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Abstract
Let X be a finite connected poset and K a field. We study the question, when all Lie automorphisms of the incidence
algebra I(X, K) are proper. Without any restriction on the length of X, we find only a sufficient condition involving
certain equivalence relation on the set of maximal chains of X. For some classes of posets of length one, such as
finite connected crownless posets (i.e., without weak crown subposets), crowns, and ordinal sums of two anti-chains,
we give a complete answer.

Introduction

A Lie isomorphism of associative rings (R, ·) and (S, ·) is an isomorphism of the corresponding Lie
rings (R, [ , ]) and (S, [ , ]), where [a, b] = a · b − b · a. If R = S, a Lie isomorphism R → S is called a
Lie automorphism of R. If, moreover, R and S are algebras, it is natural to require Lie isomorphisms
R → S to be linear. Any bijective map of the form φ + ν, where φ is either an isomorphism R → S or
the negative of an anti-isomorphism R → S, and ν is an additive map on R with values in the center of S
whose kernel contains [R, R], is always a Lie isomorphism. Such Lie isomorphisms are called proper.
In most of the cases studied in the literature, these are the only examples of Lie isomorphisms. Indeed,
this is true for Lie automorphisms of full matrix rings Mn(R) over division rings R with char(R) �∈ {2, 3}
as proved in [14], for Lie isomorphisms of primitive [16], simple [18] and prime rings [17], for Lie
automorphisms of upper triangular matrix algebras Tn(R) over commutative rings [7, 9], and for Lie
isomorphisms of block-triangular matrix algebras over a UFD [8].

In [13], we described Lie automorphisms of the incidence algebra I(X, K) of a finite connected poset
X over a field K . In general, they are not proper as shown in [13, Example 5.20], but, for some classes
of posets, every Lie automorphism of I(X, K) is proper. For instance, if X is a chain of cardinality n,
then I(X, K) ∼= Tn(K), and thus every Lie automorphism of I(X, K) is proper in view of [13, Corollary
5.19] (see also [9, Theorem 6]). So the following question arises.

Question. What are the necessary and sufficient conditions on a finite connected poset X such that all
Lie automorphisms of I(X,K) are proper?

In this paper, we give a partial answer to this question. Namely, for a general X we find only a sufficient
condition (see Corollary 3.12), and for some particular classes of posets of length one X we give a
complete answer (see Corollaries 4.7 and 4.12 and Proposition 4.14).

More precisely, our work is organized as follows. Section 1 serves as a background on posets, inci-
dence algebras, and maps on them. In particular, we recall all the necessary definitions from [13] and
introduce some new notations. In Section 2, we reduce the question of when all Lie automorphisms
of I(X, K) are proper to a purely combinatorial property of X dealing with a certain group AM(X)
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of bijections on maximal chains of X (see Theorem 2.10). In our terminology, we prove that every Lie
automorphism of I(X, K) is proper if and only if every bijection θ ∈AM(X) is proper. In Section 3,
we introduce an equivalence relation ∼ on maximal chains of X and show that any θ ∈AM(X) induces
isomorphisms or anti-isomorphisms between certain subsets of X (the so-called supports of ∼-classes),
as proved in Theorem 3.10. Consequently, if all the maximal chains of X are equivalent, then all Lie
automorphisms of I(X, K) are proper (see Corollary 3.12). The equivalence ∼ is just the equality rela-
tion whenever X is of length one, hence this situation is treated separately. This is done in Section 4.
We first consider the case when X has no crown subset and give a full description of those X for which
any θ ∈AM(X) is proper (see Corollary 4.7). We then pass to two specific classes of X: n-crowns Crn

and ordinal sums of two anti-chains Km,n. If X = Crn, then we explicitly describe the group AM(X)
(see Proposition 4.10) and its subgroup of proper bijections (see Proposition 4.11). It follows that all
θ ∈AM(Crn) are proper exactly when n = 2 (see Corollary 4.12). If X = Km,n, then there are only proper
θ ∈AM(X) as proved in Proposition 4.14.

1. Preliminaries
1.1. Automorphisms and anti-automorphisms

Let A be an algebra. We denote by Aut(A) the group of (linear) automorphisms of A, by Aut−(A) the
set of (linear) anti-automorphisms of A and by Aut±(A) the union Aut(A) ∪ Aut−(A). Observe that the
union is non-disjoint if and only if A is commutative, in which case Aut(A) = Aut−(A). The set Aut±(A)
is a group under the composition, and moreover, if A is non-commutative and Aut−(A) �= ∅, then Aut(A)
is a (normal) subgroup of Aut±(A) of index 2. In particular, |Aut(A)| = |Aut−(A)|, whenever A is non-
commutative and Aut−(A) �= ∅. We use the analogous notations Aut(X), Aut−(X) and Aut±(X) for the
group of automorphisms of a poset X, the set of anti-automorphisms of X and the group Aut(X) ∪
Aut−(X), respectively. As above, Aut(X) either coincides with Aut±(X) or is a subgroup of index 2 in
Aut±(X) (if X is not an anti-chain and Aut−(X) �= ∅).

1.2. Posets

Let (X, ≤ ) be a partially ordered set (which we usually shorten to “poset”) and x, y ∈ X. The interval
from x to y is the set 
x, y� = {z ∈ X : x ≤ z ≤ y}. The poset X is said to be locally finite if all the intervals
of X are finite. A chain in X is a linearly ordered (under the induced order) subset of X. The length of
a finite chain C ⊆ X is defined to be |C| − 1. The length1 of a finite poset X, denoted by l(X), is the
maximum length of chains C ⊆ X. A walk in X is a sequence x0, x1, . . . , xm ∈ X, such that xi and xi+1 are
comparable and l(
xi, xi+1�) = 1 (if xi ≤ xi+1) or l(
xi+1, xi�) = 1 (if xi+1 ≤ xi) for all i = 0, . . . , m − 1. A
walk x0, x1, . . . , xm is closed if x0 = xm. A path is a walk satisfying xi �= xj for i �= j. A cycle is a closed
walk x0, x1, . . . , xm = x0 in which m ≥ 4 and xi = xj ⇒ {i, j} = {0, m} for i �= j. We say that X is connected
if for any pair of x, y ∈ X there is a path x = x0, . . . , xm = y. We will denote by Min(X) (resp. Max(X)) the
set of minimal (resp. maximal) elements of X. If X is connected and |X|> 1, then Min(X) ∩ Max(X) = ∅.

1.3. Incidence algebras

Let X be a locally finite poset and K a field. The incidence algebra [20] I(X, K) of X over K is the
K-space of functions f : X × X → K such that f (x, y) = 0 if x � y. This is a unital K-algebra under the
convolution product

(fg)(x, y) =
∑
x≤z≤y

f (x, z)g(z, y),

1 Often also called the height.
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for any f , g ∈ I(X, K). Its identity element δ is given by

δ(x, y) =
⎧⎨
⎩

1, x = y,

0, x �= y.

Throughout the rest of the paper, X will stand for a connected finite poset. Then I(X, K) admits the
standard basis {exy : x ≤ y}, where

exy(u, v) =
⎧⎨
⎩

1, (u, v) = (x, y),

0, (u, v) �= (x, y).

We will write ex = exx. Denote also B = {exy : x< y}. It is a well-known fact (see [22, Theorem 4.2.5])
that the Jacobson radical of I(X, K) is

J(I(X, K)) = {f ∈ I(X, K) : f (x, x) = 0 for all x ∈ X} = SpanKB.

Diagonal elements of I(X, K) are those f ∈ I(X, K) satisfying f (x, y) = 0 for x �= y. They form a commu-
tative subalgebra D(X, K) of I(X, K) spanned by {ex : x ∈ X}. Clearly, each f ∈ I(X, K) can be uniquely
written as f = fD + fJ with fD ∈ D(X, K) and fJ ∈ J(I(X, K)).

1.4. Decomposition of φ ∈ Aut±(I(X, K))

Now, we recall the descriptions of automorphisms and anti-automorphisms of I(X, K). Firstly, if X
and Y are finite posets and λ : X → Y is an isomorphism (resp. anti-isomorphism), then λ induces an
isomorphism (resp. anti-isomorphism) λ̂ : I(X, K) → I(Y , K) defined by λ̂(exy) = eλ(x)λ(y) (resp. λ̂(exy) =
eλ(y)λ(x)), for all x ≤ y in X. An element σ ∈ I(X, K) such that σ (x, y) �= 0, for all x ≤ y, and σ (x, y)σ (y, z) =
σ (x, z) whenever x ≤ y ≤ z, determines an automorphism Mσ of I(X, K) by Mσ (exy) = σ (x, y)exy, for all
x ≤ y. Such automorphisms are called multiplicative. Any automorphism (anti-automorphism) of I(X,
K) decomposes as

φ = λ̂ ◦ ξ ◦ Mσ , (1)

where λ ∈ Aut(X) (resp. Aut−(X)), ξ is an inner automorphism, and Mσ is a multiplicative automorphism
of I(X, K). For automorphisms, this was proved in [1, Theorem 5] and for anti-automorphisms in [3,
Theorem 5] (for more results on automorphisms and anti-automorphisms of incidence algebras see [3,
4, 5, 6, 12, 15, 21, 23]).

1.5. Lie automorphisms of incidence algebras

In this section, we introduce several new notations and recall some definitions and results from [13].
We denote by C(X) the set of maximal chains in X. Let C : u1 < u2 < · · ·< um in C(X). A bijec-

tion θ : B → B is increasing (resp. decreasing) on C if there exists D : v1 < v2 < · · ·< vm in C(X) such
that θ (euiuj ) = evivj for all 1 ≤ i< j ≤ m (resp. θ (euiuj ) = evm−j+1vm−i+1 for all 1 ≤ i< j ≤ m). In this case, we
write θ (C) = D. Moreover, we say that θ is monotone on maximal chains in X if, for any C ∈ C(X), θ
is increasing or decreasing on C. We denote by M(X) the set of bijections B → B which are monotone
on maximal chains in X. It is easy to see that M(X) is a subgroup of the symmetric group S(B). Each
θ ∈M(X) induces a bijection on C(X) which maps C to θ (C).

Let θ : B → B be a bijection and X2
<

= {(x, y) ∈ X2 : x< y}. A map σ : X2
<

→ K∗ is compatible with θ if
σ (x, z) = σ (x, y)σ (y, z) whenever θ (exz) = θ (exy)θ (eyz), and σ (x, z) = −σ (x, y)σ (y, z) whenever θ (exz) =
θ (eyz)θ (exy).
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Let θ : B → B be a bijection and 	 : u0, u1, . . . , um = u0 a closed walk in X. In [13], we introduced the
following 4 functions X →N:

s+
θ ,	(z) = |{i : ui < ui+1 and ∃w> z such that θ (ezw) = euiui+1}|,

s−
θ ,	(z) = |{i : ui > ui+1 and ∃w> z such that θ (ezw) = eui+1ui}|,

t+
θ ,	(z) = |{i : ui < ui+1 and ∃w< z such that θ (ewz) = euiui+1}|,

t−
θ ,	(z) = |{i : ui > ui+1 and ∃w< z such that θ (ewz) = eui+1ui}|.

We call the bijection θ : B → B admissible if
s+
θ ,	(z) − s−

θ ,	(z) = t+
θ ,	(z) − t−

θ ,	(z), (2)
for any closed walk 	 : u0, u1, . . . , um = u0 in X and for all z ∈ X. In particular, if X is a tree, then any
bijection θ : B → B is admissible. We denote byAM(X) the set of those θ ∈M(X) which are admissible.

Let X = {x1, . . . , xn}. Given θ ∈AM(X), a map σ : X2
<

→ K∗ compatible with θ and a sequence c =
(c1, . . . , cn) ∈ Kn such that

∑n
i=1 ci ∈ K∗, we define in [13, Definition 5.17] the following elementary Lie

automorphism τ = τθ ,σ ,c of I(X, K) where, for any exy ∈ B,
τ (exy) = σ (x, y)θ (exy),

and τ |D(X,K) is determined by
τ (exi )(x1, x1) = ci,

i = 1, . . . , n, as in Lemmas 5.8 and 5.16 from [13]. As in [13, Definition 5.15], we say that τ induces
the pair (θ , σ ) and in some situations we write θ = θτ .

As in [13], we denote by LAut(I(X, K)) the group of Lie automorphisms of I(X, K) and
by L̃Aut(I(X, K)) its subgroup of elementary Lie automorphisms. We will also use the notation
Inn1(I(X, K)) for the subgroup of inner automorphisms consisting of conjugations by β ∈ I(X, K) with
βD = δ.

Theorem 1.1. [13, Theorem 4.15] The group LAut(I(X, K)) is isomorphic to the semidirect product
Inn1(I(X, K)) � L̃Aut(I(X, K)).

2. Proper Lie automorphisms of I(X, K) and proper bijections of B

Let ϕ ∈ LAut(I(X, K)). Then ϕ =ψ ◦ τθ ,σ ,c, whereψ ∈ Inn1(I(X, K)) and τθ ,σ ,c is an elementary Lie auto-
morphism of I(X, K), by Theorem 1.1. Note that ϕ is proper if and only if τθ ,σ ,c is proper. Therefore, all
Lie automorphisms of I(X, K) are proper if and only if all elementary Lie automorphisms of I(X, K)
are proper.

Let ϕ = τθ ,σ ,c be an elementary Lie automorphism of I(X, K). Suppose that ϕ is proper, ϕ = φ + ν,
where φ ∈ Aut(I(X, K)) or −φ ∈ Aut−(I(X, K)) and ν is a linear central-valued map on I(X, K) such that
ν([I(X, K), I(X, K)]) = {0}. If x< y, then exy ∈ J(I(X, K)) = [I(X, K), I(X, K)], by [13, Proposition 2.3].
Thus

ϕ(exy) = φ(exy), ∀x< y. (3)
By [22, Corollary 1.3.15], for each x ∈ X there is αx ∈ K such that

ϕ(ex) = φ(ex) + αxδ. (4)

Suppose firstly that φ ∈ Aut(I(X, K)). Then, by (1), φ = λ̂ ◦ ξf ◦ Mτ , where λ ∈ Aut(X), ξf is an inner
automorphism and Mτ is a multiplicative automorphism of I(X, K). Thus, by (3),

θ (exy) =σ (x, y)−1(λ̂ ◦ ξf ◦ Mτ )(exy) = σ (x, y)−1(λ̂ ◦ ξf )(τ (x, y)exy)

=σ (x, y)−1λ̂(τ (x, y)fexyf
−1) = σ (x, y)−1τ (x, y)λ̂(f )eλ(x)λ(y)λ̂(f )−1. (5)
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Analogously, if −φ ∈ Aut−(I(X, K)), then, by (1), φ = λ̂ ◦ ξf ◦ Mτ , where λ ∈ Aut−(X), ξf is an inner
automorphism and Mτ is a multiplicative automorphism of I(X, K). Thus, by (3),

θ (exy) = σ (x, y)−1(λ̂ ◦ ξf ◦ Mτ )(exy) = σ (x, y)−1τ (x, y)λ̂(f )−1eλ(y)λ(x)λ̂(f ). (6)

Remark 2.1. Let x ≤ y, u ≤ v in X, α ∈ K∗ and h ∈ I(X, K) an invertible element. Note that if hexyh−1 =
αeuv, then (x, y) = (u, v).

Definition 2.2. A bijection θ : B → B is said to be proper if there exists λ ∈ Aut±(X) such that θ (exy) =
λ̂(exy) for all exy ∈ B. The proper bijections of B form a group, which we denote by P(X).

Proposition 2.3. If |X|> 2, then the group P(X) is isomorphic to Aut±(X).

Proof. The map sending λ ∈ Aut(X) (resp. λ ∈ Aut−(X)) to θ ∈P(X), such that θ (exy) = eλ(x)λ(y) (resp.
θ (exy) = eλ(y)λ(x)), is an epimorphism from Aut±(X) to P(X). We only need to prove that it is injective.

It is injective on Aut(X). Indeed, take λ,μ ∈ Aut(X) such that (λ(x), λ(y)) = (μ(x),μ(y)) for all x< y
in X. Let x be an arbitrary element of X. Since X is connected and |X|> 1, there is y ∈ X such that
either y< x or y> x. In both cases, we get λ(x) =μ(x). Thus, λ=μ. Similarly, one proves injectivity
on Aut−(X).

Assume now that there are λ ∈ Aut(X) and μ ∈ Aut−(X) such that (λ(x), λ(y)) = (μ(y),μ(x)) for all
x< y in X. We first show that X must have length at most 1. Indeed, if there were x< y< z in X, then
we would have (λ(x), λ(y)) = (μ(y),μ(x)) and (λ(y), λ(z)) = (μ(z),μ(y)), whence λ(x) = λ(z), a contra-
diction. Now, consider a triple x, y, z ∈ X with x> z< y. It follows from (λ(z), λ(x)) = (μ(x),μ(z)) and
(λ(z), λ(y)) = (μ(y),μ(z)) that μ(x) =μ(y), a contradiction. Similarly, the existence of a triple x, y, z ∈ X
with x< z> y leads to λ(x) = λ(y). If there are two incomparable elements x, y ∈ X, then there exists
a sequence x = x1, . . . , xm = y, where m ≥ 3 and either x1 < x2 > x3 or x1 > x2 < x3. In both cases, we
come to a contradiction. Thus, X is of length at most 1 and any two elements of X are comparable,
which means that X is either a singleton or a chain of length 1.

Remark 2.4. If X is a chain of length 1, then |P(X)| = 1, while |Aut±(X)| = 2.

Proposition 2.5. We have P(X) ⊆AM(X).

Proof. Let θ ∈P(X). Then there exists λ ∈ Aut±(X) as in Definition 2.2. In both cases, θ is the restric-
tion of λ̂ to B and, since λ̂ or −λ̂ is an elementary Lie automorphism of I(X, K) by [13, Remark 4.8],
then θ ∈AM(X) by [13, Remark 5.10].

Lemma 2.6. Let ϕ ∈ L̃Aut(I(X, K)) inducing a pair (θ , σ ). Then θ is proper if, and only if, ϕ is proper.

Proof. Assume first that θ (exy) = eλ(x)λ(y) for some λ ∈ Aut(X). Then θ is increasing on any maximal
chain in X and thus σ (x, z) = σ (x, y)σ (y, z) for all x< y< z. Extending σ to X2

≤ = {(x, y) : x ≤ y} by means
of σ (x, x) = 1 for all x ∈ X, we obtain the multiplicative automorphism Mσ ∈ Aut(I(X, K)). Consider
ψ = ϕ ◦ M−1

σ
. Notice thatψ(exy) = eλ(x)λ(y) for all x< y andψ(ex) = ϕ(ex) for all x ∈ X. It suffices to prove

that ψ is proper. Indeed, if ψ = φ + ν, then ϕ =ψ ◦ Mσ = φ ◦ Mσ + ν since Mσ is identity on D(X, R).
Clearly, ψ(exy) = λ̂(exy) for all x< y, so λ̂ is a candidate for φ. It remains to prove (4) for ψ , that is,

to show that ψ(ex) = eλ(x) + αxδ for some αx ∈ K. The latter is equivalent to
ψ(ex)(y, y) =ψ(ex)(λ(x), λ(x)) − 1, (7)

for all y �= λ(x). Given x, y ∈ X with y �= λ(x), we choose a path λ(x) = u0, . . . , um = y from λ(x) to y. Let
vi ∈ X such that λ(vi) = ui, 0 ≤ i ≤ m. In particular, v0 = x. Then
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ψ(ex)(y, y) =ψ(ex)(λ(x), λ(x)) +
m−1∑
i=0

(ψ(ex)(ui+1, ui+1) −ψ(ex)(ui, ui)). (8)

If u0 < u1, then θ (exv1 ) = eu0u1 , so ψ(ex)(u1, u1) −ψ(ex)(u0, u0) = −1 by [13, Lemma 5.7]. Similarly,
if u0 > u1, then θ (ev1x) = eu1u0 , so ψ(ex)(u0, u0) −ψ(ex)(u1, u1) = 1. In any case ψ(ex)(u1, u1) −
ψ(ex)(u0, u0) = −1. Observe that vi �= x for all i> 0. Hence ψ(ex)(ui+1, ui+1) −ψ(ex)(ui, ui) = 0 for all
such i by [13, Lemma 5.7]. It follows that the sum on the right-hand side of (8) has only one non-zero
term which equals −1, proving (7).

The case θ (exy) = eλ(y)λ(x), where λ ∈ Aut−(X), is similar.
Conversely, suppose that ϕ = φ + ν, where φ ∈ Aut(I(X, K)) (resp. −φ ∈ Aut−(I(X, K))) and ν is a

linear central-valued map on I(X, K) annihilating [I(X, K), I(X, K)]. It follows from (5) (resp. (6))
and Remark 2.1 that θ (exy) = eλ(x)λ(y) (θ (exy) = eλ(y)λ(x)) for all exy ∈ B, where λ ∈ Aut(X) (λ ∈ Aut−(X)).
Therefore, θ ∈P(X).

Lemma 2.7. Let θ ∈M(X). Let C1, C2 ∈ C(X) such that θ is increasing on C1 and decreasing on C2.
If there exist x, y ∈ C1 ∩ C2 and x< y, then x is the minimum of C1 and C2 and y is the maximum of C1

and C2.

Proof. We first notice that there is z ∈ C1 such that z< x (y< z) if, and only if, there is z′ ∈ C2 such
that z′ < x (y< z′), by the maximality of C1 and C2. Suppose that are z ∈ C1 and z′ ∈ C2 such that z, z′ < x.
Then θ (ezx)θ (exy) = θ (ezy) and θ (exy)θ (ez′x) = θ (ez′y). Thus, there are s< u< v< t such that θ (ezx) = esu,
θ (exy) = euv, θ (ez′x) = evt and θ (ezy) = esv, θ (ez′y) = eut. If θ−1 is increasing on a maximal chain contain-
ing s< u< v< t, then θ−1(est) = θ−1(esu)θ−1(eut) = ezxez′y which implies z′ = x, a contradiction. If θ−1 is
decreasing on a maximal chain containing s< u< v< t, then θ−1(est) = θ−1(evt)θ−1(esv) = ez′xezy which
implies z = x, a contradiction. Therefore, x is the minimum of C1 and C2. Analogously, y is the maximum
of C1 and C2.

Lemma 2.8. For any θ ∈M(X), there is σ : X2
<

→ K∗ compatible with θ .

Proof. Let θ ∈M(X) and Ci (Cd) be the set of all maximal chains in X on which θ is increasing
(decreasing). Let (x, y) ∈ X2

<
. If x ∈ Min(X), we set σ (x, y) = 1. Otherwise, by Lemma 2.7, both x and y

belong only to maximal chains from Ci or only to maximal chains from Cd. In the former case we set
σ (x, y) = 1 and, in the latter one, we set σ (x, y) = −1.

Let x< y< z in X. Again, by Lemma 2.7, those three elements can be simultaneously only in
maximal chains from Ci or only in maximal chains from Cd. If they belong to maximal chains
from Ci, then σ (x, z) = 1 = σ (x, y)σ (y, z). Otherwise, there are two situations to be considered: x ∈
Min(X) or x �∈ Min(X). In the former case, σ (x, y)σ (y, z) = 1 · ( − 1) = −1 = −σ (x, z). In the latter case,
σ (x, y)σ (y, z) = ( − 1)2 = 1 = −σ (x, z). Thus, σ is compatible with θ .

Corollary 2.9. The image of the group homomorphism L̃Aut(I(X, K)) →M(X), ϕ �→ θϕ , coincides with
AM(X). In particular, AM(X) is a group.

Proof. If ϕ ∈ L̃Aut(I(X, K)), then θϕ ∈AM(X) by Lemma 5.4 and Remark 5.10 from [13]. Let
now θ ∈AM(X). By Lemma 2.8, there is σ : X2

<
→ K∗ compatible with θ . Choose an arbitrary c =

(c1, . . . , cn) ∈ Kn with
∑n

i=1 ci ∈ K∗, where n = |X|. Then τ = τθ ,σ ,c ∈ L̃Aut(I(X, K)) such that θτ = θ .

Theorem 2.10. Every Lie automorphism of I(X,K) is proper if and only if P(X) =AM(X).

Proof. Suppose that every Lie automorphism of I(X, K) is proper. Let θ ∈AM(X). By Lemma 2.8,
there is σ : X2

<
→ K∗ compatible with θ and, by [13, Lemma 5.16], there is ϕ ∈ L̃Aut(I(X, K)) inducing

(θ , σ ). By hypothesis, ϕ is proper. Therefore, θ ∈P(X) by Lemma 2.6.
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Conversely, suppose thatP(X) =AM(X). Let ϕ ∈ L̃Aut(I(X, K)) inducing the pair (θ , σ ). By hypoth-
esis, θ is proper. Therefore, ϕ is proper, by Lemma 2.6. Thus, every Lie automorphism of I(X, K) is
proper.

3. Admissible bijections of B and maximal chains in X

Observe that the definitions of the functions s±
θ ,	 and t±

θ ,	 make sense for any sequence 	 : u0, . . . , um

such that either ui < ui+1 or ui+1 < ui for all 0 ≤ i ≤ m − 1. We will call such sequences 	 semiwalks. If
moreover u0 = um, then 	 will be called a closed semiwalk.

Lemma 3.1. Let θ ∈M(X), z ∈ X and 	 : u0, u1, . . . , um = u0 a closed semiwalk in X. Let 0≤k< k+l≤m
such that uk < uk+1 < · · ·< uk+l or uk > uk+1 > . . . > uk+l and set 	′ : u0, . . . , uk, uk+l, . . . , um = u0. Then

s+
θ ,	(z) − t+

θ ,	(z) = s+
θ ,	

′ (z) − t+
θ ,	

′ (z), s−
θ ,	(z) − t−

θ ,	(z) = s−
θ ,	

′ (z) − t−
θ ,	

′ (z). (9)

Proof. Assume that uk < uk+1 < · · ·< uk+l. There are two cases.
Case 1. θ−1 is increasing on a maximal chain containing uk < uk+1 < · · ·< uk+l. Then there are vk <

vk+1 < · · ·< vk+l such that θ−1(euiuj ) = evivj for all k ≤ i< j ≤ k + l.
Case 1.1. z = vi for some k< i< k + l. If θ (ezw) = eujuj+1 for w> z and k ≤ j< k + l, then (z, w) =

(vj, vj+1), which implies that j = i and w = vi+1. Similarly θ (ewz) = eujuj+1 for w< z and k ≤ j< k + l
yields w = vi−1. Since, moreover, θ (evkvk+l ) = eukuk+l and z �= vk, there is no w> z such that θ (ezw) = eukuk+l .
Similarly, there is no w< z such that θ (ewz) = eukuk+l . Therefore, s+

θ ,	
′ (z) = s+

θ ,	(z) − 1, t+
θ ,	

′ (z) = t+
θ ,	(z) − 1,

s−
θ ,	

′ (z) = s−
θ ,	(z) and t−

θ ,	
′ (z) = t−

θ ,	(z).
Case 1.2. z = vk. Again, if θ (ezw) = eujuj+1 for w> z and k ≤ j< k + l, then w = vk+1. However, there is

no w< z such that θ (ewz) = eujuj+1 for some k ≤ j< k + l, but there is a unique w> z (namely, w = vk+l)
such that θ (ezw) = eukuk+l . This means that s±

θ ,	
′ (z) = s±

θ ,	(z) and t±
θ ,	

′ (z) = t±
θ ,	(z).

Case 1.3. z = vk+l. This case is similar to Case 1.2. We have s±
θ ,	

′ (z) = s±
θ ,	(z) and t±

θ ,	
′ (z) = t±

θ ,	(z).
Case 1.4. z �∈ {vk, . . . , vk+l}. Then there is neither w< z such that θ (ewz) = eujuj+1 nor w> z such that

θ (ezw) = eujuj+1 for some k ≤ j< k + l. Moreover, there is neither w< z such that θ (ewz) = eukuk+l nor w> z
such that θ (ezw) = eukuk+l . Thus, s±

θ ,	
′ (z) = s±

θ ,	(z) and t±
θ ,	

′ (z) = t±
θ ,	(z).

Case 2. θ−1 is decreasing on a maximal chain containing uk < uk+1 < · · ·< uk+l. Then everything
from Case 1 remains valid with the replacement of the “+”-functions by their “ minus;”-analogs and
vice versa.

In any case, s+
θ ,	(z) − t+

θ ,	(z) and s−
θ ,	(z) − t−

θ ,	(z) are invariant under the change of 	 for 	′. When
uk > uk+1 > . . . > uk+l, the proof is analogous.

Corollary 3.2. Let θ ∈M(X). Then θ ∈AM(X) if and only if (2) holds for any z ∈ X and any closed
semiwalk 	 : u0, . . . , um = u0, m ≥ 2.

Proof. The “if” part is trivial. Let us prove the “only if” part. Indeed, the case m = 2 is explained in
the proof of [13, Lemma 5.13], and if m ≥ 3, then 	 can be extended to a closed walk � by inserting
increasing (if ui < ui+1) or decreasing (if ui > ui+1) sequences of elements between ui and ui+1 for all
0 ≤ i ≤ m − 1. Since (2) holds for �, then by Lemma 3.1 it holds for 	 too.

Lemma 3.3. Let θ ∈AM(X) and 	 : u0, . . . , um = u0, m ≥ 2, a closed semiwalk. Let also xi < yi, such
that θ (euiui+1 ) = exiyi for ui < ui+1 and θ (eui+1ui ) = exiyi for ui > ui+1.

i. If xi ∈ Min(X) for some 0 ≤ i ≤ m − 1, then there is j �= i such that xi = xj.
ii. If yi ∈ Max(X) for some 0 ≤ i ≤ m − 1, then there is j �= i such that yi = yj.
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Proof. We will prove (i), the proof of (ii) is analogous. Assume that xi �= xj for all j �= i. If ui < ui+1,
then s+

θ−1,	(xi) = 1 and s−
θ−1,	(xi) = 0, since θ−1(exiyi ) = euiui+1 and θ−1(exiw) �= eujuj+1 for any w �= yi and

j �= i (otherwise xi would coincide with some xj for j �= i). Similarly, if ui > ui+1, then s+
θ−1,	(xi) = 0 and

s−
θ−1,	(xi) = 1. Obviously, t±

θ−1,	(xi) = 0, because xi ∈ Min(X). Thus, (2) fails for the triple (θ−1, 	, xi), a
contradiction.

Lemma 3.4. Let θ ∈M(X). Assume that there exist C, D ∈ C(X) such that θ is increasing on C and
decreasing on D. If x ∈ C ∩ D, then either x ∈ Min(X) or x ∈ Max(X).

Proof. Let C : x1 < · · ·< xn, D : y1 < · · ·< ym and x = xi = yj for some 1 ≤ i ≤ n and 1 ≤ j ≤ m.
Suppose that 1< i< n. Then 1< j<m, since otherwise D would not be maximal. There exist max-
imal chains C′ : u1 < · · ·< un and D′ : v1 < · · ·< vm such that θ (exkxl ) = eukul for all 1 ≤ k< l ≤ n and
θ (eypyq ) = evm−q+1vm−p+1 for all 1 ≤ p< q ≤ m. In particular, θ (exi−1xi ) = eui−1ui , θ (exixi+1 ) = euiui+1 , θ (eyj−1yj ) =
evm−j+1vm−j+2 , θ (eyjyj+1 ) = evm−jvm−j+1 . Observe that xi−1 < xi = yj < yj+1. Then either ui = vm−j, or ui−1 =
vm−j+1, depending on whether θ is increasing or decreasing on a maximal chain containing xi−1 < xi <

yj+1. Similarly, considering yj−1 < yj = xi < xi+1 we obtain vm−j+1 = ui+1 or vm−j+2 = ui. If ui = vm−j, then
vm−j+1 = ui+1, so that {ui, ui+1} ⊆ C′ ∩ D′. However, θ−1 is increasing on C ′ and decreasing on D′, so
ui is the common minimum of C ′ and D′ and ui+1 is the common maximum of C ′ and D′ by Lemma
2.7. This contradicts the assumption 1< i< n. Similarly, ui−1 = vm−j+1 implies vm−j+2 = ui, whence
{ui−1, ui} ⊆ C′ ∩ D′ leading to a contradiction.

Thus, i ∈ {1, n}. If i = 1, then necessarily j = 1, as otherwise C would not be maximal. Similarly, if
i = n, then j = m.

Lemma 3.5. Let θ ∈M(X) and C, D ∈ C(X), C : x1 < · · ·< xn, D : y1 < · · ·< ym. Assume that xi = yj

for some 1< i< n and 1< j<m. If θ is increasing (resp. decreasing) on C, then it is increasing (resp.
decreasing) on D. Moreover, if θ (C) : u1 < · · ·< un and θ (D) : v1 < · · ·< vm, then ui = vj (resp. un−i+1 =
vm−j+1).

Proof. Let θ be increasing on C. Then it is increasing on D by Lemma 3.4. Using the same idea as in
the proof of Lemma 3.4, we have θ (exi−1xi ) = eui−1ui , θ (exixi+1 ) = euiui+1 , θ (eyj−1yj ) = evj−1vj , θ (eyjyj+1 ) = evjvj+1 .
Considering xi−1 < xi = yj < yj+1 we conclude that ui = vj or ui−1 = vj+1. Similarly it follows from yj−1 <

yj = xi < xi+1 that ui = vj or vj−1 = ui+1. If ui �= vj, then ui−1 = vj+1 and vj−1 = ui+1. But this is impossible,
since ui−1 < ui+1 and vj+1 > vj−1.

The proof for the decreasing case is analogous.

Definition 3.6. Let C, D ∈ C(X). We say that C and D are linked if there exists x ∈ C ∩ D such
that x �∈ Min(X) � Max(X). Denote by ∼ the equivalence relation on C(X) generated by {(C, D) ∈
C(X)2 : C, D are linked}.

Lemma 3.7. Each θ ∈M(X) induces a bijection θ̃ on C(X)/∼. Moreover, if θ is increasing (resp.
decreasing) on C ∈ C(X), then it is increasing (resp. decreasing) on any D ∼ C.

Proof. Let C, D ∈ C(X) be linked. Then θ (C) and θ (D) are linked by Lemma 3.5. It follows that
C ∼ D implies θ (C) ∼ θ (D), which induces a map θ̃ : C(X)/∼ → C(X)/∼. It is a bijection whose inverse
is θ̃−1.

Assume that θ is increasing on C ∈ C(X). Then by Lemma 3.5 it is increasing on any D ∈ C(X)
which is linked to C. By the obvious induction, this extends to any D ∼ C. The decreasing case
is similar.
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Definition 3.8. Given C ∈ C(X)/∼, we define the support of C, denoted supp(C), as the set {x∈C : C∈C}.

Remark 3.9. Let C, D ∈ C(X)/∼. If C �=D, then supp(C) ∩ supp(D) ⊆ Min(X) � Max(X).

Indeed, assume that x ∈ supp(C) ∩ supp(D), where x �∈ Min(X) and x �∈ Max(X). There are C ∈ C and
D ∈D such that x ∈ C ∩ D. But then C and D are linked, so C ∼ D, whence C=D.

Theorem 3.10. Let θ ∈AM(X) and C ∈ C(X)/∼. Then there exists an isomorphism or an anti-
isomorphism of posets λ : supp(C) → supp(θ̃(C)) such that for all x< y from supp(C) one has

θ (exy) = λ̂(exy). (10)

Proof. In view of Lemma 3.7, we may assume that θ is increasing on all C ∈ C or decreasing
on all C ∈ C. Consider the case of an increasing θ . We are going to construct the corresponding
λ : supp(C) → supp(θ̃ (C)). Let x ∈ supp(C) and C : x1 < · · ·< xn a maximal chain from C containing x.
Denote by C′ : u1 < · · ·< un the image of C under θ . If x = xi for some 1 ≤ i ≤ n, then we put λ(xi) = ui.
We still need to show that the definition does not depend on the choice of C.

If 1< i< n, then this is true by Lemma 3.5.
If i = 1, then x ∈ Min(X). If there exists another maximal chain D : y1 < · · ·< ym from C containing

x, then x = y1. We thus need to show that u1 = v1, where D′ : v1 < · · ·< vm is the image of D under
θ . Since C ∼ D, there are C = C1, . . . , Ck = D such that Cj and Cj+1 are linked for all 1 ≤ j ≤ k − 1.
Denote by zj an element of Cj ∩ Cj+1, 1 ≤ j ≤ k − 1, which is neither minimal nor maximal in X. Set
also z0 = zk = x. Observe that zj, zj+1 ∈ Cj+1 for all 0 ≤ j ≤ k − 1, so that either zj ≤ zj+1 or zj ≥ zj+1. Let
	 : z0, z1, . . . , zk = z0. Clearly, z0 �= zj and zj �= zk for all 1 ≤ j ≤ k − 1, as z0 = zk ∈ Min(X), while zj �∈
Min(X). Moreover, we will assume that zj �= zj+1 for all 1 ≤ j ≤ k − 2, since otherwise we may just remove
the repetitions (and at least 2 elements will remain). Let also aj < bj such that θ (ezjzj+1 ) = eajbj if zj < zj+1,
and θ (ezj+1zj ) = eajbj if zj > zj+1, 0 ≤ j ≤ k − 1. Observe that a0 = u1, since x = z0 < z1 ∈ C, and ak−1 = v1,
since x = zk < zk−1 ∈ D. In particular, a0, ak−1 ∈ Min(X). Since zj is not minimal for all 1 ≤ j ≤ k − 2, then
neither is aj, so that aj �∈ {a0, ak−1} for such j. But then we must have a0 = ak−1, that is, u1 = v1, by Lemma
3.3 (i).

The case i = n is similar. The map λ : supp(C) → supp(θ̃(C)) is thus constructed.
We now prove that λ(x)<λ(y) and (10) holds for all x< y from supp(C). By construction, this

is true for x and y belonging to the same C ∈ C. Let now x< y be arbitrary elements of supp(C).
Choose C ∈ C containing x and D ∈ C containing y. If x �∈ Min(X), then any C′ ∈ C(X) containing
x and y is linked to C, so that C′ ∈ C. The case when y �∈ Max(X) is similar. Let now x ∈ Min(X)
and y ∈ Max(X). As above, we choose C = C1, . . . , Ck = D, such that Cj, Cj+1 ∈ C are linked for all
1 ≤ j ≤ k − 1, and zj ∈ Cj ∩ Cj+1, 1 ≤ j ≤ k − 1, which is neither minimal nor maximal in X. We set
z0 = x, zk = y and 	 : z0, z1, . . . , zk, zk+1 = z0. We also assume that zj �= zj+1 for all 0 ≤ j ≤ k and denote
by aj < bj the elements satisfying θ (ezjzj+1 ) = eajbj if zj < zj+1 and θ (ezj+1zj ) = eajbj if zj > zj+1, 0 ≤ j ≤ k.
As above, observe that a0, ak ∈ Min(X), while a1, . . . , ak−1 �∈ Min(X). Then a0 = ak by Lemma 3.3
(i). Similarly it follows from Lemma 3.3 (ii) that bk−1 = bk. But a0 = λ(x) and bk−1 = λ(y), since
ea0b0 = θ (ez0z1 ) = eλ(z0)λ(z1) = eλ(x)λ(z1) and eak−1bk−1 = θ (ezk−1zk ) = eλ(zk−1)λ(zk) = eλ(zk−1)λ(y). Hence, λ(x) = ak <

bk = λ(y) and θ (exy) = θ (ezk+1zk ) = eakbk = eλ(x)λ(y) = λ̂(exy).
It is clear that λ is a bijection whose inverse is the map μ : supp(θ̃(C)) → supp(C) corresponding to

θ−1. Thus, λ is an isomorphism between supp(C) and supp(θ̃(C)).
The case of a decreasing θ is analogous.

The following example shows that the admissibility of θ in Theorem 3.10 cannot be dropped.

Example 3.11. Let X = {1, . . . , 10, 1′, . . . 9′, 7′ ′} with the following Hasse diagram.
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Then C(X)/∼ consists of 2 classes whose supports are Y = {1, . . . , 10} and Z = {1′, . . . , 9′, 10, 7′ ′}.
Observe that there exists θ ∈M(X) mapping one ∼-class to another. It is defined as follows: θ (eij) = ei

′
j
′

for all i ≤ j in X with (i, j) �= (5, 7), θ (ei
′
j
′) = eij for all i′ ≤ j′ in X with (i′, j′) �= (5′, 7′ ′), θ (e57) = e5

′
7
′ ′ and

θ (e5
′
7
′ ′ ) = e57 (to make the definition shorter, we set 10′: = 10). However, Y and Z are not isomorphic

or anti-isomorphic because |Y| �= |Z|. The reason is that θ �∈AM(X). Indeed, for 	 : 5< 7> 6< 8> 5
we have s±

θ ,	(7′) = 0, t+
θ ,	(7′) = 0 and t−

θ ,	(7′) = 1.
As a consequence of Theorems 2.10 and 3.10, we have the following result which generalizes [13,

Corollary 5.19], where X was a chain.

Corollary 3.12. If |C(X)/∼| = 1, then each ϕ ∈ LAut(I(X, K)) is proper.

Observe, however, that the condition |C(X)/∼| = 1 is not necessary for all ϕ ∈ LAut(I(X, K)) to be
proper, as the following example shows.

Example 3.13. Let X = {1, 2, 3, 4, 5, 6} with the following Hasse diagram.

Note that C(X)/∼ consists of 2 classes whose supports are Y = {1, 2, 4, 5} and Z = {1, 3, 5, 6}. For
any θ ∈AM(X), there are 2 possibilities for the corresponding isomorphisms λ1 and λ2 between the
supports: either λ1 : Y → Y and λ2 : Z → Z, or λ1 : Y → Z and λ2 : Z → Y . In the former case λ1 = idY

and λ2 = idZ , and in the letter case λ2 = λ−1
1 , where λ1 maps an element y ∈ Y to the element z ∈ Z which

is symmetric to y with respect to the vertical line passing through the vertices 1 and 5. In both cases, λ1

and λ2 are the restrictions of an automorphism of X to Y and Z , respectively.

4. Sets of length one
4.1. Admissible bijections of B and crowns in X

Before proceeding to the case l(X) = 1, we will prove a useful fact which holds for X of an arbitrary
length.

Definition 4.1. Let n be an integer greater than 1. By a weak n-crown we mean a poset P =
{x1, . . . , xn, y1, . . . , yn} where

xi < yi for all 1 ≤ i ≤ n, xi+1 < yi for all 1 ≤ i ≤ n − 1 and x1 < yn. (11)
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An n-crown is a weak n-crown which has no other pairs of distinct comparable elements except (11).
It is thus fully determined by n up to an isomorphism and will be denoted by Crn. A poset P is called a
weak crown (resp. crown), if it is a weak n-crown (resp. n-crown) for some n ≥ 2. We say that a poset
X has a weak crown (resp. crown) if there is a subset Y ⊆ X which is a weak crown (resp. crown) under
the induced partial order.

Posets without crowns are known to satisfy some “good” properties [10, 11, 19].

Lemma 4.2. Let θ ∈M(X). Then θ ∈AM(X) if and only if (2) holds for any z ∈ X and any weak crown
	 : u0, . . . , um = u0 in X.

Proof. The “only if” part is obvious. For the “if” part take any closed semiwalk
	 : u0, u1, . . . , um = u0 and z ∈ X. Let 0 ≤ k< k + l ≤ m such that uk < uk+1 < · · ·< uk+l. We define
	′ : u0, . . . , uk, uk+l, . . . , um = u0. By Corollary 3.2 equality (2) holds for 	 if and only if it holds for 	′.
The same is true for any 	′ obtained from 	 by removing intermediate terms in a decreasing sequence
of consecutive vertices. Thus, doing so for all maximal sequences in 	 we finally get 	′ whose vertices
form either a sequence x< y> z or a weak crown. However, the case 	′ : x< y> z can be ignored,
because (2) always holds for such 	′ as shown in the proof of [13, Lemma 5.13].

4.2. The crownless case

Let now l(X) = 1. Observe that M(X) = S(B). Moreover, any C ∈ C(X) is linked only to itself, so
|C(X)/∼| = |C(X)| and Theorem 3.10 becomes useless.

Definition 4.3. We say that θ ∈M(X) is separating if there exists a pair of non-disjoint C, D ∈ C(X)
such that θ (C) and θ (D) are disjoint.

Remark 4.4. Any separating θ is not proper.

Lemma 4.5. Let l(X) = 1. If |Min(X)|> 1 and |Max(X)|> 1, then there are disjoint C, D ∈ C(X).

Proof. Choose arbitrary x< y in X. Obviously, x ∈ Min(X) and y ∈ Max(X). Let U = {u ∈ Min(X) |
u �≤ y} and V = {v ∈ Max(X) | x �≤ v}. If U �= ∅, then take u ∈ U. Clearly, u �= x. Since X is connected,
there exists v> u, and v �= y by the definition of U. Then C : x< y and D : u< v are disjoint. The case
V �= ∅ is similar. Suppose now that U = V = ∅. This means that x ≤ v for any v ∈ Max(X) and y ≥ u
for any u ∈ Min(X). Choose u ∈ Min(X) \ {x} and v ∈ Max(X) \ {y}. Then C1 : x< v and D1 : u< y are
disjoint.

Proposition 4.6. Let l(X) = 1. Then M(X) =P(X) if and only if |Min(X)| = 1 or |Max(X)| = 1.

Proof. If |Min(X)| = 1, say Min(X) = {x}, then any θ ∈M(X) can be identified with a bijection λ
of Max(X) such that θ (exy) = exλ(y) for all y> x. But λ extends to an automorphism of X by means of
λ(x) = x, so that θ (exy) = eλ(x)λ(y). A symmetric argument works in the case |Max(X)| = 1.

Suppose now that |Min(X)|> 1 and |Max(X)|> 1. By Lemma 4.5 there are disjoint C : x< y and
D : u< v. Choose a path x = x0, x1, . . . , xm = u. Since x, u ∈ Min(X), then m ≥ 2 and x0 < x1 > x2. We
define θ (ex0x1 ) = exy, θ (exy) = ex0x1 , θ (ex2x1 ) = euv, θ (euv) = ex2x1 and θ (eab) = eab for any other eab ∈ B.
Clearly, θ ∈ S(B) =M(X) and it is separating, in particular, not proper.

If X does not contain a weak crown, then AM(X) =M(X) by Lemma 4.2. Hence, we obtain the
following.
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Corollary 4.7. Let l(X) = 1 and assume that X does not contain a weak crown. Then AM(X) =P(X)
if and only if |Min(X)| = 1 or |Max(X)| = 1.

4.3. The crown case

We will now consider two classes of posets of length one which have crowns. We begin with the case
of X being a crown and are going to calculate the groups P(X) and AM(X) explicitly. Thus, in this
subsection X = Crn = {x1, . . . , xn, y1, . . . , yn}.

Definition 4.8. The chains xi < yi, 1 ≤ i ≤ n, will be called odd, and xi+1 < yi, 1 ≤ i ≤ n − 1, and x1 < yn

will be called even. Thus, each element of Crn belongs to exactly one odd chain and to exactly one even
chain.

Lemma 4.9. Let θ ∈M(Crn). Then θ ∈AM(Crn) if and only if for any pair of distinct non-disjoint
chains C, D ∈ C(Crn), the images θ (C) and θ (D) have opposite parities.

Proof. Observe that (2) is invariant under cyclic shifts of 	 (any such shift does not change the
functions s±

θ ,	 and t±
θ ,	). Thus, for admissibility it is enough to consider 	 : x1 < y1 > x2 < · · ·< yn > x1,

since any other cycle in Crn is a cyclic shift of 	.
The “only if” case. Let θ ∈AM(Crn) and C, D ∈ C(Crn), such that C ∩ D = {z}, where z ∈ Min(Crn) �

Max(Crn). Suppose that z ∈ Min(Crn). Then there are only two elements w, w′ ∈ Max(Crn) such that
z<w, w′. Thus, t±

θ ,	(z) = 0 and θ is admissible if and only if s+
θ ,	(z) = s−

θ ,	(z) = 1, which only occur if
θ (C) and θ (D) have opposite parities. The case when z ∈ Max(Crn) is similar.

The “if” case. Let θ ∈M(Crn) and z ∈ Crn be arbitrary. Again, we consider the case z ∈ Min(Crn),
so that t±

θ ,	(z) = 0. Choose w, w′ ∈ Max(Crn) with z<w, w′ and put C : z<w and D : z<w′. Since θ (C)
and θ (D) have opposite parities, then s±

θ ,	(z) = 1 and (2) is satisfied. Similarly, one handles the case
z ∈ Max(Crn).

Proposition 4.10. The group AM(Crn) is isomorphic to (Sn × Sn) �Z2.

Proof. Denote by O and E the subsets of C(Crn) formed by the odd and even chains, respectively,
and let G = {θ ∈M(Crn) : θ (O) =O or θ (O) = E}. We will first prove that AM(Crn) = G. For any θ ∈
AM(Crn), if θ (ex1y1 ) ∈O, then θ (ex2y1 ) ∈ E by Lemma 4.9. It follows that θ (ex2y2 ) ∈O by the same reason.
Applying this argument consecutively to ex3y2 , ex3y3 , . . . , exkyk , ex1yk , we obtain θ (O) =O. Similarly, if
θ (ex1y1 ) ∈ E , then θ (O) = E . Thus, θ ∈ G. On the other hand, let θ ∈ G and C1, C2 ∈ C(Crn), C1 �= C2,
such that C1 ∩ C2 �= ∅. Then C1 and C2 have opposite parities, say, C1 ∈O and C2 ∈ E . If θ (O) =O,
then θ (E) = E due to the bijectivity of θ . Analogously, if θ (O) = E , then θ (E) =O. So, in either case,
θ (C1) and θ (C2) have opposite parities. Therefore, θ ∈AM(Crn), by Lemma 4.9.

We now prove that G ∼= (Sn × Sn) �Z2. Consider H= {θ ∈M(Crn) : θ (O) =O}. Clearly, H is a (nor-
mal) subgroup of G of index 2. Since |O| = |E | = n, we haveH∼= Sn × Sn. Define θ ∈M(Crn) as follows:
θ (exiyi ) = exi+1yi and θ (exi+1yi ) = exiyi for 1 ≤ i ≤ n − 1, θ (exnyn ) = ex1yn and θ (ex1yn ) = exnyn . By definition
θ ∈ G \H and θ has order 2. Therefore, G =H · 〈θ〉 ∼= (Sn × Sn) �Z2.

Proposition 4.11. The group P(Crn) is isomorphic to Z2n �Z2.

Proof. In view of Proposition 2.3, it suffices to prove that Aut±(Crn) ∼=Z2n �Z2. To this end, we will
show that Aut±(Crn) ∼= D2n, where D2n is the group of symmetries of a regular 2n-gon which is known to
be isomorphic toZ2n �Z2. Denote xi by u2i−1 and yi by u2i, for all i = 1, . . . , n, identifying uj with the j-th
vertex of a regular 2n-gon, whose vertices are indexed consecutively according to the counterclockwise
orientation. For the sake of simplicity, we shall consider the indices modulo 2n in the rest of the proof.
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Given ϕ ∈ Aut±(Crn), set iϕ to be the integer modulo 2n such that ϕ(u2n) = uiϕ . Notice that if iϕ is
even then ϕ ∈ Aut(Crn), otherwise ϕ ∈ Aut−(Crn). In any case, since the only elements of Crn compa-
rable with u2n, besides itself, are u2n−1 and u1, then ϕ(u1) = uiϕ±1. If ϕ(u1) = uiϕ+1, then it can be easily
shown inductively that ϕ(uj) = uiϕ+j for any j = 1, . . . , 2n. This corresponds to the counterclockwise
rotation by an angle of iϕπ/n in D2n. If ϕ(u1) = uiϕ−1, again by an easy inductive argument, ϕ(uj) = uiϕ−j

for all j = 1, . . . , 2n. If iϕ is even, ϕ corresponds to the reflection across the diagonal containing uj and
uj+n, where 2j = iϕ . Otherwise ϕ corresponds to the reflection across the line which contains the mid-
points of the sides ujuj+1 and uj+nuj+n+1, where iϕ = 2j + 1. Since iϕ can be any of the 2n indices of the
vertices considered, all the 4n elements of D2n (2n rotations and 2n reflections) can occur as elements
of Aut±(Crn) and we obtain the claimed isomorphism.

Corollary 4.12. We have P(Cr2) =AM(Cr2) and P(Crn) �=AM(Crn) for all n> 2.

Proof. Indeed, |AM(Cr2)| = |P(Cr2)| and |AM(Crn)| = 2(n!)2 > 4n!> 4n = |P(Cr2)| for n> 2.

4.4. The case of the ordinal sum of two anti-chains

We will now proceed to the case of sets of length one which have as many crowns as possible.

Definition 4.13. Given positive integers m and n, denote by Km,n the poset {x1, . . . , xm, y1, . . . , yn}, where
xi < yj for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, and there is no other pair of distinct comparable elements.

Observe that Km,n is the ordinal sum [24] of two anti-chains of cardinalities m and n. The Hasse
diagram of Km,n is a complete bipartite graph [2], so that Aut(Km,n) ∼= Sm × Sn. It is also clear that Km,n

is anti-isomorphic to Kn,m, so we may assume that m ≤ n. The cases m = 1 and m = n = 2 (a 2-crown)
were considered in Proposition 4.6 and Corollary 4.12.

Proposition 4.14. Let 2 ≤ m ≤ n. Then P(Km,n) =AM(Km,n).

Proof. Let θ ∈AM(Km,n). Fix j ∈ {1, . . . , n} and write θ (exiyj ) = euivi , 1 ≤ i ≤ m. Denote by Uj and
Vj the sets of all ui and vk, respectively. We first prove that for any pair of ui ∈ Uj and vk ∈ Vj there is l
such that θ (exlyj ) = euivk . This is trivial if ui = uk or vi = vk, so let ui �= uk and vi �= vk. Consider the cycle
	 : ui < v:i> uk < v:k> ui. We have s±

θ ,	(yj) = 0 and t+
θ ,	(yj) = 2. Since θ is admissible, we must have

t−
θ ,	(yj) = 2. But this means that θ (exlyj ) = euivk for some 1 ≤ l ≤ m (and θ (expyj ) = eukvi for some 1 ≤ p ≤ m),
as desired. As a consequence, we obtain |Uj| · |Vj| = m.

We now prove that |Uj| = 1 or |Vj| = 1. Assume that |Uj| ≥ 2 and |Vj| ≥ 2. Since |Uj| · |Vj| = m, we
conclude that |Uj| ≤ m

2
and |Vj| ≤ m

2
≤ n

2
. It follows that there exist z<w such that z �∈ Uj and w �∈ Vj.

Consider the cycle 	 : u1 < v1 > zu1. Clearly, s±
θ ,	(yj) = 0, t+

θ ,	(yj) = 1 and t−
θ ,	(yj) = 0, a contradiction.

Case 1. |Vj| = 1 for all 1 ≤ j ≤ n. Then there exists a bijection λ of {y1, . . . , yn} such that
{θ (ex1yj ), . . . , θ (exmyj )} = {ex1λ(yj), . . . , exmλ(yj)} for all 1 ≤ j ≤ n. We will prove that θ (exiyj ) = euiλ(yj) and
θ (exiyk ) = eziλ(yk) imply ui = zi for j �= k. Suppose that ui �= zi and consider the cycle 	 : ui <λ(yj)> zi <

λ(yk)> ui. We have t±
θ ,	(xi) = 0, s+

θ ,	(xi) = 2 and s−
θ ,	(xi) = 0, a contradiction. Thus, there exists a bijec-

tion μ of {x1, . . . , xm} such that θ (exiyj ) = eμ(xi)λ(yj) for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. But this means that
θ corresponds to the automorphism of Km,n acting as λ on Max(Km,n) and as μ on Min(Km,n). So,
θ ∈P(Km,n).

Case 2. |Uj| = 1 for some 1 ≤ j ≤ n. Then |Vj| = m. We will prove that this is possible only if
m = n. Assume that m< n and let Uj = {pj}. Since θ (exiyj ) = epjvi for all 1 ≤ i ≤ m and |Vj|< n, there
exist z<w such that z �= pj and w �∈ Vj. Taking the cycle 	 : pj < v1 > zpj, we obtain s±

θ ,	(yj) = 0,
t+
θ ,	(yj) = 1 and t−

θ ,	(yj) = 0, a contradiction. Thus, m = n. We now prove that |Uk| = 1 for all 1 ≤ k ≤ n.
If |Uk| �= 1, then k �= j and |Vk| = 1, say Vk = {qk}. We have {θ (ex1yj ), . . . , θ (exnyj )} = {epjy1 , . . . , epjyn}
and {θ (ex1yk ), . . . , θ (exnyk )} = {ex1qk , . . . , exnqk}. Since j �= k, these sets must be disjoint. But epjqk
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belongs to their intersection, a contradiction. Thus, |Uk| = 1 for all 1 ≤ k ≤ n. Replacing θ by θ ′ ◦ θ ,
where θ ′(exy) = eμ(y)μ(x) and μ is the anti-automorphism of X which interchanges xi and yi for all
1 ≤ i ≤ n, we get the situation of Case 1, so that θ ′ ◦ θ ∈P(X). Since θ ′ ∈P(Km,n), we conclude
that θ ∈P(Km,n).
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