1
2 〈J ′

λ(uk), uk〉} = 0,

which is a contradiction. Hence, we must have u �≡ 0. By the definition of J ′
λ(u)

and a standard density argument it follows that

‖u‖2 =
∫

B2
f(x, u)u dvg. (4.39)

Now, since uk and u satisfy all the hypotheses of proposition 4.6, we have

lim
k→+∞

∫
B2

f(x, uk)uk dvg =
∫

B2
f(x, u)u dvg,

and hence by lower semi-continuity of the norm we obtain

‖u‖2 � lim inf
k→+∞

‖uk‖2

= 2 lim inf
k→+∞

{
Jλ(uk) +

∫
B2

F (x, uk) dvg

}

= 2 lim inf
k→+∞

{
Iλ(uk) + 1

2 〈J ′
λ(uk), uk〉 +

∫
B2

F (x, uk) dvg

}

= lim inf
k→+∞

{ ∫
B2

f(x, uk)uk dvg + 〈J ′
λ(uk), uk〉

}

=
∫

B2
f(x, u)u dvg

= ‖u‖2.

This implies that uk → u strongly in H1
R(B2), and thus completes the proof of

part (i).
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Proof of part (ii). The proof goes along the same lines as in [1] with obvious mod-
ifications, so we will briefly sketch the proof here.

Step 1 (η(f) > 0). If possible, we assume that η(f) = 0 and let {uk} be a sequence
in M such that Jλ(uk) = Iλ(uk) converges to 0. Then, from lemma 4.2(ii) and
proceeding as before, we can assume that

sup
k

‖uk‖ < +∞,

sup
k

∫
B2

f(x, uk)uk dvg < +∞.

By extracting a subsequence and using Fatou’s lemma and proposition 4.4 we
can conclude that

uk → 0 strongly in H1
R(B2).

In contrast, considering vk = uk/‖uk‖, we have that vk converges weakly to v.
Then, by proposition 4.5 and observing that uk ∈ M, we get

1 = lim
k→∞

∫
B2

f(x, uk)
uk

v2
k dvg

=
∫

B2
f ′(x, 0)v2 dvg

= 0.

This contradiction proves that η(f) > 0.
Now, for the second part we need the following claim.

Claim. For every u ∈ H1
R(B2)\{0}, there exists a constant γ(u) > 0 such that

γ(u)u ∈ M. In addition, if one assumes that

‖u‖2 �
∫

B2
f(x, u)u dvg,

then γ(u) � 1, and γ(u) = 1 if and only if u ∈ M.

Considering

ψ(γ) =
1
γ

∫
B2

f(x, γu)u dvg for γ > 0,

one observes that

lim
γ→0

ψ(γ) =
∫

B2
f ′(x, 0)u2 dvg = 0 < ‖u‖2,

lim
γ→∞

ψ(γ) = ∞.

So the first part of the claim follows by continuity of ψ. Since, by (C2), we have
that (f(x, tu)/t)u is an increasing function of t, the second part of the claim follows.

Step 2 (η(f)2 < 4π/λ). In view of (4.2) and lemma 4.7, it is enough to prove that

sup
‖u‖�1

∫
B2

f(x, η(f)u)u dvg � η(f).
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Let u ∈ H1
R(B2) with ‖u‖ = 1. By the above claim there exists γ(u) > 0 such

that γ(u)u ∈ M. Then
η(f)2

2
� Jλ(γu) � γ2

2
,

that is, η(f) � γ, and hence by monotonicity of (f(x, tu)/t)u with respect to t we
have ∫

B2

f(x, η(f)u)
η(f)

u dvg �
∫

B2

f(x, γu)
γ

u dvg = 1,

and this completes the proof.

5. Proof of main theorems

In this section we prove the existence of solutions for (1.4). First we state the
following abstract result.

Lemma 5.1. Let f be a function of critical growth on B
2.

(1) Let u0 ∈ M1 be such that J ′
λ(u0) �≡ 0. Then

Jλ(u0) > inf{Jλ(u) : u ∈ M1}.

(2) Let u1 and u2 be two non-negative linearly independent functions in H1
R(B2).

Then there exist p, q ∈ R such that pu1 + qu2 ∈ M1.

The proof of lemma 5.1 follows from the result of Cerami et al . (see [16]) with
obvious modifications.

Remark. Lemma 5.1(1) holds for functions in M as well.

Proof of theorem 1.2. As Jλ(u) = Jλ(|u|), it is enough to prove that the minimum
is attained on M for some non-zero function (thanks to the above remark and the
principle of symmetric criticality). Hence, we only need to show that there exists
u ∈ M with u �≡ 0 such that

Jλ(u) =
η(f)2

2
.

Also, by theorem 4.1(ii), we know that

0 < η(f)2 <
4π

λ
.

Let {uk} be a minimizing sequence. Since Jλ = Iλ on M, we have that (from
lemma 4.2(ii)) ∫

B2
f(x, uk)uk dvg � C(1 + Iλ(uk)) + ε‖uk‖2 (5.1)

and, arguing as before, we get

sup
k

‖uk‖ < +∞, (5.2)

sup
k

∫
B2

f(x, uk)uk dvg < +∞. (5.3)
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By extracting a subsequence we can assume that uk converges to u weakly in
H1

R(B2).
We claim that u �≡ 0 and u ∈ M. Indeed, if possible, we assume that u ≡ 0. By

(5.3) and proposition 4.4(ii), we conclude that

lim
k→∞

∫
B2

F (x, uk) dvg = 0.

This gives

lim
k→∞

‖uk‖2 = 2 lim
k→∞

{
Jλ(uk) +

∫
B2

F (x, uk) dvg

}

= η(f)2 ∈
(

0,
4π

λ

)
. (5.4)

Also, (5.4) enables us to use proposition 4.5 with vk = uk and l = 2 to conclude
that

lim
k→∞

∫
B2

f(x, uk)uk dvg = 0,

which is not possible, otherwise this would give

η(f)2 = 2 lim
k→∞

Jλ(uk) = 2 lim
k→∞

Iλ(uk) = 0.

Hence, we must have u �≡ 0. Now it remains to show that u ∈ M.
First assume that

‖u‖2 >

∫
B2

f(x, u)u dvg.

This together with (5.3) and proposition 4.6 gives

lim
k→∞

∫
B2

f(x, uk)uk dvg =
∫

B2
f(x, u)u dvg.

Then lower semi-continuity of the norm implies that

‖u‖2 � lim inf
k→∞

‖uk‖2

= lim inf
k→∞

∫
B2

f(x, uk)uk dvg

=
∫

B2
f(x, u)u dvg.

But this contradicts our initial assumption. Hence, we must have

‖u‖2 �
∫

B2
f(x, u)u dvg.
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It follows from the proof of theorem 4.1(ii) that there exists 0 < γ � 1 such that
γu ∈ M. Then by monotonicity of (f(x, tu)u)/t we have

η(f)2

2
� Jλ(γu) = Iλ(γu)

� Iλ(u)

� lim inf
k→∞

Iλ(uk)

= lim inf
k→∞

Jλ(uk) =
η(f)2

2
,

and then, again using theorem 4.1(ii), we conclude that γ = 1 and Jλ(u) = η(f)2/2.
This completes the proof.

Our next job is to investigate existence of a sign-changing solution, the proof of
which will heavily depend on the following concentration lemma. The proof of the
concentration lemma follows along the same lines as in [4, lemma 3.1] with some
modifications (see appendix A).

Here we state the lemma.

Lemma 5.2. Let f(x, t) = h(x, t)(eλt2 − 1) be a function of critical growth on B
2

and let V be the one-dimensional subspace defined by {pu0 : p ∈ R} of H1
R(B2). Let

h0,β(t) = inf{h(x, t); x ∈ B(0, β)} and C(V ) = sup{Jλ(u) : u ∈ V }. Assume that
for every N > 0 there exists tN > 0 such that

h0,β(t)t � eNt ∀t � tN .

Then there exists ε0 > 0 such that, for 0 < ε < ε0,

sup
u∈V, t∈R

Jλ(u + tmε,β) < C(V ) +
2π

λ
, (5.5)

where mε,β is the Moser function.

Now we can prove theorem 1.3.

Proof of theorem 1.3. From lemma 5.1, it is sufficient to show that the infimum of
Jλ is achieved on M1. We first make the following claim.

Claim 1. 0 <
η1(f)2

2
<

η(f)2

2
+

2π

λ
.

By definition it is clear that η1(f)2 � η(f)2. By theorem 1.2, let u0 ∈ M be such
that

sup
α∈R

Jλ(αu0) = Jλ(u0) =
η(f)2

2
> 0; (5.6)

hence, this gives η1(f) > 0. From lemma 5.1(2), for any n0 > 0,

η1(f)2

2
� sup

p,q∈R

Jλ(pu0 + qmn0,β), (5.7)
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where mn0,β is the Moser function. Again from (5.6) and by considering V =
{pu0, p ∈ R} in lemma 5.2, there exists n1 > 0 such that for 0 < n0 < n1,

sup
p,q∈R

Jλ(pu0 + qmn0,β) <
η(f)2

2
+

2π

b
. (5.8)

Hence, claim 1 follows from (5.7) and (5.8).
Let uk be in M1 such that

lim
k→∞

Jλ(uk) =
η1(f)2

2
.

Since Jλ = Iλ on M1, from lemma 4.2(ii) we obtain

sup
k

‖uk‖ < ∞, sup
k

∫
B2

f(x, uk)uk dvg < ∞. (5.9)

Therefore, we can extract a subsequence of {uk} such that

u±
k → u±

0 weakly.

From (5.9) and proposition 4.4, we get

lim
k→∞

∫
B2

F (x, u±
k ) dvg =

∫
B2

F (x, u±
0 ) dvg. (5.10)

In accordance with claim 1, we can choose ε > 0, m0 > 0 such that for all k � m0,

η1(f)2 � 2Jλ(uk) � η(f)2 +
4π

λ
− ε.

This, together with Jλ(u±
k ) � η(f)2/2, gives

Jλ(u±
k ) � 2π

λ
− ε

2
. (5.11)

Claim 2. u±
0 �≡ 0 and ‖u±

0 ‖2 �
∫

B2
f(x, u±

0 )u±
0 dvg.

We shall only prove this for u+
0 . A similar proof holds for u−

0 as well. Suppose
that u+

0 ≡ 0. Then, from (5.10) and (5.11), we have

lim sup
k→∞

‖u+
k ‖2 = 2 lim sup

k→∞

(
Jλ(u+

k ) +
∫

B2
F (x, u+

k ) dvg

)
� 4π

λ
− ε.

Therefore, from proposition 4.5,

lim
k→∞

∫
B2

f(x, u+
k )u+

k dvg = 0. (5.12)

Since u+
k ∈ M, we get from (5.12) that limk→∞ ‖u+

k ‖ = 0. Together with η(f) > 0,
this gives a contradiction. This proves that u+

0 �≡ 0. Now suppose that

‖u+
0 ‖2 >

∫
B2

f(x, u+
0 )u+

0 dvg. (5.13)
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Then {u+
k , u+

0 } satisfies all the hypotheses of proposition 4.6, and hence

lim
k→∞

∫
B2

f(x, u+
k )u+

k dvg =
∫

B2
f(x, u+

0 )u+
0 dvg.

Therefore, we have

‖u+
0 ‖2 � lim inf

k→∞
‖u+

k ‖2 = lim inf
k→∞

∫
B2

f(x, u+
k )u+

k dvg =
∫

B2
f(x, u+

0 )u+
0 dvg,

which contradicts (5.13) and hence proves claim 2.
Thanks to claim 2, the property

‖u±
0 ‖2 �

∫
B2

f(x, u±
0 )u±

0 dvg

enables us to choose 0 < r1 � 1, 0 < r2 � 1, such that

v = r1u
+
0 − r2u

−
0 ∈ M1.

Also, we have

η1(f)2

2
� Jλ(v) � Iλ(v) = Iλ(r1u

+
0 ) + Iλ(r2u

−
0 )

� Iλ(u+
0 ) + Iλ(u−

0 )

� lim inf
k→∞

Iλ(uk)

= lim
k→∞

Jλ(uk)

=
η1(f)2

2
.

Hence, r1 = r2 = 1, which gives u0 ∈ M1 and Jλ(u0) = η1(f)2/2. This completes
the proof of theorem 1.3.

Proof of theorem 1.4. The proof of this theorem follows similar lines as that of [4,
theorem 1.3] with a lemma similar to [28, lemma 3.1]. For the sake of brevity, we
have omitted the detailed verification.

Appendix A.

In this section we shall try to give a sketch of the proof of lemma 5.2.

Proof of lemma 5.2. From the radial estimate 2.5, it is very clear that blow-up can
occur only at the origin. Hence, we only need to analyse near the origin. Denote
the one-dimensional vector space {pu0 : p ∈ R} by V .

Let ul = plu0 + tlml,β be such that tl � 0 and

Jλ(ul) = sup
α,t∈R

Jλ(αu0 + tml,β).

Since J ′
λ(ul) = 0 on {αu0 + tml,β : α, t ∈ R}, we have

‖ul‖2 =
∫

B2
f(x, ul)ul dvg. (A 1)
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Now suppose that (5.5) is not true. Then there exists a sequence ln such that ln → 0
as n → 0 and for vn := αnu0 = αlnu0, mn,β = mln,β , tn = tln , un = uln ,

C(V ) +
2π

λ
� Jλ(un). (A 2)

Step 1. {vn} and tn are bounded.

Suppose that this is not true. Then either

lim
n→∞

tn
‖vn‖ > 0 or lim

n→∞

tn
‖vn‖ = 0.

In the first case, there exist a subsequence of {vn, tn} and a constant C > 0 such
that for large n,

tn
‖vn‖ � C and tn → ∞ as n → ∞. (A 3)

As ‖mn,β‖ = 1, we have from (A 3) that

‖un‖2 = t2n + 2tn〈vn, mn,β〉 + ‖vn‖2 � C1t
2
n, (A 4)

where
C1 = 1 +

2
C

+
1

C2 .

Since ‖vn‖/tn is bounded and vn ∈ {pu0 : p ∈ R}, we have that |vn|∞/tn is bounded.
Hence, for x ∈ B(0, ln) and for large n,

un(x) = vn(x) + tnmn,β(x)

= tnmn,β(x)
(

1 +
vn(x)

tn

1
mn,β(x)

)
� 1

2 tnmn,β(x). (A 5)

Hence, we have

C1t
2
n � ‖un‖2 =

∫
B2

f(x, un)un dvg

�
∫

B(0,β)
h(x, un)un(eλu2

n − 1) dvg

�
∫

B(0,β)
h0,β(un)un(eλu2

n − 1) dvg

�
∫

B(0,ln)
h0,β(un)un(eλu2

n − 1) dvg

� C2(eλt2nm2
n,β(0)/8 − 1)l2n, (A 6)

where C2 is a positive constant. This implies that

C1 � C2

(
exp

(
λt2n
16π

log
β

ln
− 2 log

1
ln

− 2 log tn

)
− l2n

)
→ ∞

as ln → 0, which gives a contradiction, and hence the first case can not occur.
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In the second case, first note that ‖vn‖ → ∞. Let

zn =
vn

‖vn‖ , εn =
t2n

‖vn‖2 +
2tn
‖vn‖〈zn, mn,β〉.

Then, up to a subsequence and using the fact that zn ∈ {pu0 : p ∈ R}, we can
assume that

lim
n→∞

zn = z0, z0 ∈ {pu0 : p ∈ R} \ {0}, lim
n→∞

εn = 0. (A 7)

Also,

‖un‖2 = ‖vn‖2 + 2tn〈vn, mn,β〉 + t2n (A 8)

= ‖vn‖2(1 + εn). (A 9)

Hence,

un

‖un‖ =
1

(1 + εn)1/2

(
zn +

tn
‖vn‖mn,β

)
→ z0 �≡ 0 in H1(B2). (A 10)

Now, using Fatou’s lemma,

∞ =
∫

B2
lim inf
n→∞

f(x, un)
un

(
un

‖un‖

)2

dvg

� lim inf
n→∞

1
‖un‖2

∫
B2

f(x, un)un dvg = 1, (A 11)

which is a contradiction. Hence, this proves step 1.
Therefore, up to a subsequence we can assume that

lim
n→∞

vn = v0 in V, lim
n→∞

tn = t0.

Also, un ⇀ v0 weakly in H1(B2) and for almost all x in B
2.

Remark. limn→∞ vn = v0 in V implies there exist a sequence αn ∈ R such that
αnu0 → αu0.

Using proposition 4.4, we conclude that

lim
n→∞

∫
B2

F (x, un) dvg =
∫

B2
F (x, v0) dvg. (A 12)

Now, letting n → ∞ in (A 2) and using convergence results, we get

C(V ) +
2π

λ
� Jλ(v0) +

t20
2

� C(V ) +
t20
2

. (A 13)

Step 2. t20 = 4π/λ and Jλ(v0) = C(V ).

From (A 13) we have t20 � 4π/λ. Suppose that t20 > 4π/λ. Then, arguing the same
as in step 2 of [4, lemma 3.3] and using step 1, we can get, for n � n0,

M = sup
n

‖un‖2 � C1[l−2((1+ε/4)(1−εn)−1)
n − l2n] (A 14)
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for some positive constant C1. As εn → 0, ln → 0, (A 14) gives a contradiction.
Hence, t20 = 4π/λ and (A 13) gives Jλ(v0) = C(V ).

Step 3. There exist positive constants n0 and C0 such that for all n � n0,

C0+log(M+πpn,β(0)l2n) �
(

t2n−4π

λ

)
m2

n,β(0)− 1
λ

εnmn,β(0)+
1
λ

log pn,β(0), (A 15)

where
εn = 2λtn sup

x∈B2
|vn(x)|

and
pn,β(0) = inf{th0,β(t) : t ∈ [ 12 tnmn,β(0), 2tnmn,β(0)]}.

A straightforward calculation gives

M � πpn,β(0)l2n(eλt2nm2
n,β(0)−εnmn,β(0) − 1), (A 16)

and from (A 16), step 3 follows easily.

Step 4. There exists a constant C1 > 0 such that for large n,(
log

β

ln

)1/2(4π

λ
− t2n

)
� C̃1|∆vn|L2

loc
� C1αn. (A 17)

Proof of step 4 follows by convexity of t → F (x, t) and elliptic regularity.
Finally, we are in a position to prove the final step. By hypothesis, given any

N > 0 and a compact set B(0, β), there exists tN,β > 0 such that h0,β(t)t � eNt

for all t � tN,β . Since mn,β(0) → ∞, by (A 15) and (A 17) we obtain for large n,[
Ntn
2λ

− εn

λ
−

√
2πC0

(log(β/ln))1/2 −
√

2π log(M + πeNtn l2n)
(log(β/ln))1/2

]
� C1√

2π
αn (A 18)

since εn, αn are bounded and tn → t0 > 0. From above, we get

Nt0
2λ

� C̃1

for some positive constant C̃1. Since N is arbitrary, we get a contradiction. Hence,
this proves the lemma.

Appendix B.

This section is devoted to the existence of non-radial solutions. Typically, existence
of non-radial solutions on the hyperbolic space is a difficult question due to the lack
of compactness through vanishing (mentioned earlier). We have made an attempt
to give an existence theorem for a non-radial solution in certain cases. We have
eliminated concentration at ∞ by considering a suitable growth condition on the
nonlinearity, or, in other words, by considering a penalty assumption that sets the
asymptotic nonlinear part to zero.

Moreover, by invariance with respect to Möbius transformations, we are able to
prove Lions’s lemma (lemma 2.3) for H1(BN ), which plays an important role in the
subsequent proof. In this regard, we first modify the function of critical growth.
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A model problem for our study is

−∆gu = f(x, u), x ∈ B
2, (B 1)

where f(x, t) is a function of critical growth as defined in definition 1.1 and, in
addition, satisfies some growth condition near ∞. To be precise, we assume that
f(x, t) = h(x, t)(eλt2 − 1) satisfies the following conditions.

(C3) We have

F (x, t) � C(g(x) + f(x, t)), g ∈ L1(B2, dvg) ∩ Lp(B2, dvg) for some p ∈ (1, 2].
(B 2)

(C5) There exists a δ > 0 such that

h(x, t)
(1 − |x|2)δ

∈ L∞({|x| > α} × [−N, N ]) for all N. (B 3)

(C6) For every ε > 0 there exists α(ε) > 0 such that

h(x, t) � (1 − |x|2)le−εt2 for some l > 0, |x| > α(ε) and t positive large. (B 4)

A prototypical example of such a function is f(x, t) = (1 − |x|2)lt(eλt2 − 1) for
some l > 0. Hence, unlike in the radial case, here we can allow a singularity of
maximum order 1/(1 − |x|2)2−ε at the boundary. We prove the following theorem.

Theorem B.1. Let f(x, t) be a function of critical growth satisfying (C3), (C5)
and (C6). Furthermore, assume that

lim
t→∞

inf
x∈K

h(x, t)t = ∞ (B 5)

for every compact set K ⊂ B
2. Then (B 1) has a positive solution.

Remark. The function of critical growth f(x, t) defined in the above theorem is not
necessarily a radial function in its first variable. Thus, from invariance of ∆BN under
orthogonal transformations we infer that the solution thus obtained in theorem B.1
is non-radial if we assume that f(x, t) is non-radial in its first variable.

It is easy to see that under the above assumptions we can estimate the growth
of F (x, u) and f(x, u) near ∞. As a consequence, we can provide all the necessary
tools to acquire existence of solutions of (B 1). For the sake of completeness, we will
outline some of the steps. In the rest of the section, f(x, t) stands for a function of
critical growth satisfying (C3), (C5) and (C6), and Iλ, Jλ are defined as before (see
§ 3) corresponding to this f .

Now we will provide proofs of lemmas that significantly differ from the radial
ones. We have used some refined arguments and have taken advantage of growth
conditions to prove the following lemmas.

Lemma B.2. Let {uk} be a sequence in H1(B2) converging weakly to a function u
in H1(B2). Furthermore, assume that

sup
k

∫
B2

f(x, uk)uk dvg < +∞.
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Then ∫
B2

F (x, uk) dvg →
∫

B2
F (x, u) dvg. (B 6)

Proof. It is enough to show that
∫

{|x|>α} F (x, uk) dvg can be made arbitrarily small
by choosing α close to 1. Indeed∫

{|x|>α}
F (x, uk) dvg � C

∫
{|x|>α}∩{|uk|�N}

(1 − |x|2)δ(e(λ+ε)u2
k − 1) dvg

+
∫

{|x|>α}∩{|uk|>N}
F (x, uk) dvg

� Ce(λ+ε)N2
(1 − α)δ‖uk‖2 +

C

N

∫
B2

(g(x)uk + f(x, uk)uk) dvg

� Ce(λ+ε)N2
(1 − α)δ +

C

N
.

Here we used g ∈ Lp(B2, dvg) for some p ∈ (1, 2], and this completes the proof.

Lemma B.3. Given µ > 0, there exists a constant C(µ) > 0 such that∫
B2

f(x, u)u dvg � C(µ)(1 + Iλ(u)) + µ‖u‖2 for all u ∈ H1(B2). (B 7)

Proof. We note that∫
{u�4M1}

f(x, u) dvg �
∫

{u�4M1}∩{|x|>α}
f(x, u) dvg + C(α)

� C(1 − α)δ

∫
B2

u2 dvg + C(α)

� C(1 − α)δ‖u‖2 + C(α) (B 8)

=
µ

2
‖u‖2 + C(µ), (B 9)

by choosing α close to 1. Therefore, proceeding as in lemma 4.2 and using (B 8),
we get (B 7).

Lemma B.4. Let f(x, t) = h(x, t)(eλt2 − 1) be a function of critical growth. Then

d2 := sup
{

c2 : sup
u∈H1(B2),‖u‖�1

∫
B2

f(x, cu)u dvg < +∞
}

=
4π

λ
. (B 10)

Proof. The proof goes along the same lines as before, with obvious modifications.
We will only mention the steps that differ from the previous one. We see that∫

{|x|>α}
f(x, cu)u dvg � C

∫
{|x|>α}∩{u�t0}

h(x, cu)(eλc2u2 − 1) dvg

� C

∫
{|x|>α}∩{u�t0}

(1 − |x|2)l−2(eλ(1−ε)c2u2 − 1) dx.
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From this and proceeding as in lemma 4.4, we conclude that

sup
u∈H1(B2),

‖u‖2�1

∫
B2

(1 − |x|2)l−2(eλ(1−ε)c2u2 − 1) dx < +∞,

and hence λd2 � 4π. The proof of the reverse inequality is similar to in lemma 4.4.

Lemma B.5. Let {uk} and {vk} be bounded sequences in H1(B2) converging weakly
to u and v, respectively. Furthermore, assume that supk ‖uk‖2 < 4π/λ. Then, for
all l � 2,

lim
k→∞

∫
B2

f(x, uk)
uk

vl
k dvg =

∫
B2

f(x, u)
u

vl dvg. (B 11)

Proof. As before, we can show that∫
{|uk|>N}

f(x, uk)
uk

vl
k dvg = O

(
1
N

)
.

Now we estimate ∫
{|uk|�N}∩{|x|>α}

f(x, uk)
uk

vl
k dvg.

In fact we can show that∫
{|uk|�N}∩{|x|>α}

f(x, uk)
uk

vl
k dvg � C(N)e(λ+ε)N2

(1 − α)δ,

so that ∫
B2

f(x, uk)
uk

vl
k dvg =

∫
{|uk|�N}∩{|x|�α}

f(x, uk)
uk

vl
k dvg + O

(
1
N

)

+ C(N)e(λ+ε)N2
(1 − α)δ. (B 12)

From (B 12) we can easily see that (B 11) holds.

A similar argument gives the following lemma.

Lemma B.6. Let {uk} be a sequence in H1(B2) converging weakly to a non-zero
function u and assume that

(i) there exists c ∈ (0, 2π/λ) such that Jλ(uk) → c,

(ii) ‖u‖2 �
∫

B2
f(x, u)u dvg,

(iii) sup
k

∫
B2

f(x, uk)uk dvg < +∞.

Then
lim

k→∞

∫
B2

f(x, uk)uk dvg =
∫

B2
f(x, u)u dvg. (B 13)

Proof of theorem B.1. We omit the proof because it goes along the same lines as
that of theorem 1.2 (see §§ 4 and 5 for details).
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