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SUMMARY
A brain–computer interface (BCI) is a system for commanding a device by means of brain signals
without having to move any muscle. One kind of BCI is based on Steady-State Visual Evoked
Potentials (SSVEP), which are evoked visual cortex responses elicited by a twinkling light source.
Stimuli can produce visual fatigue; however, it has been well established that high-frequency SSVEP
(>30 Hz) does not. In this paper, a mobile robot is remotely navigated into an office environment
by means of an asynchronous high-frequency SSVEP-based BCI along with the image of a video
camera. This BCI uses only three electroencephalographic channels and a simple processing signal
method. The robot velocity control and the avoidance obstacle algorithms are also herein described.
Seven volunteers were able to drive the mobile robot towards two different places. They had to evade
desks and shelves, pass through a doorway and navigate in a corridor. The system was designed so
as to allow the subject to move about without restrictions, since he/she had full robot movement’s
control. It was concluded that the developed system allows for remote mobile robot navigation in
real indoor environments using brain signals. The proposed system is easy to use and does not
require any special training. The user’s visual fatigue is reduced because high-frequency stimulation
is employed and, furthermore, the user gazes at the stimulus only when a command must be sent to
the robot.

KEYWORDS: Brain–computer interface; Electroencephalography; Man–machine system; Mobile
robot; Steady-state visual evoked potentials.

1. Introduction
A brain–computer interface (BCI) is a system that allows for commanding a device, such as a mobile
robot, a speller or other systems, using only electroencephalographic (EEG) signals without moving
any muscle. In the self-paced (asynchronous) mode, a BCI is constantly classifying the ongoing
brain activity and is therefore always available for control.1 That means, a BCI should be able to
detect whether the user intentionally decides to perform specific mental tasks or, otherwise, does not
generate any command (e.g. periods of thinking, daydreaming or reading).2

Different authors have proposed controlling a robotic device via BCI. For example, in 2004, Millan
et al. proposed the control of a Khepera robot (5.7 cm diameter) using a BCI based on mental tasks and
motor imagery classification.3 Later on, a simulated mobile robot was driven using foot motor imagery
in order to alternate between two modes: “no control” and “in control”. The latter mode could steer
the simulated robot using left- and right-hand imagery.4 The P300 potential is an evoked response of
the brain cortex elicited by an uncommon visual stimulus (e.g. oddball paradigm), which corresponds
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to a negative potential that occurs 300 ms after the stimulus. P300 evoked potentials were obtained
with a “stop/go” simulated car at stoplights in a virtual town.5 In another report, a robotic vehicle was
navigated through a maze using auditory P300.6 A BCI was used by a quadriplegic subject to control a
wheelchair on a virtual street populated with avatars.7 Another BCI drove a simulated mobile system
using the selection of stable user-specific EEG features that maximized the ability to separate different
mental tasks.8 Later on, that BCI was applied to drive a wheelchair.9 A fuzzy shared-control also
was proposed for an assistive navigation architecture based on sparse and discrete human–machine
interface.10 Similar P300/BCI designing philosophies were tested in a HOAP2 humanoid robot with
a bit rate of up to 24 bits/min with an accuracy of 95% over four choices.11 The same humanoid robot
learned some movements (such as walking, grasping) through self-paced mental imagery BCI and,
thereafter, the user could send high-level commands using P300 so that the robot repeated the learned
movements.12 A mobile robot was controlled using four commands derived from two mental tasks
(i.e. relaxed state and right-hand imagination).13 The robotic group directed by Minguez developed
several BCI for controlling robotic systems. For instance, a wheelchair was commanded using P300
evoked potentials,14 and later on a teleoperated mobile robot was manoeuvred by a BCI.15 The same
group reported also a telepresence system.16

All of these projects made use of mental tasks, motor imagery or P300 for controlling the robotic
systems.3–16 However, such systems generally require a training step that can necessitate from some
minutes up to hours or even days. In addition, the user is sometimes subject to mental efforts that
could produce mental fatigue.

Another paradigm applied in BCI is Steady-State Visual Evoked Potentials (SSVEP), which can
be used by most candidates with relatively no training. It tends to outperform other BCIs in terms of
information transfer rates. A SSVEP is a resonance phenomenon arising mainly in the visual cortex
when a person is gazing at a flickering light with a frequency above 4 Hz17 and can be elicited up
to at least 90 Hz.18 This range could be divided into three sub-ranges: low- (up to 12 Hz), medium-
(12–30 Hz) and high-frequency (>30 Hz).17 The SSVEP in low-frequency range has higher amplitude
responses than in the medium range. Consequently, the larger the amplitude of the SSVEP, the easier
its detection. The weakest SSVEP is found on the high-frequency range. However, spontaneous EEG
(considered here as noise) decreases on higher frequency bands, hence, the signal to noise ratio
is similar on the three ranges.19 High-frequency SSVEP has the advantage of a great decrease of
visual fatigue caused by flickering,20–22 making the SSVEP-based BCI a more comfortable system.22

Moreover, low- and medium-frequency SSVEP ranges interfere with alpha rhythm, and could cause
an epileptic seizure as well.23 Despite that, SSVEP-based BCI are mainly focused on the low-
and medium-frequency range. Specifically, SSVEP-based BCIs controlling a mobile robotic system
use low,24 medium25 or both frequency ranges.26 In 2008, a robotic prosthesis was controlled with
SSVEP27 and recently, a controlled robotic assistant for grasping objects was commanded using
stimulation in the medium frequency range.28 However, navigating a robotic mobile system with the
help of a SSVEP-based BCI is a recently developed area in the BCI community.25

The work by Mandel and colleagues reports that eight out of nine untrained subjects successfully
navigated an automated wheelchair using SSVEP, ranging from 13 up to 16 Hz, and requiring merely
10 min of preparation.25 A Light-Emitting Diode (LED) stimulation box flickering at 10, 11, 12 and
13 Hz was used to move a small robot employing two different approaches: one using minimum
energy and another using Fast Fourier Transform and Linear Discriminate Analysis.26 Recently,
in 2010, a robotic mobile system was commanded by a SSVEP-based BCI using 5 up to 6.9 Hz
with a statistical test for feature extraction (Spectral F-test) and classification performed by a rule-
based classifier.24 An algorithm for asynchronous BCI control using high-frequency SSVEP was
recently developed by our research group, where six subjects could control a mobile object on the
screen through different scenarios, reaching up to 45 bits/min.29 Perhaps, the first time a robot was
controlled with high-frequency SSVEP was presented by Volosyak and colleagues.30 In that research,
a tiny robot was moved in a maze through fixed positions with stimuli of 34, 36, 38 and 40 Hz,
reaching an average speed of 12.10 bit/min and an average accuracy of 89.16%.

The aim of this study was to develop a complete strategy to control a mobile robot using an
asynchronous high-frequency SSVEP-based BCI. The experiments were performed within a real
office environment. Since the user and the robot were in different locations, the robot was remote-
commanded through a video image showing the path to the subject. The BCI commanded the robot
together with an algorithm to avoid obstacles, thus allowing for comfortable and safe navigation.
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Fig. 1. (Colour online) (a) A volunteer sat in front of a PC screen rounded by four flickering stimuli, EEG
amplifier system and robot. (b) The interface screen with the video image captioned by the robot and the blue
arrow is indicating the detected stimulus (top in this case). (c) Robot Pioneer 3-DX with Canon VC-C4 camera
and ultrasonic sensors.

In the next section, the problem is described and the experimental conditions are established.
In Section 3, the EEG signal processing method, the robot control algorithm and finally, the
interconnection between these two parts are explained. In Section 4, the results are reported. Then,
these results are discussed in Section 5, and the final section presents the conclusions.

2. Problem Definition
In this section, the objective of the research, the equipment and experimental conditions are described.
In the proposed experiment a BCI was used to remotely command a mobile robot, which is navigated
towards a determined position in a real office-like environment. Seven volunteers, who previously
agreed to participate in the experiment, sat in a comfortable chair looking at a monitor with four
stimulating boxes on each side. The boxes (2.5 cm × 2.5 cm) were illuminated by high efficiency
LEDs (Figs. 1a and 1b). The flickering frequencies were almost imperceptible to the user, because
LEDs kindled at 37 (top), 38 (right), 39 (down) and 40 Hz (left), respectively. Each frequency was
precisely controlled by an FPGA Xilinx Spartan2E, programmed by the computer. The flickering
frequencies could be modified by simple reprogramming.

The EEG was acquired with three channels over the visual cortex at positions O1, Oz and O2,
referenced to FZ and grounded at linked A1-A2. EEG signals were amplified with a Grass 15LT
system, pass-band filtered between 1 and 100 Hz and with a notch filter for 50 Hz line interference.
Then, the EEG was digitalized with a NI-DAQPad6015 at a 256 Hz sampling frequency with 16-bits
resolution for each channel (Fig. 1a).

A robot Pioneer 3-DX (45× 38× 23 cm) was used in the experiments with a Canon VC-C4 camera
mounted on it (Fig. 1c). The volunteers watched on the screen the images of the path along which
they drove the robot (Fig. 1b). Communication between robot and computer was wireless (standard
Wi-Fi). Sixteen ultrasonic (US) sensors placed around the robot were used to detect obstacles. A
scheme of the experimental setup is depicted in Fig. 2.

When the user wanted to convey a command to the robot, he/she gazed at a certain stimulus, and
then the BCI detected the user’s intention. Therefore, the BCI could produce four commands to the
robot, i.e. “advance”, “turn right”, “turn left” and “stop”, each corresponding to top, right, left and
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Fig. 2. (Colour online) Scheme of the experimental setup.

down visual stimulus, respectively. Then, the robot moved to the desired direction, and since the
environment was changing around the robot, the new situation was captured by the camera. Finally,
the user observed those changes on the screen and decided to send a new command. The robot
advanced at constant velocity of 100 mm/s while the angular velocity was limited to 0.653 rad/s
(37.4 deg/s). These velocities were restricted for safety reasons, because the algorithm was designed
for a future extension to command a wheelchair.

3. Methods
This section presents the EEG signal-processing method, the robot control algorithm and finally, the
interconnection between these two parts.

3.1. EEG signal processing
The EEG signals were processed with a method described in the bibliography.29 First, the signal was
digitally filtered with a 6th-order Butterworth band-pass filter, with cut-off frequencies set at 32 and
45 Hz. Then, the power spectral density was estimated using the periodogram Ŝ (f ), as follows,

Ŝ (f ) = Ts

N

∣∣∣∣∣
N−1∑
n=0

x[n]e−j2πf nTs

∣∣∣∣∣
2

(1)

where TS is the sampling period, N stands for the number of samples and f represents the frequency.
To compute the periodogram, the Fast Fourier Transform (FFT) with 2s-long rectangular window
was used. The window was moved in 0.25 s steps. Figure 3 depicts the periodogram of four different
EEG segments, where the SSVEP peaks elicited by each stimulating frequency can be observed.
After that, the normalized power P (fi) at each stimulation frequency fi (i = 37, 38, 39 or 40 Hz) was
computed by,

P (fi) =
M∑

ch=1

Ŝch (fi∓0.25)

B̂Lch (fi∓0.25)
/M (2)

where ch is the number of channels from 1 to M = 3(O1, Oz and O2 channels were used); BLch is
the periodogram of the baseline EEG. For each volunteer, a baseline EEG was acquired in advance
to the experiment. They were asked to get focused on a point at the centre of the screen for 60 s,
but without focusing on any stimuli (which were flickering). This baseline was used for equalization
of the EEG spectrum29 due to the low power EEG spectrum of higher frequencies. For example, an
SSVEP at 38 Hz has greater power than another SSVEP at 40 Hz.29 This calculation was performed
every 0.25 s, and an SSVEP was labelled as one of the four possible classes (top, right, bottom or
left) according to:

class (fi) ⇐ max
{
P (fi)(n)

} = max
{
P (fi)(n−1)

} = . . . = max
{
P (fi)(n−10)

}
(3)
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Fig. 3. (Colour online) Power spectral density of four different EEG segments, each one corresponding to a
different stimulus (top, right, down and left). Then, the four peaks are mapped into the four commands sent to
the robot (advance, turn right, stop and turn left).

Therefore, when the maximum P (fi) corresponding to the same fi is maintained for at least 10
consecutive samples (i.e. 2.5 s), the SSVEP corresponding to fi is detected and the EEG segment
is labelled as the class(fi). Finally, whenever this condition is not satisfied, the EEG segment is
classified as belonging to an undefined class.

Online feedback was presented to the user indicating the detected stimulus. This was performed
in two simultaneous ways: a visual feedback, which consisted of a blue arrow on the screen (see
Fig. 1b), and an audible feedback, which consisted of a voice that names the detected stimulus (i.e.
“right”, “left”, “forward” or “stop”, in Spanish).

3.2. Robot control algorithm
The control algorithm used for moving the robot was proposed by a co-author of this research.31–32

Consider the unicycle-like vehicle is initially positioned at any non-zero distance from the target
position p2 (Fig. 4a). The robot motion towards p2 is governed by the combined action of both, the
angular velocity ω and the linear velocity u, describing the vehicle position in polar coordinates and
considering the distance error e calculated from the actual position p1 and the desired position p2.
Besides, the orientation error α was defined according to the actual orientation of the robot ϕ and the
desired orientation θ as α = θ − ϕ. Then, the kinematic equations were defined as,

⎧⎨
⎩

ė = −u cos α

α̇ = −ω + u sin α
e

θ̇ = u sin α
e

(4)

The chosen state variables are e and α, and assumed as directly measurable for any e > 0. Let us
consider the Lyapunov-like candidate function,

V(e,α) = 1

2
λe2 + 1

2
α2 with λ > 0 (5)

Its time derivative V̇ along the trajectory described in Eq. (4) is given by,

V̇ = λeė + αα̇ = λe (−u cos α) + α
(
−ω + u

sin α

e

)
= V̇1 + V̇2 (6)
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Fig. 4. (Colour online) (a) Robot in p1 and its final destination (p2). (b) Robot evading an obstacle.
Note: u is velocity of the robot; e is the error distance between the actual position (p1) and the desired position
(p2); α is the error on the orientation of the robot; fR is the radial and fT is the tangential fictitious force; β is
angle of interaction with obstacle; ψ is the rotation angle to avoid obstacle.

The first term in Eq. (6), corresponding toV̇1, can be non-positive by letting the linear velocity u
have the smooth form,

u = γ tanh e cos α with γ = |umax | (7)

where umax is the maximum velocity of the robot. The hyperbolic tangent term is used to avoid actuator
saturation. Then, considering Eq. (7) in the second term of Eq. (6), V̇2 can also be non-positive by
letting the angular velocity have the smooth form,

ω = k1α + λ
tanh e

e
sin α cos α (8)

where k1 is the controller gain and |ωmax | = k1π + 0.5γ , and thus leading to the following expression
for the time derivative of the original Lyapunov function V,

V̇ = −λγ e tanhe cos2 α − k1α
2 < 0 (9)

The latter equation results in a negative definite function. That means asymptotic convergence to
zero of the state variables, thus verifying the control objective, i.e.{

e(t)

α(t)
→ 0 when t → ∞ (10)

Here, k1 was set as 0.4 and the desired orientation ϕ could take the following values: ± π /2 rad
for turns or 0 rad to move forward. This is due to the actions required for moving in an office-like
environment (a house or a maze), typically similar to the one tested. However, the robot can depart
from these routes when trying to avoid an obstacle. Thereafter, the desired position p2 is calculated
away from p1. The new coordinates (Xd, Yd ) on the reference system indicating the desired position
p2 are calculated as Xd = X + k2 cos α and Yd = Y + k2 sin α (k2 is a constant empirically estimated
as 10).

To skip obstacles, the robot velocities u and ω had to be modified. This was performed using the
impedance (Z) concept, for which the mechanical interaction was substituted for a distance and a
non-contact interaction by taking into account the distance from the robot to the detected obstacle.33

Hence, a fictitious force was generated when an obstacle was detected, moving the robot out of the
rejection zone (Fig. 4b), defined as,34

f(t) = a − b
(
d(t) − dmin

)
(11)
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Fig. 5. (Colour online) Scheme of control loops and BCI-robot interaction.

where a and b are positive constants, so that a − b(dmax − dmin) = 0; dmax is the maximum robot-
obstacle distance; dmin is the minimum robot-obstacle distance and d(t) is the actual robot-obstacle
distance. In this experiment, dmax is 40 cm and dmin is 25 cm. These values were chosen because one
of the objectives of this research was to allow navigating the robot within real environments, that is,
where short distances (<100 cm) separate the obstacles in the environment.

The fictitious force f was decomposed into its orthogonal components, namely, the radial (fR) and
tangential (fT ) components, depending on the angle β. After that, the impedance Z was calculated
as,35

Z = Bp + K (12)

where p stands for the derivate operator, constant B represents a damping effect and K is a spring
effect arising from the virtual interaction between the mobile robot and the obstacle. In this work, B
and K were empirically determined as 0 and 0.2, respectively.

The rotation angle ψ to avoid the obstacle with respect to the vehicle centre was computed as,

ψ = Z−1fT sign(fR) (13)

Finally, a rotation transformation was used to obtain the new desired position p′
2, as,

p2
′ =

[
cos ψ − sin ψ

sin ψ cos ψ

]
p2 (14)

In Eq. (14) the desired location p2 was modified and then, velocities u and ω recalculated to avoid
an obstacle.

3.3. Interaction BCI-Robot
In order to attain comfortable navigation of the robot, the interaction between the BCI commands and
the robot movements must be considered. Figure 5 shows a scheme of control loops on the proposed
system. When the user wants to convey a command (advance, turn left, turn right or stop) to the
robot, he/she must gaze at a stimulus, then the BCI must detect the user intention and generate a
semantic code. This semantic code must be translated into the position of the newly desired location
p2. Finally, the control signals u and ω are generated as depicted in Eqs. (7) and (8). Then, the robot
moves on the desired direction. Consequently, the environment around the robot changes and these
changes are captured by the camera. Finally, the user closes this outer loop by making a new decision
(or not).

When an obstacle is detected within the trajectory of the robot by US sensors, the avoidance
obstacle algorithm modifies both u and ω in order to evade the obstacle. This is performed by the
inner control loop. On the other hand, in some cases the robot cannot avoid the obstacle; for example,
if the obstacle is right in front of the robot (e.g. a wall) or may be a possible collision (i.e. the obstacle
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Fig. 6. (Colour online) The robot path through the office environment towards two different places. The grey
figures represent the desks and shelves. The green figures illustrate the two possible destinations. (a) Destination
1, Volunteer 5 navigating towards the first (easier) place; (b) Destination 2, Volunteer 2 navigating towards the
second place.

is at less than dmin = 25 cm). Then, the robot stops and prompts the user for a new decision. Note
that the robot moves back 10 cm before stopping in order to perform the next command successfully.

In this approach, the user does not need to gaze constantly at a stimulus to move the robot, because
the robot moves forward along the selected direction until a new command is received (e.g. a different
direction or a stop command). In other strategies,26 when the subject was not looking at the stimuli,
the robot was stopped. Our approach represents an advantage because the user could look at other
things instead of the stimuli, such as the camera image (in this particular case) or the surrounding
environment (in a wheelchair) or simply nothing in particular and remain relaxed.

4. Experimental Results
Seven healthy volunteers (six men, one woman, aged 25.9 ± 4.8 yrs) participated in the experiment,
they had no previous experience in BCI or robotics (except volunteers 1 and 6, who had participated in
a previous BCI experiment). They were asked to navigate the robot towards two different places in a
real office environment, with many shelves and desks. The first place is easier to reach than the second
one (Fig. 6). Thus, the volunteers intended to reach the first (easier) place (Fig. 6a) until they attained
optimal performance (i.e. they felt as if they could control the robot). Later, they intended to reach the
second place (Fig. 6b), as many times as they wanted. In this sense, each subject performs a different
number of trials depending on his own performance. These two places were named Destination 1 and
Destination 2, respectively. Destination 1 and 2 are two access doors to the environment; hence the
task of the volunteers was to navigate the robot to those doorways.

In Fig. 7a the SSVEP calculated for the four stimuli according to Eq. (2) is shown. Besides, the
commands sent by the BCI to the robot are presented in Fig. 7b, where the red line indicates the
commands forward, right, left or stop and, blue circles represent each time a SSVEP is labelled as
one class (according to Eq. (3)) and a command was sent to the robot. Sometimes these commands
were redundant, i.e. the same command is detected twice or even more. This is due to the volunteers
who keep gazing at the stimulus for a few more seconds. These redundant commands are ignored by
the system and they were not conveyed to the robot. For example, at 16 s the right stimulus power
became the maximal power (green line in Fig. 7a) and 2.5 s later, at 18.5 s the command right is
conveyed to the robot (Fig. 7b). Therefore, the robot turned to the right and went in that direction.
At 21 s a redundant command was ignored and was not conveyed to the robot. Later, at 33 s the left
stimulus is detected and the robot turned to the left. When red line in Fig. 7b indicates a “0” state
(during 41–62 s, 115–121 s or 133–137 s), the robot was stopped by the control algorithm to avoid a
collision. This situation is communicated to the user (audible feedback) and the system will wait for a
new command. SSVEP and commands depicted in Fig. 7 were extracted when Volunteer 5 navigates
the robot towards Destination 1 (Fig. 6a).

Table I illustrates the performance parameters attained by each volunteer for Destination 1. This
table shows the elapsed time in each trial and the number of commands sent to the robot. Since the
path to reach Destination 1 is pre-established, the commands could be classified as correct or wrong;
i.e. when a command deviates the robot from this path, then it is a wrong command. For example, in
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Table I. Results for Destination 1.

Commands

Volunteer Trial Time (s) Wrong Correct Stop by control system

1 1 130 0 17 2
2 1 150 0 20 1
3 1 228 1 23 5
4 1 205 4 17 2
5 1 164 2 14 3
6 1 210 6 25 3
7 1 220 2 10 1

2 150 2 9 2
Average 182.13 2.13 16.88 2.38
Std. Dev. 37.70 2.03 5.74 1.30

Fig. 7. (Colour online) (a) Power of the SSVEP calculated for each stimulus (top, right, bottom and left); (b)
Commands sent by the BCI to the robot (advance, turn right, stop and turn left). These values were calculated
online when Volunteer 5 navigated the robot towards Destination 1.

Destination 1, when the robot goes through the doorway of the first room it should turn to the right,
then a left command is considered wrong. However, the user could wish to stop the robot with down
stimulus and this was not considered a wrong command. Table I also presented the number of times
that control algorithm stops the robot in order to avoid a collision, i.e. an obstacle is too close. For
example, Volunteer 5 has three stops and they are depicted as “0” state in Fig. 7b. Volunteers attained
optimal performance in the first trial, except Volunteer 7, who required two trials. Then, volunteers
performed the next task, Destination 2. In Table II the same results are presented but evaluated for
Destination 2.

Finally, in Fig. 8 linear and angular velocities of the robot, when commanded by Volunteer 5
towards Destination 1 (corresponding with situation depicted in Figs. 6a and 7), are presented. Linear
and angular velocities were limited up to 0.1 m/s and 0.6 rad/s, respectively. In Fig. 8, some zones are
marked in red or grey. A red zone (R1, R2 or R3) indicates when a possible collision is detected, in
consequence the robot was stopped (both velocities are null). A grey zone (G1, G2 or G3) indicates
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Table II. Results for Destination 2.

Commands

Volunteer Trial Time [s] Wrong Correct Stop by control system

1 1 166 0 15 0
2 1 159 0 19 0

1 170 0 18 1
3 2 222 1 27 2

3 193 0 15 2
4 1 206 2 18 4
5 1 289 3 19 5
6 1 332 11 27 4

2 232 3 24 0
7 1 363 8 25 5
Average 233.20 2.80 20.70 2.30
Std. Dev. 71.66 3.79 4.64 2.06

Fig. 8. (Colour online) Robot velocities when Volunteer 5 commanded the robot towards Destination 1. In grey
(G1, G2 and G3) an obstacle is evaded and in red (R1, R2 and R3) the robot is automatically stopped to avoid a
collision.

when an obstacle is evaded. In G1 the robot turned to the right close to shelves and the control
algorithm actuated for avoiding a collision. The same situation was illustrated in G2. Later, the
robot approached the doorway (R1), but due to wall proximity and in order to avoid a collision the
control system stopped the robot. After that, the system waited for a new command. Afterwards, a
new command was conveyed and the robot went through the doorway in G3 and the control system
adjusted both velocities in order to avoid hitting the doorway. In R2 the robot performed a turn very
close to the desk and in R3 due to the wrong user command, the robot was facing a wall; in both
cases the robot was stopped by the control system and it waited for a new command.

A video of the experiment illustrated in these Figures (Volunteer 5 towards Destination 1) is
supplied with electronic version of this paper. It shows the path described by the robot, and,
simultaneously, the robot velocities and the SSVEP power with its corresponding commands. Another
video of Volunteer 3 navigating towards Destination 2 is supplied as well. It shows the path described
by the robot, and, simultaneously, the Volunteer 3 operating the system. Here the human–machine
interface (with the visual and audible feedback) is observed.

5. Discussion
All the volunteers who participated in this study could navigate the robot towards two different places.
The distances from starting point to Destinations 1 and 2 were 7.04 m and 13.9 m, respectively. The
average elapsed times for both Destinations were 182 s and 233 s. Comparing Table I versus Table II,
volunteers 1 and 2, who attained a higher performance, reached Destination 2 using a lesser number
of commands than those used for reaching Destination 1. This is because they felt more confident in
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controlling the robot after reaching Destination 1 and they were more familiarized with the system.
However, on the average, more commands for Destination 2 (20.7) were required than for Destination
1 (16.9). The average number of wrong commands was similar in both tests (2.13 vs. 2.8). The robot
was not stopped by the control system in some trials (volunteers 1, 2 and 6) in Destination 2 (Table
II); nevertheless, there was no difference in the average values between both Destinations. Reaching
Destination 2 represented a more complicated task, since it was necessary to navigate a corridor, then
to pass between two desks and finally turn to the right in order to face the door. The distances among
desks (and walls) in Destination 2 were shorter than distances in Destination 1; for instance, desks in
Destination 2 were separated by 80 cm and the corridor was 100 cm wide, whereas for Destination 1
desks were separated by 120 cm. However, volunteers did not present any complication in reaching
Destination 2, perhaps because they were more familiarized with the system.

Analysis of the results shows that the navigation time with BCI depends not only on the robot
velocities and the distance to the destination, but also on other two factors: the performance of each
volunteer and the avoidance obstacle algorithm. The first factor is obvious, since higher performance
allowed the user to handle more commands to the robot and then, he/she could navigate the robot
more precisely. On the other hand, when the robot avoided an obstacle or it adjusted its trajectory to
pass through a doorway, the robot reduced its velocities and more time was needed to navigate it, as
depicted in Fig. 7.

The control system monitored the distances to any obstacle and, when detected within the rejection
area, the robot velocities were modified in order to avoid it. This task needed not an intervention
of the user. Should the robot control system not be able to evade the obstacle (say, because it is
right in front of the robot or because the obstacle is too close), the system moves the robot 10 cm
backward and stops it. Thereafter, the system waits for a new command from the user. In this way,
the user maintains almost total control of the robot and only the accurate movements are performed
by the control algorithm. Hence, disabled people feel more independent, as they are not supported
by a totally automatic system, and so becoming an encouraging situation to carry on with daily life
and rehabilitation. Nonetheless, it must be remarked that the robot navigation inside the proposed
environment would have been impossible without the control algorithm. Moreover, when the robot
was in the corridor and a wrong command was received, the robot rotated and detected the wall, being
stopped right off. Without the control algorithm, the robot would hit the wall. We should underline
that Figs. 7 and 8 show results obtained from a medium/low-performance user. Volunteers with higher
performances accomplished the trial with no errors and, sometimes, the action of the control system
was unnecessary (see Table II).

In the proposed scheme, no localization or SLAM systems were used. The desired position (p2)
was estimated based on the commands sent by the user. The goal of the task is to reach Destination 1
or 2 and not the position p2 itself. Hence, the errors due to odometry are minimal and do not affect
the task goal. Moreover, position p2 is only generated in order to obtain smooth movements since
the final and future objective of the current work is that people with disabilities command a robotic
wheelchair, where sudden movements must be avoided.

In a previous project,36 using medium range frequencies (13, 14, 15 and 16 Hz), the subjects
express some discomfort with stimuli. In this experiment, using high-frequency range SSVEP no
one manifested any complain, furthermore, Volunteer 6 (who participated in both experiments) was
delighted with such stimuli. In Prueckl and Guger (2009), three subjects used a BCI to control a
mobile robot, when the subject was not looking at the stimuli the robot was stopped.26 In our work,
the robot was still moving in a direction until a new command (a new direction) was indicated. This
difference is important since in our approach the subject does not need to gaze at the stimulus every
time, only when he/she wants to transmit a command, i.e. our approach is less demanding than in
Prueckl and Guger.26

The current work has some remarkable points:

(1) Volunteers were not annoyed by the high-frequency flickering of the stimuli;
(2) Volunteers had no previous experience in BCI and they could control the robot swiftly and easily;
(3) Volunteer 2 did not know the environment previous to the experiment, thus this is not a necessary

condition to utilize the proposed system;
(4) The environment was not configured for this experiment and the distance among obstacles was

just a few centimetres wider than the robot (because of the height of US sensors on robot two
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obstacles could not be detected and consequently, they were modified in order to permit the robot
detect them).

Escolano et al.16 reported a brain-actuated telepresence system through a mobile robot Pionner
3-DX (the same robot used in the current work), with access to the Internet. The BCI was based on
P300 potentials, which were used to select possible target destinations, and then the movement was
autonomously executed towards the selected target by the robot. Consequently, both BCI systems
used different paradigms; one based on P300, and the other on SSVEP. In our SSVEP-based BCI,
the user sent a command with the desired movement (advance, turn left/right or stop) and the robot
executed it. Thus, the user exercises more control over the robot movements instead of an automatic
movement. To avoid obstacles, Escolano et al. equipped the robot with a laser sensor and the navigation
system was based on a model builder and a local planner. Herein, the proposed navigation system
was simpler; however, more difficult navigation tasks were accomplished. In Escolano et al. two
navigation tasks were proposed, where the distances among objects were close to 1m or even more.
In our work, distances were less than 1m (in some places only a few centimetres longer than the
robot dimensions). Besides, the system proposed by Escolano et al. had five healthy subjects each
with 16 EEG channels. The subjects performed a training phase previously to command the robot.
In the current work, only three EEG channels were used and no training phase was needed. This is
an important aspect since the user only has to put a few electrodes on his/her head and then he/she
is ready to use the system. Finally, in Escolano et al., the robot was controlled in a lab at 260 km
through the Internet, while in our case the robot was controlled using Wi-Fi technology (which is
limited to approximately 60 m for indoor applications).

Volosyak and colleagues30 reported on the number of subjects able to use a high-frequency
SSVEP-based BCI. They found that only 65.1% of the subjects were able to control a robot with
high-frequency SSVEP (34, 36, 38, 40 Hz), in contrast to 97.7% of subjects with medium frequencies
(13, 14, 15, 16 Hz). Although, in that paper a robot was commanded by high-frequency SSVEP-based
BCI, there are several differences with the current work. First, the focus of both research projects
is quite different; in Volosyak et al. a statistical study about the number of subjects able to use a
high-frequency SSVEP-based BCI, as well as the characteristics of each subject, was performed.
While in the current work, a complete strategy in order to control the navigation of a mobile robot
is presented, i.e. BCI system and robot control algorithm are presented. Second, in Volosyak et al.
eight electrodes over the visual cortex for acquiring EEG signals and Minimum Energy Combination
method were used. In our work, only three electrodes for EEG acquisition and a simpler method for
signal processing were used. This is an important improvement since it is easier and less cumbersome.
Third, in Volosyak et al. a small (7.5 cm diameter) mobile robot designed for educational purposes
(the e-puck37) was navigated. In our work, a bigger robot designed for research purposes, the Pioneer
3-DX (44× 38× 22 cm) was navigated. Moreover, the robot US sensors were used for avoiding
obstacles; for future applications, the robot can carry a payload of up to 23 kg. Fourth, the e-puck was
navigated through 25 fixed positions in a small labyrinth, and, thus, the user could see and evaluate
the entire scenario where the robot was moved. Moreover, no control algorithm was implemented,
since the robot was manually adjusted. In our work, the Pioneer 3-DX was navigated without any
fixed positions in a real office-like environment. The user could not see the complete scenario except
for the image captured by the camera on the robot, i.e. the robot was remote-commanded. Robot US
sensors were used to measure the environment in order to avoid obstacles (or collisions); hence no
manual adjustments were necessary since a control algorithm was implemented.

Summarizing, mobile robotic systems commanded by SSVEP-based BCI were reported,24–26,30

they used more complicated methods for processing EEG and even with more complicated control
algorithm based on previous knowledge of the environment. The current work demonstrated that it is
possible to control a mobile robot with a SSVEP-based BCI using a simpler method to process EEG
and a control algorithm based on fictitious forces to avoid obstacles, without previous knowledge
of the environment. Therefore, the current work represents the control of a mobile robot by a high-
frequency SSVEP-based self-paced (asynchronous) BCI. High-frequency SSVEP range offers the
advantage of a great reduction of visual fatigue caused by flickering19–22 allowing to use a BCI
for longer periods of time. Besides, low and medium frequency SSVEP ranges interfere with alpha
rhythm, and could cause an epileptic seizure as well.23 In related work projects, low and medium
frequency ranges were used. In one project stimulation was used up to 16 Hz,25 in other work the
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stimuli were set at 10, 11, 12 and 13 Hz26 and, finally, it was used from 5 up to 6.9 Hz stimuli.24

Only one work30 in related literature (to the best knowledge of these authors) use high-frequency
SSVEP for controlling a robot; however, the focus of that work is different, no control algorithm was
used and other differences were detailed. Therefore, the present work represents an innovation in the
remote control of mobile robotic using a BCI, which is based on high-frequency stimulation.

Finally, the control algorithm and the BCI system can be extended for controlling other mobile
vehicles. For example, this BCI system was used for controlling a robotic wheelchair, but neither
control system was implemented.38 The control algorithm presented in this research could easily be
transferred to the robotic wheelchair. Consequently, people with disabilities could safely command a
robotic wheelchair because the control algorithm prevents collisions. Moreover, they could command
it without (or less) visual fatigue due to high-frequency stimulation.

6. Conclusions
This work reports a human–machine interface based on a high-frequency SSVEP-based self-paced
(asynchronous) BCI that allows the remote mobile robot navigation in real indoor environments. The
BCI system is based on a simple and low computational cost method to classify SSVEP along with a
control system to avoid obstacles without previous knowledge of the environment.

All volunteers were able to navigate the mobile robot, independently of their level of expertise
in BCI, demonstrating the feasibility of the proposed system. The user visual fatigue was reduced
because the user gazed at the stimulus only when a command must be sent to the robot. Furthermore,
high-frequency stimulation reduced visual fatigue as well.

The proposed system could be extended for controlling other mobile devices, like a robotic
wheelchair. This will represent a useful advantage for people with disabilities, such as quadriplegia.
Furthermore, the control system was designed so as to allow disabled people to move about without
restrictions because they had full robot movement’s control instead of totally automatic systems,
encouraging them to continue with daily life and rehabilitation more independently.
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