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Tight frames and related geometric
problems
Grigory Ivanov

Abstract. A tight frame is the orthogonal projection of some orthonormal basis of Rn onto R
k . We

show that a set of vectors is a tight frame if and only if the set of all cross products of these vectors is a
tight frame. We reformulate a range of problems on the volume of projections (or sections) of regular
polytopes in terms of tight frames and write a first-order necessary condition for local extrema of
these problems. As applications, we prove new results for the problem of maximization of the volume
of zonotopes.

1 Introduction

A tight frame in R
k is a set of vectors that is the orthogonal projection of some

orthonormal basis of Rn onto R
k . Or, equivalently, it is a set of vectors {v1 , . . . , vn}

that satisfy identity
n
∑

1
v i ⊗ v i = Ik ,(1.1)

where Ik is the identity operator in R
k .

Tight frames appear and are used naturally in different branches of mathematics:
from quantum mechanics and approximation theory (see [1] for details) to classical
problems of convex analysis, starting with the well-known John condition [11] for the
ellipsoid of maximal volume in a convex body.

We study properties of tight frames from the algebraic point of view. For this
purpose, we use exterior algebra for studying properties of the exterior powers of
the projection operators in Section 3. The necessary definitions on exterior algebra
are included in Section 2.1 for completeness. Among other results on projection
operators, we prove the following theorem.

Theorem 1.1 A set of vectors {v1 , . . . , vn} ⊂ R
k is a tight frame if and only if the set of

cross products [v i1 , . . . , v ik−1] for all (k − 1)-tuples {i1 , . . . , ik−1} ∈ ([n]k−1) is a tight frame.
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Tight frames and related geometric problems 943

There are standard geometric objects that can be described either in terms of
Grassmannian Gr(n, k) of k-dimensional subspace of Rn or in terms of tight frames.
Let us give some examples.

Let {v1 , . . . , vn} be the orthogonal projection of the standard basis onto k-
dimensional subspace H ⊂ R

n . Consider the following classes of convex polytopes:
(1) Projections of the cross-polytope. Let ♢n = {x ∈ Rn ∣ ∣x1∣ + ⋯ + ∣xn ∣ ≤ 1} be the

standard cross-polytope. Then, the projection of ♢n onto H is the absolute con-
vex hull of the projection of the standard basis of Rn , that is co{±v1 , . . . ,±vn}.

(2) Sections of the cube. Let n = [−1, 1]n be the standard n-dimensional cube. The
section n ∩ H is the intersection of strips {x ∈ H ∶ ∣ ⟨x , v i⟩ ∣ ≤ 1} .

(3) Projections of the cube. Then, the projection of n onto H is the Minkowski
sum of the segments [−v i , v i].

Identifying H with R
k , we identify the set {v1 , . . . , vn} with a tight frame. Clearly, the

volumes of these polytopes can be considered as functions on the set of tight frames.
Of course, much more types of convex bodies can be described in both ways. We

list these three examples, since they can be considered as a standard position of special
types of centrally symmetric polytopes. For example, any convex centrally symmetric
polytope is an affine image of a central section of the cube or a projection of the
cross-polytope of some dimension. The problems of finding the minimal and maximal
volumes of these types of polytopes are well-studied (see [2, 3, 12, 14] ). However, there
are still a lot of open questions. For example, the tight upper bound on the volume of a
projection of cross-polytope ♢n onto a k-dimensional subspace H of Rn is unknown.
The reasonable conjecture is that the upper bound is volk ♢k , and it can be considered
as a dual to Vaaler’s theorem [18] that states that volk( n ∩ Hk) ≥ volk

k .
In Section 4, we show how to reformulate problems about extrema of the volume

of sections and projections of regular polytopes in the language of tight frames. For
example, one can apply our results for listed above types of polytopes. A similar to ours
approach was used by Filliman in [5–8]. However, Filliman preferred to consider the
volume functions as the functions on the Grassmannian. Instead of this, we consider
functions on the set of tight frames in R

k ; extend the domain of such functions to
the set of the ordered sets of n vectors of Rk in a natural way; and give in Lemma 4.2
a necessary and sufficient condition for local extremum of such functions. Thus, we
avoid working in the Grassmannians. The only thing we need the Grassmannians for
is to prove a first-order approximation formula for a perturbation of a tight frame. As
a consequence of Theorem 1.1 and the Cauchy–Binet formula, we obtain the following
theorem.

Theorem 1.2 Let {v1 , . . . , vn} be a tight frame in R
k , τ be a scalar, and {x i}n

1 be an
arbitrary set of vectors of Rk . Then,

det
n
∑

1
(v i + τx i) ⊗ (v i + τx i) = 1 + 2τ

n
∑
i=1

⟨x i , v i⟩ + o (τ) .

We illustrate our technique on the problem of maximizing function

F(H) = volk([0, 1]n ∣H), dim H = k ≤ n,(1.2)
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944 G. Ivanov

where [0, 1]n ∣H is the projection of the cube [0, 1]n onto H. The projections of the
cube [0, 1]n may be considered as a special position of Minkowski sum of finitely
many linear segments, so-called zonotopes.

Using the results of Section 4, we give a complete system of the first-order necessary
conditions of a maximizer of (1.2) in Lemma 5.5. It yields the following geometric
result.

Corollary 1.3 Let H be a local maximizer of (1.2) and Q = [0, 1]n ∣H. Let v i denote
the orthogonal projection of the standard basis vector e i onto H, for i ∈ [n], and Q∣v⊥i
be the projection of Q onto the orthogonal complement of the line {λv i ∣ λ ∈ R} in H.
Then,

volk−1 (Q∣v⊥i ) = ∣v i ∣ volk Q for all i ∈ [n].

Also, we obtain some properties of the maximizers.

Theorem 1.4 Let the maximum of (1.2) be attained at H. Let v i denote the projection
of the standard basis vector e i onto H, for i ∈ [n]. Then, for any i, j ∈ [n], the inequality

∣v i ∣2 ≥ (
√

2 − 1)∣v j ∣2

holds.

As a consequence of Theorem 1.4 and McMullen’s symmetric formula [13],
which is

F(H) = F(H⊥),(1.3)

where H⊥ is the orthogonal complement of H, we prove the following corollary.

Corollary 1.5 Fix q ∈ N. Let Hn−q be a maximizer of (1.2) for k = n − q, n ≥ q. By
Mn and mn , we denote the maximum and the minimum length of the projections of the
standard basis vectors of Rn onto Hn−q , respectively. Then,

mn

Mn
→ 1 as n →∞.

2 Definitions and preliminaries

We use Cn to denote an n-dimensional cube {x ∶ 0 ≤ x[i] ≤ 1} in R
n . Here and

throughout the paper, x[i] stands for the ith coordinate of a vector x . As usual, {e i}n
1

is the standard orthonormal basis of Rn . We use ⟨p, x⟩ to denote the value of a linear
functional p at a vector x .

For a convex body K ⊂ R
n and a k-dimensional subspace H of Rn , we denote by

K ∩ H and K∣H the section of K by H and the orthogonal projection of K onto H,
respectively. For a k-dimensional subspace H of Rn and a convex body K ⊂ H, we
denote by volk K the k-dimensional volume of K. We use PH to denote the orthogonal
projection onto H.
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For a positive integer n, we refer to the set {1, 2, . . . , n} as [n]. The set of all
�-element subsets (or �-tuple) of a set M ⊂ [n] is denoted by (M

�
). For two �-tuples

I ∈ ([a]
�
), J ∈ ([b]

�
), we will use M{I , J} to denote the determinant of the corresponding

�minor of the a × b matrix M . For the sake of convenience, we will write MI whenever
I = J . We use M[i , j] to denote the entry in the ith row and the jth column of a
matrix M .

For the sake of convenience, we denote by dS({M}) the determinant of {v i ∶ i ∈
M} for an ordered set of vectors S = {v1 , . . . , vn} ⊂ R

k and a set M of k indexes from
[n] (the indexes may repeat).

Recall that a zonotope in a vector space is the Minkowski sum of finitely many line
segments, i.e.,∑n

i=1[a i , b i], where∑ stands for the Minkowski sum, and [a, b] means
the line segment between points a and b.

Definition 2.1 We will say that an ordered n-tuple of vectors {v1 , . . . , vn} ⊂ H forms
a tight frame in a vector space H if

(
n
∑

1
v i ⊗ v i)∣

H
= IH ,(2.1)

where IH is the identity operator in H and A∣ H is the restriction of an operator A
onto H.

We use Ω(n, k) to denote the set of all tight frames with n vectors in R
k .

2.1 Exterior algebra

For the sake of completeness and clarity, all needed definitions from exterior algebra
are given here in a brief and noncanonical way. We assume that the equivalence of our
definitions to the usual ones is quite obvious. As a proper introduction to multilinear
algebra, we refer to Greub’s book [9].

Let H be a finite-dimensional vector space with inner product ⟨⋅, ⋅⟩ . We define
the vector space Λ�(H) as the space of the multilinear skew-symmetric functions
on � vectors of H with the natural linear structure. The vectors of Λ�(H) are called
�-forms. As we consider only linear spaces with inner products, we assume that a
space H and its dual H∗ coincide. This allows us to simplify the following definitions.

For a sequence of � vectors {x1 , . . . , x�} ⊂ H, we define an �-form x1 ∧ ⋅ ⋅ ⋅ ∧ x� by
its evaluation on vectors {y1 , . . . , y�} ⊂ H given by

x1 ∧ ⋅ ⋅ ⋅ ∧ x�(y1 , . . . , y�) = det M , where M[i j] = ⟨x i , y j⟩ , i , j ∈ [�].

By the properties of the determinant, x1 ∧ ⋅ ⋅ ⋅ ∧ x� is a multilinear skew-symmetric
function of � vectors of H. For the sake of convenience, for given n vectors {x i}n

1 and
�-tuple L = {i1 , . . . , i�} ∈ ([n]� ), we denote by xL the �-form x i1 ∧ ⋅ ⋅ ⋅ ∧ x i� .

As usual, we use the set of �-forms e i1 ∧ ⋅ ⋅ ⋅ ∧ e i� , where {i1 , . . . , i�} ∈ ([n]� ), as the
standard basis of Λ� (Rn) . We use the lexicographical order on �-tuples {i1 , . . . , i�} ∈
([n]

�
) to assign a number to e i1 ∧ ⋅ ⋅ ⋅ ∧ e i� in this basis.
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Recall that for a vector space H, an �-form w ∈ Λ�(H) is said to be decomposable if
it can be represented in the form x1 ∧ ⋅ ⋅ ⋅ ∧ x� for {x i}�1 ⊂ H. Every �-form is a linear
combination of some decomposable �-forms (e.g., of the forms from the standard
basis), but not all �-forms are decomposable, e.g., e1 ∧ e2 + e3 ∧ e4 ∈ Λ2(R4) is not
decomposable. A line l ⊂ Λ� (Rn) has a decomposable directional vector iff l is
“generated” by some �-dimensional subspace H� ⊂ R

n .
By linearity, it suffices to define a linear operator (or an inner product) on

Λ�(Rn) only for decomposable �-forms, since the decomposable forms span
Λ�(Rn).

Recall that the exterior �-power of an operator A on R
n is a linear operator on

Λ�(Rn), which is defined on decomposable forms by

∧�A(x1 ∧ ⋅ ⋅ ⋅ ∧ x�) = Ax1 ∧ ⋅ ⋅ ⋅ ∧ Ax� .

Recall that the inner product of two decomposable �-forms a = a1 ∧ ⋅ ⋅ ⋅ ∧ a� and
b = b1 ∧ ⋅ ⋅ ⋅ ∧ b� is defined by

⟨a, b⟩ = ⟨a1 ∧ ⋅ ⋅ ⋅ ∧ a� , b1 ∧⋯∧ b�⟩ = a1 ∧ ⋅ ⋅ ⋅ ∧ a�(b1 , . . . , b�).

In this way, once we fix an inner product on R
n , we fix the inner product on

Λ�(Rn). Then, for � ∈ [n], we can define a special isometry ⋆ ∶ Λ�(Rn) → Λn−�(Rn),
the so-called Hodge star operator, by the following equation:

a ∧ ⋆(b) = ⟨a, b⟩ e1 ∧ ⋅ ⋅ ⋅ ∧ en ,

where a, b are �-forms.
Using this, one can show the following. For given a = a1 ∧ ⋅ ⋅ ⋅ ∧ a� ∈ Λ�(Rn) and

b = b1 ∧ ⋅ ⋅ ⋅ ∧ bn−� ∈ Λn−�(Rn), we have

⟨a, ⋆(b)⟩ = (−1)�(n−�) det{a1 , . . . , a� , b1 , . . . , bn−�}.(2.2)

For a k-dimensional subspace Hk ⊂ R
n , we use ∧�Hk to denote the linear hull of

forms x1 ∧ ⋅ ⋅ ⋅ ∧ x� in Λ� (Rn) such that {x1 , . . . , x�} ⊂ Hk . Since Hk inherits the inner
product of Rn , the space ∧�Hk inherits the inner product of Λ�(Rn) and thus can
be identified with the space Λ�(Hk) in a tautological way. This allows us to use the
Hodge star operator for the spaces Λ�(Hk) and Λ(k−�)(Hk) for � ∈ [k]. Also, identity
(2.2) can be rewritten in the following form. For given a = a1 ∧ ⋅ ⋅ ⋅ ∧ a� ∈ Λ�(Hk) and
b = b1 ∧ ⋅ ⋅ ⋅ ∧ bk−� ∈ Λk−�(Hk), we get

⟨a, ⋆(b)⟩ = (−1)�(k−�) det{a1 , . . . , a� , b1 , . . . , bk−�},(2.3)

where we understand the determinant as the determinant of k-vectors in a
k-dimensional space Hk .

The next result is a straightforward consequence of the definitions. We show
that the outer product and the tensor product commute for the exterior powers of
operators in our case. Usually, definitions of the outer product involve some kind
of (anti)symmetrization, which can give an additional factor when we exchange
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the ∧-product and ⊗-product. To avoid misunderstandings, we prove the following
statement.

Lemma 2.1 Let A =
t
∑
i=1

v i ⊗ v i for some integer t and vectors {v i}t
1 ⊂ R

n . Then, ∧�A =
∑

L∈([t]
�
)

vL ⊗ vL .

Proof We can assume that � ≤ dim Lin{v1 , . . . , vt} ≤ t, otherwise ∧�A = 0 =
∑

L∈([n]
�
)

vL ⊗ vL . It suffices to prove the identity only for the decomposable �-forms.

Fix {x1 , . . . , x�} ⊂ R
n . We have

∧�A(x1 ∧ ⋅ ⋅ ⋅ ∧ x�) = Ax1 ∧ ⋅ ⋅ ⋅ ∧ Ax� =
t
∑
i=1

⟨v i , x1⟩ v i ∧ ⋅ ⋅ ⋅ ∧
t
∑
i=1

⟨v i , x�⟩ v i .

By linearity and by skew symmetry, we expand the last identity, and the coefficient at
vL = v i1 ∧ ⋅ ⋅ ⋅ ∧ v i� is

∑
σ

sgn σ
�

∏
j=1

⟨v i j , xσ( j)⟩ ,

where the summation is taken over all permutations of [�]. This is the determinant
of the matrix M i j = ⟨v i j , x i⟩ , where i , j ∈ [�]. By the definition of the inner product,
this determinant is just ⟨vL , (x1 ∧ ⋅ ⋅ ⋅ ∧ x�)⟩, that is,

∧�A(x i1 ∧ ⋅ ⋅ ⋅ ∧ x i�) = ∑
L∈([t]

�
)
⟨vL , (x1 ∧ ⋅ ⋅ ⋅ ∧ x�)⟩ vL = ∑

L∈([t]
�
)

vL ⊗ vL(x1 ∧ ⋅ ⋅ ⋅ ∧ x�).

This completes the proof. ∎

Identifying ∧k−1Hk with Λk−1(Hk), we identify Hk with ∧k−1Hk using the Hodge
star operator. Now, we can define the cross product of k − 1 vectors {x1 , . . . , xk−1} by

[x1 , . . . , xk−1] = ⋆(x1 ∧ ⋅ ⋅ ⋅ ∧ xk−1).

Or, in other words, by linearity of the determinant, the cross product x =
[x1 , . . . , xk−1] of k − 1 vectors {x1 , . . . , xk−1} in a k-dimensional space Hk with the
fixed inner product ⟨⋅, ⋅⟩ is the vector defined by

⟨x , y⟩ = det(x1 , . . . , xk−1 , y) for all y ∈ Hk .

3 Properties of the exterior power of a projection operator

As a tight frame is a projection of an orthonormal basis, it is natural that its properties
are connected with the properties of a projection operator. Moreover, sometimes it is
useful to consider a lifting of a tight frame up to an orthonormal basis.

In the following trivial lemma, we understand R
k ⊂ R

n as the subspace of vectors,
whose last n − k coordinates are zero. For convenience, we will consider {w i}n

1 ⊂ R
k ⊂

R
n to be k-dimensional vectors.
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Lemma 3.1 The following assertions are equivalent:
(1) a set of vectors {w1 , . . . , wn} ⊂ R

k is a tight frame;
(2) there exists an orthonormal basis { f1 , . . . , fn} ofRn such that w i is the orthogonal

projection of f i onto R
k , for any i ∈ [n];

(3) Lin{w1 , . . . , wn} = R
k and the Gram matrix � of vectors {w1 , . . . , wn} ⊂ R

k is
the matrix of the projection operator from R

n onto the linear hull of the rows of
matrix M = (w1 , . . . , wn).

(4) the k × n matrix M = (w1 , . . . , wn) is a submatrix of an orthogonal matrix of
order n.

The main observation is that P is the Gram matrix of vectors {v1 , . . . , vn} ⊂ Hk .
Since ⟨Pe i , e j⟩ = ⟨P2e i , e j⟩ = ⟨Pe i , Pe j⟩ = ⟨v i , v j⟩ , we have that for fixed � ∈ [k] and
�-tuple L ⊂ ([n]

�
), the corresponding � × � submatrix of P is the Gram matrix of vectors

{v i}i∈L , and the determinant of this Gram matrix is PL . It is well known that for �
vectors {w i}�1 ⊂ R

� , their squared determinant is equal to the determinant of their
Gram matrix.

Lemma 3.2 Let P be the orthogonal projection fromR
n onto a k-dimensional subspace

Hk . Then, for ∧�P, where 1 ≤ � ≤ k, we have
(1) ∧�P is an (n

�
) × (n

�
) matrix such that

∧�P[I , J] = P{I , J} for I, J ∈ ([n]
�
);(3.1)

(2) ∧�P ∶ Λ� (Rn) → Λ� (Rn) is the orthogonal projection onto ∧�Hk .

Proof (1) By definition,∧�P is an (n
�
) × (n

�
)matrix. Identity (3.1) is the consequence

of the definition of the inner product in Λ� (Rn) .
(2) For any decomposable �-form x1 ∧ ⋅ ⋅ ⋅ ∧ x� , we have

∧�P(x1 ∧ ⋅ ⋅ ⋅ ∧ x�) = Px1 ∧ ⋅ ⋅ ⋅ ∧ Px� ∈ ∧�Hk .

By linearity, we have that ∧�Px ∈ ∧�Hk for an arbitrary �-form x . For x ∈ ∧�Hk , we
see that ∧�Px = x . Thus, we showed that Im∧�P = ∧�Hk and (∧�P)2 = ∧�P. By this
and since P2 = P, we have that ∧�P is symmetric. This completes the proof. ∎

In the following Lemma, we understand R
k ⊂ R

n as the subspace of vectors,
whose last n − k coordinates are zero. This embedding induces a natural embedding
Λ�(Rk) ⊂ Λ�(Rn) for � ∈ [n].

Theorem 3.3 The following assertions are equivalent for {v1 , . . . , vn} ⊂ R
k ∶

(1) there exists an orthonormal basis { f1 , . . . , fn} of Rn such that v i is the orthogonal
projection of f i onto R

k , for any i ∈ [n];
(2) Pk =

n
∑
1

v i ⊗ v i , where Pk is the projector from R
n onto R

k ;
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(3) for any fixed � ∈ [k − 1], there exists an orthonormal basis { fL} of Λ�(Rn) such
that vL is the orthogonal projection of fL onto Λ�(Rk), for all L ∈ ([n]

�
);

(4) for any fixed � ∈ [k − 1], the following identity is true:

Λ�Pk = ∑
L∈([n]

�
)

vL ⊗ vL ,

where Λ�Pk is the projector from Λ�(Rn) onto Λ�(Rk).

Proof By the equivalence (1) ⇔ (2) in Lemma 3.1 and since Ik is the restriction of
Pk onto R

k , we have that (1) ⇔ (2).
Identifying f i and e i for i ∈ [n], we identify R

k with some subspace Hk ⊂ R
n ,

Λ�(Rk) ⊂ Λ�(Rn) with ∧�(Hk) ⊂ Λ�(Rn), and Pk with P.
Lemma 3.2 says that Λ�Pk is exactly ∧�Pk . Thus, identifying f i and e i for i ∈

[n], we identify Λ�Pk with ∧�P. Again, since (1) ⇔ (2) in Lemma 3.1, we get that
(3) ⇔ (4).

By assertion (2) in Lemma 3.2, we have that (2) ⇒ (4).
Hence, we must show that the implication (2) ⇐ (4) holds to complete the proof.
Let {v1 , . . . , vn} ⊂ Hk such that ∧�P = ∑

L∈([n]
�
)

vL ⊗ vL for a fixed � ∈ [k − 1].

Let us prove that P =
n
∑
1

v i ⊗ v i to complete the proof. Assume the contrary, i.e.,

P ≠
n
∑
1

v i ⊗ v i , and define A =
n
∑
1

v i ⊗ v i . By Lemma 2.1, we have that ∧l P = ∧l A.

Since the restriction of A on Hk is a positive semi-definite operator, the restriction of
A has an orthonormal basis of eigenvectors in Hk . Let us denote these eigenvectors by
x1 , . . . , xk and the corresponding eigenvalues by λ1 , . . . , λk . Since {x1 , . . . , xk} ⊂ Hk
and ∧�P = ∧�A is the projection onto ∧�Hk , we have that

0 ≠ x i1 ∧ ⋅ ⋅ ⋅ ∧ x i� = Px i1 ∧ ⋅ ⋅ ⋅ ∧ Px i� = ∧�P(x i1 ∧ ⋅ ⋅ ⋅ ∧ x i�)

= ∧�A(x i1 ∧ ⋅ ⋅ ⋅ ∧ x i�) = Ax i1 ∧ ⋅ ⋅ ⋅ ∧ Ax i� =
⎛
⎝

�

∏
j=1

λ i j

⎞
⎠
⋅ x i1 ∧ ⋅ ⋅ ⋅ ∧ x i�

for any �-tuple{i1 , . . . , i�} ⊂ ([n]� ). Therefore,(
�

∏
j=1

λ i j) = 1 for any �-tuple{i1 , . . . , i�} ⊂

([n]
�
). Obviously, since 0 < � < k, it implies that all eigenvalues are one. Hence, the

restriction of A onto Hk is the identity operator in Hk . This means that A = P. ∎

The implication (2) ⇐ (4) of Theorem 3.3 still holds for � = k. By the same
arguments as in the proof, we have that (4) implies det (

n
∑
1

v i ⊗ v i)∣
Rk

= 1. Thus, we

have the following corollary.

https://doi.org/10.4153/S000843952000096X Published online by Cambridge University Press

https://doi.org/10.4153/S000843952000096X


950 G. Ivanov

Corollary 3.4 The following assertions are equivalent for {v1 , . . . , vn} ⊂ R
k ⊂ R

n :

(1) det (
n
∑
1

v i ⊗ v i)∣
Rk

= 1.

(2) the following identity is true:

Λk Pk = ∑
L∈([n]k )

vL ⊗ vL .

Proof of Theorem 1.1 By the definition of the cross product, Theorem 1.1 is the
equivalence (1) ⇔ (3) of Theorem 3.3 with � = k − 1. ∎

By identity (∧�P)2 = ∧�P, we have

P{I , J} = ∑
L∈([n]

�
)

P{I ,L}P{L , J}

for a fixed � ∈ [k] and two �-tuples I, J ⊂ ([n]
�
). But Theorem 3.3 gives us another

identity, which connects the squared �-dimensional volume (that is, PI) with the sum
of the squared k-dimensional volumes.

Lemma 3.5 Let {v1 , . . . , vn} is a tight frame in Hk . Then, the following identity holds:

PI = ∑
Q∈( [n]k−�);∣Q∩I∣=∅

PI∪Q = ∑
T∈([n]k )∣I⊂T

PT

for a fixed � ∈ [k] and an �-tuple I ∈ ([n]
�
).

Proof Now, we identify ∧pHk with Λp(Hk) for a fixed integer p ∈ [k]. Then, the
Hodge star operator maps a p-form w ∈ Λp(Hk) to a (k − p)-form ν ∈ Λk−p(Hk).
By Theorem 3.3, we know that the set of (k − �)-forms vQ , where Q ∈ ([n]k−�), is a tight
frame in∧(k−�)Hk ≡ Λ(k−�)(Hk). Using the Hodge star operator, we get that the set of
�-forms ⋆(vQ), where Q ∈ ([n]k−�), is a tight frame in∧�Hk ≡ Λ�(Hk). By the definition
of the inner product of two �-forms, we have PI = ⟨vI , vI⟩ . Now, we can expand this
using properties of the �-forms ⋆(vQ), where Q ∈ ([n]k−�). So,

PI = ⟨vI , vI⟩ = ∑
Q∈( [n]k−�)

⟨vI , ⋆(vQ)⟩ ⟨⋆(vQ), vI⟩ .(3.2)

By identity (2.3), ⟨vI , ⋆(vQ)⟩ is the determinant of k vectors (v i)i∈I , (vq)q∈Q of
Hk . Thus, ⟨vI , ⋆(vQ)⟩ = 0 whenever I ∩ Q ≠ ∅, and ⟨vI , ⋆(vQ)⟩2 = PI∪Q whenever
I ∩ Q = ∅. Combining these formulas with (3.2), we obtain

PI = ∑
Q∈( [n]k−�);Q∩I=∅

⟨vI , ⋆(vQ)⟩ ⟨⋆(vQ), vI⟩ = ∑
Q∈( [n]k−�);∣Q∩I∣=∅

PI∪Q . ∎
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3.1 Lagrange’s identity and McMullen’s formula

McMullen’s formula (1.3) follows from Shepard’s formula [17] for the volume of a
∑n

i=1[0, b i] ⊂ R
k

volk (
n
∑
i=1
[0, b i]) = ∑

{i1 , . . . , ik}∈([n]k )
∣det{b i1 , . . . , b ik}∣ ,(3.3)

and identity ∣dS({L})∣ = ∣dS({[n]/L})∣ for a tight frame S and a subset L of [n]. By
assertion (4) of Lemma 3.1, this identity is equivalent to identity ∣UL ∣ = ∣U[n]/L ∣ for an
orthogonal matrix U of rank n and any L ⊂ [n], which is known as Lagrange’s identity.
However, it is natural to prove it in terms of properties of a projection operator.

Lemma 3.6 Let Hn−k be the orthogonal complement of Hk in R
n . Denote by P and

P⊥ the projections onto Hk and Hn−k , respectively. Then,

⋆(∧k P[x]) = (∧(n−k)P⊥) [⋆x]

for any x ∈ Λk (Rn) .

Proof We use π to denote a unit directional vector of the line ∧k Hk generated by
Hk in Λk (Rn) . Clearly,⋆π is the unit directional vector (with a proper orientation) of
the line ∧(n−k)Hn−k generated by Hn−k in Λn−k (Rn) . For an arbitrary x ∈ Λk (Rn)
and y ∈ Λn−k (Rn) , we have ∧k P[x] = c1π ∈ ∧k Hk and (∧(n−k)P⊥) [y] = c2(⋆π) ∈
∧(n−k)Hn−k for some scalars c1 , c2 . From this and by linearity of operators ⋆(∧k P)
and (∧(n−k)P⊥)⋆, we obtain that ⋆(∧k P) [x] = c (∧(n−k)P⊥) [⋆x] for some scalar c.
From the chain

⋆(∧k P) π = ⋆π = (∧(n−k)P⊥) [⋆π],

we conclude that c = 1. This completes the proof. ∎

So, Lagrange’s identity takes the following form with a simple geometric meaning.

Corollary 3.7 In the notation of Lemma 3.6, we have

PL = P⊥[n]/L(3.4)

for L ∈ ([n]k ).

4 The tight frames and related geometric problems

4.1 Equivalent formulation

Tight frame {PH e1 , . . . , PH en}, where H is a k-dimensional subspace of Rn and PH

is the orthogonal projection onto H, can be considered as the ordered set of n vectors
of Rk . That allows us to avoid working in Grassmannian Gr(n, k). However, there is
an ambiguity in correspondence H → {PH e1 , . . . , PH en}. Any choice of orthonormal
basis of H gives its own tight frame in R

k , all of them are isometric but different from
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each other. Let us formalize our technique and explain how one can deal with this
ambiguity.

We endow Ω(n, k) with the metric

dist({v1 , . . . , vn}, {w1 , . . . , wn}) =
1
223 n

∑
1
∣v i −w i ∣2 .

The orthogonal group O (k) acts on Ω(n, k) in a usual way

U{v1 , . . . , vn} = {Uv1 , . . . , Uvn} for U ∈ O (k) .

The equivalence classes of this action are called O-classes, and the O-class of a tight
frame S is denoted as [S] . We say that a function Ψ ∶ Ω(n, k) → R is O-invariant if it
is constant on each O-class.

There is a one-to-one correspondence between Gr(n, k) and Ω(n ,k)
O(k) ∶

• the map α ∶ Gr(n, k) → Ω(n ,k)
O(k) is defined by

α(H) = [PH e1 , . . . , PH en] for H ∈ Gr(n, k) .

• the map β ∶ Ω(n ,k)
O(k) → Gr(n, k) is defined as follows. Let {v1 , . . . , vn} ∈ Ω(n, k). By

Lemma 3.1, the Gram matrix P of {v1 , . . . , vn} is the matrix of projection onto a
k-dimensional subspace H. Then, β ([{v1 , . . . , vn}]) = H. Clearly, an orthogonal
transformation does not change the Gram matrix. Therefore, β is defined correctly.
By assertion (4) of Lemma 3.1, the sets of vectors {v1 , . . . , vn} and {Pe1 , . . . , Pen}

are isometric. Thus, α and β are the inverse functions of each other.
Consequently, there is a one-to-one correspondence between the space of func-

tions Gr(n, k) → R and the space of O-invariant functions Ω(n, k) → R. For any
function Ψ ∶ Gr(n, k) → R, we define its frame-function γ(Ψ) ∶ Ω(k, n) → R by

γ(Ψ) (S) = Ψ(β([S])).

Clearly, the frame-function is O-invariant. Thus, by the above argument, Ψ and
γ(Ψ) have the same global extrema. Let us show that the local extrema of any
continuous function Gr(n, k) → R and its frame-functions are the same up to
factorization by O (k). Of course, we need to specify a topology or metric on
Gr(n, k). We consider the natural one as a topology of a homogeneous space
(Gr(n, k) = O (n) /(O (k) × O (n − k))), which is the metric topology generated
by metric

Dist(H, H′) = ∥PH − PH′∥ ,

where ∥⋅∥ denotes the operator norm.

Lemma 4.1 Let Ψ ∶ Gr(n, k) → R be a continuous function. Then, the following
assertions are equivalent:
(1) S ∈ Ω(n, k) is a local extremum of γ(Ψ).
(2) [S] ⊂ Ω(n, k) in the identity. At the moment, it is written [S] ∈ .
(3) β([S]) is a local extremum of Ψ.
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Proof The equivalence of the first two assertions is trivial as γ(Ψ) is O-invariant.
Let us show that they are equivalent to the third one.

We define a metric on Ω(n ,k)
O(k) as follows:

ρ (O1 , O2) = min{dist(S1 , S2) ∶ S1 ∈ O1 , S2 ∈ O2} .(4.1)

Obviously, the minimum is attained. Let us check the triangle inequality for arbitrary
O-classes O1 , O2, and O3 . Since O (k) acts transitively on each O-class, there is S2 ∈ O2
such that ρ (O1 , O2) = dist(S1 , S2) for any S1 ∈ O1 . We assume that the minimum in
(4.1) is attained at S1 and S2 for O1 and O2 , and at S2 and S3 for O2 and O3 . Then,

ρ (O1 , O2) + ρ (O2 , O3) = dist(S1 , S2) + dist(S2 , S3) ≥ dist(S1 , S3) ≥ ρ (O1 , O3) .

Clearly, the tight frames of [S] are the local extrema of γ(Ψ) iff [S] is a local
extremum of the function ΨO ∶ Ω(n ,k)

O(k) → R defined by ΨO ([S]) = γ(Ψ(S)). To com-
plete the proof, it suffices to show that Gr(n, k) and Ω(n ,k)

O(k) are homeomorphic. This
follows from the observation that the operator norm is equivalent to the Hilbert–

Schmidt operator norm (∥PH∥HS =
√

n
∑
1
∣PH e i ∣2) , and the latter is equivalent to

metric ρ on Ω(n ,k)
O(k) . ∎

4.2 Perturbation of frames

Our main idea of finding local extrema of an O-invariant function Ψ is to transform a
given tight frame S to a new one S′ . However, it is not convenient to restrict ourselves
to the set of tight frames. For example, consider function Ψ1 ∶ Ω(n, k) → R+ given by
Ψ1 ({v1 , . . . , vn}) = volk co{±v1 , . . . ,±vn} (that is, the frame-function of the volume
of a projection of the cross-polytope). It is clear what happens with the convex hull
when we move one or several vectors of the tight frame, but we may destroy the tight
frame condition with such a transformation. It is not a problem as we can easily extend
the domain.

Definition 4.1 We will say that the ordered set S = {v1 , . . . , vn} of n vectors of Rk is
a frame if vectors of S span R

k . We consider the following objects related to frames:
(1) the operator ∑

i∈[n]
v i ⊗ v i . We use AS to denote this operator and the matrix of

this operator in the standard basis.
(2) The operator BS = A−

1
2

S .
(3) The subspace HS

k ⊂ R
n , which is the linear hull of the rows of the k × n matrix

(v1 , . . . , vn) and the projection operator PS from R
n onto HS

k . We use the same
notation PS for the matrix of this operator in the standard basis.

For a frame S = {v1 , . . . , vn} and a linear transformation L, we denote
{Lv1 , . . . , Lvn} by LS . The operator BS is well-defined as the condition Lin S = R

k
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implies that AS is a positive definite operator. Clearly, for any frame S , the frame BS S
is a tight frame:

n
∑
i=1

BSv i ⊗ BSv i = BS (
n
∑
i=1

v i ⊗ v i)BT
S = BS AS BS = Ik .

It is easy to see that the metric dist(⋅, ⋅) on Ω(n, k) extends to the set of all frames.
Also, a small enough perturbation of a frame S yields a small perturbation of BS .

Typically, O-invariant functions can be extended to the set of all frames in a
tautological way, for example, the extensions of O-invariant functions for the objects
listed above might be:
(1) Ψ1 ({v1 , . . . , vn}) = volk co{±v1 , . . . ,±vn};
(2) Ψ2 ({v1 , . . . , vn}) = volk (

n
⋂
1
{x ∈ Rk ∶ ∣ ⟨x , v i⟩ ∣ ≤ 1}) ;

(3) Ψ3 ({v1 , . . . , vn}) = volk (
n
∑
1
[−v i , v i]) .

We prefer to extend the functions as follows:

Ψ(S̃) =
Ψ(BS̃ S̃)
det BS̃

for a frame S̃ .(4.2)

One can see that Ψ1 and Ψ3 satisfy this condition, and Ψ2 = 1/Ψ2 satisfies it as well. It
looks as a natural extension at least for problems related to the volume of projections
or sections of bodies because of the positive homogeneity of the volume volk L(K) =
∣det L∣ volk K , where K is a convex set and L is a linear transformation.

In order to obtain properties of extremizers, we consider a composition of two
operations:

S T@→ S̃
B S̃@→ S′ ,(4.3)

where T is a map from a subset of Ω(n, k) to the set of frames in R
k and BS̃ just maps

S̃ = T(S) to a new tight frame S′ .
Using our setting, it is easy to write a necessary and sufficient condition for a local

extremum of an O-invariant function.

Lemma 4.2 A tight frame S = {v1 , . . . , vn} is a local maximum (or minimum) of a
non-negative O-invariant function Ψ iff the following inequality holds for any frame S̃
of some open neighborhood U(S) of S in the set of frames:

Ψ(S̃)
Ψ(S) ≤

√
det AS̃ (or ≥).(4.4)

In addition, S is a global maximum (or minimum) iff inequality (4.4) holds for all
frames S̃ .

Proof As mentioned above, BS̃ S̃ is a tight frame and, by continuity, it belongs to
a small enough neighborhood of S in Ω(n, k) if S̃ ∈ U(S). Using these observations
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and the definition of BS , we have

Ψ(S̃)
Ψ(S) = 1

det BS̃

Ψ(BS̃ S̃)
Ψ(S) ≤ 1

det BS̃
=
√

det AS̃ .

The equivalence for a global extremum is trivial. ∎

Choosing a proper simple operation T ( e.g., scaling one or several vectors, moving
one vector to the origin, and mapping one vector to another), we may understand the
geometric meaning of the left-hand side of (4.4). On the other hand, the determinant
in the right-hand side of (4.4) can be calculated directly. In particular, the first-order
approximation of the determinant is obtained in Theorem 1.2.

4.3 Computation of the determinants

Proof of Theorem 1.2 First of all, by the Cauchy–Binet formula, we have

det(
n
∑

1
v i ⊗ v i) = ∑

I∈([n]k )
PS

I .(4.5)

By linearity and identity PS
I = (dS({I}))2 , it suffices to prove the theorem for the case

when only one vector of the set {x i}n
1 is nonzero. Thus, the theorem follows from the

following lemma. ∎

Lemma 4.3 Let S = {v1 , . . . , vn} be a tight frame and S′ be a frame obtained from S
by substitution v i → v i + tx , where t ∈ R, x ∈ Rk . Then,

√
det AS′ = 1 + t ⟨v i , x⟩ + o(t).

That is,
√

det AS′ is a differentiable function of t at t = 0, and the derivative equals
⟨v i , x⟩ .

Proof Given a substitution v i → v i + tx , we modify the minor PS
I iff i ∈ I. By the

properties of minors of PS and definition of the Hodge star operator, we have that
PS

I = (⟨v i , ⋆(vI/i)⟩)2 if i ∈ I. After the substitution, we get

(⟨v i + tx , ⋆(vI/i)⟩)
2 = (⟨v i , ⋆(vI/i)⟩)

2 + 2t ⟨v i , ⋆(vI/i)⟩ ⟨⋆(vI/i), x⟩ + o(t).

Hence,

det AS′ = ∑
I∈([n]/i

k )
PS

I + ∑
I∈([n]k ), i∈I

PS
I + 2t ∑

I∈([n]k ), i∈I
⟨v i , ⋆(vI/i)⟩ ⟨⋆(vI/i), x⟩ + o(t).

If i ∈ J for J ∈ ([n]k−1), then we have ⟨v i , ⋆(vJ)⟩ = 0. Therefore, we can rewrite the last
identity

det AS′ = ∑
I∈([n]k )

PS
I + 2t ∑

J∈([n]k−1)
⟨v i , ⋆(vJ)⟩ ⟨⋆(vJ), x⟩ + o(t).
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By Theorem 1.1, we know that the vectors (⋆(vJ))J∈([n]k−1)
form a tight frame in Hk .

Therefore,

∑
J∈([n]k−1)

⟨v i , ⋆(vJ)⟩ ⟨⋆(vJ), x⟩ = ⟨v i , x⟩ .

Using this and by (4.5), we obtain
√

det AS′ =
√

det AS + 2t ⟨v i , x⟩ + o(t) = 1 + t ⟨v i , x⟩ + o(t). ∎

Theorem 1.2 gives the first-order approximation of the left-hand side in inequality
(4.4). It implies the first-order necessary condition for a differentiable O-invariant
function Ψ.

Corollary 4.4 Let Ψ be an O-invariant function, S = {v1 , . . . , vn} be a local
extremum of Ψ on Ω(n, k), and Ψ is differentiable at S . Then,

Ψ(S̃) = Ψ(S)(1 + τ
n
∑
i=1

⟨x i , v i⟩) + o (τ)

for an arbitrary S̃ = {v1 + τx1 , . . . , vn + τxn}.

By the dimension argument, Corollary 4.4 gives a complete system of the first-
order necessary conditions. As a small enough perturbation of a frame is still a
frame, we see that the set of frames looks like R

nk locally, and we can speak about
local convexity of O-invariant functions. By a basic fact from subdifferential calculus,
inequality (4.4) implies the differentiability of a locally convex function Ψ at its local
maximum.

Corollary 4.5 Let Ψ be an O-invariant function, S = {v1 , . . . , vn} be a local
extremum of Ψ on Ω(n, k), and Ψ is locally convex at S . Then, Ψ is a differentiable
function at S , and it satisfies the identity of Corollary 4.4.

Actually, the local convexity of Ψ is a rather typical situation when we consider
the volume of the projection of a polytope in R

n onto a k-dimensional subspace, as
the latter is piecewise linear on the corresponding Grassmannian by Theorem 1 in [7].
Another example is the so-called linear parameter systems (see [15]).

Here is another observation. One can notice that tr AS =
n
∑
1
∣v i ∣2 for a tight frame

S = {v1 , . . . , vn}. Hence, tr AS = k for a tight frame S . Let Ω′(n, k) denote the class
of frames S = {v1 , . . . , vn} such that

n
∑
1
∣v i ∣2 = k(= tr AS). The same arguments as in

Lemma 4.2 imply the following corollary.

Corollary 4.6 Let Ψ be an O-invariant function. Then,

max
S∈Ω′(n ,k)

Ψ(S) = max
S∈Ω(n ,k)

Ψ(S).
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Proof Since Ω(n, k) ⊂ Ω′(n, k), it is enough to show that for any S′ ∈ Ω′(n, k), S′ ∉
Ω(n, k), there exists a tight frame S such that Ψ(S′) < Ψ(S). We put S = BS′S′ . Then,
by Lemma 4.2, it is enough to prove that det AS′ < 1. Considering AS′ in the basis of its
eigenvectors (in which it is a diagonal operator) and using the inequality of arithmetic
and geometric means, we obtain

det AS′ ≤ ( tr AS′

k
)

k
= 1,

where equality is attained iff all eigenvalues of AS′ are ones. This means, the equality
is attained iff S′ ∈ Ω(n, k). This completes the proof. ∎

Remark 4.7 Corollary 4.6 was proved in [5, Theorem 1] with the same idea but
different notation for the projections of regular polytopes, particularly, for the men-
tioned functions Ψ1 and Ψ3 . However, Corollary 4.6 gives a nice property of function
1/Ψ2 as well.

4.4 Lifting of frames

Vectors {v1 , . . . , vn} of a tight frame S ∈ Ω(n, k) have a nice isometric embedding
in ∧k−1(HS). Fix i ∈ [n] and let dS(i) be the vector in Λk−1(Rn) such that its Lth
coordinate in the standard basis of Λk−1(Rn) is dS({i , L}).

Lemma 4.8 Let S = {v1 , . . . , vn} be an arbitrary tight frame. Then, the vectors
dS(i), i ∈ [n], belong to ∧k−1(HS) ⊂ Λk−1(Rn). Moreover, they form a tight frame in
∧k−1(HS), and the following identity holds:

⟨dS(i), dS( j)⟩ = ⟨v i , v j⟩(4.6)

for all i, j ∈ [n].

Proof Let a j , j ∈ [k], be the rows of the k × n matrix MS = (v1 , . . . , vn). By the
definition of HS , we know that a j ∈ HS

k , j ∈ [k], and that they form an orthonor-
mal system in HS . Hence, the (k − 1)-forms (a[k]/ j)k

j=1 are an orthonormal basis

of ∧k−1(HS). Consider the (k − 1)-forms b i =
k
∑
j=1
(−1) j+1v i[ j] ⋅ a[k]/ j , where i ∈ [n].

Then, by the definition of the inner product in Λk−1(Rn) and the Laplace expansion
of the determinant, we have

b i[L] = ⟨b i , eL⟩ =
k
∑
j=1
(−1) j+1v i[ j] ⟨a[k]/ j , ⟩ eL

=
k
∑
j=1
(−1) j+1v i[ j]MS

[k]/ j,L = MS
{i ,L},{i ,L} = dS(i)[L]

for L ∈ ([n]k−1), i ∉ L. We get b i[L] = dS(i)[L] = 0 if i ∈ L. Thus, dS(i) = b i ∈ Λk−1(HS)
and, clearly, identity (4.6) holds. ∎
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Lemma 3.1 allows us to describe all substitutions w i → w′i , i ∈ [n], which preserve
the operator AS for a frame S = {w1 , . . . , wn}. But we need a more suitable geometric
description. So, let S = {w1 , . . . , wn} be a frame and � ∈ [k], L = {i1 , . . . , i�} ⊂ ([n]� ).
Consider a substitution w i → w′i , for i ∈ L, and w′i = w i , for i ∉ L, which preserves AS ,
and denote by S′ = {w′1 , . . . , w′n} the new frame.

In this notation, we get the following.

Lemma 4.9 The substitution preserves AS (i.e., AS = AS′) iff there exists an orthogo-
nal matrix U of rank � such that

(w′i1
, . . . , w′i�) = (w i1 , . . . , w i�)U .(4.7)

Additionally, in case S is a tight frame, let { f1 , . . . , fn} be any orthonormal basis of Rn

given by the assertion (3.1) of Lemma 3.1. Then, the substitution preserves AS iff the
vectors of S′ are the projection of an orthonormal basis { f ′1 , . . . , f ′n} of Rn , which is
obtained from { f1 , . . . , fn} by an orthogonal transformation of { f i}i∈I in their linear
hull.

Proof The identity AS′ = AS holds if and only if

∑
i∈I

w i ⊗w i = ∑
i∈I

w′i ⊗w′i .

Writing this in a matrix form, we get another equivalent statement that the Gram
matrices of the rows of the matrices (w′i1

, . . . , w′i�) and (w i1 , . . . , w i�) are the
same. The latter is equivalent to the existence of an isometry of R�, which maps the
rows of the first matrix to the rows of the second. This isometry defines an orthogonal
matrix U , which satisfies the assumptions of the lemma.

In case of a tight frame, extending U as the orthogonal transformation of Lin{ f i ∶
i ∈ I}, we obtain the suitable { f ′1 , . . . , f ′n}. ∎

Also, we can reformulate the second claim of Lemma 4.9 in the following equiv-

alent way: given a block matrix M = (A B
C D) such that the rows of (A B) are

orthonormal and the columns of (A
C) are orthonormal, then D can be chosen in such

a way that M will be an orthogonal matrix.

5 Zonotopes and their volume

5.1 Definitions and history

A zonotope is the Minkowski sum of several segments in R
k . Every zonotope can be

represented (up to an affine transformation) as a projection of a higher-dimensional
cube Cn = [0, 1]n . For example, it follows from the definition of BS . To get more
information about zonotopes, we refer the reader to Zong’s book [20, Chapter 2] and
to [16].
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Several different bounds for the maximum in (1.2) are known. For example, G. D.
Chakerian and P. Filliman [4] prove

volk(Cn ∣H) ≤
√

n!
(n − k)!k!

and volk(Cn ∣H) ≤
ωk

k−1

ωk−1
k

(n
k
)

k/2
,

where w i is the volume of the i-dimensional Euclidean unit ball. The right-hand
side inequality is asymptotically tight, as was shown in [5], and the left-hand side
inequality is tight in the cases k = 1, n − 1. The tight upper and lower bounds in the
limit case for the volume of a zonotope in a specific position (even for so-called Lp-
zonoids) were obtained in [12, Theorem 2].

Among different upper bounds, all maximizers of (1.2) were described in the cases
k = 1, 2, n − 2, n − 1 and k = 3, n = 6 in [5]. It appears that projections of the standard
basis vectors onto Hk have the same length whenever H is a maximizer of (1.2) for all
cases mentioned above, which gives a rather reasonable conjecture.

Conjecture 5.1 Let the maximum volume projection of Cn = [0, 1]n onto a k-
dimensional subspace be attained on H. Then, the projections of the vectors of the
standard basis onto H have the same length.

We note that there are k-dimensional subspaces of Rn such that the projections
of the vectors of the standard basis onto them have the same length. An explicit
construction of such subspaces can be found in [19]. In [10, Lemma 2.4], the author
describes all possible lengths of the projections of the vectors of the standard basis.

Summarizing the observations of Section 4, we have that the problem to find and
to study maximizers of

F2(S) = volk (
n
∑

1
[0, v i]) , where {v1 , . . . , vn} ∈ Ω(n, k),(5.1)

is equivalent to that of (1.2). We illustrate the developed technique and write the first-
order necessary condition of local maximum for (5.1) together with some geometric
consequences.

5.2 The first-order necessary condition

We start with showing that F2(S) is a differentiable function at its local maximum.

Lemma 5.2 Let S = {v1 , . . . , vn} be a local maximizer of (5.1) and S′ be a frame
obtained from S by substitution v i → v i + tx , where t ∈ R, x ∈ Rk . Then, F2(S′)

F2(S) is a
differentiable function of t at t = 0, and the derivative equals ⟨v i , x⟩ .

Proof Given a substitution v i → v i + tx , we change dS({L}) for L ∈ ([n]k ) in (3.3)
iff i ∈ L. Since the determinant is a linear function of each vector, this means that
∣dS′({L})∣ as function of t (even as function of x′ = tx) is a convex function of t (or
even of x′ = tx ∈ Rk). Therefore, F2(S′)/F2(S) as function of t (or x′ = tx) is a convex
function. The result follows from Corollary 4.5. ∎
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Corollary 5.3 Let S = {v1 , . . . , vn} be a local maximizer of (5.1). Then, the vectors of
S are in general position in R

k , i.e., dS({L}) ≠ 0 for each L ∈ ([n]k ).

Proof Assume the contrary that there is a k-tuple J such that dS({J}) = 0. As
the rank of the vectors of S is k, this implies that there is an L = {i1 , . . . , ik} ∈
([n]k ) such that the vectors {v i1 , . . . , v ik−1} are linearly independent and the vectors
{v i1 , . . . , v ik−1 , v ik} are linearly dependent (i.e., dS({L}) = 0). Taking x ≠ 0 in the
orthogonal complement of Lin{v i1 , . . . , v ik−1} and obtaining S′ by a substitution v ik →
v ik + tx , we get that F2(S′)/F2(S) as well as the absolute value of dS′({L}) is not
differentiable at t = 0. This contradicts Lemma 5.2. ∎

Lemma 5.4 The function F2(⋅) is differentiable at a local maximizer of (5.1).

Proof Let S = {v1 , . . . , vn} be a local maximizer of (5.1) and S′ be a frame obtained
from S by substitution v i → v i + t i x i , i ∈ [n].

The function ∣dS′({L})∣ as a function of (t1 , . . . , tn) is the absolute value of a
polynomial of (t1 , . . . , tn). Hence, it is differentiable at a point (t1 , . . . , tn) whenever
dS′({L}) ≠ 0. By Corollary 5.3, we have dS({L}) ≠ 0 for all k-tuples. Therefore, the
function

F2(S′) = ∑
L∈([n]k )

∣dS′({L})∣

as a function of (t1 , . . . , tn) is differentiable at the origin. ∎

Now, we show the geometric meaning of identities of Corollary 4.4 for the function
F2 . We define a sign function σS(i , L) by

σS(i , L) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1/F2(S), if d({i , L}) > 0;
−1/F2(S), if d({i , L}) < 0;
0, if d({i , L}) = 0,

for a frame S , i ∈ [n] and L ∈ ([n]k−1).
In the same way as with the vectors dS(i), i ∈ [n], we identify σS(i) with a vector

in Λk−1(Rn) such that its Lth coordinate in the standard basis of Λk−1(Rn) is σS(i , L).
As a direct consequence of Lemma 5.4, we obtain the following lemma.

Lemma 5.5 Let S = {v1 , . . . , vn} be a local maximizer of (5.1). Then,

∧k−1PS(σS(i)) = dS(i) and ⟨σS(i), dS( j)⟩ = ⟨v i , v j⟩ , i , j ∈ [n].(5.2)

Proof By Lemma 4.8, we have that the vectors (dS(i))n
i=1 form a tight frame in

∧k−1HS
k . Therefore, by Theorem 3.3, it is enough to show that the rightmost identity

in (5.2) is true.
Fix i , j ∈ [n]. Let S′ be a frame obtained from S by the substitution v i → v i + tv j .

By Corollary 5.3, we have that dS({L}) ≠ 0 for every k-tuple L. Therefore, dS′({L}) ≠
0 and dS′({L}) has the same sign as dS({L}) for all k-tuples L and for a small
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enough t. Using the substitution v i → v i + tv j , we only change the determinants of
type dS({i , J}), where i ∉ J ⊂ ([n]k−1). Thus, by the properties of absolute value (for a
small enough t), we get

F2(S′)
F2(S) = 1

F2(S) ∑
L∈([n]k )

∣dS′({L})∣ = 1 + t ∑
J∈([n]k−1), i∉J

σS(i , J)dS({ j, J}).

Since σS(i , J) = 0 whenever i ∈ J , we have that the coefficient at t in the previous
formula is

∑
J∈([n]k−1)

σS(i , J)dS({ j, J}).

But this is the inner product ⟨σS(i), dS( j)⟩ of the (k − 1)-forms σS(i) and dS( j)
written in the standard basis of Λk−1(Rn). By Lemma 5.4 and Corollary 4.4, we have
that ⟨σS(i), dS( j)⟩ = ⟨v i , v j⟩ . ∎

5.3 Proofs of Corollary 1.3, Theorem 1.4, and Corollary 1.5

Corollary 1.3 is a direct consequence of Lemma 5.5 with a simple geometric meaning.

Proof of Corollary 1.3 By Corollary 5.3, ∣v i ∣ ≠ 0 for all i ∈ [n]. Let S′ = {v′1 , . . . , v′n}
be projections of the vectors{v1 , . . . , vn}onto v⊥i . Clearly, v′i = 0. By Shepard’s formula
(3.3) and the properties of the determinant, we have

volk−1 (Q∣v⊥i ) = ∑
J∈([n]k−1)

∣dS′({J})∣ = 1
∣v i ∣

∑
J∈([n]k−1)

∣dS({i , J})∣ .

By Lemma 5.5, the latter is ∣v i ∣ volk Q . ∎

The idea of the proof of Theorem 1.4 is the following. We use Lemma 4.9 to rotate
vectors by π/4 (i.e., v i → cos(π/4)v i − sin(π/4)v j , v j → sin(π/4)v i + cos(π/4)v j),
and after some simple calculations along with Corollary 4.4, we get the inequality
of Theorem 1.4.

Proof of Theorem 1.4 We prove the theorem for a maximizer S = {v1 , . . . , vn} of
(5.1). Fix i and j in [n]. We assume that ∣v i ∣2 < ∣v j ∣2 , otherwise there is nothing to prove.
Using Lemma 4.9, we have that the substitution v i → cos(π/4)v i − sin(π/4)v j , v j →
sin(π/4)v i + cos(π/4)v j preserves AS and the absolute value of dS({L}) for all L ⊂
([n]k ) such that i , j ∈ L. Let S′ be the tight frame obtained by this substitution. From
the choice of S , we have F2(S′) ≤ F2(S). Expanding these volumes by formula (3.3)
and reducing common determinants, we get

√
2

2 ∑
J∈([n]k−1), i , j∉J

(∣dS({i , J}) − dS({ j, J})∣ + ∣dS({i , J}) + dS({ j, J})∣)

≤ ∑
J∈([n]k−1), i , j∉J

(∣dS({i , J})∣ + ∣dS({ j, J})∣).
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By identity ∣a + b∣ + ∣a − b∣ = 2 max{∣a∣, ∣b∣}, we obtain that each summand in the
left-hand side is at least 2 max{∣dS({i , J})∣ , ∣dS({i , J})∣} and, consequently, is at least
2 ∣dS({ j, J})∣ . Hence, we show that

(
√

2 − 1) ∑
J∈([n]k−1), i , j∉J

∣dS({ j, J})∣ ≤ ∑
J∈([n]k−1), i , j∉J

∣dS({i , J})∣ .

Consider the one-to-one correspondence between the set of all (k − 1)-tuples L with
i ∈ L and j ∉ L and the set of all (k − 1)-tuples J with i ∉ J and j ∈ J given by L →
(L/{i}) ∪ { j}. In this case, ∣dS({ j, L})∣ = ∣dS({i , (L/{i}) ∪ { j}})∣. Adding all such
determinants to the last inequality, we obtain

∑
J∈([n]k−1), i∉J

∣dS({i , J})∣

≥ (
√

2 − 1) ∑
J∈([n]k−1), i , j∉J

∣dS({ j, J})∣ + ∑
J∈([n]k−1), i∈J , j∉J

∣dS({ j, J})∣

≥ (
√

2 − 1)
⎛
⎜
⎝

∑
J∈([n]k−1), i , j∉J

∣dS({ j, J})∣ + ∑
J∈([n]k−1), i∈J , j∉J

∣dS({ j, J})∣
⎞
⎟
⎠

= (
√

2 − 1) ∑
J∈([n]k−1), j∉J

∣dS({ j, J})∣ .

Finally, the sum in the left-hand side is exactly F2(S) ⟨σS(i), dS(i)⟩ , and by
Lemma 5.2, it is equal to F2(S)∣v i ∣2 . Similarly, we have (

√
2 − 1)F2(S)∣v j ∣2

in the right-hand side of the last inequality. Dividing by F2(S), we obtain
∣v i ∣2 ≥ (

√
2 − 1)∣v j ∣2 . ∎

As mentioned in the Introduction, Corollary 1.5 is a consequence of Theorem 1.4
and McMullen’s symmetric formula (1.3).

Proof of Corollary 1.5 Let Hq be the orthogonal complement of Hn−q in R
n . Let

v i and v′i be the projections of the vector e i onto Hn−q and Hq , respectively. Clearly,
∣v i ∣2 + ∣v′i ∣2 = 1. By Theorem 1.4, we conclude that ∣v′i ∣2 is at most 1/(

√
2 − 1) and at

least (
√

2 − 1) of the average squared length of the projections of the standard basis,
which is q/n. Therefore,

1 ≥ mn

Mn
≥

1
2223

1 − 1√
2−1

q
n

1 − (
√

2 − 1) q
n

,

which tends to 1 as n tends to infinity. ∎
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