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This paper investigates the effects of bubble dynamics on the stability of parallel
bubbly flows of low void fraction. The equations of motion for the bubbly mixture
are linearized for small perturbations and the parallel flow assumption is used to
obtain a modified Rayleigh equation governing the inviscid stability problem. This is
then used for the stability analysis of two-dimensional shear layers, jets and wakes.
Inertial effects associated with the bubble response and energy dissipation due to
the viscosity of the liquid, the heat transfer between the two phases, and the liquid
compressibility are included. Numerical solutions of the eigenvalue problems for the
modified Rayleigh equation are obtained by means of a multiple shooting method.
Depending on the characteristic velocities of the various flows, the void fraction, and
the ambient pressure, the presence of air bubbles can induce significant departures
from the classical stability results for a single-phase fluid.

1. Introduction
The stability of parallel single-phase flows (both incompressible and compressible)

has been the object of intensive and well-documented research in a wide variety
of configurations (Betchov & Criminale 1967; Schlichting 1968; Drazin & Reid
1981; White 1991) including shear layers, boundary layers, jets, wakes, and internal
flows. The stability characteristics of two-dimensional shear layers, jets and wakes
having different velocity profiles have been studied by Michalke (1965), Drazin &
Howard (1966), Betchov & Criminale (1966), Sato (1960), Sato & Kuriki (1961), and
Tatsumi & Kakutani (1958) among others. An excellent review of stability analyses
of compressible flows is given by Mack (1987). The work of Blumen (1970), Blumen,
Drazin & Billings (1975), Drazin & Davey (1977), and Lees & Reshotko (1962) is
also relevant to the present context. The corresponding literature for two-phase flows
is much more limited. Only during the last decade or so have investigations of the
stability of two-phase flows begun to be made. Most of this recent work has focused
on liquid–solid suspensions (Herbolzeimer 1983; Shaqfeh & Acrivos 1986; Yang et
al. 1990).

The aim of the present paper is to investigate the inviscid stability of bubbly
parallel flows by including the effects associated with the dynamic response of the
bubbles. The reviews of Prosperetti (1982) and van Wijngaarden (1972) provide
a good summary of bubble dynamics effects in other contexts. Even at very low
void fractions, the dynamic properties of the liquid, such as the acoustic speed, are
dramatically modified by the presence of bubbles dispersed in the liquid (d’Agostino
& Brennen 1983, 1988, 1989). The interactions occurring between the mean flow
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262 L. d’Agostino, F. d’Auria and C. E. Brennen

and the compliant, inertial and dissipative nature of the bubble dynamics can be
rather complex (Brennen 1995; Plesset & Prosperetti 1977). Inertial effects in the
bubble dynamics become particularly important when the unstable frequencies of
the flow approach the natural frequency of oscillation of individual bubbles. Then
the bubbly mixture no longer behaves as a compressible barotropic fluid and sig-
nificant deviations from the classical compressible flow solution are to be expected
(d’Agostino & Brennen 1988; d’Auria, d’Agostino & Brennen 1994). Seeking a
more detailed understanding of the phenomena associated with the stability of
parallel bubbly flows, the authors (d’Agostino, d’Auria & Brennen 1995; d’Auria,
d’Agostino & Brennen 1995) have already reported on some substantial effects due
the presence of a dispersed phase in an unbounded shear layer and a Bickley
jet.

In the present paper the linearized perturbation equations for a bubbly mixture
are applied to a study of the inviscid stability of two-dimensional shear layers and
jets. The computed eigenvalues exhibit significant deviations from the single-phase
incompressible flow solutions for the flow parameters typical of bubbly flows with
pressures below atmospheric pressure.

2. Basic equations

The basic equations employed are identical to those used by d’Agostino & Brennen
(1983, 1989) so only a brief review will be included here. Neglecting the mass of the
bubbles and their relative motion with respect to the surrounding liquid (d’Agostino,
Brennen & Acosta 1988), the continuity equation for the mixture is written as

∇ · u =
1

1 + βτ

D(βτ)

Dt
− 1

ρa2

Dp

Dt
(2.1)

where u is the flow velocity, p, ρ, and a are respectively the pressure, density and
sound speed of the liquid, β is the bubble concentration per unit liquid volume,
D/Dt = ∂/∂t+ u · ∇ is the Lagrangian time derivative, and τ = 4πR3/3 is the volume
of a bubble, assumed spherical with radius R(x, t). The void fraction, α, is assumed to
be very small compared with unity, so that only terms of O(α) are retained. Neglecting
relative motion between the two phases and assuming a uniform initial population,
it follows that β is constant in the bubbly fluid. Moreover, in the absence of body
forces and viscous effects in the large-scale flow, the momentum equation for the fluid
motion becomes

ρ(1− α)Du

Dt
= −∇p. (2.2)

The relation between the pressure and the bubble radius is determined by the
Rayleigh–Plesset equation modified as indicated by Prosperetti (1984) to account
for the effects of liquid compressibility:(

1− 1

a

DR

Dt

)
R

D2R

D2t
+

3

2

(
DR

Dt

2)2(
1− 1

3a

DR

Dt

)

=

(
1 +

1

a

DR

Dt

)
pR(t) + p(t+ R/a)

ρ
+
R

ρa

dpR(t)

dt
. (2.3)
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On the inviscid stability of parallel bubbly flows 263

In (2.3) pR(t) is the liquid pressure at the bubble surface. The bubble internal pressure,
pB , is assumed uniform and is related to pR(t) by

pB(t) = pR(t) +
2S

R
+ 4µ

DR

Dt
(2.4)

where S is the surface tension of the bubble surface and µ is the viscosity of the liquid.
The closure of the problem requires that (2.1), (2.2), (2.3), and (2.4) be supplemented
by the mechanical and thermal equations of state and by the energy conservation
equations for the two phases with the relevant boundary conditions.

3. Linear stability equations
The equations governing the stability of this two-dimensional parallel flow are

similar to those derived by d’Agostino et al. (1995), and d’Auria et al. (1995). A
justification of the use of the parallel flow approximation for unbounded flows is
beyond the scope of this paper: we note, however, that high Reynolds numbers are a
necessary condition for this approximation to be meaningful (Drazin & Reid 1981).
This condition is clearly satisfied in the inviscid formulation.

The continuity and momentum equations of the two phases are perturbed around
their mean values by small linear fluctuations denoted by a hat accent:

u = U(y) + û(y)ei(kx−ωt), v = v̂(y)ei(kx−ωt),

p = p0 + p̂(y)ei(kx−ωt), R = R0 + R̂(y)ei(kx−ωt),

where, with standard notations, x, y, and u, v are the coordinates and velocity com-
ponents in the streamwise and normal directions, while ω and k are the perturbation
frequency and wavenumber, respectively. Then, in the limit of small void fraction,
linearization of the continuity and momentum equations to the first perturbation
order produces

ikû+ v′ = −iωL
3α

R0

R̂ + iωL
1

ρa2
p̂, (3.1)

ρ(1− α)(−iωLû+U ′v̂) = −ikp̂, (3.2)

ρ(1− α)iωLv̂ = p̂′, (3.3)

where primes indicate differentiation with respect to the independent variable y. The
quantity ωL = ω − kU is the Lagrangian frequency experienced by the bubbles in
their motion with the mean flow.

To the same order of approximation, the bubble dynamic equations yield the
following relation (Prosperetti 1984):

(−ω2
L − iωLλ+ ω2

B)R̂ = −
(

1 + iωL
R0

a

)
p̂

ρR0

(3.4)

where ωB(ωL) and λ(ωL) are the natural frequency and damping coefficient of individ-
ual bubbles excited at frequency ωL in an unbounded liquid. The three terms of the
left-hand side respectively account for inertial, damping and compressibility effects
associated with the bubble dynamic response. The physical origin and functional
dependence of ωB and λ are illustrated in more detail in d’Agostino & Brennen
(1989), and Brennen (1995). Here we only mention that the damping coefficient, λ, is
given by the sum of three terms accounting for the viscous, acoustical, and thermal
dissipation.
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The equivalent of a Rayleigh equation governing the inviscid stability of a bubbly
flow is given by the following system, obtained by elimination of R̂ and p̂ from (3.1),
(3.2), (3.3), and (3.4) to yield

û′ = ikv̂ − i
U ′′

ωL
v̂ − i

U ′

ka2
M

(iωLû−U ′v̂), (3.5)

v̂′ = −ikû+
ωL

ka2
M

(iωLû−U ′v̂), (3.6)

where aM = aM(ωL) is the complex and dispersive (frequency-dependent) speed of
propagation of a harmonic disturbance of angular frequency, ωL, in the bubbly
mixture. This is determined by the dispersion relation

1

a2
M

=
ω2
B0

a2
M0

1 + iωR0/a

ω2
B − ω2 − iω2λ

+
1− α
a2

(3.7)

where

ω2
B0 =

3pB0

ρR2
0

− 2S

ρR3
0

and a2
M0 =

ω2
B0R

2
0

3α(1− α) (3.8)

are respectively the natural frequency of oscillation of a single bubble under isothermal
conditions and the low-frequency sound speed in a free bubbly flow with incompress-
ible liquid (ωL → 0 and a → ∞). Notice that by eliminating the velocity component
û from (3.5) and (3.6) and setting aM →∞ we recover the classical Rayleigh stability
equation for a single phase fluid.

For the mathematical problem to be well posed, (3.5) and (3.6) must be supple-
mented by two appropriate boundary conditions on û, v̂ and their first derivatives for
the specific flow configuration under consideration. As will be seen later, this leads
to a linear second-order eigenvalue problem for the free parameters ω or k. As in
the single-phase formulation, the set of admissible (generally complex) values of ω or
k (the eigenvalues) is uniquely determined by the condition that the corresponding
non-trivial solutions (the eigenfunctions) satisfy the boundary conditions. Any two
of the real and imaginary parts of the complex frequency and wavenumber can be
specified; the remaining parts are then determined. Spatially growing oscillations are
studied by assigning a real frequency, ω, and solving for the complex wavenumber,
k = kr + iki, which is the eigenvalue of the problem; ki, the imaginary part of k, is the
spatial attenuation rate of the perturbation, while 2π/kr is its wavelength. A negative
value of ki implies therefore amplification of the perturbation. On the other hand,
temporally growing oscillations may be studied by assigning a real value to k and
solving for the complex ω. The two cases become identical at neutral stability.

4. Inviscid shear layer
We first consider the simple classical case of a two-dimensional inviscid bubbly

free shear layer of thickness δ between two parallel single-phase streams of velocities
U1(y < 0) and U2(y > 0). It is assumed that the unperturbed velocity profile can be
approximated by the hyperbolic tangent profile:

U(y) =
U1 +U2

2
+
U2 −U1

2
tanh

(y
δ

)
.

Inside the shear layer the equations governing the perturbations must, in general, be
integrated numerically. Outside the shear layer, where U, ωL, and aM are constant,
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On the inviscid stability of parallel bubbly flows 265

the perturbation equations reduce to

û′ = ikv̂′ and v̂′ = −ikû+ i
ω2
L

ka2
M

û

or

v̂′′ +

(
−k2 +

ω2
L

ka2
M

)
v̂.

The above can be integrated in closed form to obtain

v̂ = A1,2e
±y(k2−ω2

L
/a2

M
)1/2

û = ±A1,2

ik

(k2 − ω2
L/a

2
M)1/2

e±y(k2−ω2
L
/aM )1/2

,

where A1,2 are arbitrary complex constants (the principal branch of the square root
is implied) and the appropriate sign is determined by requiring that the solution
does not diverge as y → ±∞. From a practical standpoint, the stability problem
is first transformed into a boundary value problem by assigning zero derivatives to
the eigenvalues with respect to y within the integration range. For the solution
to be accurate, the integration must start and end far away from the shear layer
upper and lower boundaries (|y| � δ). The boundary value problem is then solved
numerically by using a multiple shooting method (Stoer & Bulirsch 1980). The
integration is carried out with a fourth-order Runge–Kutta method (extrapolated to
the fifth order), with self-adaptive step-size in order to obtain the required accuracy.
Finally, the eigenvalues are corrected using a multi-dimensional modified Newton–
Raphson method, in order to improve the convergence of the algorithm. The code
has been validated against the results reported for the single-phase flow by Betchov &
Criminale (1967) and Michalke (1965) for both the spatially and temporally growing
oscillations for the single-phase flow case.

In the case of spatial stability calculations, the computation starts with some
tentative candidate for the complex eigenvalue, k. The arbitrary constant A1 is chosen
to give the simple initial conditions

û =
ik

(k2 − ω2
L/a

2
M)1/2

and

v̂ = 1

at y = −nδ (n � 1). The equations are integrated up to y = nδ, where the computed
values of û and v̂ must be continuous with the upper asymptotic solution. Therefore,
at y = nδ, the condition

û = − ik

(k2 − ω2
L/a

2
M)1/2

v̂

must be satisfied. This relation is used to iteratively correct the assumed complex
eigenvalue and the process is repeated to convergence.

5. Inviscid jets and wakes
In this section we briefly describe results for the stability of inviscid jets and wakes.

In order to do so we choose to study the Bickley jet (hyperbolic secant) profile since
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it exemplifies the stability of a symmetric two-dimensional jet with a single velocity
maximum, Umax (Drazin & Reid 1981). It is assumed that the unperturbed velocity
profile can be approximated by the hyperbolic secant profile:

U(y) = Umax cosh−2
(
y/δ

)
, −∞ < y < ∞.

It is well known (Betchov & Criminale 1966, 1967; Drazin & Howard 1966; Drazin
& Reid 1981) that this profile, when subject to either spatial or temporal excitation,
gives rise to two distinct modes of oscillation corresponding to symmetric (‘sinuous’)
and antisymmetric (‘varicose’) eigenfunctions.

For a bubbly jet surrounded by a single-phase fluid the equations governing the
perturbations have to be integrated numerically. The numerical procedure is identical
to the one described in the previous section. The computations for a single-phase flow
have been validated against the results reported by Betchov & Criminale (1966) and
Drazin & Howard (1966), for both the spatially and temporally growing oscillations,
and for the symmetric and antisymmetric modes of oscillation of the jet.

The basic physical trends observed in the analysis of jets can be extended to the case
of wakes. In the case of a timewise stability analysis (where k is real and ω is complex)
a constant mean velocity can be superposed on a jet flow leaving the eigenvalues
unaltered, because the problem is invariant to a Galilean transformation. This means
that the results obtained for jets are immediately applicable to wakes (Betchov &
Criminale 1967). For the spacewise stability analysis different considerations are in
order. The equivalence of the spatial and temporal analysis of wakes, proved by
Mattingly (1968) (see Wazzan 1975), must be invoked. The extension of the results of
spatial stability analysis of jets to spatially growing disturbances in wakes can then
be argued.

6. Results and discussion
For illustrative purposes, we choose to study the spatial stability characteristics of

parallel flows involving a mixture of air bubbles (γ = 1.4) and water (ρ = 1485 Kg m−3,
µ = 0.001 N s m−2, S = 0.0728 N m−1). All quantities are expressed in dimensionless
form (denoted by an asterisk) using the shear layer velocity difference, ∆U, or the jet
maximum velocity, Umax, and the typical width of the flow (either the layer or the
jet), δ, as reference velocity and length. The three non-dimensional parameters in the
present analysis are the bubble natural frequency, ω∗B0, the bubble radius, R∗, and the
void fraction, α.

The effect of the bubbles on the stability characteristics of the hyperbolic tangent
shear layer is illustrated in figure 1(a), while figures 1(b) and 1(c) are relevant to
the Bickley jet, for the sinuous and varicose modes of oscillation, respectively. The
graphs show that the presence of bubbles causes substantial modifications of the
stability characteristics of the flow when the bubble natural frequency, ω∗B0, roughly
decreases below the value ω∗B0 6 20 → 30, depending on the velocity profile under
consideration. It is readily seen that the bubbles have a stabilizing effect. This effect
gets stronger as the bubble natural frequency, ω∗B0, decreases. In the barotropic
limit for ω∗B0 � ω∗ (i.e. ω∗B0 > 20 → 30) the effect of the presence of bubbles
in the liquid has been found to be negligible: within the limit α � 1, the void
fraction (and therefore the compressibility of the bubbly mixture) has also been
varied to see if it would affect the stability characteristics of flows with ω∗B0 � ω∗,
but it did not (the results of these computations are not reported here). The most
unstable frequency, that is the frequency corresponding to the maximum amplification

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

97
00

52
11

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112097005211


On the inviscid stability of parallel bubbly flows 267

–0.08

–0.06

–0.04

–0.02

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(c)

ω*

k*
i

–0.30

–0.25

–0.20

–0.15

0

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

(b)

k*
i

–0.25

–0.15

–0.10

–0.05

0

0 0.1 0.2 0.3 0.4 0.5

(a)

k*
i

–0.10

–0.05

–0.20

Figure 1. (a) The attenuation rate, k∗i , of the hyperbolic tangent shear layer as a function of the
excitation frequency, ω∗, for several values of the bubble resonance frequency: ω∗B0 = 21(×), 15 (�),
12 (•), and 9 (◦). In all cases α = 0.01 and R∗ = 0.01. The incompressible flow solution (α = 0) is
also shown for comparison (2). (b, c) As (a) but for the Bickley jet: (b) ω∗B0 = 17.5(×), 9.5 (�), 7.5
(•); (c) ω∗B0 = 30(×), 22 (�), 17 (•).

rate (denoted here by k∗iMIN
) also exhibits a shift towards smaller values (the most

unstable frequency computed by Michalke (1965) for the single-phase shear layer
is ω∗ = 0.207). Notice from the difference in the vertical scales in figures 1(b)
and 1(c), that the symmetric (sinuous) mode is less stable than the antisymmetric
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Figure 2. The most unstable attenuation rate, k∗iMIN
, for (a) the hyperbolic tangent shear layer, and

(b) symmetric oscillations of the Bickley jet, as a function of the bubble natural frequency, ω∗B0, for
three values of the void fraction: α = 0.001 (�), 0.005 (•), and 0.01 (◦). The bubble size is R∗ = 0.01
for all cases.

(varicose) mode. In the following we shall therefore focus on the symmetric or
sinuous mode (characterized by even eigenfunctions) of the jet, since it is the most
unstable.

The effects of changing the bubble radius, R∗, and the void fraction, α, have also
been investigated. The stabilizing effect due to an increase in the void fraction is
illustrated in figures 2(a) and 2(b), for the shear layer and the jet, respectively. Here
the maximum amplification rate (the minimum of k∗i , denoted by k∗iMIN

) is plotted as a
function of the natural frequency of the bubble, ω∗B0. The similar effect of a decrease
of the bubble radius is shown in figures 3(a) and 3(b) for both flow configurations. It
is worth noting that the ratio 3α(1−α)/R∗2 coincides with the bubble cloud parameter
3α(1− α)/R2

0 originally identified by d’Agostino & Brennen (1983, 1988, 1989) in the
dynamic analysis of bubbly flows. Hence, it can be stated in more general terms that
the inviscid stability of parallel bubbly flows increases with 3α(1− α)/R2

0 .
Figures 4(a) and 4(b) show how the most unstable frequency, ω∗m, increases with

the bubble natural frequency, ω∗B0, for different values of the void fraction.
The effect of the bubble natural frequency, ω∗B0, on the real phase velocity, c∗r =

ω∗/k∗r , is illustrated in figures 5(a) and 5(b). A comparison of the results for the
shear layer and the jet reveals that the jet exhibits a larger shift in the most unstable
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Figure 3. The most unstable attenuation rate, k∗iMIN
, for (a) the hyperbolic tangent shear layer, and

(b) symmetric oscillations of the Bickley jet, as a function of the bubble natural frequency, ω∗B0, for
three values of the bubble size: R∗0 = 0.005 (�), 0.01 (•), and 0.02 (◦). The void fraction is α = 0.01
for all cases.

frequency. On the other hand, the variation of c∗r with ω∗B0 for the Bickley jet is not
as significant as for the shear layer. However the qualitative effects of the bubbles are
the same in both cases.

We should note that previous figures are relevant to those physical situations
where the excitation frequency, ω∗, is considerably smaller than the bubble resonance
frequency, ω∗B0. Typical values of the flow parameters, such as those listed earlier,
for gas bubbles in liquids suggest that this is the case in many practical applications,
where the bulk pressure of the liquid is relatively close to atmospheric pressure and
therefore the dominant contribution of the bubbles to the flow stability arises from
their compressibility, while inertial and dissipation effects play a relatively minor
role. However, we will show in a later publication that this may no longer be
true in cavitating flows, where the reduced value of the liquid pressure and the
possible occurrence of thermal cavitation can lead to significant inertial coupling
and dissipation effects even at the relatively low frequencies imposed by the flow
perturbation.

In order to explore the full range of possibilities, calculations were also carried out
to examine the role played by bubble dynamics at or near resonance (ω∗ ≈ ω∗B0).
Typical results for the shear layer and jet are shown in figures 6(a) and 6(b). Notice
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Figure 4. The frequency, ω∗m, of the most unstable oscillation of (a) the hyperbolic tangent shear
layer, and (b) the symmetric oscillations of the Bickley jet, as a function of the bubble natural
frequency, ω∗B0, for for three values of the void fraction: α = 0.001 (�), 0.005 (•), and 0.01 (◦). The
bubble size is R∗ = 0.01 for all cases.

that in both cases the attenuation rate peaks near resonance (ω∗ ≈ ω∗B0), where the
flow is significantly stabilized because the bubble response is larger and dissipates
perturbation energy more effectively. As a consequence of this effect, the curves
intersect each other and flows characterized by a lower bubble natural frequency can
be less stable than others over some portion of the perturbation spectrum. More
importantly, the most unstable frequency suddenly jumps to a higher value when the
resonance frequency is reduced below the minimum of the attenuation curve in the
absence of resonance, as illustrated by the curves for ω∗B0 = 0.38 and 0.31 in figure
6(b). However, even the presence of significant resonance effects does not modify the
general conclusion that the flow characterized by the highest bubble natural frequency
is invariably the most unstable.

It is worth comparing the stabilizing effect due to the presence of uniformly
dispersed bubbles in the liquid with the classical results of the linear stability theory
of compressible flows. In his temporal stability analysis of symmetric inviscid shear
layers in a perfect gas at uniform temperature, Blumen (1970) found that flow
compressibility is a stabilizing feature, since he observed a decrease in the growth
rates as the Mach number (in his case defined as M = U/a) increases. His results,
obtained for M 6 1, were later revised and expanded to all values of Mach number by
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Figure 5. (a) The real phase velocity, c∗r , of the hyperbolic tangent shear layer as a function of the
excitation frequency, ω∗, for several values of the bubble resonance frequency: ω∗B0 = 21 (×), 15
(�), 12 (•), 9 (◦), and for the single phase flow (2). In all cases α = 0.01 and R∗ = 0.01. (b) As (a)
but for symmetric oscillations of the Bickley jet and for ω∗B0 = 17.5 (×), 9.5 (�), 7.5 (•).

Blumen et al. (1975) and Drazin & Davey (1977). According to Blumen, the physical
explanation for this stabilizing effect lies in the fact that “a certain amount of basic
flow energy must be used to do work against the force due to the elasticity of the
medium, before it becomes available to initiate instability”. Such an explanation also
applies to the present case of a finely dispersed gaseous phase in a liquid medium.
In order to further support this physical explanation, Blumen also reported that
“investigations of the stability of parallel flow of a density stratified fluid under the
action of gravity show a similar stabilizing feature, because some of the available
basic flow energy must be used to do work against the buoyancy force” before it can
contribute to promote the instability (Drazin 1958).

In addition to the stabilizing effect due to compressibility alone, bubble dynamic
damping provides another significant source of energy absorption, which is especially
effective at or near resonance where the amplitude of the bubble response is larger.
This additional contribution is well exemplified by the different behaviour of the
curves shown in figure 7, where the spatial attenuation rate of a bubbly flow with
resonant bubble dynamics (ω∗B0 = 0.25) is compared with the corresponding simply
compressible and incompressible flow solutions for the same value of the void fraction
and the other flow parameters. It is evident that bubble dynamic effects are responsible
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Figure 6. (a) Data illustrating the effect of bubble resonance (ω∗ ≈ ω∗B0) for the hyperbolic tangent
shear layer. The attenuation rate, k∗i ,is shown as a function of the perturbation frequency, ω∗, for
several values of the bubble resonance frequency: ω∗B0 = 0.25(×), 0.3 (�), and 0.35 (•). In all cases
α = 0.003. The results for incompressible flow (α = 0) are also shown for comparison (2). (b) As
(a) but for symmetric oscillations of the Bickley jet and for ω∗B0 = 0.49(×), 0.38 (�), 0.31 (•).

for a substantial stabilizing effect in the neighbourhood of resonance conditions and
induce a sizeable shift of the most unstable frequency with respect to either one of
the barotropic solutions.

7. Conclusions
This study of the stability of bubbly two-dimensional inviscid parallel flows has

yielded a number of interesting results. In general, even bubbly mixtures of low void
fraction (α � 1) are considerably more stable than the single-phase fluid. Increasing
the void fraction or decreasing the radius and the resonance frequency of the bubbles
promote the stability of the flow.

Far from resonance (i.e. for ω∗B0 > ω∗) the observed stabilizing effect is mainly due
to the compressibility of the bubbly mixture. This effect is qualitatively consistent
with the analogous results of linear temporal stability analyses of compressible flows
in an inviscid perfect gas at uniform temperature (Blumen 1970; Blumen et al. 1975;
Drazin & Davey 1977) and can be explained with the same physical arguments.

At or near resonance conditions (ω∗B0 ≈ ω∗), bubble dynamic effects provide a
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Figure 7. Bubble dynamics effects at resonance for the hyperbolic tangent shear layer. The
attenuation rate, k∗i , is shown as a function of the perturbation frequency, ω∗, for a flow with
ω∗B0 = 0.3 (�), and for the corresponding compressible flow without bubble dynamics effects (•). In
both cases the void fraction is α = 0.003. The results for incompressible single-phase flow (α = 0)
are also shown for comparison (2).

significant additional contribution to the flow stability by effectively subtracting energy
from the perturbation field to sustain larger bubble oscillations. Near resonance
conditions bubble dynamic effects strongly modify the curves of the spatial attenuation
rate as a function of the perturbation frequency, causing them to locally overlap. As
a consequence, flows characterized by a lower bubble natural frequency can be less
stable over some portion of the perturbation spectrum or have higher values of the
most unstable frequency with respect to similar flows with larger bubble resonance
frequency. These circumstances have not been observed in flows with small bubble
dynamic effects (ω∗B0 � ω∗). On the other hand, even in the presence of appreciable
bubble dynamic effects, the flows with the highest bubble resonance frequency always
are the most unstable. Finally, for gas bubbles in liquids, the bubble natural frequency
is likely to be much larger than the most unstable frequency in the majority of practical
applications. Hence, in these flows bubble dynamic damping is relatively unimportant
and the dominant effect of the bubbles is their contribution to the compressibility of
the mixture. We notice, however, that this situation may easily be reversed in bubbly
cavitating flows.
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