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Flow generated by oscillatory uniform heating of
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Kinetic theory provides a rigorous foundation to explore the unsteady (oscillatory)
flow of a dilute gas, which is often generated by nanomechanical devices. Recently,
formal asymptotic analyses of unsteady (oscillatory) flows at small Knudsen
numbers have been derived from the linearised Boltzmann–Bhatnagar–Gross–Krook
(Boltzmann–BGK) equation, in both the low- and high-frequency limits (Nassios
& Sader, J. Fluid Mech., vol. 708, 2012, pp. 197–249 and vol. 729, 2013, pp.
1–46; Takata & Hattori, J. Stat. Phys., vol. 147, 2012, pp. 1182–1215). These
asymptotic theories predict that unsteadiness can couple strongly with heat transport
to dramatically modify the overall gas flow. Here, we study the gas flow generated
between two parallel plane walls whose temperatures vary sinusoidally in time.
Predictions of the asymptotic theories are compared to direct numerical solutions,
which are valid for all Knudsen numbers and normalised frequencies. Excellent
agreement is observed, providing the first numerical validation of the asymptotic
theories. The asymptotic analyses also provide critical insight into the physical
mechanisms underlying these flow phenomena, establishing that mass conservation
(not momentum or energy) drives the flows – this explains the identical results
obtained using different previous theoretical treatments of these linear thermal flows.
This study highlights the unique gas flows that can be generated under oscillatory
non-isothermal conditions and the importance of both numerical and asymptotic
analyses in explaining the underlying mechanisms.

Key words: kinetic theory, micro-/nano-fluid dynamics, rarefied gas flow

1. Introduction

Study of the microscopic properties of gas particles and their mutual interactions
can be used to generate a statistical framework that describes the macroscopic
characteristics of a dilute gas, such as its density, mean velocity and temperature.
Utilising particle conservation arguments, this kinetic approach yields the Boltzmann
equation, which describes changes in the probabilistic mass distribution function of
the gas that result from interparticle collisions and phase space advection. In contrast
to the conventional Navier–Stokes–Fourier equation and no-slip condition, which
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utilise the continuum hypothesis, this approach is valid at arbitrary degrees of gas
rarefaction. Such flows are often characterised by the Knudsen number:

Kn≡ λ
d
, (1.1)

where the gas mean free path is λ and d is a (general) characteristic length scale
of the bulk flow. The continuum hypothesis is formally valid in the asymptotic limit
of zero Knudsen number (Hadjiconstantinou 2006). However, gas flows generated
by modern nanoscale devices, which are tens and hundreds of nanometres in size
and exhibit unsteady (oscillatory) motion in a broad frequency range (Bargatin,
Kozinsky & Roukes 2007; Pelton et al. 2009; Juvé et al. 2010), typically operate
away from the continuum limit. Furthermore, these structures can also undergo rapid
heating and cooling in the pico- to nano-second range which can in turn drive
strongly non-equilibrium flows (Pelton et al. 2009; Juvé et al. 2010; Pelton et al.
2013; Yu et al. 2015). The ability to characterise these gas flows, based on kinetic
formulations, is therefore critical to the design and application of modern mechanical
technologies.

Direct analysis of small-scale flows via the Boltzmann equation is complicated
by the nature of the collision term. For a dilute gas with a spherically symmetric
interaction potential, this term possesses a quadratic nonlinearity. The Boltzmann
equation is therefore of nonlinear integro–differential form. To simplify matters and
study the qualitative behaviour of dilute gas flow, Bhatnagar, Gross & Krook (1954)
and Welander (1954) independently modelled the collision term as a relaxation
process, yielding the Boltzmann–BGK equation. Subsequently, this equation has been
widely applied to study a diverse range of rarefied gas flows (Sone 1964, 1965,
1966; Sharipov & Kalempa 2007, 2008; Yakhot & Colosqui 2007; Ekinci et al. 2010;
Ramanathan, Koch & Bhiladvala 2010; Shi & Sader 2010; Takata et al. 2012; Yap
& Sader 2012).

Asymptotic analyses of the steady linearised Boltzmann–BGK equation were
pioneered by Sone (1969, 1974), who derived analytical formulae to study the
physics of gas flows at small Knudsen numbers, i.e. Kn � 1. To account for the
asymptotically thin Knudsen boundary layer that forms near any smooth wall in
this limit, a matched asymptotic expansion was performed in the scaled Knudsen
number,

k=
√

π

2
Kn. (1.2)

This yielded hydrodynamic equations and slip boundary conditions for low-speed
flows in the near-continuum limit. At leading-order in k, the Stokes equations for
incompressible creeping flow are recovered, together with the no-slip boundary
condition. All higher-order terms in the series expansion in k of the gas density, mean
velocity and temperature are also related by a set of Stokes equations. Therefore, small
degrees of gas rarefaction, k� 1, do not alter the bulk flow hydrodynamic equations.
By analysing the Knudsen layer equations at first- and second-order in k, a set of
algebraic Knudsen layer corrections and slip boundary conditions for the bulk flow
quantities were also derived. These asymptotic analytical formulae provide a rigorous
means to study the effect of gas rarefaction for steady flows.

Recently, asymptotic analyses of the effects of unsteadiness have been explored by
extending the framework of Sone (1969, 1974). Operating in the frequency domain,
Nassios & Sader (2012), Takata & Hattori (2012) and Nassios & Sader (2013)
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Oscillatory uniform heating of a rarefied gas 435

derived hydrodynamic equations and slip models for oscillatory (time-varying) flows
using the linearised unsteady Boltzmann–BGK equation. These equations are valid
for small-scaled Knudsen numbers, i.e. k� 1. Two complementary frequency regimes
were investigated: (i) the low-frequency regime, where the characteristic oscillation
frequency, ω, is small relative to the interparticle collision frequency ν, i.e. ω � ν
and (ii) the high-frequency regime, ω� ν.

The low-frequency regime was also studied in independent work by Takata &
Hattori (2012). This work is formulated using both the linearised Boltzmann–BGK
equation and linearised Boltzmann equation for hard spheres. The reports by Nassios
& Sader (2012) and Takata & Hattori (2012) show that unsteadiness alters the
classical linearised Navier–Stokes hydrodynamic equations at O(k) for non-isothermal
flows. In particular, unsteadiness couples with heat transport to generate a non-zero
bulk flow. The unsteady boundary conditions differ from those of steady flow at
higher order, O(k2), except for the mean velocity component tangential to a solid
wall, which remains the same as for the steady case.

In the high-frequency regime, ω � ν, a matched asymptotic expansion was
performed in the inverse of the frequency ratio θ−1 by Nassios & Sader (2013),
where

θ ≡ ω
ν
. (1.3)

As in the low-frequency case, hydrodynamic equations were derived for the bulk
flow (away from any walls). At leading-order in θ−1, a linearised Euler equation
is recovered, with the flow velocity proportional to a general applied body force,
ai. Higher-order terms in the θ−1-expansions of the gas density, bulk velocity and
temperature are proportional to gradients in ai. In contrast to the low-frequency case,
the Knudsen layer solution is found to be zero for all orders of θ−1. However, a
collisionless boundary layer flow is identified near any solid wall, where gas particle
inertia is balanced by free molecular wall-normal advection at leading order. The
natural choice of length scale within this collisionless layer is therefore the acoustic
length scale, Lc:

Lc ≡ vmp(T0)

ω
, (1.4)

which is the most probable distance travelled by a gas particle in equilibrium over a
single oscillation period; vmp(T0) is the most probable speed of the gas at temperature
T0. At first order in θ−1, net advection parallel to the wall and interparticle collisions
also affect the flow. Interestingly, general explicit equations appear for the gas density,
bulk velocity, temperature and stress tensor in both the inner and outer regions of the
flow. This eliminates the need to solve additional differential or integral equations, in
contrast to the low-frequency formulation.

Importantly, both the low- and high-frequency asymptotic theories discussed
above are yet to be validated against high-accuracy numerical solutions of the
Boltzmann–BGK equation. Such validation is critical to establishing the robustness
of these theories and their general applicability in practice, and is a primary goal of
this study. This enables the use of these asymptotic theories to explore the underlying
physics of unsteady rarefied gas flow phenomena. We study one such example: the
flow generated by two uniformly heated walls.

The apparatus is shown in figure 1; a homogeneous gas is confined between
two parallel plane walls separated by a distance d. Time-dependent (oscillatory)
temperature fields that are spatially uniform are imposed at the walls, resulting in
a unidirectional bulk flow in the gas. Throughout this article, we shall refer to
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x

y

FIGURE 1. Schematic showing infinite parallel walls, upon which uniformly and
harmonically varying temperature fields are imposed. Gas is confined between the walls.

this flow as the unsteady uniform heating problem. To investigate the underlying
physical mechanisms at small-scale Knudsen number, analytical solutions are derived
in the complementary limits of: (i) low oscillation frequency ratio, θ � 1, using the
hydrodynamic equations and slip models of Nassios & Sader (2012) and Takata &
Hattori (2012) and (ii) high oscillation frequency ratio, θ � 1, using the explicit
formulae in Nassios & Sader (2013). This enables a rigorous exploration of the
physics underlying these flows, which are found to be different to mechanisms
discussed in the literature, as we shall explain. These analytical solutions are then
validated by numerical solutions of the linearised Boltzmann–BGK equation, using a
generalisation of the finite difference approach of Yap & Sader (2012) for thermally
driven flows – this provides the first independent validation of the asymptotic theories
in Nassios & Sader (2012, 2013) and Takata & Hattori (2012).

A numerical discretisation procedure of the Boltzmann–BGK equation was
employed by Sharipov & Kalempa (2007, 2008) to study steady and unsteady
shear-driven flows confined within infinite plane walls. Recently, this approach was
augmented with the singularity subtraction technique of Loyalka & Tompson (2009)
to produce high-accuracy benchmark solutions for steady and unsteady (oscillatory)
Couette flow (Yap & Sader 2012). Importantly, this numerical technique is valid
across the full range of scaled Knudsen number k and normalized frequency ratio
θ . It will be utilised herein to generate the aforementioned high-accuracy numerical
solutions of the unsteady uniform heating problem. These are then compared to plots
of the asymptotic solutions, which serve to validate the asymptotic theories in both
the low- and high-frequency regimes.

Other numerical approaches have been used to study the unsteady uniform heating
problem considered herein. Doi (2011) formulated numerical solutions based on the
linearised Boltzmann equation, subject to full diffuse reflection from each wall. In
later work, Kalempa & Sharipov (2012) solved the Boltzmann equation using the
Shakhov (1968) model for the collision integral; the impact of partial accommodation
at the walls was studied using the Cercignani–Lampis boundary condition (Cercignani
& Lampis 1971). Numerical codes based on the approach by Kalempa & Sharipov
(2012) are provided in Sharipov (2016), together with analytical formulae for flow
in the ultra-rarefied (collisionless) limit where θ−1 → 0. More recently, Meng et al.
(2013) derived a thermal lattice Boltzmann method based upon the ellipsoid statistical
BGK equation (ES-BGK); this method was applied therein to study the unsteady
uniform heating problem for a BGK gas, by setting the Prandtl number (which
appears as a parameter in the ES-BGK equation) to 1. The numerical solutions were
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Oscillatory uniform heating of a rarefied gas 437

compared to results derived using an alternative numerical procedure, the low variance
direct simulation Monte Carlo method (LVDSMC) by Homolle & Hadjiconstantinou
(2007) and Radtke, Hadjiconstantinou & Wagner (2011).

With regard to analytical studies, the unsteady uniform heating problem was first
considered by Rayleigh (1899). He investigated the response of a compressible
homogeneous gas contained within the channel to a step change in the wall
temperature. This problem was also discussed by Schlichting (1960) and Sone
(1965), who utilised kinetic theory. The mass distribution function was assumed to
obey the Boltzmann–BGK equation, and perturbations about the equilibrium state
were assumed small, permitting linearisation of the system. This facilitated a study
of gas rarefaction effects, i.e. flow at non-zero Knudsen numbers; see (1.1).

A full nonlinear continuum formulation for a compressible gas was presented much
later (Clarke, Kassoy & Riley 1984; Radhwan & Kassoy 1984), with the oscillation
frequency of the wall temperatures (see figure 1) assumed to be small relative to the
gas relaxation rate.

More recently, the sinusoidal (time-varying) uniform heating problem was studied
by Yariv & Brenner (2004). They examined the flow generated in a compressible
Newtonian fluid for small oscillations in the wall temperatures. The linearised Navier–
Stokes–Fourier equations were solved with no-slip at the walls for isobaric conditions.
Interestingly, no solution was found that simultaneously satisfied the linearised Navier–
Stokes–Fourier equations, and the zero mass flux condition at the walls.

This problem was revisited in two articles by Manela & Hadjiconstantinou (2008,
2010). In Manela & Hadjiconstantinou (2008), the high oscillation frequency ratio
limit was investigated, i.e. θ � 1, and the gas dynamics was found to be free
molecular throughout the bulk of the gas. To facilitate the development of analytical
formulae, they performed an analysis for large Strouhal number St:

St≡ θ
k
, (1.5)

where k is the scaled Knudsen number; see (1.2). Interestingly, the leading-order
solution was found to be in good agreement with DSMC (direct simulation Monte
Carlo) simulations for large Strouhal numbers and small scaled Knudsen number, i.e.
St� 1 and k� 1.

The corresponding low-frequency ratio limit, θ � 1, was considered in Manela &
Hadjiconstantinou (2010). The standard linearised form of the compressible Navier–
Stokes–Fourier equations were solved for the bulk flow in the gas, subject to slip
boundary conditions at the walls; additionally, the isobaric flow assumption made in
Yariv & Brenner (2004) was relaxed. This approach yields a unidirectional flow in the
wall-normal direction at O(k), thus resolving the apparent paradox in Yariv & Brenner
(2004). However, in contrast to Manela & Hadjiconstantinou (2010), the formulae
in Nassios & Sader (2012) and Takata & Hattori (2012) show that the bulk flow
hydrodynamic equations are modified at O(k) due to inertia in non-isothermal flows,
i.e. the conventional Navier–Stokes–Fourier equations do not hold. Here, we explore
the implications of this additional body force term (both theoretically and numerically)
for the oscillatory uniform heating problem, and compare our solutions with those in
Manela & Hadjiconstantinou (2010). This provides critical insight into the physical
mechanisms driving this flow.

The structure of this article is as follows. In § 2, we outline the mathematical
formalism required for our analysis. Integral equations for the density, temperature
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and mean wall-normal velocity are derived in § 3; the symmetric equations are
presented in § 3.1, while the antisymmetric case is considered in § 3.2. The finite
differencing procedure used to solve these integral equations is discussed in § 3.3.
The required asymptotic formulae in each respective limit are summarised in § 4;
the solutions for θ � 1 are given in § 4.1, while solutions for θ � 1 are reported
in § 4.2. In §§ 5.1 and 5.2, we explore the underlying physical mechanisms that give
rise to the key features of the flow at low and high frequencies, respectively. This is
followed by a comparison between numerical and analytical solutions in § 5.3, which
validates the asymptotic results. Concluding remarks are presented in § 6.

2. Problem statement and governing equations
Consider two parallel plane walls of infinite extent separated by a distance d; see

figure 1. Throughout, subscripts ‘+b’ and ‘−b’ are used to denote a value at the upper
and lower walls, i.e. T+b and T−b are the wall temperatures at y=±d/2, respectively.
Each wall is stationary and the ith component of the applied body force ai
is zero:

ai = 0, (2.1a)
Vi = 0, (2.1b)

where Vi is the ith component of the mean velocity of a wall. Oscillatory (time-
varying) temperature fields with amplitude A and oscillation frequency ω are imposed
at the walls. We study two variants of this problem:

(i) Symmetric heating problem: the wall temperatures are equal

T(x, t)|±b = T0 + A exp(−iωt). (2.2)

(ii) Antisymmetric heating problem: the wall temperatures are opposite in sign

T(x, t)|±b = T0 ± A exp(−iωt). (2.3)

In (2.2) and (2.3), i is the usual imaginary unit and T0 is the reference temperature
of the walls.

In line with Nassios & Sader (2012, 2013), the mass distribution function F of the
gas obeys the Boltzmann–BGK equation with zero body force (see (2.1a)):

∂F
∂t
+ vi

∂F
∂xi
= ν(ρ(x, t)f0(x, v, t)− F). (2.4)

The equilibrium velocity distribution function at the local temperature, T(x, t), and
mean velocity, v̄(x, t), is

f0(v)=
(

1√
πvmp(T)

)3

exp

(
−
∣∣∣∣
v − v̄i

vmp(T)

∣∣∣∣
2
)
, (2.5)

where t is the time, ν is the particle collision frequency, kB is Boltzmann’s constant
and x and v are the particle position and particle velocity, respectively. The most
probable speed vmp(T) of gas particles of mass m at temperature T is defined as:

vmp(T)=
√

2kBT
m

, (2.6)
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and the local density is ρ(x, t). The local density ρ, mean gas velocity v̄ and tempe-
rature T are given by the following moments of the mass distribution function:

ρ =
∫ ∞

−∞
F dv,

v̄ = 1
ρ

∫ ∞

−∞
vF dv,

3kBT
m
= 1
ρ

∫ ∞

−∞
(v − v̄)2F dv,

p
ρ
= kBT

m
,





(2.7)

where the equation of state is the ideal gas law and p(x, t) is the local pressure.
We also assume that the wall temperatures are weakly perturbed about the

equilibrium temperature of the gas T0, i.e. A� T0, which permits linearisation of the
governing equations and boundary conditions. This yields the following expressions
for the density ρ, the temperature T , the pressure p and the mass distribution
function F:

ρ(x, t)= ρ0{1+ σ(x, t)},
T(x, t)= T0{1+ τ(x, t)},
p(x, t)= p0{1+ P(x, t)},

F(x, v, t)= ρ0E0{1+ φ(x, v, t)},





(2.8)

where ρ0, T0, p0 and ρ0E0 are the equilibrium density, temperature, pressure and mass
distribution function, respectively. The functions σ , τ , P and φ are perturbations to
these equilibrium values to be determined, and the function E0 in (2.8) is given by

E0 =
(

1√
πvmp(T0)

)3

exp

(
−
∣∣∣∣

v

vmp(T0)

∣∣∣∣
2
)
. (2.9)

Henceforth, we omit the term ‘perturbation’ in our discussion, e.g. we refer to φ
as the mass distribution function, σ as the density and τ is the temperature. We
substitute (2.8) into (2.4) and (2.7) and linearise the resulting system. All governing
equations and boundary conditions are therefore linearised using (2.8). This allows all
time-varying functions to be expressed as:

α(x, v, t)= α̃(x, v) exp(−iωt), (2.10)

where α represents any of (i) the perturbed quantities in (2.8); or (ii) the mean gas
velocity, v̄i. The ‘˜’ notation is omitted henceforth, and we operate exclusively in the
frequency domain.

We adopt the following scales: (i) the normal coordinate y is scaled by the wall
separation d and (ii) the particle velocity and mean velocity of the gas are scaled
by the most probable speed at the reference temperature, vmp(T0). These variables
will henceforth refer to their dimensionless values. Equations (2.4) and (2.8) yield
the scaled and linearised Boltzmann–BGK equation in terms of the mass distribution
function φ,

−iθφ + kvy
∂φ

∂y
= σ − φ + 2v̄yvy +

(
v2

i −
3
2

)
τ . (2.11)
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As before, v̄y and vy are the mean velocity of the gas and particle velocity in the
y-direction, respectively. The scaled and linearised moment equations are:

σ =
∫ ∞

−∞
φE(v) dv,

v̄y =
∫ ∞

−∞
vyφE(v) dv,

3
2
τ =

∫ ∞

−∞

(
v2

i −
3
2

)
φE(v) dv,

P= σ + τ ,





(2.12)

where the normalised Gaussian E is defined as

E(v1, v2, v3)=π−3/2 exp(−v2
1 − v2

2 − v2
3). (2.13)

2.1. Boundary conditions
We assume that particles undergo pure diffuse reflection at each wall. At the upper
wall (y= 1/2), reflected particles have velocity vy < 0 and the boundary condition for
the mass distribution function is:

F+b = ρ+b

(
1√

πvmp(T+b)

)3

exp

(
−
[

vi

vmp(T+b)

]2
)
, vy < 0, (2.14a)

ρ+b =−2
√

π

vmp(T+b)

∫

vy>0
vyF+b dv, (2.14b)

v̄y|y=1/2 = 0, (2.14c)

where vmp(T+b) is the most probable speed of gas particles at the temperature T+b
(see (2.6)), and (2.14b) and (2.14c) follow from the requirement of zero net mass
flux at the walls. At the lower wall (y=−1/2), we enforce similar conditions for all
reflected particles which take a positive wall-normal particle velocity, i.e. vy > 0:

F−b = ρ−b

(
1√

πvmp(T−b)

)3

exp

(
−
[

vi

vmp(T−b)

]2
)
, vy > 0, (2.15a)

ρ−b =−2
√

π

vmp(T−b)

∫

vy<0
vyF−b dv, (2.15b)

v̄y|y=−1/2 = 0. (2.15c)

The boundary conditions in (2.14)–(2.15) are also linearised using (2.8), which yields
the following boundary conditions for φ±b:

φ±b = σ±b +
(
v2

i − 3
2

)
τ±b, (2.16a)

σ±b =−1
2
τ±b ± 2

√
π

∫ ∞

−∞

∫ ∞

−∞

∫ 0

−∞
ξφ|±bE(vx, vz, ξ) dξ dvx dvz, (2.16b)

vy =∓ξ, (2.16c)
v̄y|y=±1/2 = 0, (2.16d)

where the normalised Gaussian E is defined in (2.13).
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Substituting (2.10) into (2.2) and (2.3), the wall temperatures τ±b for the symmetric
and antisymmetric problems take the following form in the frequency domain:

τ±b = υ γ . (2.17)

The dimensionless constant γ ≡ A/T0, while υ = 1 for the symmetric problem and
υ =±1 in the antisymmetric case, i.e. it differs in sign at the upper and lower walls.

Importantly, the boundary conditions in (2.16) and (2.17) are independent of
the tangential coordinates x and z, and therefore generate a unidirectional mean
wall-normal flow in the gas that only depends on the scaled normal coordinate y;
see figure 1. Consequently, the mass distribution function φ is also independent of x
and z.

3. Direct numerical solution of integral equations
In this section, the problem is formulated as a coupled set of integral equations for

the gas density σ , mean wall-normal velocity v̄y and temperature τ . The key equations
governing the flow for all Knudsen number k and frequency ratios θ are derived
for the symmetric problem in § 3.1. A similar approach is used in § 3.2, and yields
the corresponding integral equations for the antisymmetric case. An outline of the
numerical methodology applied to study the flows in later sections is then presented
in § 3.3.

3.1. Integral equations for the symmetric problem
The linearised Boltzmann–BGK equation in (2.11) is a first-order integro–differential
equation for φ that depends on the moments σ , v̄y and τ in (2.12). This can be
rewritten as an integral equation for φ using an integrating factor. For brevity, we
present the general solution for particles reflected from the lower wall (located at
y=−1/2), for which vy > 0:

φ = 1
kvy

∫ y

−1/2

[
σ + 2v̄yvy +

(
v2

i −
3
2

)
τ

]
exp

(
a
vy
(y0 − y)

)
dy0 +C exp

(
− a
vy

y
)
,

(3.1)

where a ≡ (1 − iθ)/k and C is a constant of integration. A similar expression is
readily derived for particles reflected from the upper wall at y = 1/2, where vy < 0.
This constant is determined by enforcing the diffuse reflection condition at the upper
and lower walls. For this reason, the mass distribution function φ is a discontinuous
function of vy at the walls.

This section is organised as follows. In § 3.1.1, we outline the approach required
to derive a numerically tractable set of integral equations for the macroscopic flow
quantities from (3.1). This method is subsequently applied in appendix A to derive
the required integral equations for the symmetric problem; for brevity, we summarise
the key equations in § 3.1.2.

3.1.1. Method
The diffuse reflection condition in (2.16a) is defined in terms of the reflected

particle density σ±b. This function is set independently at each wall by enforcing zero
net mass flux; see (2.16b). Importantly, this condition can be simplified by recognising
that the right-hand side of (2.16b) is spatially uniform, i.e. it is independent of x.
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Additionally, because the flow is driven by the oscillatory wall temperatures in (2.17),
σ±b is also proportional to the normalised temperature γ . The reflected particle
densities at each wall σ±b are therefore uniform, i.e.

σ+b =D+γ , (3.2a)
σ−b =D−γ , (3.2b)

where D+ and D− are constants. To determine the unique solutions for D+ and D−,
we enforce no penetration at each wall in the following way:

(i) First, we evaluate moments of the integral equation for φ in (3.1), which yields
a coupled set of integral equations for the density σ , mean wall-normal velocity
v̄y and temperature τ of the gas in terms of D±.

(ii) Second, the integral equation for v̄y is evaluated at each wall, i.e. at y = ±1/2,
and the no-penetration condition in (2.16d) is enforced.

This yields a pair of simultaneous equations for D+ and D−, which are then solved
for D± in terms of the macroscopic flow quantities. Importantly, this systematic
approach yields integral equations that can be solved numerically using an extension
of the method described in Yap & Sader (2012).

3.1.2. Summary of key equations
As discussed previously, in this section we provide a summary of the key results

and refer the reader to appendix A for the full derivation. Proceeding as outlined
in § 3.1.1, we substitute (3.2) into (2.16). This gives the required boundary conditions
for φ at the walls in terms of D± for symmetric uniform heating:

φ|y=±1/2 = γ
(
D± + v2

i − 3
2

)
. (3.3)

Enforcing no penetration at each wall yields an expression for φ; see (A 2).
Substituting (A 2) into the moment equations in (2.12) then yields coupled integral
equations for three macroscopic flow quantities, σ , v̄y and τ , and two constants D±,
in terms of the normal coordinate y; see (A 3)–(A 5), where the Abramowitz functions
(Abramowitz & Stegun 1965) are defined as

Jn(η)=
∫ ∞

0
tn exp

(
−η

t
− t2

)
dt, (3.4)

and the sign function sgn(y− y0) extracts the sign of the real argument y− y0.
We now determine expressions for the constants D± using the procedure in § 3.1.1.

First, the integral equation for v̄y is evaluated at each wall, i.e. at y=±1/2, and the no-
penetration condition from (2.16d) is enforced. This yields the simultaneous equations
for D± that are summarised in (A 6a) and (A 6b). The simultaneous equations (A 6a)
and (A 6b) are solved by using the symmetry relation from (A 7) and (A 8). This yields
the required unique solution for D±:

D+ ≡D=D−, (3.5)

where D is defined as:

D = 2
1− 2J1(a)

[
−1

2

(
J1(a)− 1

2

)
+ J3(a)− 1

2

+ 1
kγ

∫ 1/2

−1/2

{
σ

[
− 2iθ

1− iθ
J2

(
a
[

1
2
− y0

])
+ J0

(
a
[

1
2
− y0

])]

+ τ
[

J2

(
a
[

1
2
− y0

])
− 1

2
J0

(
a
[

1
2
− y0

])]}
dy0

]
. (3.6)
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The required system of three integral equations for the hydrodynamic quantities σ ,
v̄y and τ are thus obtained; see (A 3)–(A 5), (3.5) and (3.6). These equations will be
solved numerically to provide benchmark results in which to assess the validity of the
asymptotic theories in Nassios & Sader (2012, 2013) and Takata et al. (2012) – the
numerical solution is detailed in § 3.3 whereas the asymptotic results are presented
in § 4.

Importantly, these equations are valid for all k and θ . The equation for the mean
velocity v̄y can be formally decoupled from the equations for the density σ and
temperature τ to reduce computational time in the numerical solution. This is achieved
by integrating terms involving v̄y in (A 3) and (A 5) by parts, and substituting for (A 8)
and (3.5). Formally, we therefore consider the following integral equations for the
gas density and temperature:
√

π

γ
σ =

(
D− 1

2

) [
J0

(
a
[

y+ 1
2

])
+ J0

(
a
[

1
2
− y
])]
+ J2

(
a
[

y+ 1
2

])

+ J2

(
a
[

1
2
− y
])
+ 1

kγ

∫ 1/2

−1/2

{
σ

[
− 2iθ

1− iθ
J1(a|y− y0|)+ J−1(a|y− y0|)

]

+ τ
[

J1(a|y− y0|)− 1
2

J−1(a|y− y0|)
]}

dy0, (3.7a)

3
√

π

2γ
τ = D

[
J2

(
a
[

y+ 1
2

])
+ J2

(
a
[

1
2
− y
])
− 1

2
J0

(
a
[

y+ 1
2

])

− 1
2

J0

(
a
[

1
2
− y
])]
+ J4

(
a
[

y+ 1
2

])
+ J4

(
a
[

1
2
− y
])

− J2

(
a
[

y+ 1
2

])
− J2

(
a
[

1
2
− y
])
+ 5

4
J0

(
a
[

y+ 1
2

])

+ 5
4

J0

(
a
[

1
2
− y
])
+ 1

kγ

∫ 1/2

−1/2

{
σ

[
2iθ

1− iθ
J3(a|y− y0|)

+
(

iθ
1− iθ

+ 1
)

J1(a|y− y0|)− 1
2

J−1(a|y− y0|)
]

+ τ
[

J3(a|y− y0|)− J1(a|y− y0|)+ 5
4

J−1(a|y− y0|)
] }

dy0, (3.7b)

where D is given in (3.6).
The complete set of integral equations for the symmetric heating problem defined

by (A 4), (3.6) and (3.7) is numerically solved in § 3.3.

3.2. Integral equations for the antisymmetric problem
An identical approach to the one adopted in § 3.1 yields the corresponding set of
integral equations for the antisymmetric heating problem. The mass distribution
function at the walls takes the form:

φ|y=±1/2 =±γ
(
D± + v2

i − 3
2

)
, (3.8)

where the constants D+ and D− are:

σ+b =D+γ , (3.9a)
σ−b =−D−γ . (3.9b)
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For brevity, we omit the interluding detail and summarise the final set of equations.
The mean wall-normal velocity satisfies the integral equation:
√

π

γ
v̄y =−

(
D− − 1

2

)
J1

(
a
[

y+ 1
2

])
−
(

D+ − 1
2

)
J1

(
a
[

1
2
− y
])

− J3

(
a
[

y+ 1
2

])
− J3

(
a
[

1
2
− y
])
+ 1

kγ

∫ 1/2

−1/2

(
sgn(y− y0)σJ0(a|y− y0|)

+ 2v̄yJ1(a|y− y0|)+ sgn(y− y0)τ

[
J2(a|y− y0|)− 1

2
J0(a|y− y0|)

])
dy0.

(3.10)

Evaluating (3.10) at each wall and applying the no-penetration condition from (2.16d),
we find that the constants D± defined in (3.9) are equal, i.e.

D+ =D=D−, (3.11)

where D is

D = 2
1+ 2J1(a)

[
−1

2

(
−1

2
− J1(a)

)
− J3(a)− 1

2

+ 1
kγ

∫ 1/2

−1/2

{
σ

[
− 2iθ

1− iθ
J2

(
a
[

1
2
− y0

])
+ J0

(
a
[

1
2
− y0

])]

+ τ
[

J2

(
a
[

1
2
− y0

])
− 1

2
J0

(
a
[

1
2
− y0

])]}
dy0

]
. (3.12)

As in § 3.1, equation (3.10) for the mean wall-normal velocity v̄y is decoupled from
the equations for the density σ and temperature τ of the gas. The final set of two
coupled integral equations for the antisymmetric problem are
√

π

γ
σ =

(
D− 1

2

) [
−J0

(
a
[

y+ 1
2

])
+ J0

(
a
[

1
2
− y
])]
− J2

(
a
[

y+ 1
2

])

+ J2

(
a
[

1
2
− y
])
+ 1

kγ

∫ 1/2

−1/2

{
σ

[
− 2iθ

1− iθ
J1(a|y− y0|)+ J−1(a|y− y0|)

]

+ τ
[

J1(a|y− y0|)− 1
2

J−1(a|y− y0|)
]}

dy0, (3.13a)

3
√

π

2γ
τ = D

[
−J2

(
a
[

y+ 1
2

])
+ J2

(
a
[

1
2
− y
])
+ 1

2
J0

(
a
[

y+ 1
2

])

− 1
2

J0

(
a
[

1
2
− y
])]
− J4

(
a
[

y+ 1
2

])
+ J4

(
a
[

1
2
− y
])

+ J2

(
a
[

y+ 1
2

])
− J2

(
a
[

1
2
− y
])
− 5

4
J0

(
a
[

y+ 1
2

])

+ 5
4

J0

(
a
[

1
2
− y
])
+ 1

kγ

∫ 1/2

−1/2

{
σ

[
2iθ

1− iθ
J3(a|y− y0|)
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+
(

iθ
1− iθ

+ 1
)

J1(a|y− y0|)− 1
2

J−1(a|y− y0|)
]

+ τ
[

J3(a|y− y0|)− J1(a|y− y0|)+ 5
4

J−1(a|y− y0|)
] }

dy0. (3.13b)

As for the symmetric case, the general numerical approach in Yap & Sader (2012) will
be applied to solve the integral equations in (3.13) for the density σ and temperature τ .
The mean wall-normal velocity v̄y is subsequently determined by solving (3.10) with
D± given by (3.11).

3.3. Numerical method
Next, we outline the numerical method to solve the symmetric problem specified by
(A 4), (3.6) and (3.7), and the antisymmetric problem in (3.10), (3.12) and (3.13).

The coupled density, temperature and mean normal velocity integral equations are
of the form

σ(y)=
∫ 1/2

−1/2
[Kσ (y, y0)σ (y0)+Hσ (y, y0)τ (y0)] dy0 + Sσ (y),

τ (y)=
∫ 1/2

−1/2
[Kτ (y, y0)σ (y0)+Hτ (y, y0)τ (y0)] dy0 + Sτ (y),

v̄y(y)=
∫ 1/2

−1/2
[Kv(y, y0)σ (y0)+Hv(y, y0)τ (y0)+ Fv(y, y0)v̄y(y0)] dy0 + Sv(y),





(3.14)

corresponding to a system of Fredholm integral equations of the second kind. The
density and temperature equations are coupled while the velocity equation can be
solved separately. The kernels Ks(y, y0), Hs(y, y0), Fs(y, y0) and inhomogeneous term
Ss(x) are specified functions, and the subscript s distinguishes between functions in
the density equation (subscript ‘σ ’), the temperature equation (subscript ‘τ ’) and
the velocity equation (subscript ‘v’). These functions are defined in appendix C. To
eliminate the singularities in the integrands, we apply the singularity subtraction
technique employed by Loyalka & Tompson (2009) to (3.14), which for the density
and temperature gives:

g(y)σ (y)=
∫ 1/2

−1/2
[K(1)(y, y0)(σ (y0)− σ(y))+K(2)(y, y0)(τ (y0)− τ(y))] dy0 + Vσ (y),

g(y)τ (y)=
∫ 1/2

−1/2
[K(3)(y, y0)(σ (y0)− σ(y))+K(4)(y, y0)(τ (y0)− τ(y))] dy0 + Vτ (y),





(3.15)
and for the velocity

a7(y)g(y)v̄(y) =
∫ 1/2

−1/2

[
K(5)(y, y0)(σ (y0)− σ(y))+K(6)(y, y0)(τ (y0)− τ(y))

+ K(7)(y, y0)(v̄y(y0)− v̄y(y))
]

dy0 + Vv(y). (3.16)

The functions g(y), a7(y), K(m)(y) and Vs, with the integer indices m ∈ [1, 7] and s ∈
{σ , τ , v}, are also included in appendix C.
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We utilise an extension of the numerical method applied in Yap & Sader (2012) to
solve the coupled equations. The domain x ∈ [−1/2, 1/2] is divided into L intervals
and the resulting integral in each interval is evaluated using Gauss–Legendre (GL)
quadrature of order N. This produces a linear system of algebraic equations for the
coupled density and temperature, and a separate linear system of equations for the
velocity once the density and temperature have been found:

2NL∑

q=1

Mpquq = Tp p= 1, . . . , 2NL, (3.17)

NL∑

j=1

A(7)ij v̄y(ȳj)= Vv(ȳj)−
NL∑

j=1

A(5)ij σ(ȳj)−
NL∑

j=1

A(6)ij τ(ȳj) i= 1, . . . ,NL, (3.18)

where

M =
(

A(1) A(2)

A(3) A(4)

)
, (3.19a)

uq =
{
σ(ȳq) q= 1, . . . ,NL
τ(ȳq−NL) q=NL+ 1, . . . , 2NL,

(3.19b)

Tp =
{

Vσ (ȳp) p= 1, . . . ,NL
Vτ (ȳp−NL) p=NL+ 1, . . . , 2NL,

(3.19c)

and M is a 2NL× 2NL block matrix consisting of four distinct NL×NL matrices. For
k= 1, 4 and 7, the matrix A(k) in (3.18) and (3.19) is:

A(k)ij =





X(ȳi)+ 1
2L

NL∑

l=1
l 6=i

w̄lK(k)(ȳi, ȳl) i= j

− 1
2L

w̄jK(k)(ȳi, ȳj) i 6= j,

(3.20)

where X(ȳi)= g(ȳi) for k= 1, 4 and X(ȳi)= a7(ȳi)g(ȳi) for k= 7. For k= 2, 3, 5 and 6:

A(k)ij =





1
2L

NL∑

l=1
l 6=i

w̄lK(k)(ȳi, ȳl) i= j

− 1
2L

w̄jK(k)(ȳi, ȳj) i 6= j.

(3.21)

The indices are i, j= 1, . . . ,NL, where ȳi ∈ (−1/2, 1/2) is the ith discretized node to
the right of y = −1/2 and w̄i is the corresponding weight; it is related to the usual
GL weights by

ȳi =
z1+(i−1)mod N + 2

⌊
i− 1

N

⌋
+ 1− L

2L
, (3.22)

w̄i =w1+(i−1)mod N, (3.23)

where zn ∈ (−1, 1) are the GL abscissas and wn are the corresponding GL weights,
with n= 1, . . . ,N.
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Solving the linear system in (3.17), (3.19)–(3.22) yields the density and temperature
at the node points ȳi. These density and temperature solutions are to be used to solve
the linear system (3.18) for the velocity. To obtain the density and temperature at
arbitrary positions in the channel, a two-dimensional fixed-point rule is applied to
(3.15) as in Yap & Sader (2012).

To estimate the accuracy of the solution, results at 41 equally spaced points
across the channel (y = l/L for l = 0, 1, . . . , L) are evaluated using the fixed-point
rule, i.e. L = 40. Results at these points are then compared as quadrature order
is increased. Quadrature order used in each interval is sequentially doubled from
N = 5 until convergence to at least 2 significant figures is obtained. In so doing,
an upper bound on accuracy at the GL nodes can also be found. All calculations
are implemented using 30 significant figures and a tolerance of 10−16 is used in the
fixed-point rule. To evaluate the Abramowitz functions, the in-built MeijerG function
in MATHEMATICAr is used.

4. Asymptotic analyses for slightly rarefied flows
In this section, asymptotic formulae for the unsteady uniform heating problem are

derived using the general theories of Nassios & Sader (2012, 2013) and Takata &
Hattori (2012). These theories implicitly assume that the wall separation d greatly
exceeds the gas mean free path, λ, i.e. k� 1.

We begin in § 4.1 by examining the low oscillation frequency ratio limit (θ � 1),
where the flow is solved to first order in the scaled Knudsen number k. Interestingly,
closure of the system at O(k) yields solutions for the mean wall-normal velocity,
correct to O(k2). The complementary limit where the oscillation frequency ratio is
large (θ� 1) is explored in § 4.2, up to first order in the inverse frequency ratio, θ−1.

4.1. Low oscillation frequency, θ� 1
When the oscillation frequency ω is much smaller than the molecular collision
frequency ν, the flow of a slightly rarefied gas can be studied using the formalism
in Nassios & Sader (2012) and Takata & Hattori (2012); an outline of which is
given here. In Nassios & Sader (2012), the frequency ratio θ and the scaled Knudsen
number k are assumed to be simultaneously small via:

θ = 1
2βk2, (4.1a)

β = ωL2

νkin(T0)
, (4.1b)

νkin(T0)=
√

π

4
vmp(T0)λ, (4.1c)

where (i) β is the Stokes number, (ii) νkin(T0) is the kinematic viscosity and
(iii) vmp(T0) is the most probable speed of gas particles at the equilibrium temperature
T0 (see (2.6)). A matched asymptotic expansion for the mass distribution φ and its
moments (σ , v̄i, τ and P) is performed in the (small) scaled Knudsen number k,

α = αH + αK, α ∈ {σ , v̄i, τ , P}, (4.2a)

αA =
N∑

n=0

α
(n)
A kn, A ∈ {H,K}. (4.2b)
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(a) Leading-order equations, n= 0 (b) First-order equations, n= 1

0= ∂P(0)H

∂y
δ2v̄

(0)
H|y =−

∂P(1)H

∂y
+ ∂

2v̄
(0)
H|y

∂y2

0= ∂v̄
(0)
H|y
∂y

δ2τ
(1)
H −

∂2τ
(1)
H

∂y2
= 2δ2

5
P(1)H

δ2τ
(0)
H −

∂2τ
(0)
H

∂y2
= 2δ2

5
P(0)H −δ

2

2
σ
(1)
H =

∂v̄
(2)
H|i
∂y

−δ
2

2
σ
(0)
H =

∂v̄
(1)
H|y
∂y

TABLE 1. Bulk flow hydrodynamic equations for the symmetric and antisymmetric
uniform heating of two plane walls at low frequency ratio, where δ2 ≡−iβ.

The bulk flow away from any solid wall is distinguished by a subscript ‘H’. This
is studied via a classical Hilbert expansion in the (small) scaled Knudsen number
k, which yields a collisionally dominated flow. Using the collisional conservation
laws, hydrodynamic equations are derived in this region up to second order in k.
Importantly, it has been shown that the momentum conservation equation is altered
for unsteady flow in a non-isothermal gas at O(k), i.e. this equation is not the
Navier–Stokes equation. At second order, the energy conservation equation is also
altered for non-isothermal gas flows, while the momentum equation is of a modified
form for a general flow.

The Knudsen layer corrections for the local flow near any solid wall are denoted
by a subscript ‘K’, and have also been examined to O(k2). It has been shown that
the well-known steady second-order tangential velocity slip model and Knudsen
layer correction for a BGK gas are unaltered for unsteady flow at low frequency.
This provides analytical justification for the application of the classical (steady)
second-order slip condition to study unsteady flows. Importantly, all remaining slip
boundary conditions and Knudsen layer corrections are modified at O(k2) relative to
the steady case; in particular, new terms arise to account for gas compressibility and
temperature gradients near the wall. The leading-order effect of unsteadiness at low
frequency in a slightly rarefied gas therefore occurs via a modification to the O(k)
bulk flow hydrodynamic equation, with a subset of the slip conditions and Knudsen
layer corrections altered at O(k2).

We now present solutions for the unsteady uniform heating problem described in § 2.
The hydrodynamic equations, velocity slip and temperature jump boundary conditions,
and Knudsen layer corrections required to study the flow correct to first order in the
scaled Knudsen number are summarised in tables 1 and 2. We apply the temperature
jump coefficient d1=1.3027 . . . derived from the linearised Boltzmann–BGK equation
by Sone (1969, 1971) for a steady flow; as discussed in § 1, this coefficient was
proven to remain unaltered by unsteady effects by Nassios & Sader (2012) and Takata
& Hattori (2012). The Knudsen layer functions Ω1 and Θ1 are defined in terms of the
truncated series:

Ψ (η)=
N∑

n=0

cnJn(η), (4.3)
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(a) Slip boundary conditions (b) Knudsen layer corrections

v̄
(0)
H|y|±b = 0 v̄

(0)
±K|y(y)= 0

τ
(0)
H |±b = τ (0)±b σ

(0)
±K(y)= 0

v̄
(1)
H|y|±b = 0 τ

(0)
±K(y)= 0

τ
(1)
H |±b = τ (1)±b ± d1

(
−∂τ

(0)
H

∂y

)∣∣∣∣∣
±b

v̄
(1)
±K|y(y)= 0

v̄
(2)
H|y|±b = 0 σ

(1)
±K(y)=±Ω1

(
−±y− 1

2

k

)(
−∂τ

(0)
H

∂y

∣∣∣∣∣
±b

)

τ
(1)
±K(y)=±Θ1

(
−±y− 1

2

k

)(
−∂τ

(0)
H

∂y

∣∣∣∣∣
±b

)

v̄
(2)
±K|y(y)= 0

TABLE 2. Slip conditions and Knudsen layer corrections for the symmetric and
antisymmetric uniform heating of two plane walls at low frequency ratio.

cn Ω1(η) Θ1(η)

c0 0.4645150417159274 −0.47586821852973676
c1 −1.8785788489664434 1.4854013687672925
c2 9.830594944287945 −7.184460010978979
c3 −32.68210146761804 21.3542382648883
c4 65.12912838051923 −37.446994621552044
c5 −78.93106732673846 37.84676994179323
c6 60.41934603739543 −22.178436675332115
c7 −30.064837758684902 7.33274798660993
c8 9.946300973193898 −1.3823926607927444
c9 −2.186586739485301 0.22081054995310287
c10 0.2976361644584244 −0.048887967057644005
c11 −0.018294867611415702 0.005067301004991428

TABLE 3. Coefficients of Ω1(η) and Θ1(η), the Knudsen layer density functions.

where Ψ represents any of Ω1 and Θ1. The required Knudsen layer coefficients are
presented in Nassios & Sader (2012); these coefficients are replicated in table 3 herein,
with δ2 ≡−iβ.

The wall temperatures τ (n)±b for n=0,1 that appear in the slip conditions in table 2(a)
are the nth-order terms in the k-expansion of τ±b defined in (2.17). Using (4.2b), we
find:

τ
(0)
±b = υγ , (4.4a)

τ
(n)
±b = 0, n > 1. (4.4b)
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Next, we solve the system of differential equations in table 1 subject to the
boundary conditions in table 2(a) and (4.4). Symmetric wall temperatures are assumed
in § 4.1.1; see (4.4) with υ =+1 at both walls.

As discussed in § 1, Manela & Hadjiconstantinou (2010) studied the symmetric
problem using the linearised Navier–Stokes–Fourier equations, with the classical
(steady) first-order slip conditions derived by Sone (1969, 1971, 1974) applied at the
walls. These boundary conditions are identical to those in table 2(a). However, the
linearised Navier–Stokes–Fourier equations differ from those summarised in table 1
at O(k) because the flow is non-isothermal. In § 4.1.1, we elucidate the effect of
the modified hydrodynamic equations on the flow. The antisymmetric configuration
is then considered in § 4.1.3, where υ = ±1 at the upper and lower walls, i.e. at
y=±1/2, respectively.

4.1.1. Symmetric wall temperatures
First, consider the leading-order equations in table 1(a). The first equation yields

the hydrostatic pressure
P(0)H =Csym, (4.5)

where Csym is a constant to be determined. From the second equation in table 1(a), the
flow is incompressible at leading order and satisfies the no-slip boundary condition;
see table 2(a). This gives zero mean wall-normal velocity, because the wall is
stationary,

v̄
(0)
H|y = 0. (4.6)

Therefore, no flow occurs in the continuum limit, i.e. for k= 0.
At leading order, the temperature of the gas matches the wall temperatures given

by (4.4a) with υ = +1; see table 2(a). The third equation in table 1(a) then yields
the temperature in the gas at leading order. This is defined in terms of the hydrostatic
pressure from (4.5):

τ
(0)
H =

(
γ − 2Csym

5

)
cosh(δy)

cosh
(
δ

2

) + 2Csym

5
. (4.7)

Substituting (4.5) and (4.7) into the continuity equation in the fourth line of table 1(a)
yields

∂v̄
(1)
H|y
∂y
= δ

2

2

(
γ − 2Csym

5

)
cosh(δy)

cosh
(
δ

2

) − 3δ2

10
Csym. (4.8)

Equation (4.8) is a first-order differential equation for v̄(1)H|y, which must satisfy the no-
penetration condition at both the upper and lower walls. The constant Csym therefore
ensures the necessary degree of freedom exists in (4.8) to simultaneously satisfy no
penetration at both walls. This establishes that mass conservation is the dominant
physical mechanism driving the flow, which generates a hydrostatic pressure in the
gas at leading order. This pressure is present across the full range of inertia, i.e. for
all β, which ensures the impermeability condition at the walls is satisfied.
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In the symmetric case, the unique solution for v̄(1)H|y and Csym from (4.8) is

Csym = γ
10 tanh

(
δ

2

)

3δ + 4 tanh
(
δ

2

) = P(0)H , (4.9a)

Gsym = 0, (4.9b)

τ
(0)
H = γ

3δ cosh(δy)+ 4 sinh
(
δ

2

)

3δ cosh
(
δ

2

) , (4.9c)

v̄
(1)
H|y = γ

3δ2

(
sinh(δy)− 2y sinh

(
δ

2

))

6δ cosh
(
δ

2

)
+ 8 sinh

(
δ

2

) . (4.9d)

A similar procedure can be applied to solve the first order (n = 1) bulk flow
quantities, using the equations in table 1(b). For brevity, we omit the derivation and
summarise the unique solutions to P(1)H , τ (1)H , and v̄(2)H|y,

P(1)H =−γ
30δ2d1 tanh2

(
δ

2

)

(
3δ + 4 tanh

(
δ

2

))2 , (4.10a)

τ
(1)
H =−γ

3δ2d1 sinh
(
δ

2

)(
3δ cosh(δy)+ 4 sinh

(
δ

2

))

(
3δ cosh(δy)+ 4 sinh

(
δ

2

))2 , (4.10b)

v̄
(2)
H|y = γ

9δ4d1 sinh
(
δ

2

)(
2y sinh

(
δ

2

)
− sinh(δy)

)

2
(

3δ cosh(δy)+ 4 sinh
(
δ

2

))2 . (4.10c)

As discussed earlier, closure of this system to O(k) is achieved using the continuity
equation in the third line of table 2(b). This yields an expression for the second order
(n= 2) correction for the mean wall-normal velocity v̄(2)H|y.

4.1.2. Comparison with Manela & Hadjiconstantinou (2010)
As discussed, the symmetric heating problem was previously studied by Manela

& Hadjiconstantinou (2010) using the linearised Navier–Stokes–Fourier equation.
Interestingly, the k-expansion of their solution (not shown here) yields algebraic
expressions for the flow up to O(k2), which are identical to those reported in (4.9) and
(4.10). However, the results in (4.9) and (4.10) are derived using the hydrodynamic
equations in table 1, which differ from the linearised Navier–Stokes–Fourier equation.
This is shown in (4.11), where we give the momentum conservation equations for the
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symmetric uniform heating problem, at both first and second order in k, as formally
derived from the Boltzmann–BGK equation,

δ2v̄
(1)
H|y =−

∂P(2)H

∂y
+ 4

3
∂2v̄

(1)
H|y

∂y2
− 2δ2

3
∂τ

(0)
H

∂y
, (4.11a)

δ2v̄
(2)
H|y =−

∂P(3)H

∂xy
+ 4

3
∂2v̄

(2)
H|y

∂y2
− 2δ2

3
∂τ

(1)
H

∂y
. (4.11b)

Importantly, because the mean velocity is determined by the continuity equation (mass
conservation) in this problem, the additional body force terms in the momentum
equation, (4.11), do not alter the mean normal velocity in the gas to O(k2). As
such, the linearised Navier–Stokes–Fourier equation and the equations in table 1 give
identical results for the flow up to (i) O(k) for the temperature and pressure and
(ii) O(k2) for the mean wall-normal velocity. This explains why the results of Manela
& Hadjiconstantinou (2010) are identical to those presented here, despite the use of
different momentum transport equations. This is a unique property of the uniform
heating problem. Indeed, it was shown by Nassios & Sader (2012) that the additional
body force term in the O(k) momentum equation in table 1 is generally critical in
determining the leading-order thermal creep flow for small β – its inclusion will in
general modify the velocity field.

4.1.3. Antisymmetric wall temperatures
We follow an identical approach to the one employed in § 4.1.1 to study the flow

caused by antisymmetric heating; see (4.4), with υ = ±1. The leading order (n =
0) pressure, mean wall-normal velocity and temperature of the gas have the unique
solutions:

P(0)H =Casym, (4.12a)

v̄
(0)
H|y = 0, (4.12b)

τ
(0)
H =

(
γ − 2Casym

5

)
sinh(δy)

sinh
(
δ

2

) + 2Casym

5
. (4.12c)

As required, the temperature is now antisymmetric across the channel. Once again,
mass conservation is the dominant mechanism driving the flow at first order in k and
the general solution for the first-order mean wall-normal velocity in terms of Casym is
determined from the continuity equation

v̄
(1)
H|y =

δ

2

(
γ − 2Casym

5

)
cosh(δy)

cosh
(
δ

2

) + δ
2Casymy

5
+Gasym, (4.13)

where Gasym is a constant of integration. Enforcing no penetration at both the upper
and lower walls gives the unique solution for v̄(1)y ,

Casym = 0= P(0)H , (4.14a)

Gasym =−γ δ

2 tanh
(
δ

2

) , (4.14b)
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τ
(0)
H = γ

sinh(δy)

sinh
(
δ

2

) , (4.14c)

v̄
(1)
H|y = γ

δ

(
cosh(δy)− cosh

(
δ

2

))

2 sinh
(
δ

2

) . (4.14d)

Importantly, the mean wall-normal velocity is now symmetric across the channel;
see (4.14). The hydrostatic pressure at leading order P(0)H =Casym is therefore zero by
symmetry from (4.13), i.e. the flow at leading order (n= 0) is isobaric. This contrasts
markedly with the symmetric case, where the antisymmetric mean wall-normal
velocity gives rise to a hydrostatic pressure; see (4.9).

Closure of this system to first order in k yields the following expressions:

P(1)H = 0, (4.15a)

τ
(1)
H =−γ

δd1 sinh(δy)

tanh
(
δ

2

)
sinh

(
δ

2

) , (4.15b)

v̄
(2)
H|y = γ

δ2d1

(
cosh

(
δ

2

)
− cosh(δy)

)

2 tanh
(
δ

2

)
sinh

(
δ

2

) . (4.15c)

Once more, the hydrostatic pressure at first order (n = 1) in k is zero, which is in
contrast to the symmetric case for the reasons discussed earlier.

4.2. High oscillation frequency, θ� 1
In this section, we provide the complementary analysis to § 4.1 and explore the flow
of a slightly rarefied gas when the oscillation frequency ω is much larger than the
molecular collision frequency ν. This is achieved using the formalism in Nassios &
Sader (2013), which identified a local boundary layer flow near the wall that was
distinct from the Knudsen layer; again a brief outline of the analysis is presented.
A matched asymptotic expansion for the mass distribution function and its moments
(φ, σ , v̄, τ and P, represented by α) is performed in the (small) inverse frequency
ratio θ−1:

α = αH + αK + αC, α ∈ {φ, σ , v̄, τ and P}, (4.16a)

αA =
N∑

n=0

α
(n)
A θ

−n, A ∈ {H,K,C}. (4.16b)

As in Nassios & Sader (2012) and Takata et al. (2012) (discussed in § 4.1), the bulk
flow away from any wall when θ� 1 is distinguished by a subscript H and is studied
using a classical Hilbert expansion in the (small) inverse frequency ratio θ−1. The
leading-order mass distribution function of the gas in the bulk flow region has been
shown to be directly proportional to the applied oscillatory body force, ai. This yields
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(a) n= 0 (b) n= 1

φ
(0)
H = 2iamvm φ

(1)
H = 2kvmvl

∂am

∂xl

σ
(0)
H = 0 σ

(1)
H = k

∂am

∂xm

P(0)H = 0 P(1)H =
5k
3
∂am

∂xm

τ
(0)
H = 0 τ

(1)
H =

2k
3
∂am

∂xm

ε
(0)
H|ij = 0 ε

(1)
H|ij = k

(
∂ai

∂xj
+ ∂aj

∂xi
+ δij

∂am

∂xm

)

−iv̄(0)H|i = ai v̄
(1)
H|i = 0

TABLE 4. Outer flow field hydrodynamic relations to first order (n= 1) in the inverse
frequency ratio θ−1.

a linearised Euler equation for the flow in that region to leading order in θ−1; see
table 4. Higher-order corrections to the mass distribution function in the expansion
parameter θ−1 are proportional to gradients in the applied body force ai. The full
set of hydrodynamic equations are summarised in table 4. Zero body force therefore
yields no bulk flow. It has also been proven that the zero solution satisfies all Knudsen
layer equations for n > 0, i.e.

α
(n)
K = 0. (4.17)

The local boundary layer flow near the wall (distinct from the Knudsen layer)
is denoted by a subscript C. The thickness of this boundary layer scales with the
acoustic length scale vmp(T0)/ω, which is much smaller than the gas mean free path
λ (which represents the thickness of the Knudsen layer) when the flow is highly
oscillatory, i.e. θ � 1. The flow in the wall-normal direction within this boundary
layer is thus collisionless to leading order. In contrast to the low-frequency case,
explicit and general expressions are derived for the macroscopic flow quantities up
to first order in θ−1 within the collisionless layer. This eliminates the need to solve
a set of differential equations for the flow near a wall of arbitrary geometry. The
collisionless layer equations are lengthy; for brevity, we do not summarise the full
set of equations in this article and refer the reader to Nassios & Sader (2013).

We apply this formalism to study high-frequency oscillatory uniform heating of two
parallel plane walls; see figure 1. The (local) flows within the collisionless layers near
each wall decouple because the body force vanishes, i.e. ai= 0, and the bulk (Hilbert)
flow is zero. Consequently, flows near each wall can be studied independently. We
therefore consider the flow generated when an oscillatory temperature distribution of
constant amplitude is imposed along a stationary, isolated plane wall; see figure 2.
This flow is solved using the boundary conditions in (2.16) and the general formulae
for the macroscopic flow quantities from Nassios & Sader (2013). These formulae
are given explicitly as functions of the nth-order terms in the θ−1-expansion of the
velocity Vi and temperature τb of the wall, as well as the reflected particle density σb.
All terms involving the applied body force ai are zero by (2.1a), while the normal and
geodesic curvatures are also zero because the wall is flat; see figure 2. The required
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x

y

z

FIGURE 2. Schematic showing an infinite plane wall upon which a uniformly and
harmonically varying temperature field is imposed. Dilute gas fills the half-space y > 0.

expressions for the nth-order terms in the θ−1-expansion of the wall temperature from
(2.17) are

τ
(0)
b = υγ , (4.18a)

τ
(n)
b = 0, n > 1, (4.18b)

where a subscript ‘b’ denotes a quantity at the isolated wall, υ =±1 as before, and
ai = 0 throughout the gas.

The mean velocity of the wall Vi is zero because the wall is stationary,

V (n)
i = 0, n > 0. (4.19)

The leading- and first-order terms in the θ−1-expansion of the reflected particle
density σb from (2.16) are

σ
(0)
b =−

τ
(0)
b

2
− 2
√

π

∫ ∞

−∞

∫ ∞

−∞

∫ 0

−∞
vy φ

(0)
C|vy<0 E(vx, vy, vz) dvy dvx dvz, (4.20a)

σ
(1)
b =−2

√
π

∫ ∞

−∞

∫ ∞

−∞

∫ 0

−∞
vy φ

(1)
C|vy<0 E(vx, vy, vz) dvy dvx dvz, (4.20b)

where E(vx, vy, vz) is defined in (2.13). Using (4.18) and (4.19) and the formulae in
Nassios & Sader (2013), (4.20) can be written in the following form

σ
(0)
b =−

τ
(0)
b

2
, (4.21a)

σ
(1)
b =−4

√
πτ

(0)
b

(
I3,1(0)− I1,1(0)+ 1

3

[
I4,2(0)− 3

2 I2,2(0)+ 3
2 I0,2(0)

− 1
2 I4,0(0)+ 9

4 I2,0(0)− 9
4 I0,0(0)

])
, (4.21b)

where we have defined the integrals

Im,n(ηC)= 1
π





∫ ∞

0
Jm(−iy0)Jn(−i|ηC − y0|) dy0, n= 2s+ 1,

∫ ∞

0
sgn(ηC − y0)Jm(−iy0)Jn(−i|ηC − y0|) dy0, n= 2s,

(4.22)

with the indices m, s ∈Z.
A full discussion of the integrals in (4.22) and their numerical treatment is provided

in appendix 2 of Nassios & Sader (2013). Equation (4.21) can then be related to the
pressure of particles reflected from the wall using the ideal gas law defined in (2.12),
i.e. P(0)b = σ (0)0 + τ (0)b and P(1)b = σ (1)0 + τ (1)b .
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In § 4.2.1, we present the asymptotic solution correct to order n = 1 in θ−1

for the isolated wall problem utilising the equations and formalism in Nassios &
Sader (2013), subject to the boundary conditions given in (4.18), (4.19) and (4.21).
Importantly, (4.21) is defined in terms of the wall temperature τ (0)b and is equivalent to
the corresponding expression for oscillatory thermal creep given in Nassios & Sader
(2013). We shall also discuss the implications of this in greater detail in § 4.2.1.
This is followed in § 4.2.2 by a brief outline of the method required to construct
the corresponding solutions for the macroscopic flow quantities in the two-wall case,
for both symmetric and antisymmetric wall temperature distributions. In § 4.2.3 we
contrast the results presented in §§ 4.2.1 and 4.2.2 with the work by Manela &
Hadjiconstantinou (2008), who studied the symmetric two-wall problem in a free
molecular gas.

4.2.1. Solution for an isolated wall
The solution of an isolated wall is obtained by substituting (4.18), (4.19) and (4.21)

into general formulae for the collisionless layer quantities presented in Nassios &
Sader (2013). This yields expressions for the density (σ (0)C and σ (1)C ), mean wall-normal
velocity (v̄(0)C|y and v̄

(1)
C|y) and the temperature (τ (0)C and τ

(1)
C ) of the gas in terms of

τ
(0)
b , which are summarised in table 5. Importantly, these formulae are identical to the

corresponding expressions for oscillatory thermal creep, i.e. the flows in each case are
identical functions of τ (0)b . This is a direct result of the explicit solvability property
of the flow in this limit. The key point of difference between these two problems is
the first-order mean tangential velocity, i.e. v̄(1)H|x, which is non-zero in the oscillatory
thermal creep problem. As required, this thermal creep flow disappears in the uniform
heating case, due to the absence of a temperature gradient along the wall, i.e. ∂τ (0)b /∂x
is zero; see (4.18). As before, the argument ηC in table 5 is the wall-normal coordinate
y from figure 2, rescaled by the acoustic length scale Lc= vmp(T0)/ω defined in (1.4).

4.2.2. Symmetric and antisymmetric cases
The solution for the two-wall problem depicted in figure 1 can be constructed from

a translation and linear superposition of the isolated wall solutions (see figure 2 and
table 5), as we now discuss. The boundary temperature field for the symmetric and
antisymmetric two-wall problem is reported in (2.17); the θ−1-expansion of (2.17) is

τ
(0)
±b = υγ , υ =±1,

τ
(1)
±b = 0.

}
(4.23)

Next, we rescale the wall-normal coordinate ηC by the geometric length scale, which
is the distance between the walls d; see figure 1. The new scaled normal coordinate
is denoted as y, and is related to ηC by

ηC = y
St
, (4.24)

where the St=ωL/vmp(T0); see (1.5) and (2.6).
The temperature of the upper wall τ (0)+b is identical for both the symmetric and

antisymmetric problems; see (4.23). To account for the flow at the upper wall in each
case, the isolated wall solutions in table 5 are translated such that the wall located
at ηC = 0 is positioned at y= 1/2, while the wall temperature distribution τ (0)b is set
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√
πσ

(0)
C

τ
(0)
b

= J2(−iηC)− J0(−iηC)

3
2

√
πτ

(0)
C

τ
(0)
b

= J4(−iηC)− 3
2

J2(−iηC)+ 3
2

J0(−iηC)

√
πv̄

(0)
C|y

τ
(0)
b

= J3(−iηC)− J1(−iηC)

σ
(1)
C

τ
(0)
b

= 2
(
[I3,0(ηC)− I1,0(ηC)] + 1

3

[
I4,1(ηC)− 3

2
I2,1(ηC)+ 3

2
I0,1(ηC)

− 1
2

I4,−1(ηC)+ 9
4

I2,−1(ηC)− 9
4

I0,−1(ηC)

])
− ηC√

π
(J1(−iηC)− J−1(−iηC))

− 4J0(−iηC)

(
I3,1(0)− I1,1(0)+ 1

3

[
I4,2(0)− 3

2
I2,2(0)

+ 3
2

I0,2(0)− 1
2

I4,0(0)+ 9
4

I2,0(0)− 9
4

I0,0(0)
])

3
2
τ
(1)
C

τ
(0)
b

= 2
[[

I3,2(ηC)− I1,2(ηC)− 1
2

I3,0(ηC)+ 1
2

I1,0(ηC)

]
+ 1

3

[
I4,3(ηC)

−3
2

I2,3(ηC)+ 3
2

I0,3(ηC)− I4,1(ηC)+ 3I2,1(ηC)− 3I0,1(ηC)+ 5
4

I4,−1(ηC)

− 21
8

I2,−1(ηC)+ 21
8

I0,−1(ηC)

]]
− ηC√

π

[
J3(−iηC)− 3

2
J1(−iηC)

+ 3
2

J−1(−iηC)

)
− 4

(
J2(−iηC)− 1

2
J0(−iηC)

)(
I3,1(0)− I1,1(0)

+ 1
3

[
I4,2(0)− 3

2
I2,2(0)+ 3

2
I0,2(0)− 1

2
I4,0(0)+ 9

4
I2,0(0)− 9

4
I0,0(0)

])

v̄
(1)
C|y
τ
(0)
b

= 2
(
[I3,1(ηC)− I1,1(ηC)] + 1

3

[
I4,2(ηC)− 3

2
I2,2(ηC)+ 3

2
I0,2(ηC)

− 1
2

I4,0(ηC)+ 9
4

I2,0(ηC)− 9
4

I0,0(ηC)

])
− ηC√

π
[J2(−iηC)− J0(−iηC)]

− 4J1(−iηC)

(
I3,1(0)− I1,1(0)+ 1

3

[
I4,2(0)− 3

2
I2,2(0)

+ 3
2

I0,2(0)− 1
2

I4,0(0)+ 9
4

I2,0(0)− 9
4

I0,0(0)
])

TABLE 5. The hydrodynamic quantities, σ , τ and v̄i, at leading and first order in the
inverse frequency ratio θ−1, i.e. n = 0 and n = 1, for oscillatory flow near a uniformly
heated, stationary infinite plane wall. All functions take the implicit argument ηC and are
equivalent to the corresponding expressions for the oscillatory thermal creep problem in
Nassios & Sader (2013).
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in accord with the above discussion. A similar procedure can be applied at the lower
wall (y = −1/2), where τ (0)−b = γ in the symmetric problem while τ (0)−b = −γ in the
antisymmetric case. Using α to denote any of the macroscopic flow quantities σ (n)C ,
v̄
(n)
C|y, τ

(n)
C and P(n)C , the general solution for symmetric uniform heating of two walls is

αsym(y)= 1
γ

[
α

(
1
2 − y

St

)
+ α

(
1
2 + y

St

)]
, (4.25)

while the corresponding expression for antisymmetric heating is

αasym(y, A)= 1
γ

[
α

(
1
2 − y

St

)
− α

(
1
2 + y

St

)]
. (4.26)

The two-wall solutions can be constructed by substituting the isolated wall expressions
from table 5 into (4.25) and (4.26); for brevity, we omit the lengthy expressions that
result.

4.2.3. Symmetric uniform heating by Manela & Hadjiconstantinou (2008)
In addition to the (near continuum) low-frequency limit, Manela & Hadjiconstantinou

(2008) also studied the symmetric two-wall uniform heating problem for a free
molecular gas, i.e. k−1 → 0. The collisionless Boltzmann equation was therefore
considered, subject to the linearised diffuse reflection condition at both walls:

−i St φ + vy
∂φ

∂y
= 0, (4.27)

where St is the Strouhal number. The particle velocity vy has been scaled by the
most probable speed at the equilibrium temperature of the gas vmp(T0) defined in (2.6),
while the wall-normal coordinate y has been scaled by the channel width d. Integral
equations for the macroscopic flow quantities were derived from (4.27), defined in
terms of the Strouhal number and the reflected particle densities σ±b at the upper and
lower walls. This was achieved using similar methods to those outlined in § 3.1.

The method of steepest descent was then applied to study the resulting integral
equations for the density σ , mean wall-normal velocity v̄y and temperature τ derived
from (4.27) for large Strouhal number, i.e. St−1 → 0. This yielded the closed form
expressions for the reflected particle densities at both walls,

σ±b =−τ±b

2
, (4.28)

where τ±b = γ because the wall temperatures were assumed to be symmetric and
γ ≡ A/T0 is the normalised amplitude of the wall temperature. The reflected particle
densities σ±b therefore decouple, which gives explicit formulae for the density, mean
wall-normal velocity and temperature of the gas. Importantly, these formulae are
identical to those constructed using (4.25) and the isolated wall solutions in table 5.
Interestingly, despite the assumption of a free molecular gas, good agreement was
observed between LVDSMC simulations of the flow and the analytical formulae for
large Strouhal numbers and small Knudsen numbers, i.e. St� 1 and k� 1.

We now discuss these observations in the context of the solution presented here,
derived using the formalism in Nassios & Sader (2013). Given that the frequency
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ratio θ can be expressed in terms of the Strouhal number (1.5), the limit St−1→ 0
is equivalent to the high-frequency flow regime, i.e. where θ−1→ 0. When θ� 1, gas
particle advection parallel to a uniformly heated wall does not affect the flow, because
the wall temperature is independent of the tangential coordinates x and z.

As discussed in Nassios & Sader (2013), the scaled Knudsen number k determines
the strength of gas particle advection parallel to a solid wall. Since gas particles do
not interact in the leading-order flow (i.e. θ−1→ 0) generated by oscillatory uniform
heating of two plane walls at high frequency for all k, any effect of k is eliminated.
Consequently, (4.27) can be applied to study this flow.

However, collisional effects become important at higher order, and cannot be studied
using the collisionless equation in (4.27). In this case, the asymptotic formulae derived
in Nassios & Sader (2013) and employed in this section provide a general framework
with which to study flows for θ � 1 and k � 1 up to O(θ−1). These higher-order
asymptotic results account for the effect of collisions and advection along a solid wall,
which are not captured by (4.27).

5. Results and discussion
Gas flows generated by the unsteady uniform heating problem are first studied using

the asymptotic formulae for a lightly rarefied gas (k�1) in § 4. The primary aim is to
use these formulae to elucidate the dominant physical mechanism driving the gas flow,
in both the low- and high-frequency limits. The predictions of these formulae are then
compared to direct numerical solutions that are valid for all frequencies and degrees
of gas rarefaction, as specified in § 3.3 – this provides the first independent validation
of the asymptotic theories of Nassios & Sader (2012, 2013) and Takata et al. (2012).

Asymptotic results in the low-frequency limit (θ � 1) are examined in § 5.1, with
the symmetric and antisymmetric problems studied independently. The complementary
high-frequency limit (θ � 1) is investigated in § 5.2. Because the flow is localised
to collisionless boundary layers near the walls, we only study the related isolated
wall problem; the relevant formulae are summarised in table 5. As we shall discuss,
the unsteady uniform heating problem in the high-frequency limit yields a qualitative
similarity to the oscillatory (time-varying) thermal creep problem considered in
Nassios & Sader (2013).

Due to inertia, the gas density, mean wall-normal velocity and temperature
possess both real and imaginary components. Note the true (physical) solution
of these time-varying flows are given by a weighted superposition between these
real and imaginary components. For example, if the true temperature at the wall
is Ttrue = Re{T exp(−iωt)}, then all true flow/temperature variables are given by
Xtrue = Re{X exp(−iωt)} = Re{X} cos(ωt) − Im{X} sin(ωt), for any variable X. Thus,
the solution periodically alternates between the real and imaginary components as
time evolves.

In § 5.3, we explore the validity of the asymptotic formulae in § 4 by comparison
with benchmark numerical solutions.

We remind the reader that the asymptotic solutions for the density and temperature
for θ� 1 are correct to O(k), while the mean wall-normal velocity is correct to O(k2).
All hydrodynamic quantities for θ� 1 are correct to O(θ−1).

5.1. Low oscillation frequency, θ� 1
In this section, we use the asymptotic formulae of § 4.1 to study flow in the low
oscillation frequency regime, i.e. θ� 1. Discussion of the symmetric problem is given
in § 5.1.1, while the antisymmetric case is considered in § 5.1.2.
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FIGURE 3. Scaled leading-order temperature of the symmetric problem: τ (0)H /γ . (a) Real
component; (b) imaginary component. Results given for β = 1 (small dashed), β = 10
(medium dashed), β = 30 (large dashed), β = 100 (dot-dashed), β = 1000 (dotted) and
β = 10 000 (solid).

5.1.1. Symmetric wall temperatures
Since the gas flow is driven by temperature oscillations at the walls, we initially

examine the temperature field as a function of the inertial parameter β.

Temperature field. The real and imaginary components of the leading-order scaled
temperature τ

(0)
H /γ from (4.9) are shown in figure 3, as a function of β. Due to

the no-slip condition inherent in the leading-order solution, the real and imaginary
components of τ (0)H /γ at each wall are independent of β, and equal to 1 and 0,
respectively.

For zero inertia, i.e. β = 0, the expected steady solution is recovered, with constant
and purely real gas temperature between the walls,

τ
(0)
H|sym = γ . (5.1)

For non-zero but small inertia, i.e. β� 1, a non-zero imaginary component arises,
indicating a lag in the gas temperature response. The imaginary component increases
in magnitude for small β, attaining a peak value at y= 0 for β = 13.6657 . . . before
inflecting; see figure 3(b). For large inertia, i.e. β� 1, thermal boundary layers form
in both real and imaginary components near the walls; thermal gradients within these
layers are large. Away from the walls, the temperature τ

(0)
H displays 1/

√
β decay

throughout the bulk of the channel due to diffusive heat transport from the walls.
This is evident from the small and large-β asymptotic behaviour away from any
walls:

τ
(0)
H = γ





1+ 3iβ
40
(1− 4y2)− β2

3200
(80y4 − 88y2 + 17)

− iβ3

384 000
(141− 764y2 + 880y4 − 320y6), β� 1

4
3
√

2β
(1+ i)− 16i

9β
, β� 1.

(5.2)

Thus, the temperature field exhibits spatial variations at finite inertia, which in
principle can induce pressure and density variations in the gas – this coupling is now
examined.
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FIGURE 4. Scaled leading-order hydrostatic pressure of the symmetric problem: P(0)H /γ .
(a) Real component; (b) imaginary component.

Pressure and density fields. The leading-order pressure, P(0)H , i.e. which corresponds to
the true pressure at zero frequency, is hydrostatic and non-zero; see (4.9). Operation
at non-zero β produces a deviation from this hydrostatic state, with the real and
imaginary components of P(0)H /γ for β ∈ [0, 1000] given in figure 4.

For zero inertia, β = 0, the pressure is identical to the temperature field τ
(0)
H /γ

throughout the channel; see figure 4, where the real component is equal to 1 and
the imaginary component is zero. A lag in the pressure of the gas in response to
the oscillatory wall temperatures arises for small β. Interestingly, the imaginary
component of P(0)H /γ is non-monotonic in β, whereas the real component is a
monotonically decreasing function of β. At β=15.6470 . . . , the imaginary component
attains its maximum value, and subsequently begins to decrease. For large β, both
real and imaginary components of the pressure again exhibit 1/

√
β decay, in line

with the temperature field in (5.2) that is driving the pressure; the small- and large-β
asymptotics for the pressure are given by

P(0)H = γ





1+ iβ
20
− β2

300
− 23iβ3

100 800
, β� 1

10
3
√

2β
(1+ i)− 40i

9β
, β� 1.

(5.3)

The gas density is then determined from the ideal gas law in (4.8),

σ
(0)
H = P(0)H − τ (0)H . (5.4)

The small- and large-β asymptotics of σ (0)H (away from the walls) are:

σ
(0)
H = γ





iβ
40
(12y2 − 1)− β2

9600
(19− 264y2 + 240y4)

− iβ3

8 064 000
(−1121+ 16044y2 − 18480y4 + 6720y6) β� 1

10
3
√

2β
(1+ i)− 40i

9β
β� 1.

(5.5)

Plots of the real and imaginary components of σ (0)H /γ are given in figure 5. For
zero inertia, σ (0)H = 0 throughout the channel; see the asymptotic formula for β � 1
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FIGURE 5. Scaled leading-order density of the symmetric problem: σ (0)H /γ . (a) Real
component; (b) imaginary component. Results given for β= 1 (small dashed), β= 15.6471
(medium dashed), β = 30 (large dashed), β = 100 (dot-dashed), β = 1000 (dotted) and
β = 10 000 (solid).

in (5.5). For small β, the imaginary (out-of-phase) component increases in magnitude,
and is non-zero at the walls; the real component monotonically decreases towards the
walls, for all β. At the critical value of β = 15.6471 . . . , the imaginary component
of σ (0)H /γ attains its maximum value at the walls; at this β the imaginary component
of P(0)H /γ is maximised. For β� 1, the density exhibits 1/

√
β decay away from the

walls, as expected; see (5.5). At the walls, the real component of σ (0)H /γ asymptotes
to 1 with increasing β, because P(0)H /γ decays to 0; see figures 4(a) and 5(b).

With the temperature, pressure and density fields determined, we now turn our
attention to their effect on the velocity field (our primary goal).

Mean wall-normal velocity. We now study the first-order (n = 1) component of the
mean flow, v̄(1)H|y (see (4.9)), because the n= 0 term is zero – the component v̄(1)H|y thus
specifies the leading-order behaviour of the velocity field. To facilitate discussion, we
calculate an average spatial velocity in the gas. The velocity is antisymmetric in y, and
we therefore calculate the average wall-normal velocity u(1)y in the upper half-channel,
0 6 y 6 1/2:

u(1)y = 2
∫ 1/2

0
v̄
(1)
H|y dy=−3δγ

4

4− 4 cosh
(
δ

2

)
+ δ sinh

(
δ

2

)

3δ cosh
(
δ

2

)
+ 4 sinh

(
δ

2

) . (5.6)

The asymptotic behaviour of this average wall-normal velocity, for small and large β
(away from the walls), is

u(1)y = γ





β2

640
+ 3iβ3

25 600
, β� 1

1
4

√
β

2
(1− i)+ 4

3
, β� 1.

(5.7)

We consider four separate limits: (i) zero inertia, β = 0; (ii) small inertia, β � 1;
(iii) intermediate inertia, β ∼O(1); and (iv) large inertia, β� 1.
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FIGURE 6. Scaled first-order mean wall-normal velocity of symmetric problem: v̄(1)H|y/(β
lγ ),

where l is chosen to match dominant asymptotic behaviour in β. Real, (l= 2), imaginary
(l= 3). (a) Real component; (b) imaginary component. Results given for β = 10−4 (small
dashed), β = 10−2 (small dashed), β = 10 (large dashed), β = 15.647 (dot-dashed), β =
30 (dotted) and β = 50.4757 (solid). Note that results for β = 10−4 and β = 10−2 are
indistinguishable on the graph.

Zero inertia (β = 0). The flow is steady and incompressible; see the continuity
equation in the last line of table 1(a). As such, the mean wall-normal velocity, v̄(1)H|y,
is zero throughout the gas.
Small inertia (β� 1). For small inertia, the leading-order density σ (0)C is of O(β) and
varies quadratically in the normal coordinate, y; see the β � 1 asymptotic in (5.5).
The gas density is therefore out of phase with the wall temperature oscillations. By
the continuity equation (mass conservation), this drives a compressible flow that is
both (i) in-phase with the wall temperature oscillations, and (ii) antisymmetric in the
wall-normal coordinate y; see figure 6(a) for β = 10−4, and the β � 1 asymptotic
in (5.7). As β increases, an additional out-of-phase correction to v̄

(1)
H|y arises due to

the O(β2) term in the density; see figure 6(b) for β = 10−4 and (5.7).
Intermediate inertia (β ∼O(1)). For intermediate inertia, the imaginary component of
σ
(0)
H is positive at the walls, y=±1/2. In contrast, the density throughout the bulk of

the channel is otherwise negative. As discussed, for β = 15.6471 . . . the imaginary
component of the gas density attains its maximum value at the walls, and begins
to decrease with further increases in β. This causes a similar inflection in the real
component of the average velocity in the upper half-channel, u(1)y , where the maximum
in the real part of the average normal velocity, u(1)y , in (5.6) occurs for

β = βc = 22.5002 . . . . (5.8)

For β > βc, the real and imaginary components of u(1)y are monotonically decreasing
functions of β. This causes a flow reversal in the real component of v̄(1)H|y, which
occurs at β = 50.4757 . . . ; the onset of this reversal is illustrated by plots of the
real component of v̄(1)H|y from β = 10 to β = 50.4757, which are given in figure 6(a).
No reversal occurs in the imaginary component of v̄(1)H|y, because it is a monotonically
decreasing function of β, for all β.
Large inertia (β� 1). In the limit of large inertia, the temperature and density fields
are confined to thin boundary layers near the walls, and the hydrostatic pressure
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FIGURE 7. Scaled first-order mean wall-normal velocity of symmetric problem:
v̄
(1)
H|y/(
√
βγ ). (a) Real component; (b) imaginary component. Results given for β = 10

(medium dashed), β= 50.4757 (large dashed), β= 100 (dot-dashed) and β= 1000 (dotted)
and β = 10 000 (solid).

decays to zero; see the β � 1 asymptotics in (5.2), (5.3) and (5.5). Away from the
walls, the real and imaginary components of σ (0)H are therefore independent of y; see
figure 5. From the continuity equation, a suitable choice of scale for v̄(1)H|y then yields
a linear velocity profile away from the walls that is evident in figure 7; see β = 1000
and β = 10 000. This contrasts with the near-wall velocity profile, which exhibits
strong gradients.

Summary. This analysis establishes the overriding physical mechanism driving gas
flow in this problem: finite density variations at continuum order, O(1), induced
by temperature and pressure variations of the same order (via the ideal gas law),
and mass conservation. Note that this non-continuum O(k) velocity field is driven by
continuum-order effects in the temperature and pressure, as dictated by the asymptotic
theory. Momentum transport does not play a role in driving this non-continuum flow.

5.1.2. Antisymmetric wall temperatures
We now provide an analogous (and abbreviated) discussion for the problem where

the wall temperatures are antisymmetric, i.e. they are equal in magnitude but opposite
in sign.

Temperature field. Plots of the real and imaginary components of the scaled
temperature τ

(0)
H /γ from (4.9) are given in figure 8. As for the symmetric case,

a steady (purely real) temperature profile is recovered for zero inertia, i.e. β = 0,

τ
(0)
H|asym = 2γ y. (5.9)

A phase lag in the gas temperature field occurs as β increases, and thermal boundary
layers form near the walls for large inertia, i.e. β� 1; see figure 8 for β = 1000 and
β = 10 000.

Density field. As discussed in § 4.1.3, the hydrostatic pressure at leading order (n =
0) is zero for the antisymmetric case, which contrasts with the symmetric problem;
see (4.14). From the ideal gas law in (4.8), the gas density is thus:

σ
(0)
H =−τ (0)H . (5.10)
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FIGURE 8. Scaled leading-order temperature of antisymmetric problem: τ (0)H /γ . (a) Real
component; (b) imaginary component; (c) magnitude. Results given for β = 1 (small
dashed), β = 10 (medium dashed), β = 30 (large dashed), β = 100 (dot-dashed), β = 1000
(dotted) and β = 10 000 (solid).

Substituting (5.10) into the continuity equation in the final line of table 1, we thus find
that gradients in the mean wall-normal velocity are caused solely by the temperature
field of the gas; this contrasts strongly with the symmetric case, where gas density is
controlled by both the temperature and pressure.

We now use this observation to study the first-order mean wall-normal velocity, v̄(1)H|y,
which is the leading-order mean flow (as for the symmetric problem).

Mean wall-normal velocity. We again calculate the average velocity in the upper half-
channel,

u(1)y = 2
∫ 1/2

0
v̄
(1)
H|y dy= γ

[
1− δ

2
coth

(
δ

2

)]
. (5.11)

The corresponding small- and large-β asymptotic results are

u(1)y = γ





iβ
12
− β2

720
− iβ3

30 240
, β� 1

1+
√
β

2
(i− 1), β� 1.

(5.12)

These formulae are again used in conjunction with the temperature field, τ (0)H , to study
v̄
(1)
H|y across the full range of inertia, β.

Zero inertia (β = 0). Again, no flow is generated in the steady limit.
Small inertia (β � 1). For small and non-zero inertia, the steady and purely real
component for the temperature τ (0)H|asym drives a compressible (out-of-phase) mean flow
via mass conservation; see asymptotics for β � 1 in (5.12), and plots of the scaled
mean wall-normal flow profile in the upper half-channel, 06 y61/2, given in figure 9.
The real component of the temperature field, τ (0)H , is monotonically increasing in y for
small β; see figure 8, with β = 1.

From the continuity equation in table 1(a), and (5.10), the imaginary component
of v̄(1)H|y is therefore monotonically decreasing in y. Together with the no-penetration
condition at the walls, this causes the inverted parabolic flow profile in figure 9(b)
for β = 10−4.
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FIGURE 9. Scaled first-order mean wall-normal velocity of antisymmetric problem:
v̄
(1)
H|y/(β

lγ ), where l is chosen to match the dominant asymptotic behaviour in β. (a) Real
(l = 2); (b) imaginary (l = 1). Results given for β = 10−4 (small dashed), β = 10 (large
dashed), β = 30 (dot-dashed) and β = 50 (solid).
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FIGURE 10. Scaled first-order mean wall-normal velocity of antisymmetric problem:
v̄
(1)
H|y/(
√
βγ ). (a) Real component; (b) imaginary component. Results given for β = 10

(medium dashed), β = 50 (large dashed), β = 100 (dot-dashed) and β = 1000 (dotted) and
β = 10 000 (solid).

The real component of v̄(1)H|y is driven by the O(β) correction to τ (0)H for small inertia,
which is zero at (i) the centre of the channel and (ii) the upper wall. Once more, from
the continuity equation and (5.10), this explains the inflected flow profile in the real
component of v̄(1)H|y for β = 10−4; see figure 9(a). The magnitude of both the real and
imaginary component of v̄(1)H|y are also increasing functions of β at small inertia; this
is evident from plots of the scaled profiles in figure 9 for β = 10−4 and β = 10−2.

Intermediate inertia (β ∼ O(1)). As β is increased further, the magnitude of v̄(1)H|y
continues to increase. Both components of the mean wall-normal velocity v̄

(1)
H|y

therefore display identical behaviour to that established for small inertia; see figures 9
and 10 for β = 10, β = 30 and β = 50.
High inertia (β � 1). Contrasting behaviour to the symmetric problem is observed
at high inertia. As for the symmetric case, perturbations to the temperature, τ (0)H , are
confined to boundary layers near the walls, with exponential decay exhibited in the
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FIGURE 11. Scaled temperature, τ (0)C /τ
(0)
b and τ

(1)
C /τ

(0)
b : (a) Real; (b) imaginary. Results

given for the leading-order solution (n= 0, solid) and first-order correction (n= 1, dashed).
Numerical data for the imaginary components in figures 11–15 are affected by round-off
error (noise) due to integrable singularities in the integrands. This could not be suppressed
with available computational resources and was smoothed using a polynomial regression
fit of order 50; the coefficients were determined using ordinary least squares. This does
not affect the shape of the presented curves however suppresses the numerical noise.

(scaled) normal coordinate, y, away from the walls; see figure 8 for β = 1000 and
β = 10 000. However, P(0)H = 0 here; hence, by continuity and (5.10), flow throughout
the bulk of the channel (away from any walls) is divergence free (incompressible), and
the mean wall-normal velocity outside the boundary layers is thus independent of y;
see figure 10. Within the boundary layers near the walls, gradients in the temperature
field are large. This drives similarly large gradients in the scaled mean wall-normal
velocity near the walls; see plots of the scaled mean wall-normal velocity in figure 10
for β = 1000 and β = 10 000.

Summary. This analysis shows that the mechanisms driving gas flow in the
antisymmetric problem differ to those of the symmetric problem: pressure no
longer has an effect here, with density variations being driven purely by temperature
variations and mass conservation. Momentum transport again does not play a role.

5.2. High oscillation frequency, θ� 1
In this section, we examine the high-frequency limit, θ � 1, for infinitesimally small
Knudsen number, k� 1, in accord with the asymptotic theory of Nassios & Sader
(2013). As discussed in § 4.2.1, formulae for the zeroth- and first-order scaled
densities (σ (0)C /τ

(0)
b and σ (1)C /τ

(0)
b ), mean wall-normal velocities (v̄(0)C|y/τ

(0)
b and v̄(1)C|y/τ

(0)
b )

and temperatures (τ (0)C /τ
(0)
b and τ (1)C /τ

(0)
b ) for the uniform heating problem (in table 5),

are identical to corresponding expressions for the oscillatory thermal creep problem.
We remind the reader that the leading-order term in the θ−1-expansion of the wall
temperature, τ (0)b , is defined in (4.18). Consequently, key features of the temperature
and density at both zeroth- and first-order in θ−1 have already been described in
Nassios & Sader (2013), where the oscillatory thermal creep flow was studied in
detail for θ � 1 and k� 1. Plots of the scaled temperature and density are given in
figures 11 and 12, respectively. The mean wall-normal velocity at both orders was
also examined in Nassios & Sader (2013), plots of which are given in figure 13.
In this section, we provide a summary of the key features of the flow that were
discussed in Nassios & Sader (2013), for completeness.
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FIGURE 12. Scaled density, σ (0)C /τ
(0)
b and σ (1)C /τ

(0)
b : (a) Real; (b) imaginary. Results given

for the leading-order solution (n= 0, solid) and first-order correction (n= 1, dashed).
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FIGURE 13. Scaled mean normal velocity, v̄(0)C|y/x and v̄
(1)
C|y/x: (a) Real; (b) imaginary.

Results given for the leading-order solution (n= 0, solid) and first-order correction (n= 1,
dashed).

To begin, consider the real component of the leading order (n = 0) scaled
temperature in figure 11(a). At the wall (ηC = 0), τ (0)C /(υγ ) = 1/2 whereas the
scaled wall temperature is τ (0)b /(υγ ) = 1; see (4.18). Therefore there is a jump in
the real component of the temperature at the wall to leading order in θ−1. However,
the imaginary component does not exhibit a jump at this order; see figure 11(b). In
contrast, the imaginary component of the first-order scaled temperature is non-zero at
the wall, while the real component at this order is zero. From linearity, the flow at
O(θ−1) can be written as the sum of a free molecular and collisional contribution:

τ
(1)
C

τ
(0)
b

= τ
(1)
C,fm

τ
(0)
b

+ τ
(1)
C,col

τ
(0)
b

, (5.13)

where

τ
(1)
C,fm

τ
(0)
b

= − 8
3π

(
J2(−iηC)− 1

2
J0(−iηC)

)(
I3,1(0)− I1,1(0)

+ 1
3

[
I4,2(0)− 3

2
I2,2(0)+ 3

2
I0,2(0)− 1

2
I4,0(0)+ 9

4
I2,0(0)− 9

4
I0,0(0)

])
,

(5.14a)
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FIGURE 14. The free molecular and collisional components of the first-order scaled
temperature, τ (1)C /τ

(0)
b . Free molecular component: (a) real; (b) imaginary. Collisional

component: (c) real; (d) imaginary.

τ
(1)
C,col

τ
(0)
b

= 4
3π

[[
I3,2(ηC)− I1,2(ηC)− 1

2
I3,0(ηC)+ 1

2
I1,0(ηC)

]

+ 1
3

[
I4,3(ηC)− 3

2
I2,3(ηC)+ 3

2
I0,3(ηC)− I4,1(ηC)+ 3I2,1(ηC)

−3I0,1(ηC)+ 5
4

I4,−1(ηC)− 21
8

I2,−1(ηC)+ 21
8

I0,−1(ηC)

]]

− 2
3
ηC√
π

[
J3(−iηC)− 3

2
J1(−iηC)+ 3

2
J−1(−iηC)

]
. (5.14b)

To zeroth order, i.e. in the limit θ−1→ 0, there is no collisional contribution and flow
in the wall-normal direction is free molecular. From figures 14(b,d), the jump in the
imaginary component of the temperature at first order is caused by collisional effects
near the wall, which dominate free molecular contributions of this order throughout
the gas. A jump in the scaled temperature of the gas relative to the temperature of the
wall is thus evident for all time; this jump alternates between a zeroth- and first-order
effect in the inverse frequency ratio θ−1. A similar analysis of the scaled density in
figure 12 yields identical conclusions.

As required for a solid wall, the real and imaginary components of the scaled mean
wall-normal velocity satisfy the no-penetration condition; see figure 13. As distinct
from the oscillatory thermal creep problem, both the scaled and unscaled mean wall-
normal velocities are independent of the tangential coordinate x because the boundary

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

39
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.398


470 J. Nassios, Y. W. Yap and J. E. Sader

0

4

8
(c)

5.0

0

–5.0

–0.1

 –0.1

 0.1

 0

 –0.1

 0.1

 0

(a)

(b) (d )

0 5 10 15 0 5 10 15

0 5 10 15 0 5 10 15

Sc
al

ed
 n

or
m

al
ve

lo
ci

ty

Sc
al

ed
 n

or
m

al
ve

lo
ci

ty

FIGURE 15. The free molecular and collisional components of the first-order scaled mean
normal velocity, v̄(1)C|y/τ

(0)
b . Free molecular component: (a) real; (b) imaginary. Collisional

component: (c) real; (d) imaginary.

temperature distribution is uniform; see (4.18). In line with our findings for the scaled
temperature and density, by linearity the flow at O(θ−1) can be written as the sum of
a free molecular and collisional contribution:

v̄
(1)
C|y
x
= v̄

(1)
C|y,fm
τ
(0)
b

+ v̄
(1)
C|y,col

τ
(0)
b

, (5.15)

where

v̄
(1)
C|y,fm
τ
(0)
b

= − 4
π

J1(−iηC)

(
I3,1(0)− I1,1(0)+ 1

3

[
I4,2(0)− 3

2
I2,2(0)+ 3

2
I0,2(0)

−1
2

I4,0(0)+ 9
4

I2,0(0)− 9
4

I0,0(0)
])

, (5.16a)

v̄
(1)
C|y,col

τ
(0)
b

= 2
π

(
[I3,1(ηC)− I1,1(ηC)] + 1

3

[
I4,2(ηC)− 3

2
I2,2(ηC)+ 3

2
I0,2(ηC)

−1
2

I4,0(ηC)+ 9
4

I2,0(ηC)− 9
4

I0,0(ηC)

])
− ηC√

π
[J2(−iηC)− J0(−iηC)].

(5.16b)

As was the case for the scaled temperature, the real part of the collisional contribution
to the mean wall-normal velocity at O(θ−1) dominates the corresponding free

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

39
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.398


Oscillatory uniform heating of a rarefied gas 471

molecular contribution; see figures 15(a,c). Contrasting behaviour is observed for
the imaginary parts of the collision and free molecular terms, which balance near
the wall – at the wall, they are equal in magnitude and opposite in sign. This is a
direct consequence of the no-penetration condition, thus ensuring the zero net mass
flux condition is satisfied at O(θ−1) for all time.

Importantly, for the oscillatory thermal creep problem the temperature gradient in
the x-direction along the wall causes a net advection of gas particles parallel to the
wall; this drives a mean tangential flow, i.e. a thermal creep. In the uniform heating
problem, however, the wall temperature is uniform along the wall – a net advection
of particles parallel to the wall therefore does not occur. As such, no thermal creep
flow arises at O(θ−1).
Summary. Flow is dominated by a free molecular contribution in the vicinity of each
wall, even though the low Knudsen number limit is imposed. The uniform temperature
problem in this high-frequency limit presents striking similarities to the oscillatory
thermal creep problem studied in Nassios & Sader (2013) – net advection parallel
to the walls does not occur, however, due to the presence of spatially uniform wall
temperatures.

5.3. Numerical validation of asymptotic theories
Finally, we assess the validity of the asymptotic theories presented in Nassios & Sader
(2012, 2013) and Takata et al. (2012) by comparison of their predictions (in § 4)
for the unsteady uniform heating problem to direct numerical solutions (formulated
in § 3.3). As per Nassios & Sader (2012, 2013) and Takata et al. (2012), the two
complementary limits of low and high oscillation frequency, i.e. θ � 1 and θ � 1,
are explored. This defines the first independent assessment of the validity of these
asymptotic theories.

5.3.1. Low oscillation frequency, θ� 1
Figure 16 presents a comparison of the asymptotic and direct numerical solutions

for the symmetric problem in the low-frequency regime. Due to symmetry, results
for the top half of the channel only are presented; density and temperature fields are
symmetric about y= 0 while the normal velocity is antisymmetric about this position.

The low-frequency asymptotic solution is found to be in excellent agreement with
the numerical solution for θ = 0.0125 (or β = 10); we remind the reader that β is
linked to the frequency ratio θ and scaled Knudsen number k in the low-frequency
limit by (4.1a). As may be expected, this agreement weakens with increasing θ as
the low frequency (quasi-steady) assumption θ� 1 is violated. However, even at θ =
0.0625 (β = 50), the asymptotic solution compares well with the numerical solution
and provides a good approximation. Flow characteristics of the symmetric heating
problem are clearly captured. As θ increases, the imaginary component of the wall
density attains a maximum and decreases for values of θ higher than ≈0.025. This
causes the real part of the normal velocity to undergo a flow reversal, as discussed
in § 5.1.1. The imaginary part of the normal velocity increases monotonically with θ
due to the effects of increased inertia.

Figure 17 shows complementary flow profiles for the antisymmetric problem, with
k= 0.05 and θ = 0.0125, 0.0375, 0.0625 (β = 10, 30, 50). Correspondingly, the density
and temperature are antisymmetric about y= 0 while the normal velocity is symmetric
about this position. As before, the low-frequency asymptotic and full numerical
solutions are in excellent agreement for θ = 0.0125, while divergence appears as θ
increases. The low-frequency asymptotic solution predicts the antisymmetric uniform
heating problem flow well for values of θ less than ≈0.0625.
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FIGURE 16. (Colour online) Asymptotic solutions for symmetric problem versus
numerical results for low-frequency flow when k = 0.05. Scaled temperature: (a) real;
(d) imaginary. Scaled density: (b) real; (e) imaginary. Scaled mean wall-normal velocity:
(c) real; ( f ) imaginary. All solutions are scaled by γ ≡ A/T0. Asymptotic solutions: solid.
Numerical solutions: dashed. Comparisons provided for β = 10 (orange), β = 30 (green),
and β = 50 (blue).

5.3.2. High oscillation frequency, θ� 1
Corresponding results in the high-frequency limit are given in figure 18, which

shows a comparison between the asymptotic formulae and the direct numerical
solution for the symmetric unsteady heating problem; results for k = 0.1 and θ = 7
are shown. Both the leading order (free molecular) and first-order asymptotic solutions
are presented for the density, temperature and normal velocity fields. Only the bottom
half of the channel is shown due to symmetry; density and temperature profiles are
symmetric about y = 0 while the normal velocity profile is antisymmetric. We only
consider the symmetric unsteady heating problem here; similar trends are observed
for the antisymmetric problem.

These results show that the leading-order asymptotic solution, i.e. at O(1) (free
molecular flow), captures the density, temperature and velocity near the wall. However,
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FIGURE 17. (Colour online) Asymptotic solutions for antisymmetric problem versus
numerical results for low-frequency flow when k = 0.05. Scaled temperature: (a) real;
(d) imaginary. Scaled density: (b) real; (e) imaginary. Scaled mean wall-normal velocity:
(c) real; ( f ) imaginary. All solutions are scaled by γ ≡ A/T0. Asymptotic solutions: solid.
Numerical solutions: dashed. Comparisons provided for β = 10 (orange), β = 30 (green)
and β = 50 (blue).

discrepancies appear between the asymptotic and numerical solutions away from the
wall. This is due to use of a finite frequency ratio, θ = 7, which leads to collisional
interactions between gas particles that becomes increasingly important away from
the wall. Including the first-order correction results in significantly better agreement
with the direct numerical solution, showing that this higher-order term correctly
captures the effects of interparticle interactions. Despite this solution being accurate
only up to O(θ−1), it provides an excellent approximation for large but finite θ and
small k. Note that interaction between the two walls is negligible, because the density,
temperature and velocity profiles all decay sufficiently between the walls (at x = 0)
for θ = 7. Strikingly, the temperature field exhibits an unusual kink near the wall
at x ≈ 0.45, which is accurately captured by the asymptotic solution – this provides
further validation for its robustness.
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FIGURE 18. (Colour online) Asymptotic solutions versus numerical results for high-
frequency flow where θ = 7 and Kn = 0.1 (k = 0.0886). Images at the lower wall for
symmetric problem. Scaled temperature: (a) real; (d) imaginary. Scaled density: (b) real;
(e) imaginary. Scaled mean wall-normal velocity: (c) real; ( f ) imaginary. All solutions
are scaled by γ ≡ A/T0. Free molecular solution: red dotted line. First-order asymptotic
solution: green solid line. Numerical solutions: dashed.

Summary. The results in figures 17 and 18 show that the asymptotic formulae in § 4,
which are derived using the general theories in Nassios & Sader (2012, 2013) and
Takata et al. (2012), provide excellent quantitative agreement with direct numerical
solutions, in their respective regimes.

6. Concluding remarks
We have investigated the effect of oscillatory and uniform temperature fields

imposed on two stationary parallel plane walls that surround a gas. Two canonical
cases were explored: (i) the wall temperatures are identical, resulting in a symmetric
load and (ii) antisymmetric wall temperatures. Coupled integral equations for the gas
density, mean normal velocity and temperature, valid for all frequency ratios and
scaled Knudsen numbers were derived from the linearised Boltzmann–BGK equation.
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Asymptotic solutions were also derived using the general theories of Nassios &
Sader (2012, 2013) and Takata et al. (2012), in both the low and high frequency ratio
θ limits. These theories hold for small-scaled Knudsen number k, and were used to
explore the underlying physical mechanisms driving the flow.

For low frequency ratios, θ� 1, we showed for both wall temperature symmetries
that the mean gas flow is obtained from the continuity equation, up to O(k2). Mass
conservation is thus the physical mechanism driving the flow; momentum transport
does not play a role. For this reason, the modified Navier–Stokes equations derived
at O(k) and O(k2) for low-frequency unsteady flow in Nassios & Sader (2012)
and Takata et al. (2012) have no effect on the mean velocity up to O(k2). The
density and temperature of the gas are also unaltered by the revised momentum
conservation equations up to O(k), for the same reason. In the symmetric case, a
non-zero hydrostatic pressure arises in the gas which yields the necessary degree
of freedom to solve the continuity equation subject to impermeability at both walls.
Non-monotonic behaviour of the pressure for increasing Stokes number β results in a
flow reversal for intermediate inertia. The symmetric problem is thus driven by both
pressure and temperature variations in the gas. The antisymmetric case is qualitatively
distinct: density variations are driven only by the temperature field, with the pressure
being zero for all Stokes number β correct to O(k) – thus no flow reversal occurs.

For high frequency ratios, θ � 1, flow is localised to collisionless boundary
layers near the walls. These collisionless layer flows were studied by examining the
related single-wall problem. Importantly, the resulting scaled equations for the gas
density, mean normal velocity and temperature correct to O(θ−1) are identical to the
corresponding expressions for oscillatory thermal creep. In contrast to the thermal
creep problem, however, the flow caused by uniform heating is independent of both
tangential coordinates, and gas particle advection along the wall has no effect on the
flow. The expressions for the macroscopic flow quantities are therefore valid across
the full range of scaled Knudsen number k in the asymptotic limit θ−1→ 0.

The asymptotic predictions were also compared to direct numerical solutions of
the integral equation (valid for all θ and k) that used an extension of the numerical
method of Yap & Sader (2012). Excellent agreement was found for a range of
Knudsen numbers and frequency ratios, in the respective flow regimes of these
asymptotic theories. This represents the first independent validation of the asymptotic
theories of Nassios & Sader (2012, 2013) and Takata et al. (2012) for unsteady
flows at low Knudsen number. Given their observed accuracy, these theories can now
be used with confidence to analytically model and explore the underlying physical
mechanisms of these flows.
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Appendix A. Derivation of integral equation for the symmetric problem

Substituting (3.2) into (2.16) gives the required boundary conditions for φ at the
walls in terms of D± for symmetric uniform heating:

φ|y=±1/2 = γ
(
D± + v2

i − 3
2

)
. (A 1)
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Enforcing no penetration at each wall yields the following expression for φ:

φ =





1
k vy

∫ y

−1/2

[
σ + 2v̄yvy +

(
v2

i −
3
2

)
τ

]
exp

(
a
vy
[y0 − y]

)
dy0

+ γ
(

D− + v2
i −

3
2

)
exp

(
− a
vy

[
y+ 1

2

])
, vy > 0

− 1
k vy

∫ 1/2

y

[
σ + 2v̄yvy +

(
v2

i −
3
2

)
τ

]
exp

(
a
vy
[y0 − y]

)
dy0

+ γ
(

D+ + v2
i −

3
2

)
exp

(
− a
vy

[
y− 1

2

])
, vy < 0.

(A 2)

The coupled integral equations for σ , v̄y and τ can then be derived by substituting
(A 2) into the moment equations in (2.12). This gives the following equation for the
density σ as a function of the normal coordinate y and the constants D±:

√
πσ = γ

{(
D− − 1

2

)
J0

(
a
[

y+ 1
2

])
+
(

D+ − 1
2

)
J0

(
a
[

1
2
− y
])

+ J2

(
a
[

y+ 1
2

])
+ J2

(
a
[

1
2
− y
])}

+ 1
k

∫ 1/2

−1/2

{
σJ−1(a|y− y0|)+ 2 sgn(y− y0)v̄yJ0(a|y− y0|)

+ τ
[

J1(a|y− y0|)− 1
2

J−1(a|y− y0|)
]}

dy0, (A 3)

where the Abramowitz functions (Abramowitz & Stegun 1965) are defined in (3.4),
and the sign function sgn(y− y0) extracts the sign of the real argument y− y0. The
corresponding equation for the mean wall-normal velocity v̄y is

√
πv̄y = γ

{(
D− − 1

2

)
J1

(
a
[

y+ 1
2

])
−
(

D+ − 1
2

)
J1

(
a
[

1
2
− y
])

+ J3

(
a
[

y+ 1
2

])
− J3

(
a
[

1
2
− y
])}

+ 1
k

∫ 1/2

−1/2

{
sgn(y− y0)σJ0(a|y− y0|)

+ 2v̄yJ1(a|y− y0|)+ sgn(y− y0)τ

[
J2(a|y− y0|)− 1

2
J0(a|y− y0|)

]}
dy0, (A 4)

while the temperature τ satisfies:

3
√

π

2
τ = γ

{
D−

[
J2

(
a
[

y+ 1
2

])
− 1

2
J0

(
a
[

y+ 1
2

])]
+D+

[
J2

(
a
[

1
2
− y
])

− 1
2

J0

(
a
[

1
2
− y
])]
+ J4

(
a
[

y+ 1
2

])
+ J4

(
a
[

1
2
− y
])

− J2

(
a
[

y+ 1
2

])
− J2

(
a
[

1
2
− y
])
+ 5

4
J0

(
a
[

y+ 1
2

])

+ 5
4

J0

(
a
[

1
2
− y
])}

+ 1
k

∫ 1/2

−1/2

{
σ

[
J1(a|y− y0|)− 1

2
J−1(a|y− y0|)

]
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+ 2 sgn(y− y0)v̄y

[
J2(a|y− y0|)− 1

2
J0(a|y− y0|)

]

+ τ
[

J3(a|y− y0|)− J1(a|y− y0|)+ 5
4

J−1(a|y− y0|)
]}

dy0. (A 5)

Equations (A 3)–(A 5) are a coupled set of three integral equations for five
unknowns: the three macroscopic flow quantities σ , v̄y and τ , and the two constants D±.

We now determine expressions for the constants D±, using the procedure in § 3.1.1.
This yields the following simultaneous equations for D±:

0 = γ

{(
D− − 1

2

)
J1(a)− 1

2

(
D+ − 1

2

)
+ J3(a)− 1

2

}

+ 1
k

∫ 1/2

−1/2

{
σJ0

(
a
[

1
2
− y0

])
+ 2v̄yJ1

(
a
[

1
2
− y0

])

+ τ
[

J2

(
a
[

1
2
− y0

])
− 1

2
J0

(
a
[

1
2
− y0

])]}
dy0, (A 6a)

0 = γ

{
1
2

(
D− − 1

2

)
−
(

D+ − 1
2

)
J1(a)+ 1

2
− J3(a)

}

− 1
k

∫ 1/2

−1/2

{
σJ0

(
a
[

y0 + 1
2

])
− 2v̄yJ1

(
a
[

y0 + 1
2

])

+ τ
[

J2

(
a
[

y0 + 1
2

])
− 1

2
J0

(
a
[

y0 + 1
2

])]}
dy0. (A 6b)

The simultaneous equations, (A 6a) and (A 6b), are solved using the following
symmetry relations for the density and temperature of the gas in the symmetric
problem:

σ(−y)= σ(y) and τ(−y)= τ(y). (A 7a,b)

Additionally, the mean normal velocity v̄y can be decoupled from the constants D±
using the relationship between v̄y and σ :
∫ 1/2

−1/2
sgn(y− y0)v̄y(y0)Jn(a|y− y0|) dy0 =− iθ

1− iθ

∫ 1/2

−1/2
σJn+1(a|y− y0|) dy0. (A 8)

Equation (A 8) is valid for all y∈ [−1/2, 1/2], and is derived in appendix B using the
continuity equation.

Equations (A 6), (A 7) and (A 8) then yield the required unique solution for D±:

D≡D+ =D−, (A 9)

where D is defined as:

D = 2
1− 2J1(a)

[
−1

2

(
J1(a)− 1

2

)
+ J3(a)− 1

2

+ 1
kγ

∫ 1/2

−1/2

{
σ

[
− 2iθ

1− iθ
J2

(
a
[

1
2
− y0

])
+ J0

(
a
[

1
2
− y0

])]

+ τ
[

J2

(
a
[

1
2
− y0

])
− 1

2
J0

(
a
[

1
2
− y0

])]}
dy0

]
. (A 10)
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The required system of three integral equations for the hydrodynamic quantities σ , v̄y
and τ are thus obtained; see (A 3), (A 4), (A 5), (A 9) and (A 10).

Importantly, these equations are valid for all k and θ . The equation for the mean
velocity v̄y can be formally decoupled from the equations for the density σ and
temperature τ , thus reducing computational time in numerical applications. This
is achieved by integrating terms involving v̄y in (A 3) and (A 5) by parts, and
substituting for (A 8) and (A 9). The following integral equations for the gas density
and temperature are subsequently derived:
√

π

γ
σ =

(
D− 1

2

){
J0

(
a
[

y+ 1
2

])
+ J0

(
a
[

1
2
− y
])}

+ J2

(
a
[

y+ 1
2

])

+ J2

(
a
[

1
2
− y
])
+ 1

kγ

∫ 1/2

−1/2

{
σ

[
− 2iθ

1− iθ
J1(a|y− y0|)+ J−1(a|y− y0|)

]

+ τ
[

J1(a|y− y0|)− 1
2

J−1(a|y− y0|)
]}

dy0, (A 11a)

3
√

π

2γ
τ = D

{
J2

(
a
[

y+ 1
2

])
+ J2

(
a
[

1
2
− y
])
− 1

2
J0

(
a
[

y+ 1
2

])

− 1
2

J0

(
a
[

1
2
− y
])}

+ J4

(
a
[

y+ 1
2

])
+ J4

(
a
[

1
2
− y
])

− J2

(
a
[

y+ 1
2

])
− J2

(
a
[

1
2
− y
])
+ 5

4
J0

(
a
[

y+ 1
2

])

+ 5
4

J0

(
a
[

1
2
− y
])
+ 1

kγ

∫ 1/2

−1/2

{
σ

[
2iθ

1− iθ
J3(a|y− y0|)

+
(

iθ
1− iθ

+ 1
)

J1(a|y− y0|)− 1
2

J−1(a|y− y0|)
]

+ τ
[

J3(a|y− y0|)− J1(a|y− y0|)+ 5
4

J−1(a|y− y0|)
]}

dy0, (A 11b)

where D is given in (A 10).
This yields the complete set of integral equations for the symmetric heating problem

defined by (A 4), (A 10) and (A 11).

Appendix B. Proof of (A 8)
In this appendix, we present the proof of (A 8) using integration by parts. To begin,

both sides of (2.11) are integrated over velocity space; substituting for the relevant
moment relations in (2.12) yields the continuity equation

iθ
k
σ = ∂v̄y

∂y
. (B 1)

Next, consider an integral involving v̄y with the general form:

fn(y)= 2
k

∫ 1/2

−1/2
sgn(y− y0)v̄y(y0)Jn(a|y− y0|) dy0, (B 2)

where fn(y) is a specified integral of the Abramowitz function of order n and the
mean velocity of the gas v̄y(y0), with n being an integer taking the values 0, 1 or 2;
in general n ∈ Z. This choice encapsulates the expressions in (A 6a) and (A 6b), and
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is identical in form to the corresponding terms in (A 3) and (A 5). Equation (B 2)
can be manipulated by noting that (i) the Abramowitz functions Jn possess the
property:

∂

∂y0
Jn(a|y− y0|)= a sgn(y− y0)Jn−1(a|y− y0|), (B 3)

and (ii) the wall-normal velocity v̄y satisfies the no-penetration condition at the walls;
see (3.3). Integrating (B 2) by parts and applying the no-penetration condition at each
wall recasts (B 2) in the form

fn(y)=− 2
a k

∫ 1/2

−1/2

∂v̄y

∂y0
Jn+1(a|y− y0|) dy0. (B 4)

If we substitute for the continuity relation from (B 1), we find that (B 2) becomes

fn(y)=−1
k

2iθ
1− iθ

∫ 1/2

−1/2
σJn+1(a|y− y0|) dy0. (B 5)

For any y ∈ [−1/2, 1/2], the equality in (A 8), which is proved in this appendix, can
be used to eliminate terms involving v̄y in the integral equations discussed in §§ 3.1
and § 3.2.

Appendix C. Definition of the kernel operators and inhomogeneities
The kernel operators and inhomogeneous terms from section 3.3 are defined

in (C 1)–(C 11); as before, a ≡ (1 − iθ)/k. In applying the singularity subtraction
technique, we utilised the nomenclature in table 6.

Kσ = k−1

√
π

{
J−1(a|y− y0|)− 2iθ

1− iθ
J1(a|y− y0|)

}
+ k−1

π

(
1
2
− J1(a)

)−1

×
{

J0

(
a
[

1
2
− y0

])
− 2iθ

1− iθ
J2

(
a
[

1
2
− y0

])}{
J0

(
a
[

1
2
+ y
])

+ J0

(
a
[

1
2
− y
])}

, (C 1)

Kτ = 2k−1

3
√

π

{ −2iθ
1− iθ

J3(a|y− y0|)+
(

1+ iθ
1− iθ

)
J1(a|y− y0|)− 1

2
J0(a|y− y0|)

}

+ 2k−1

3π

(
1
2
− J1(a)

)−1 {
J0

(
a
[

1
2
− y0

])
− 2iθ

1− iθ
J2

(
a
[

1
2
− y0

])}

×
{

J2

(
a
[

1
2
+ y
])
+ J2

(
a
[

1
2
− y
])
− 1

2
J0

(
a
[

1
2
+ y
])

− 1
2

J0

(
a
[

1
2
− y
])}

, (C 2)

Kv = k−1

√
π

[
J0(a|y− y0|)sgn(y− y0)

]+ k−1

π

(
1
2
− J1(a)

)−1 {
J0

(
a
[

1
2
− y0

])

− 2iθ
1− iθ

J2

(
a
[

1
2
− y0

])}{
J1

(
a
[

1
2
+ y
])
− J1

(
a
[

1
2
− y
])}

, (C 3)
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(a) Kernel operators

K(1)(y, y0)=Kσ (y, y0)a4(y)−Kτ (y, y0)a2(y)

K(2)(y, y0)=Hσ (y, y0)a4(y)−Hτ (y, y0)a2(y)

K(3)(y, y0)=Kτ (y, y0)a1(y)−Kσ (y, y0)a3(y)

K(4)(y, y0)=Hτ (y, y0)a1(y)−Hσ (y, y0)a3(y)

K(5)(y, y0)=Kv(y, y0)g(y)− a5(y)K(1)(y, y0)− a6(y)K(3)(y, y0)

K(6)(y, y0)=Hv(y, y0)g(y)− a5(y)K(2)(y, y0)− a6(y)K(4)(y, y0)

K(7)(y, y0)= Fv(y, y0)g(y)

(b) Associated integrals

a1(y)= 1−
∫ 1/2

−1/2
Kσ (y, ξ) dξ

a2(y)=−
∫ 1/2

−1/2
Hσ (y, ξ) dξ

a3(y)=−
∫ 1/2

−1/2
Kτ (y, ξ) dξ

a4(y)= 1−
∫ 1/2

−1/2
Hτ (y, ξ) dξ

a5(y)=−
∫ 1/2

−1/2
Kv(y, ξ) dξ

a6(y)=−
∫ 1/2

−1/2
Hv(y, ξ) dξ

a7(y)= 1−
∫ 1/2

−1/2
Fv(y, ξ) dξ

g(y)= a1(y)a3(y)− a2(y)a4(y)

TABLE 6. Nomenclature for singularity subtraction technique.

Hσ = k−1

√
π

{
J1(a|y− y0|)− 1

2
J−1(a|y− y0|)

}
+ k−1

π

(
1
2
− J1(a)

)−1

×
{

J2

(
a
[

1
2
− y0

])
− 1

2
J0

(
a
[

1
2
− y0

])}{
J0

(
a
[

1
2
+ y
])

+ J0

(
a
[

1
2
− y
])}

, (C 4)

Hτ = 2k−1

3
√

π

{
J3(a|y− y0|)− J1(a|y− y0|)+ 5

4
J−1(a|y− y0|)

}

+ 2k−1

3π

(
1
2
− J1(a)

)−1 {
J2

(
a
[

1
2
− y0

])
− 1

2
J0

(
a
[

1
2
− y0

])}
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×
{

J2

(
a
[

1
2
+ y
])
+ J2

(
a
[

1
2
− y
])
− 1

2
J0

(
a
[

1
2
+ y
])

− 1
2

J0

(
a
[

1
2
− y
])}

, (C 5)

Hv = k−1

√
π

{
J2(a|y− y0|)− 1

2
J0(a|y− y0|)

}
sgn(y− y0)

+ k−1

π

(
1
2
− J1(a)

)−1 {
J2

(
a
[

1
2
− y0

])
− 1

2
J0

(
a
[

1
2
− y0

])}

×
{

J1

(
a
[

1
2
+ y
])
− J1

(
a
[

1
2
− y
])}

, (C 6)

Sσ = 1√
π

(
1
2
− J1(a)

)−1 {
−1

2
J1

(
1− iθ

k

)
+ J3

(
1− iθ

k

)
− 1

4

}

×
{

J0

(
a
[

1
2
+ y
])
+ J0

(
a
[

1
2
− y
])}

+ 1√
π

{
−1

2
J0

(
a
[

1
2
+ y
])

− 1
2

J0

(
a
[

1
2
− y
])
+ J2

(
a
[

1
2
+ y
])
+ J2

(
a
[

1
2
− y
])}

, (C 7)

Sτ = 2
3
√

π

(
1
2
− J1(a)

)−1 {
−1

2
J1

(
1− iθ

k

)
+ J3

(
1− iθ

k

)
− 1

4

}

×
{

J2

(
a
[

1
2
+ y
])
+ J2

(
a
[

1
2
− y
])
− 1

2
J0

(
a
[

1
2
+ y
])

− 1
2

J0

(
a
[

1
2
− y
])}

+ 2
3
√

π

{
J4

(
a
[

1
2
+ y
])
+ J4

(
a
[

1
2
− y
])

− J2

(
a
[

1
2
+ y
])
− J2

(
a
[

1
2
− y
])
+ 5

4
J0

(
a
[

1
2
+ y
])

+ 5
4

J0

(
a
[

1
2
− y
])}

, (C 8)

Sv = 1√
π

(
1
2
− J1(a)

)−1 {
−1

2
J1

(
1− iθ

k

)
+ J3

(
1− iθ

k

)
− 1

4

}

×
{

J1

(
a
[

1
2
+ y
])
− J1

(
a
[

1
2
− y
])}

+ 1√
π

{
−1

2
J1

(
a
[

1
2
+ y
])

+ 1
2

J1

(
a
[

1
2
− y
])
+ J3

(
a
[

1
2
+ y
])
− J3

(
a
[

1
2
− y
])}

, (C 9)

Vσ (y)= Sσ (y)a4(y)− Sτ (y)a2(y), (C 10)
Vτ (y)= Sτ (y)a1(y)− Sσ (y)a3(y), (C 11)

Vv(y)= Sv(y)g(y)− Vσ (y)a5(y)− Vτ (y)a6(y), (C 12)

Fv = k−1

√
π
[2J1(a|y− y0|)sgn(y− y0)]. (C 13)
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