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HingeInflex: a MATLAB-based method for precise
selection of the hinge and the inflection points in folds
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Abstract – Subjectivity in visual selection of hinge and inflection points leads to significant errors in
analyses of fold shapes in profile sections. This article gives a method for precise determination of
these points. The method: (1) imports a fold image into MATLAB, (2) digitizes points on the image,
(3) increases the number of available points by using an interpolation algorithm, (4) fits a polynomial
curve to the points, and (5) searches for the hinge and the inflection points mathematically. Tests on
several folds confirm that the ‘HingeInflex’ is a rapid, robust and user-friendly method for precise
selection of the hinge and inflection points.
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1. Introduction

Structural geologists have long used fold shapes as
indicators of the kinematic, dynamic and rheological
behaviour of rocks during deformation (Biot, 1961;
Hudleston & Lan, 1993; Lan & Hudleston, 1996). Fold
shape studies are also crucial in exploration of ore and
petroleum deposits that are commonly concentrated in
zones of high curvature, that is, the hinge zones of
folds. The great significance of folds, as well as their
prolific occurrence in layered rock sequences, has been
the source of motivation for development of a number
of methods for fold shape analysis during the last four
decades (De Sitter, 1958; Ramsay, 1967; Twiss, 1988;
Lisle, 1994; Pearce et al. 2006; Lisle et al. 2006).

Identification of the hinge point, that is, the point of
maximum curvature on a folded surface, is an essential
requirement in several methods of fold shape analysis.
Some of these methods also require selection of the in-
flection point, the point at which the curvature changes
its sign and crosses zero. In practice, however, these
points are routinely selected by a visual estimation.
This article addresses the issue of errors in visual
estimation of the hinge point and the inflection point,
and proposes a user-friendly computer-based method
for precise selection of these points on a fold profile.

2. Methods of fold shape analysis

Accuracy in selection of the hinge points and/or
inflection points is important in the analysis of fold
shapes on profile sections by two types of methods: (1)
methods that analyse a folded layer that is bounded by
the outer and inner arcs, and (2) those methods that
analyse a single folded surface, that is, the trace of a
folded surface on the profile section.
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Methods of the first type use the difference between
curvatures of the outer and inner arcs to distinguish
several standard shapes of the fold layers, such as Class
1A, Class 1B, Class 1C, Class 2 or Class 3 folds, and in
some instances, to estimate the strain that concentrates
during flattening stages of folding (Ramsay, 1967, pp.
411–14). Several versions of these methods exist: the
tα´/α method of Ramsay (1967, p. 413), the φα/α
method of Hudleston (1973), the ‘inverse thickness’
method of Lisle (1992, 1997), the ‘retrodeformational
method’ of Srivastava & Shah (2006), the ‘Wellman’
and the ‘Mohr circle methods’ of Shah & Srivastava
(2006), and the ‘isogon rosette’ method of Srivastava
& Shah (2008). Of these, the tα´/α method is used
most commonly and application of this method requires
the selection of hinge points on the inner and outer
arcs.

Methods of the second type define the shape of a
single folded surface using quantitative shape para-
meters, such as the ratio of two harmonic coefficients
(Mertie, 1959; Ramsay & Huber, 1987, pp. 314–
17). These methods analyse the shape of a single
folded surface by using Fourier analysis (Stabler, 1968;
Hudleston, 1973; Stowe, 1988), conic section analysis
(Bastida, Aller & Bobillo-Ares, 1999; Aller et al. 2004)
or Bézier curve analysis (Bézier, 1966, 1967; De Paor,
1996; Wojtal & Hughes, 2001; Srivastava & Lisle,
2004; Coelho, Passchier & Grasemann, 2005; Lisle
et al. 2006). Of these, the Bézier curve method is the
most rapid and easy to use (Srivastava & Lisle, 2004;
Lisle et al. 2006).

3. Errors in visual estimation

3.a. Hinge points

We address the issue of errors in visual estimation of
the hinge point with the help of two examples, one of a
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single layer fold and the other of a single folded surface.
The fold in each example is analysed by considering
two alternative positions of the hinge point.

3.a.1. Single layer fold

We give a natural example of a folded layer to
demonstrate that uncertainty in the selection of hinge
point can lead to significantly different strain estimates
(Fig. 1a). As the inner arc is relatively sharp-crested,
its hinge point can be marked fairly easily by visual
estimation (point 3 in Fig. 1a). In contrast, the curvature
distribution on the broad hinge zone of the outer arc is
such that there is an uncertainty in the selection of a
precise hinge point by visual estimation. Two possible
and alternative positions of the hinge point, 1 and 2 are
marked on the outer arc by visual estimation (Fig. 1a).

To demonstrate the importance of precision in
selecting the hinge point, we analyse the fold in Fig-
ure 1a by the tα ′/α method, first by considering line 1–3
as the axial trace and then by considering line 2–3 as
the axial trace (Fig. 1b, c). At low angles of limb dip
(≤ 20◦), the left limb shows Class 1A geometry if line
1–3 is the axial trace (Fig. 1d). If, however, line 2–3
is the axial trace, then the same limb shows Class 1C
geometry irrespective of the angle of limb dip (Fig. 1e).
Although the right limb shows Class 1C geometry with
respect to both the axial traces, the tα´/α plots for this
limb imply a significantly higher estimate of flattening
strain if line 2–3, rather line 1–3, represents the axial
trace (Fig. 1d, e). This example demonstrates that the
results of shape analysis and estimates of flattening
strain could be significantly different depending upon
the choice of the hinge point or the axial trace.

The above example shows only one of several pos-
sible effects of the error in selection of the hinge point.
For the sake of simplicity and application of the tα´/α
method, it assumes that tangents at the inner and outer
arcs are parallel irrespective of whether the axial trace
is 1–3 or 2–3. In a strict sense, however, the tangents
at the hinge points of the outer and inner arcs could
parallel each other in only one of these two situations.
A slight error in the selection of the hinge point on
a sharp-crested arc results in a significant difference
in the slope of the tangent at the hinge point, and no
estimates of strain can be obtained if the tangents at the
outer and inner arcs are non-parallel (Hudleston, 1973).

3.a.2. Single folded surface

Srivastava & Lisle (2004) and Aller et al. (2004) point
out that subjectivity in the selection of the hinge point
and the inflection point can be a potential source of
error in fold shape analysis. In this article, we present
an example to illustrate the issue of error in the visual
estimation of the hinge point on a single folded surface
(Fig. 2). Let us consider the profile section of a single
folded surface and mark two possible hinge points, 1
and 2, by visual estimation (inset in Fig. 2). The analysis
of this fold by the Bézier curve method reveals that a

small difference in position of the hinge point leads to
significant differences in the shape parameter as well
as the aspect ratio of the fold (Fig. 2).

3.b. Inflection points

The uncertainty in the visual estimation of inflection
points is also a potential source of error in the shape
analysis of single folded surfaces. The inset in Figure 3a
is an example of a folded surface on which two possible
positions of the inflection points, i1 and i2 are marked
by visual estimation. The analysis of this fold using the
Bézier curve method yields significantly different val-
ues of the shape parameter and the aspect ratio depend-
ing upon the choice of the inflection point (Fig. 3b).

4. Precise selection of the hinge and the inflection
points

4.a. The algorithm

The curvature C(x) at any point (x, y) on the profile
section of a folded surface, y = f(x), is given by
(Ramsay, 1967, p. 347):

C(x) =
d2 y

dx2(
1 +

(
dy

dx

)2
)3/2 (1)

The algorithm calculates the derivatives dy/dx and
d2y/dx2 and substitutes these values in Eq. 1 to
determine the curvature C(x) at different points (x, y) on
the fold. The method produces a curvature distribution
curve for selection of the point (xmax, ymax) where
curvature C(x) attains the maximum value, and the
point (xinf, yinf) where it changes its sign and crosses
zero.

Four potential sources of error are implicit in our
approach. First, any irregularity on the fold limb may
appear as a spurious hinge point due to an anomalously
high curvature. Our method obviates appearance of
such erroneous hinge points by fitting a smooth
nth degree polynomial curve, y = an xn + an−1xn−1 +
· · · + ax + a0, on the given fold.

Second, the accuracy in selection of the hinge point
critically depends upon the smoothness of the curve
that connects the successive points on the fold profile
(Fig. 4a). The nature of curvature distribution with
respect to the manually digitized points is, however,
commonly uneven in natural folds (Fig. 4b). By best-
fitting a polynomial curve through points on the fold,
we obtain a curvature distribution curve that is smooth
enough for precise selection of the hinge and inflection
points (Fig. 4c, d).

Third, the precision in the results also depends
upon the accuracy in curve-fitting. One simple way
to improve the accuracy is to use a large number of
points on the fold profile. Extraction of more than
100 points on a mesoscopic-scale folded surface is,
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Figure 1. Effect of uncertainty in visual selection of the hinge point on a single layer fold. (a) Profile section of a fold in the Almora
crystalline, Kumaun Lesser Himalaya. 1 and 2 – two alternative positions of the hinge point on the outer arc, 3 – hinge point on the
inner arc. (b, c) Isogon patterns with respect to axial traces 1–3 and 2–3, respectively. The isogons on left limb are more convergent
in (b) as compared to those in (c). (d, e) t´α /α plots with respect to the axial traces 1–3 and 2–3, respectively. Curves in (d) and (e)
indicate different shapes and estimates of flattening.

however, quite time-intensive. Our method overcomes
this limitation by using the interpolation technique
that generates several intermediate points between
the digitized data points. Typically, the interpolation
increases the number of points from 100 to 500–1000.

Finally, the curvature analysis in some folds may
report false hinge and inflection points even after best-

fitting the smooth polynomial curve and increasing the
points by interpolation. The false points correspond
to unavoidable sharp turns that occur towards the
end points of the high degree polynomial fitted to
the fold. Our method excludes the sharp turns by
delimiting the search domain to a small segment of
the polynomial curve that is likely to contain the hinge
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Figure 2. Effect of uncertainty in visual selection of the hinge
point on a single folded surface. Inset shows a folded surface with
two alternative positions, 1 and 2, of the hinge point. l and r – left
and right limbs. The graph shows results of shape analysis by the
Bézier curve method. l1, r1 and l2, r2 – shapes of left and right
limbs with respect to hinge points 1 and 2, respectively. Aspect
ratio (R) – amplitude/quarter wavelength; Shape parameter
(L) – length of Bézier handle/quarter wavelength (for details
see Srivastava & Lisle, 2004).

point. Similarly, another segment of the curve may
be selected for searching the inflection point. The
flexibility of choosing a segment of the fold facilitates
piecewise analysis of the fold.

Figure 4c represents an example where the polyno-
mial fitting results in a sharp turn towards the edge
of left limb of the fold. We obviate the sharp turn by
selecting a potential segment that is likely to contain
the hinge point. Similarly, we select a potential segment
containing a single zero crossing for searching the
inflection point on the right limb. This selection of
a potential segment also obviates the zero crossing
towards the edge of right limb, possibly an artifact of
polynomial fitting and numerical differentiation. The
code can mark multiple inflection points within the
chosen segment and this feature can be utilized to
analyse the folds with multiple hinge points or the
parasitic folds.

4.b. ‘HingeInflex’

The MATLAB code, namely, ‘HingeInflex’ (online Ap-
pendix at http://journals.cambridge.org/geo), imports
the image of a fold profile, digitizes different points
on the image, increases the number of points by
interpolation and fits a smooth polynomial curve
through the points. It calculates the first derivative and
the second derivative at each point on the polynomial,
substitutes these values in Eq. (1) and determines the
values of curvature at different points.

We have used the cubic spline smoothing method
for interpolating the digitized data points, least-
squares fitting procedure for polynomial fitting and
numerical differentiation for determining derivatives
at different points on the fold. The degree of best-fitted
polynomial has been determined by minimizing the
residuals.

The step-by-step procedure for selection of the hinge
point and the inflection point is as follows:

(1) Import the image of the given fold profile
into MATLAB and digitize it by using any commonly
available software, such as the free program ‘GRABIT’
(J. Doke, unpub. data, 2005; http://www.mathworks.
com/matlabcentral/fileexchange/7173).

(2) Extract and store the co-ordinates (x, y) of all the
points in a MATLAB data file. The code prompts for the
file selection menu. Use the menu to load the data file
and plot the digitized data points (Fig. 5a).

(3) Obtain the best-fit curve through the points by
using the provisions, given in the code, for fitting
a polynomial curve and for changing the degree of
polynomial. This operation produces a single smooth
curve through the extracted data points.

The code prompts for polynomial fitting and asks
for the degree of polynomial. It fits the polynomial of
chosen degree and displays the fitted curve through the
data points (Fig. 5a). It also calculates and displays the
residuals at different points. By changing the degree
of the polynomial, the user obtains the best-fit that

Figure 3. Effect of uncertainty in visual selection of the inflection point. (a) h – hinge point, i1 & i2 – two alternative positions of the
inflection point on a fold limb. (b) Results of shape analysis of the fold limb by the Bézier curve method. I1 and I2 – shapes of the fold
limb with respect to the inflection points i1 and i2, respectively. Aspect ratio (R) and Shape parameter (L) same as in Figure 2.
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Figure 4. (a) Digitized points on an image of the fold profile. (b) Irregular nature of curvature distribution. No polynomial curve is
fit to the digitized points. (c) Smooth curvature distribution obtained by fitting a polynomial of degree 14 to the digitized data points.
C(x) – curvature, Cmax – the point of maximum curvature, Cinf – the point where the curvature changes sign and crosses zero. (d) Hinge
point H and inflection point I on the fold.

corresponds to the minimum value of the residuals
(Fig. 5b).

The code calculates curvature C(x) at a large number
of points on the fitted polynomial curve and gives the
curvature distribution curve that shows variation in C(x)
with respect to x (Fig. 5c).

(4) By using the provision in the code, select two
potential segments of the curvature distribution curve,
one containing the hinge point and the other containing
the inflection point(s). The code searches for the point
Cmax where C(x) attains the maximum and for the
point(s) Cinf where it crosses zero, and marks these
points on the curvature distribution curve (Fig. 5c).
Finally, it marks the points corresponding to Cmax and
Cinf as the hinge point H and the inflection point(s) I on
the fold (Fig. 5d).

Fitting a polynomial curve in step (3) is difficult on
overturned folds that have two or more points with
different values of y for a single value of x (Fig. 6a).
Such folds require an additional step between step (2)
and step (3) given above. The additional step rotates
the digitized image through an arbitrary angle such that
every point on the fold has a unique value of y (Fig.
6b). A polynomial curve can now be easily fitted to the
digitized points on the rotated fold image (Fig. 6c).
The rotation also facilitates fitting of a polynomial

curve to those folds in which the tangent at the hinge
point is not horizontal.

5. Examples

We have tested our code on a large number of natural
and graphically-simulated folds. Here we list three
examples: (1) an open asymmetric fold that has a broad
hinge zone (Fig. 5a), (2) an overturned asymmetric fold
with relatively narrow hinge zone (Fig. 6a) and (3) a
natural cuspate fold (Fig. 7a, traced from a part of figure
17.4 in Ramsay & Huber, 1987, p. 350).

Visual estimation of the hinge point of the fold
in Figure 5a involves uncertainty due to the nature
of curvature distribution on the broad hinge zone.
The proposed method generates 500 points by cubic
smoothing spline interpolation to the digitized data
points and fits a polynomial of degree 9. These
operations facilitate fitting a single smooth curve
through the points (Fig. 5a). The quality of fitting is
ensured by monitoring and minimizing the residuals
(Fig. 5b). The distinct peak Cmax and the zero-
crossing Cinf in the curvature distribution plot (Fig. 5c)
correspond to the hinge point H and the inflection point
I on the fold profile (Fig. 5d).
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Figure 5. (a) Digitized data points and the best-fitted polynomial on an asymmetric fold. (b) Residuals at different points on the fold.
(c) Curvature distribution curve showing the maximum curvature point Cmax and the zero crossing point Cinf. (d) Precise positions of
hinge point H and inflection point I on the fold.

The overturned asymmetric fold in Figure 6a is an
example of a curve on which a few points have a com-
mon value of x but different values of y. In order to fit a
polynomial curve to such a fold, it is necessary to rotate
the fold image prior to the fitting (Fig. 6b). Figure 6c
shows the digitized data points on the image, rotated
through an angle of 33◦, along with the smooth fitted
polynomial of degree 17. The small values of residuals
as shown in Figure 6d indicate the satisfactory curve
fitting. The curvature C(x) can now be calculated
(Fig. 6e) to search for precise positions of the hinge
and inflection points (H and I in Fig. 6f).

Figure 7a is an example of a natural cuspate fold and
Figure 7b shows the digitized data points on this fold.
We have rotated the fold by 10◦ to facilitate polynomial
curve fitting (Fig. 7c). Small values of residuals at
different points on the curve indicate satisfactory curve
fitting (Fig. 7d). The curvature distribution curve shows
the peak Cmax and the zero crossings Cinf corresponding
to the hinge point H and the inflection points I,

respectively (Fig. 7e). These points are also marked
on the fold (Fig. 7f).

6. Summary and conclusions

The shape analysis of folds is sensitive to a lack of
precision in the selection of the hinge and inflection
points. ‘HingeInflex’ is a user-friendly method for the
mathematical determination of these points on those
folds that can be fitted with a smooth polynomial
curve. We give a MATLAB code that best-fits a
smooth polynomial curve and selects the hinge and
the inflection points by calculating and comparing the
curvature at different points of the curve.

The method has an in-built flexibility for changing
the degree of polynomial curve and ensuring the best-
fit by monitoring and minimizing the residuals. It
also provides an option to delimit the potential search
domain for obviating the appearance of spurious hinge
or inflection points and obtaining the rapid results. Tests
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Figure 6. (a) Digitized data points on the image of an overturned fold. Several points on the right limb have same value of x but
different values of y. (b) Rotated image of fold in (a). (c) Best-fitted polynomial through digitized points on fold in (b). (d) Distribution
of residuals along the fold. (e) Curvature distribution with the maximum curvature point at Cmax and the zero crossing point at Cinf. (f)
Hinge point H and inflection point I on the fold.
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Figure 7. (a) Natural example of a cuspate fold (part of figure 17.4 in Ramsay & Huber, 1987, p. 350). (b) Digitized data points on the
fold. (c) Rotation of data points in (b) by 10◦ and the best-fit polynomial through the data points. (d) Residual distribution along the
fold. (e) Curvature distribution showing the maximum curvature point Cmax and the zero crossing points Cinf. Inset shows the magnified
distribution around zero axis. (f) Inflection points I and the hinge point H are marked on the fold.
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on several natural and computer-simulated folds reveal
that ‘HingeInflex’ is a robust method that accurately
identifies positions of hinge and inflection points.
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DE PAOR, D. G. 1996. Bézier curves and geological design in
structural geology and personal computers. In Structural
Geology and Personal Computers (ed. D. G. De Paor),
pp. 389–417. Oxford: Pergamon Press.

DE SITTER, L. U. 1958. Boudins and parasitic folds in relation
to cleavage and folding. Geologie en Mijnbouw 20, 272–
86.

HUDLESTON, P. J. 1973. Fold morphology and some geo-
metrical considerations of theories of fold development.
Tectonophysics 16, 1–46.

HUDLESTON, P. J. & LAN, L. 1993. Information from fold
shapes. Journal of Structural Geology 15, 253–64.

LAN, L. & HUDLESTON, P. J. 1996. Rock rheology and
sharpness of folds in single layers. Journal of Structural
Geology 18, 925–31.

LISLE, R. J. 1992. Strain estimation from flattened buckle
folds. Journal of Structural Geology 14, 369–71.

LISLE, R. J. 1994. Detection of zones of abnormal strains in
structures using Gaussian curvature analysis. American
Association of Petroleum Geologists Bulletin 78, 1811–
19.

LISLE, R. J. 1997. A fold classification scheme based on a
polar plot of inverse layer thickness. In Evolution of
Geological Structures in Micro- to Macro-Scales (ed. S.
Sengupta), pp. 323–39. London: Chapman and Hall.
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MENÉNDEZ, O., ALLER, J. & BASTIDA, F. 2006. FOLD
PROFILER: A MATLAB-based program for fold shape
classification. Computers & Geosciences 32, 102–
8.

MERTIE, J. B. 1959. Classification, delineation and meas-
urement of non-parallel folds. U. S. Geological Survey,
Professional Paper 314-E, 91–124.

PEARCE, M. A., JONES, R., SMITH, S. A. F., MCCAFFREY,
K. J. W. & CLEGG, P. 2006. Numerical analysis of fold
curvature using data acquired by high-precision GPS.
Journal of Structural Geology 28, 1640–6.

RAMSAY, J. G. 1967. Folding and Fracturing of Rocks. New
York: McGraw-Hill, 568 pp.

RAMSAY, J. G. & HUBER, M. I. 1987. The Techniques of
Modern Structural Geology, Vol. 2: Folds and Fractures.
London: Academic Press Inc.

SHAH, J. & SRIVASTAVA, D. C. 2006. Strain estimation from
flattened parallel folds: application of the Wellman
method and Mohr circle. Geological Magazine 143,
243–7.

SRIVASTAVA, D. C. & LISLE, R. J. 2004. Rapid analysis of
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analyze the shapes of folded surfaces. Abstracts with
Program, Geological Society of America 33(6), 26.

https://doi.org/10.1017/S0016756809990641 Published online by Cambridge University Press

https://doi.org/10.1017/S0016756809990641

