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This paper presents a systematic analysis of direct and adjoint problems for sound
propagation with flow. Two scalar propagation operators are considered: the linearised
potential equation from Goldstein, and Pierce’s equation based on a high-frequency
approximation. For both models, the analysis involves compressible base flows, volume
sources and surfaces that can be vibrating and/or acoustically lined (using the Myers
impedance condition), as well as far-field radiation boundaries. For both models, the
direct problems are fully described and adjoint problems are formulated to define tailored
Green’s functions. These Green’s functions are devised to provide an explicit link between
the direct problem solutions and the source terms. These adjoint problems and tailored
Green'’s functions are particularly useful and efficient for source localisation problems, or
when stochastic distributed sources are involved. The present analysis yields a number of
new results, including the adjoint Myers condition for the linearised potential equation,
as well as the formulation of the direct and adjoint Myers condition for Pierce’s equation.
It is also shown how the adjoint problems can be recast in forms that are readily solved
using existing simulation tools for the direct problems. Results presented in this paper are
obtained using a high-order finite element method. Several test cases serve as validation
for the approach using tailored Green’s functions. They also illustrate the relative benefits
of the two propagation operators.
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1. Introduction

Simulating the propagation of sound in non-uniform mean flows is of interest for
many practical applications. Various linearised acoustic operators are available in the
literature for this purpose (Astley 2009). Amongst them, the linearised Euler equations
(LEE) are attractive as they provide a full description of the refraction of sound waves
propagating through sheared mean flows. A major drawback remains the computational
cost associated to their resolution in both the time domain and the frequency domain.
Another shortcoming is the presence of hydrodynamic instabilities, which can be difficult
to handle as they can swamp the acoustic field. In order to prevent the exponential
growth of hydrodynamic instabilities, a family of acoustic perturbation equations has been
developed by Ewert & Schroder (2003). They are derived from the LEE by excluding
non-acoustic modes, but can still be costly to solve.

Various scalar linearised acoustic operators can be considered to reduce the
computational costs. For instance, the well-known linearised potential equation proposed
by Blokhintzev (1946) and Goldstein (1978) constitutes an efficient way to model sound
propagation in potential mean flows (Hamiche ez al. 2019). It is written for the acoustic
velocity potential assuming that both vorticity and entropy effects are excluded from the
mean flow and the linear perturbations. Alternatively, Pierce (1990) proposed a scalar
propagation model based on a high-frequency approximation that can be applied to
arbitrary steady base flows.

These propagation models can be solved directly, in either the frequency or the time
domain, for a specific geometry, mean flow and source distribution. In many cases
it is advantageous to solve the direct problem through the use of a tailored adjoint
Green’s function, which is itself a solution of an adjoint problem. Tailored adjoint
Green’s functions are independent of the source distribution but are functions of the
observer position. They represent the transfer functions between any source distribution
and the solution at a single observer location. A specific solution is obtained by a simple
scalar product between the Green’s function and the given source distribution, which is
computationally efficient. This is useful when one has to consider many different source
distributions for a limited number of observer positions. It is also particularly efficient
when dealing with stochastic sources or for source localisation problems. The use of
adjoint problems and tailored Green’s functions has proved invaluable to solve acoustic
analogies, either for self-noise from turbulence (Tam & Auriault 1998) or for interaction
noise (Schram 2009). A review of the adjoint-based methods for sound propagation with
flow can be found in Spieser & Bailly (2020). Note that previous work considered free-field
propagation or involved only rigid scatterers.

The present work provides a systematic analysis of direct and adjoint problems for
sound propagation with flow based on Goldstein’s and Pierce’s wave equations. For both
propagation models, the analysis involves compressible base flows, volume sources and
surfaces that can be vibrating and/or acoustically lined, as well as far-field radiation
boundaries. The coupling between the liner and the acoustic waves is modelled by the
Myers impedance condition (Myers 1980) assuming the presence of an infinitely thin
boundary layer above the liner. For both models, the direct problems are fully described
and adjoint problems are formulated to define tailored Green’s functions. These Green’s
functions are devised to provide an explicit link between the direct problem solutions
and the source terms (volume source and surface vibration). A number of new results
are reported, including the adjoint Myers condition for Goldstein’s equation, as well as
the formulation of the direct and adjoint Myers condition for Pierce’s equation. We also
examine how the adjoint problems can be recast in forms that are readily solved using
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existing simulation tools for the direct problems. Several test cases serve as validation
for the approach using tailored adjoint Green’s functions. They also illustrate the relative
benefits of the two propagation operators compared to the LEE.

Tailored Green’s functions have initially been devised for analytical modelling (Howe
2003), but closed-form expressions exist only for canonical geometries. They can also be
obtained numerically, by solving the adjoint problem for each observer position. For this
purpose, the boundary element method has been used to solve the classical Helmholtz
equation (Schram 2009; Chaillat et al. 2022) or the convected Helmholtz equation (Hu,
Guo & Jones 2005). In the present work, the direct and adjoint problems are solved in
the frequency domain using a high-order finite element method that has been applied
previously to solve propagation problems based on the Helmholtz equation (Bériot, Prinn
& Gabard 2016), Goldstein’s equation (Gabard et al. 2018) and the LEE (Hamiche et al.
2019).

The paper is organised as follows. Sections 2 and 3 consider Goldstein’s and Pierce’s
equations, respectively, with each section discussing in details the formulation of the
direct and adjoint problems. Section 4 describes how the adjoint problems can be solved
efficiently using existing methods. In §5, several test cases are presented to validate
the theoretical developments from §§2 and 3. The relative performance of Pierce’s
and Goldstein’s wave operators in the presence of non-isothermal sheared flows is also
assessed.

2. Goldstein’s equation

We begin with the well-known propagation model for sound waves in a potential base
flow derived by Goldstein (1978); see also Blokhintzev (1946). Both the steady base flow
and the linear perturbations are assumed to derive from velocity potentials and to be
homentropic, hence excluding vorticity waves and entropy waves.

2.1. Direct problem

2.1.1. Governing equation
Goldstein (1978) derived the following scalar wave equation for the perturbation ¢ of the
velocity potential:

do [ 1 doo _
POy (% ?> —V-(po Vo) = —q, (2.1)

where do/df = 0/9t 4+ ug - V is the material derivative with respect to the mean flow
velocity ugp, co is the speed of sound, pg is the mean flow density, and ¢ is a generic
distributed source. From the potential ¢, it is possible to compute the other acoustic
quantities such as pressure, density and velocity:

dogp
p==p—- P=plc, u=Ve. (2.2a—c)

This model is solved in the frequency domain using the implicit time dependence e*i¢".
This amounts to replacing the material derivative dy/d¢ in the above expressions by its

frequency-domain counterpart Dg/Dt = iw + ug - V.
953 A16-3
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2.1.2. Variational formulation
For a domain 2 with boundary 952, the variational formulation for (2.1) reads

L(ponﬁ-Vrb—p—gMM)dﬂJr/mpo&<u0;"M_%)dF

for Dt Dt o Dt on

_— /Q Vqde, 2.3)

where v is the test function associated with the velocity potential ¢, - is the complex
conjugate, and # is the unit outward normal vector on 952.

The boundary integral in (2.3) should be investigated to consider each different
boundary condition. In this paper, we will consider two types of boundary conditions:
a lined and vibrating surface denoted I, and a radiation condition imposed on a boundary

I'so located in the far field. We now describe in detail these two boundary conditions.

2.1.3. Boundary condition for a lined and vibrating surface

The boundary I" is a lined and vibrating surface with acoustic admittance A and a
prescribed normal velocity vs. It is also assumed impervious to the mean flow, therefore
ug - n = 0. The corresponding boundary integral in the variational formulation (2.3) is

Ir = ;22
r=—1_ po¥ n dr. (2.4)
r n

Due to the grazing mean flow, the presence of the acoustic treatment on the surface is
accounted for with the Myers (1980) condition, which assumes an infinitely thin boundary
layer above the surface. It relates the normal fluctuating velocity u - n of the fluid above
the boundary layer to the normal displacement & of the fluid on the surface:

u'nz%—éfb[(n-V)uo] (2.5)
Dt ’ '

where iwé is the total normal velocity of the surface defined as a combination of the
prescribed normal velocity v, and the relative fluid velocity Ap through the surface allowed
by the acoustic treatment, i.e.

iw§ = v + Ap. (2.6)
Upon introducing the Myers condition (2.5), the boundary term (2.4) becomes

- [ Do&
Ir=—1{ po¥ Dr gn-[(n-V)uplsdr' (2.7)
r t

Eversman (2001a) shows that this integral can be simplified by using the following result
from vector analysis (see also Mohring 2001),

povéEn - [(n-Vugl =V « (poV&ug) —n - [V x (n x poyréup)l, (2.8)

together with Stokes’ theorem. This yields the following expression for the boundary
integral:

/ Doy -
r=[ r—F5- gdr + pové(uo x n) - dl, (2.9)
r ar

which involves a line integral along the contour of the boundary I". Following Eversman
(2001a) and Rienstra (2007), it can be argued that the normal displacement & should
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be continuous between a lined surface and a rigid surface (to ensure the continuity of
the unsteady streamlines). The displacement should therefore vanish on the contour 9177,
and the contour integral can be removed. In the present case, this implies that both the
admittance A and the velocity vy should vanish on the contour of the surface I'. With
these assumptions, the contour integral along 01" is dropped in what follows. Note that
this has an impact on the solution, mostly in the vicinity of the liner discontinuity and on
the reflection coefficient (Gabard 2010).

After using (2.5) and (2.2a—c), the boundary integral for a lined vibrating surface finally

reads
D 2A Dovr D
1p=/f’_°ﬂvsdr—/&ﬂﬂdr. (2.10)
riw Dt r iw Dt Dt

The first integral is a forcing term that will appear on the right-hand side of the discretised
system.

2.1.4. Far-field radiation condition
We now consider an outer surface I, located far away from the other surfaces and the
volume sources. The contribution from this surface to the variational formulation is

- {uo-nDop 0¢
Iy = — — — | drl. 2.11
I'so /oo poy ( 2 i 8n> (2.11)

Without loss of generality, Iy is chosen as the sphere defined by ||x|| = r, hence n = x/r
and d/0n = d/0r.

For the Helmholtz equation (i.e. with no mean flow), one is left with d¢/dr on this outer
boundary, and the Sommerfeld radiation condition states that the asymptotic behaviour of
¢ in the far field is such that 9¢/dr = —ik¢ with k = w/cg. The Sommerfeld radiation
condition can be generalised to include the effect of a mean flow (Bayliss & Turkel 1982;
Tam & Webb 1993; Bogey & Bailly 2002). However these radiation conditions are not
directly applicable to the variational formulation (2.3). To derive the radiation condition
in a form suitable for (2.1), we have to determine the asymptotic behaviour of all the terms
in the parentheses in (2.11).

To that end, we consider the sound field radiated in a uniform mean flow by a generic
source term ¢g(x) on the right-hand side of (2.1). Using Green’s formula, the radiated sound
field can be written

P(x) =— / q(y) G(x|y) dy, (2.12)

where the free-field Green’s function G(x|y) is defined in three dimensions by
1 ik
Gxly) =~ exp e r—(x—y- ol (2.13)

with B2 = 1 — |Juo|)? / c(z), and the distance 7 defined as

F= B2l —yI12 + [ — ) - w0/}, (2.14)

Note that this Green’s function already satisfies the far-field radiation condition. After
some lengthy developments, it is possible to obtain the following result:

up - n Dy G(x|y) 8G(x|y) T ,82 X
cg Dt an lki (1 1kr) (1 - r_) G(x|y), (2.15)
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where the derivatives on the left-hand side operate on the x coordinate. Note that this result
is exact and valid for any value of r, i.e. no far-field approximation has been made.
When the observer is in the geometric far field, which is defined by |x|| > ||y, the

term x - y/(r7) in (2.15) can be neglected, and 7 ~ 7 = \/,lelxllz + (x- uo)z/c(z). From

(2.12) and (2.15), it is apparent that the velocity potential satisfies the following radiation
condition in the geometric far field:

wp-xDop 3¢ . r( B !
— T k- 1+ = ol—=), h . 2.16
cgr Dt dr 3 +ik? ¢+ 2 when r — +00 (2.16)

In the absence of mean flow, this radiation condition reduces to the standard Sommerfeld
condition; see, for instance, § 4.5.4 in Pierce (2019). The corresponding boundary integral
in the variational formulation is written

In, = / ikapor o dT, (2.17)

I'o

where the coefficient « is defined as

~>I =

2
(1 + ’B—A) . (2.18)
ikr
In (2.16), we have kept the leading-order term, but it is also possible to derive higher-order
radiation conditions from (2.15); see Givoli (2004).
The corresponding radiation condition for a two-dimensional problem is given in
Appendix A.

2.1.5. Summary
To summarise, the direct problem for Goldstein’s equation is based on the propagation
equation (2.1), which includes a compressible, potential mean flow u( and a volume sound
source g. Boundary conditions include surfaces that can be lined and/or vibrating, based
on the Myers condition (2.5), as well as the far-field radiation condition (2.16).

The corresponding variational formulation is (2.3), with the boundary terms given in
(2.10) and (2.17).

2.2. The adjoint operator and tailored Green’s functions

As explained above, it can be particularly useful to use a tailored adjoint Green’s function
to facilitate or accelerate the calculation of solutions to the direct problems, in this case by
providing an explicit expression for the acoustic potential ¢ in terms of the sources v; and
g. Such a tailored Green’s function is a solution to an adjoint problem that will be devised
in this subsection.

We first introduce scalar products between complex-valued functions, on either £2 or I,
as follows:

f.8)p = /Q T2, (fg)r = fr 7 g0 dT;. (2.19a,)
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We then form the scalar product of Goldstein’s equation (2.1) with a generic Green’s
function G (x, y), which remains to be defined:

/ Gy(x, ) po(y) — [ ¢O’)] —Gp(x, )V - [po() Vo (»)] ds2,

O(y) Dr
S /Q Go(x.3) a) d2,. (220

which is valid for any point x located in £2, where the integrals are performed over y. In
the following expressions, we will omit the x and y dependence to simplify the notation.
However, to avoid ambiguities, note that all quantities are functions of only y except for
Gy, and all the derivatives are applied with respect to y. Integrating twice by parts the
expression above yields

Do [ 1 DoGy
— | = -V, V,G, ds2
/qu[/oo Dr ( 2 Dr ) v (00 V,y ¢)}
po(ug + n) (Do DoGy 3Gy — el
G — — — Gy dr,
+/3,Q c% ( ¢ Dt ¢ Dt trolo ony any Y

= — / GyqdR2,. (2:21)
2

Subtracting (2.21) and (2.20) yields the integral form of Lagrange’s identity, which relates
the direct and adjoint operators; see, for instance, § IV.4 in Dennery & Krzywicki (2012).
The adjoint operator to Goldstein’s equation (2.1) is readily found in the square brackets in
(2.21). In this case, the direct and adjoint operators are identical, which is expected since
Goldstein’s equation is self-adjoint.

2.2.1. Adjoint equation

Our aim is now to identify a tailored adjoint Green’s function that provides an explicit
solution for the direct problem defined in the previous subsection. In other words, we have
to select the governing equation and the boundary conditions for G4 so that the velocity
potential ¢ can be written explicitly in terms of the source terms ¢ and v. Beginning with
the governing equation for G4, we would like the first integral in (2.21) to reduce to ¢ (x),
i.e. Gy should be such that

Do [ 1 D0G¢
o @ po E —2 Dr - Vy . (,00 VyG¢) d'Qy = ¢ (). (2.22)
€
This can be achieved if G is a solution of
Do ( 1 D0G¢)
o=\ 3 = Vy+ (00 VyGy) = 8(x — ). (2.23)
Dt <5 Dt

which shows that G is indeed a Green’s function for the adjoint operator.

Looking back at (2.21), the solution ¢ (x) is now given in terms of integrals on I" and
£2. While the latter depends on only g and G, the boundary integral still involves ¢. In
order to obtain an explicit expression for ¢, we have to choose the boundary conditions for
the Green’s function so that the boundary integral involves only G4 and v;.
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2.2.2. Lined vibrating wall
We first consider the integral on the boundary I” representing a lined and vibrating surface,
as described in § 2.1.3. Since ug - n = 0 on this surface, the relevant boundary integral in

(2.21) is
3Gy — 9
Jr = fr 0 (4) =% _G, —d’) dry. (2.24)
y

The second term in this integral is the same as in (2.4) with ¥ replaced by G4. Using the
same analysis as in § 2.1.3 for the formulation of the Myers boundary condition, one gets

£0 D()G¢ 8G_¢ pgA DOG¢ Do¢
Jr = — - dr. 2.25
r /pia) o TP T e D D 2.25)

To proceed further, we use steps similar to those described in § 2.1.3 for the formulation
of the Myers condition: i.e. the derivative in Do¢ /Dt is integrated by parts, an expression
similar to (2.8) is used, and we apply Stokes’ theorem. This yields

DoGy 2A DoGy
Jr= | 22205 ar + ?g¢p0 O“’(uoxn) dl
rio Dt 1w
3Gy Do [ poA DoGy\  poA DoGy
B e [(n-V . (226
/M’{ an, Dt(ia) pr )t w o Mol Vyulp. (220

Recall that the aim is to remove ¢ from this expression. First, we can use the same
argument as in Eversman (2001a) for the direct problem: assuming that the admittance A
varies continuously on I, the contour dI” can be located on the rigid wall and the contour
integral above vanishes. Second, the last integral in (2.26) is eliminated by choosing the
following boundary condition for the tailored adjoint Green’s function Gg:

3G¢ Don 0G¢
—2 =L _pn-[(n-Vyup], withion = pyA
on, ~ Di nn - [(n - Vy)uol n=pPoA —

, onl. (2.27)

This expression is the adjoint Myers condition. It takes a form similar to the original
impedance condition (2.5) for the direct problem except for several important differences.
There is a sign difference compared to (2.5), and the admittance A is replaced by
its complex conjugate. In addition, the source term vy does not appear in the adjoint
impedance condition (2.27) for the tailored Green’s function Gy.

2.2.3. Radiation condition
The contribution of the radiation boundary I, in (2.21) is

_ po(uo - n) (—Dogp  DoGy i—_ ¢
I = / T <G¢ = ) (¢> . Gy any> dry. (2.28)

€

Using the radiation condition (2.16) satisfied by ¢ on I, this contribution becomes

0Gy uo-nDoGy . _
Jr, = — — ikaGy | dIy, 2.29
I /Oo ,00¢< o, 2 D Teor ¢> y (2.29)
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with « defined in (2.17). For this contribution to vanish, the Green’s function G, should
satisfy the following adjoint radiation condition on [ 5:

uo -y DoGy _ Gy
c%r Dt ar

— —ikaGy. (230)

It is similar to the direct radiation condition (2.16) except that ika is replaced by its
complex conjugate —ika. This is a consequence of the fact that the adjoint problem
is anti-causal. The adjoint radiation condition allows only inward-propagating waves,
which is the opposite of the radiation condition for the direct problem, which allows only
outward-propagating waves.

2.2.4. Summary and discussion
The acoustic potential ¢ can be written explicitly in terms of the source terms vs and ¢ as

DoGy vy o DoGy / —
=(— ,—) —(Gg, =—| = sdly — [ Ggqds$2,,
(f)(X) < £0 Dt ia)>1~ ( ¢ q)‘Q r 1o Dt Us Y Q (&
(2.31)
provided that the tailored adjoint Green’s function Gy is defined as follows:
pE i%G —Vy-(poVyGg) =8(x—y) inf2
0 Dt C(2) Dt ¢ y 0 y ¢ y ’
3Gy  Don o ~ DoGy
a—ny = E —nn-[(n- Vy)u()] with iwn = ppA D1 onl’, ¢ (2.32)
-y DoG G
2 ¥ 0% T — _ikaGy on I
cyr Dt or

It is worth noting a number of points concerning the direct and adjoint problems.

(i) While the propagation operator is self-adjoint, the boundary conditions are not
self-adjoint since they differ between the direct and adjoint problems. The practical
implications of these differences will be discussed in § 4.

(i1) The surface admittance A does not appear explicitly in (2.31). It is taken into account
implicitly by the tailored Green’s function G4 through the adjoint impedance
condition (2.27) that it satisfies on the surface I".

(iii) In the expression (2.31), it is clear that x represents the observer position while the
source position y moves on the surface I and in the volume 2. However, in the
definition (2.32) of the tailored adjoint Green’s function, the differential equation is
written in terms of y (the derivative in the equation and the boundary conditions are
applied with respect to y and not x). This means that in (2.32), the source position
is x and the observer position is y, which is the reverse from (2.31). The reciprocity
principle appears naturally from the derivation of G presented above.

(iv) The tailored adjoint Green’s function G in (2.31) can be understood as the acoustic
transfer function between the volume source ¢ and the velocity potential ¢ at the
observer position x. Likewise, the quantity — o9 DoGy /Dt is the transfer function
between the surface displacement vg/(iw) and the velocity potential ¢ (x).

In the analysis above, the tailored adjoint Green’s function G4 was devised to yield
an explicit expression for the velocity potential. If one wishes to compute the acoustic
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pressure instead, then it is possible to compute p(x) = —pg Do¢p /Dt (with derivatives with
respect to x) from (2.31). This can be cumbersome as (2.32) yields G4 as a function of y
for a fixed x. Instead, it is preferable to define another tailored adjoint Green’s function
G, (x, y) that relates directly p to the source terms g and v, through

DoG, vy
Dt

px) = <—,00 > —(Gp. q), . (2.33)
r

iw

which has the exact same form as (2.31). This is achieved by modifying the right-hand side
of (2.23) so that the integral in (2.22) yields p(x); that is, the adjoint equation for G, reads

POE -

Dy {1 DoG,
c% Dt

Do
) -V (/OO Vpr) = 0 53(36 ). (2.34)

It is straightforward to show that G, satisfies the same adjoint boundary conditions as in
(2.32). A similar methodology can be used to compute the acoustic velocity field u instead
of ¢ (x).

A final comment is that the generic source term g can be replaced easily by a distribution
of dipole sources by writing ¢ = V -« f, where f is the dipole strength. The additional
divergence in (2.31) can be transferred onto the Green’s function by integrating by parts
to write

po DoGy / —
=—| — dr, -V, Gy d$2y. 2.35
b == [ B2 v ar+ [ 9,640 2.39)
A similar approach can be used for other types of sources, such as a quadrupole
distribution.

3. Pierce’s equation

Pierce (1990) proposed two propagation models derived in the high-frequency limit for an
arbitrary steady base flow. The first equation is in fact the same as Goldstein’s model (2.1)
with the velocity potential ¢ as variable. Pierce (1990) has thus shown that Goldstein’s
equation is also valid for arbitrary base flows in the high-frequency limit, and the analysis
in §2.2.1 is therefore also valid in this case. In the present section we will focus on the
second model from Pierce (1990), namely (27). Details of the analysis will not be repeated
as they are similar to the previous section. We will instead highlight the novel results and
the key differences with Goldstein’s equation.

3.1. Direct problem

Instead of the velocity potential ¢, Pierce (1990) proposes to use the momentum potential
¢, which is such that p = Dggp/Dt and pou = —V¢. In the high-frequency limit, this
variable satisfies the propagation equation

v.(Lly Do 1 Dop) A
£0 ¢ £0 D¢ pgc% D¢ =7 )

which is valid for an arbitrary steady base flow, i.e. compressible, rotational and not
necessarily homentropic. Compared to (27) in Pierce (1990) we have added a generic
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source distribution on the right-hand side. For a computational domain §2 with boundary
052, the variational formulation corresponding to (3.1) reads

1 (1 Doy D . ro(o -nD
/_ _Zﬂﬂ_vw.vq) d.{2+/ ¥ _¢_u02nL90 dr
2 po \cg Dt Dt 3 Po \ On cg Dt

= —/Q&qd:z, (3.2)

with the test function . Like in (2.3) for Goldstein’s equation, the volume integral above
is Hermitian, which is consistent with the fact that there is an energy conservation principle
associated with Pierce’s equation (3.1); see § 2.4 in Mohring (1999).

The Myers condition is traditionally used with Goldstein’s equation (2.1), but we show
here how it can be included in the variational formulation for Pierce’s equation. When
formulated in terms of the potential ¢, the Myers impedance condition (2.5) becomes

ap _ Doé
%——po{ﬁ—én-[(n-V)uo]}, (3.3)
with
_— Dog
iwé =vs+A D’ (3.4)

where & is again the normal displacement of the surface. Recalling that ugp - n =0 on I,
the boundary integral on surface I" in (3.2) reduces to

Ir = Ka—gpd]“:—/‘,oo<£) {D—Og—én-[(n-V)uo]}dF. 3.5)
rpo on r po/) | Dt

Following the same analysis as in § 2.1.3 (in particular using (2.8) where ¥ is replaced by
¥/ po), it is possible to write

Dy /1 A D D
o= [P0 (VN qry [ 2AD (VDY (3.6)
riw Dt \ po r iw Dt \ py/ Dt

This formulation of the Myers impedance condition for Pierce’s propagation equation is
consistent with Eversman (2001a), i.e. the displacement & and admittance A are assumed
to vary smoothly between a lined and rigid surfaces. The main difference with (2.10) is the
substitution of ¥ by ¥r/pg, which will be discussed further in § 4.

Concerning the radiation boundary Iy, the analysis of the far-field behaviour of the
velocity potential ¢ given in § 2.1.4 also applies to the potential ¢. It therefore satisfies the
same radiation condition (2.16) as ¢, and the boundary integral on [, in (3.2) becomes

Ir, = —/ ika ve dar. (3.7)
Tso £0

3.2. Adjoint problem

Pierce’s equation (3.1) can also be solved using a tailored adjoint Green’s function,
following the same approach as described in § 2.2 for Goldstein’s equation. One starts
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by forming the scalar product between Pierce’s equation (3.1) and a Green’s function
Hy(x, y). Integrating by parts twice leads to

/ v ( 1 V.o ) Do 1 DoH, 40
Q‘P v\ M PO ; P22 Di y
. DoH, — | QR —" dH,
+/ w20ty g Doe) L (g 00y M g,
92 POCG Dt Dt £0 on an

- f H,qds2,, (3.8)
2

where the integrals and the derivatives operate on the y coordinate.

Again, the objective is to tailor the Green’s function H,, to obtain an explicit expression
for ¢ in terms of the sources ¢ and v,;. Requiring that the first integral in the above
expression reduces to ¢(x) leads to the following adjoint equation for the Green’s function:

v.(Lvn Do (1 Dofly) _ 50—y (3.9)
-\ — — po — — | =5(x—y), .
£0 ¢ o Dt pg (2) Dt Y

where the derivatives are taken with respect to y. Comparing with the direct problem (3.1),
it is clear that Pierce’s equation is self-adjoint.

The boundary conditions for H, are now selected to remove ¢ and its derivatives
from the boundary integral in (3.8). For the lined vibrating surface I", after using the
fact that up - n = 0 and introducing the Myers condition (3.3) for Pierce’s equation, the
contribution to the boundary integral becomes

TR g [(n+ V)ug] + a_dF (3.10)
/I‘ @E (pén- n-Vug _W .

Following the same reasoning as in § 2.2, this contribution can be written as

Dol
Ip:f Povs 20 g, (3.11)
I

iw Dt

provided that the tailored Green’s function satisfies the following adjoint Myers condition
for Pierce’s equation:

9H, D AD
—"’:pg{ﬂ—vn-[(n.V)uo]}, w1thv—zs(t)<g). (3.12)

On the far-field surface ', the solution ¢ satisfies the radiation condition (2.16), and
the adjoint radiation condition for H,, is readily identified as

uy-y DoH, 0H,

c(z) r Dt ar

= —ikaH,, (3.13)

which is the same as (2.30).
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As a consequence, the potential ¢ for an observer x can be written explicitly in terms of
the sources v; and ¢ as

po DoHy / — DoHy  povs
= — — dr, — Hyqgd$2, = — , —(Hy, ,
@(x) /pia) oy Udb 5 o4 D o |, (Hy ‘1)9
(3.14)

provided that the tailored Green’s function H,, satisfies the adjoint problem defined by
(3.9), (3.12) and (3.13).

All the comments in § 2.2.4 concerning the adjoint problem for Goldstein’s equation
also apply here. In particular, if one is interested in computing an acoustic quantity other
than ¢, then it is possible to modify the right-hand side of (3.9) accordingly. For instance,
to obtain an explicit expression for the pressure field similar to (3.14), the required tailored
adjoint Green’s function H), satisfies

v.(Lvu Do(_1 Dofy D_Oa( ) (3.15)
| — —po— | 5= =—38x—y), .
oo 7)) Dy p2ct Dt Dt Y

where the derivatives apply on the y coordinate. The tailored adjoint Green’s function H),
also satisfies the boundary conditions (3.12) and (3.13).

4. Solution procedure

We now discuss the computation of the direct and adjoint problems. A first step is
to rewrite the adjoint problems in forms that are closer to the direct problems. Then
a high-order finite element method is introduced to solve these differential equations
efficiently.

4.1. Flow reversal theorem

While the two propagation operators (2.1) and (3.1) considered in this paper are
self-adjoint, the associated boundary conditions are not self-adjoint. As shown above, the
Myers impedance condition (written in (2.5) and (3.3) for ¢ and ¢, respectively) differs in
the adjoint problems for the tailored Green’s functions (see (2.27) and (3.12) for ¢ and ¢,
respectively). Similarly, the radiation conditions (2.16) and (2.15) differ between the direct
and adjoint problems. This implies that non-reflecting conditions and buffer zones, such as
perfectly matched layers, would have to be rewritten specifically for the adjoint problems
where the radiation condition is anti-causal. Having to implement separate solvers for the
direct and adjoint problems is a hindrance that can be partly avoided.

To that end, one has to reverse the mean flow direction (i.e. substitute ug by —ug) and
take the complex conjugate of the propagation equation and the boundary conditions. For
Goldstein’s equation, the governing equations (2.32), (2.27) and (2.16) for the tailored
adjoint Green’s function Gy become

Dy [ 1 DoGy .
— = —V-(poVGg) = 8(x — n$,
PO oy (Cg D ) (p0VGy) =8(x—y) i
G,  Doii  _ .~ poA DGy 41
— == (n-V thy="—"— —2 T, .1
an pr el Viuolwithip =2 E =g on
uo -y DoGy — 9Gy = ikaGy on I
c%r Dt or ¢ oo
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It is apparent that these equations for G_¢ are consistent with the direct problem for ¢
given in § 2.1. Hence existing solvers for the direct problem can be reused directly for the
adjoint problem by solving for the complex conjugate of the adjoint Green’s function and
by reversing the mean flow direction. This so-called flow reversal theorem allows us to
relate more easily the direct and adjoint problems; see Godin (1997), Mohring (1978) and
Eversman (20015).

For Pierce’s equation, the governing equations (3.1), (3.6) and (2.16) for the tailored
adjoint Green’s function H, become

v.(Lvm Do (_1_DoHy S(x—y) in
ol — — i = X — m s
£0 ¢ o Dt pg (2) Dt Y

dH, D A Dy (H,
a—n‘/’:—pO{DLtv—vn [(n- V)uo]} w1thv_gﬁ(;(—> onl,¢ (4.2)

ug -y DOIT(,, B E)H_(p
c(z)r Dt ar

= ikaH, on I'x.

It can be noted that the governing equation and the radiation condition are identical to the
direct problem for ¢; see (3.1) and (2.16). However, the impedance condition differs from
that of the direct problem (3.6), except in the case of an incompressible base flow.

The variational form for the system (4.2) reads

1 (1 DoH, Doy
/—(2 oy DoV _ o, Vw)dg
2

po \ g Dt Dt
J -n DyH, aH
—/ Y (#o-n Do dr = /wa(x »)de. (4.3)
2 Dt on
a2 PO\ ¢§

The contribution of the impedance condition to the boundary integral is

oA Dy (H ) Dov

Ir =
r= r iw Dt £0 Dt

(4.4)

4.2. High-order finite element model

We use a high-order continuous Galerkin finite element method (FEM) equipped with
a basis of integrated Legendre polynomials to discretise the weak formulations of the
direct and adjoint problems. In Bériot et al. (2016), this approach was shown to provide
substantial reductions in memory and CPU time when compared to conventional finite
elements for acoustic applications. The benefits of a high-order FEM (e.g. low dispersion
error, exponential convergence for smooth solutions) are also retained in the presence
of background mean flows (Bériot, Gabard & Perrey-Debain 2013). In the numerical
simulations, it is helpful to maintain an equivalent discretisation accuracy when varying
the frequency or the Mach number. We resort to the a priori error indicator proposed
in Bériot & Gabard (2019), which adjusts the order across the mesh so as to achieve
a given, user-defined L?-error target accuracy E7. In practice, the edge orders are first
determined based on a one-dimensional error indicator, which accounts for the local
in-flow dispersion relation properties and possible edge curvature. In a second step, the
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element interior (directional) orders are assigned through a set of simple element-based
dependent conformity rules. The orders are here defined to be in the range prry € [1, 10].

The governing equations of the direct and adjoint problems contain singular source
terms, which require special attention. In practice, the point sources are enforced directly
using a Dirac in the weak form. Error estimates have been derived in the literature for such
elliptic problems with singular right-hand sides; see, for instance, Bertoluzza et al. (2018).
They indicate that the preponderant part of the error is located in the close vicinity around
the source. A usual recommendation is therefore to use graded meshes, so as to confine the
singularity errors in a more compact region. However, mesh refinements increase model
complexity and may become unwieldy when several Dirac source terms are present. In
Koppl & Wohlmuth (2014), it is shown that the optimal convergence of high-order finite
elements is recovered without mesh grading, if one excludes the one-ring neighbourhood
elements to the point source from the error evaluation. In practice, one is usually not
interested in getting a very accurate solution in the few elements directly surrounding the
singularity. As a result, in this study, no mesh refinement is applied around the source
when computing the tailored adjoint Green’s functions.

4.3. Acoustic transfer vectors

Once discretised, the explicit expression (2.31) for the solution ¢ can be written as scalar
products between complex-valued vectors:

d(x) = ay(x) vs+ by (x) q. (4.5)

where T denotes the Hermitian transpose. A similar expression can be written for ¢ using
(3.14). The vectors v, and g contain the degrees of freedom representing the source terms
vy and g on the finite element mesh. The vectors a4 and by can be identified easily from
(2.31) and computed using the solution for G4. These vectors are sometimes referred to as
acoustic transfer vectors as they act as transfer functions between the distributed sources
vy and g and the solution observed at a point x (Tournour et al. 2000). These vectors
are particularly useful when considering large numbers of different source distributions.
For each individual source distribution, the new solution ¢ can be calculated very rapidly
using (4.5) (a scalar product has linear complexity with respect to the number of degrees
of freedom involved).

Additionally, when dealing with stochastic sources, acoustic transfer vectors can greatly
simplify the computation of the acoustic field properties. For instance, for the volume
source ¢, one can write

El¢$] = bj Elgq"] by (4.6)

where E denotes the expected value. The correlation matrix E[gq"] can be either
calculated or modelled, depending on the nature of the source mechanism. From this
correlation matrix, the sound field can be computed directly using the acoustic transfer
vector bg. This approach has been used extensively to predict aerodynamic noise
generation by turbulent flows, starting from Tam & Auriault (1999). See Spieser (2020)
for a comprehensive literature review on this approach.

It is important to note the presence of the gradient of G in the definition of the vector
ap. The gradient can be evaluated directly from the finite element approximation of Gy
obtained after solving (4.1). This can be an issue if a low-quality numerical solution is
used for G since the evaluation of ag will be inaccurate.
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Figure 1. Computational domain: (a) mean Mach number, (b) mean density, and (c) mesh with FEM face

order distribution for @ = 10¢o/R.

An alternative approach is to integrate by parts the first integral in (2.31) to transfer the
derivative onto v,. This is similar to rewriting (2.7) into (2.10). The resulting expression is

(%) :/ G, 2o Dovs —/ Gy qdQ 4.7)
r ¢ iw Dt Y Q ¢ y' '
This avoids having to differentiate Gy, which is computed numerically. However, if
the prescribed normal velocity vy is poorly represented, for instance with noisy data,
then computing its derivative might introduce more numerical error. Depending on the
application at hand, one has to choose which of these two approaches is best suited.

5. Applications

The proposed propagation models, both direct and adjoint, are now applied to several
two-dimensional test cases to verify the formulation and implementation and to illustrate
their applications.

5.1. Cylinder in compressible flow

The proposed methodology is first applied to compute the sound radiated by a point
source located in the vicinity of a cylinder immersed in a steady compressible flow.
The computational domain consists of a square of side 8 m, represented in figure 1(a).
The cylinder is centred at x =y = 0 and has radius R = 1 m. Far from the cylinder,
the mean flow is in the positive x direction with Mach number My, = 0.3, density
Poo = 1.2 kg m™3, and speed of sound ¢, = 340 ms~!. The flow field around the cylinder
is computed using a compressible homentropic potential flow solver (hence for an inviscid,
non-heat-conducting gas). The flow is then interpolated onto the acoustic mesh. The local
Mach number varies up to 0.662, as illustrated in figure 1(a). The cylinder is treated
acoustically with uniform impedance Z = psoceo(2 — 21) and is vibrating with surface
velocity v(x,y) = [cos(x), 0]T. In this example, a point source &(x — x;) is placed at
Xy = —1 m and y; = —2 m, and the observer is located at x =y = 2.5 m.

The adjoint methods for Goldstein’s and Pierce’s equations are used to compute the
acoustic field at the observer. Numerical simulations are performed over the normalised
frequency range 1 < wR/cx < 10. The computational domain is discretised with 6-node
triangular elements whose curved edges allow us to better represent the geometry of
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the cylinder. The size of the finite elements ranges from 4 = 0.05 m on the cylinder
surface to 4 = 0.25 m at the outer boundary of the domain, corresponding respectively
to 12.6 and 2.5 elements per acoustic wavelength at the highest frequency of interest.
This leads to approximately 6700 elements in the domain. The FEM a priori error
indicator automatically adjusts the order of the finite element basis to the user-defined
accuracy, the frequency, the mean flow and the element size distribution, also accounting
for the curvature of the mesh (Bériot & Gabard 2019). The mesh is shown in figure 1(c)
together with the distribution of polynomial orders obtained with target accuracy Er =
1 %. The face order prgys varies from 2 to 5 at w = 10cs/R. At the outer boundaries,
perfectly matched layer (PML) regions made of ten layers are extruded automatically
to absorb outgoing waves (Bériot & Modave 2021). They are stabilised using Lorentz
transformation, following the work in Marchner et al. (2021).

Figure 2 presents the results obtained for the direct and adjoint problems at v = 10cs /R
using Goldstein’s equation. The real parts of the acoustic potential and pressure fields
obtained for the direct problem are shown in figures 2(a) and 2(b), respectively. The sound
field radiated from the source is clearly visible and is scattered by the cylinder, which
also radiates sound due to its surface vibration. Also visible is the mean flow effect on
the sound waves, with shorter waves propagating upstream, and longer waves propagating
downstream. Figures 2(c) and 2(d) show the solutions Gy and G, of the adjoint problem.
In these solutions, waves are converging towards the observer location (these waves are
anti-causal) and are scattered by the cylinder. Due to the flow reversal theorem, shorter
wavelengths are observed on the right and longer wavelengths on the left, which is the
opposite of the direct solutions.

The solutions of the direct problems based on Goldstein’s and Pierce’s equations are
now compared to those obtained with the tailored adjoint Green’s functions Gy, G;, or Hy,
using (2.31), (2.33) or (3.14). Figure 3 shows the variables ¢ (x), ¢(x) and p(x) computed
at the observer location for a range of frequencies 1 < wR/cx < 10. For Goldstein’s
equation, the potential and pressure fields calculated with the adjoint approach and (2.31)
and (2.33) match exactly the solutions of the direct problem. The same conclusion is
obtained for Pierce’s equation. These results demonstrate the applicability of the adjoint
method to compressible non-parallel flows, in the presence of lined and vibrating surfaces.

For this test case, the assumptions of Goldstein’s equation (homentropic and irrotational
mean flow) are all valid, and this equation thus provides the reference solution. Note
that the mean flow is not exactly isothermal since the mean temperature varies slightly
around the cylinder (these variations do not exceed a few per cent). As a consequence, the
mean density and sound speed also vary; see figure 1(b). In this case, Pierce’s equation
is approximate but still provides results in excellent agreement with Goldstein’s equation
(see figure 3c). It is only at low frequency (wR/coo = 1) that very small discrepancies can
be observed between the two propagation equations. These discrepancies can be attributed
to the small gradients of pg and cp, and the high-frequency assumption used in Pierce’s
equation. In § 5.3, we will illustrate the differences between these wave equations when
significant mean temperature gradients are present.

5.2. Sound source in a lined duct with flow

The second application involves a point source located in a two-dimensional straight duct
with a uniform flow and a finite lined section modelled using the Myers impedance
condition. The aim is to validate the formulation of the adjoint Myers condition for
Goldstein’s equation as well as the proposed formulations for the direct and adjoint Myers
condition for Pierce’s equation. These formulations, described in §§ 2 and 3, involve the
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Figure 2. Real parts of (a) the acoustic potential and () the pressure obtained with the direct problem for
Goldstein’s equation. Real parts of the numerical Green’s functions (¢) Gy and (d) G, obtained from the
corresponding adjoint problem, at @ = 10c~/R. Symbol X indicates source location, and + indicates observer
position.

neglect of contour terms around the lined surfaces, which could not be validated in the
previous test case.

The straight duct, shown in figure 4(a), has height #; = 0.2 m and length r; = 0.75 m.
Inside the duct, the uniform flow is such that pg = 1.225 kg m—3, co =340 m s~ and
Mo = ug/co = 0.5. On the duct upper wall, uniform surface impedance Z = pyco(2 — 2i)
is defined for 0.125 < x < 0.625 m. The point source, placed at x; = 0.25 m and y; =
0.1 m, is defined as 10738 (x — x,). The acoustic potential and pressure fields are computed
at the observer position x = 0.6 m and y = 0.1 m.

The finite element simulations are performed for frequency f =5 kHz and target
accuracy E7 = 1 %. The mesh of triangular elements is shown in figure 4(b) together
with the distribution of face orders. The size of the elements inside the duct varies from
h = 0.0025 m at the wall to 2 = 0.025 m at the centre of the duct. The face order prry
varies between 1 and 5. In order to absorb outgoing waves, PML regions made of 10 layers
are introduced at the duct terminations.

Acoustic results obtained using Goldstein’s equation are presented in figure 5. For the
direct problem, the real part of the acoustic potential and pressure are given in figures 5(a)
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Figure 3. Real parts of (a) the acoustic potential ¢, (b) the acoustic potential ¢, and (¢) the acoustic pressure
computed at x = y = 2.5R. Here, o indicates Goldstein’s direct problem, x indicates Pierce’s direct problem,
red solid line indicates Goldstein’s adjoint problem, and dashed line indicates Pierce’s adjoint problem.
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Figure 4. (a) Computational domain with liner in grey. (b) Mesh with FEM face order distribution at
f=5kHz.

and 5(b), respectively. For the adjoint problem, the real part of the numerical Green’s
functions G4 and G, are shown in figures 5(c) and 5(d). As for the previous test case, the
Green’s functions G and G, exhibit waves converging towards the observer position, and
the effect of the mean flow on the wavelength is reversed when compared to the direct
problem. Using these tailored adjoint Green’s functions together with (2.31) and (2.33)
yields solutions for ¢ and p at the observer location in figure 5 that are identical to the
solutions of the direct problem within floating-point precision. The results obtained with
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Figure 5. Real parts of (a) the acoustic potential and (b) the pressure field obtained for Goldstein’s equation,
and real parts of the corresponding numerical Green’s functions (c) Gy and (d) G, obtained from the adjoint
problem at f = 5 kHz. Symbol x indicates source location, and + indicates observer location. The liner is
indicated in grey.

Pierce’s equation are not shown here for the sake of brevity since they are identical to
those in figure 5. This is because, with a uniform mean flow, the wave operators in (2.1)
and (3.1) are equivalent since dividing the former by ,03 yields the latter.

To verify further the proposed models, they are compared to the semi-analytical
mode-matching model from Gabard (2010). The three solutions along the upper duct wall
are compared in figure 6. Again, the solutions from Goldstein’s and Pierce’s equations
are identical. They are also in close agreement with the mode-matching solution, even in
the vicinity of the impedance discontinuities at x = 0.125 and 0.625, where the acoustic
pressure varies rapidly. The velocity potentials ¢ and ¢ vary continuously in these regions,
but their slopes change across the impedance discontinuities. This behaviour is well
resolved by the high-order finite element method. The pressure fields shown in figure 6
are obtained by computing p = —pg Do¢p/Dt or p = Dog/Dt. It is the gradient ugy - V
included in the material derivative that results in rapid variations of p near impedance
discontinuities. This behaviour is well-known and expected; see Gabard (2010) and
Luneville & Mercier (2014) for more details.

These results confirm that the formulation of the adjoint Myers condition for Goldstein’s
equation proposed in §2.2.2 is consistent with the standard formulation of Eversman
(2001a). This also confirms that the formulations of the direct and adjoint Myers
impedance conditions for Pierce’s equation proposed in § 3 are consistent with those for
Goldstein’s equation.

5.3. Propagation in sheared non-isothermal flows

In the results presented above, Pierce’s and Goldstein’s wave equations yield almost
identical results. This is not always the case, in particular when the mean flow includes
strong temperature gradients. To illustrate this, two additional test cases are considered,
namely the sound radiated by a source in a hot jet, and the sound produced by a point
source in a duct with a hot sheared flow. The solutions from the direct problems are
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Figure 6. (a) Real part and (b) imaginary part of the pressure field at f = 5 kHz along the lined duct top wall
(y = hg). Here, blue dashed line indicates Pierce’s equation, red solid line indicates Goldstein’s equation, and
o indicates mode-matching results (reference).

also compared to reference solutions obtained with the linearised Euler equations solved
using the same high-order finite element method (Hamiche et al. 2019). The aim is to
assess quantitatively the impact of the simplifications involved in Pierce’s and Goldstein’s
operators when mean temperature gradients are present or when the mean flow is not
homentropic.

Adjoint problems have also been computed and lead to the same results as the direct
problems. For the sake of brevity, adjoint results have not been included in this subsection.

5.3.1. Free-field propagation

The case of a localised heat source radiating in a hot jet flow corresponds to the benchmark
problem used in Spieser (2020), except that two-dimensional calculations are performed
instead of axisymmetric ones. The base flow is based on the fourth CAA workshop; see
section ‘Radiation and refraction of sound waves through a two-dimensional shear layer’
of Dahl (2004). The mean flow is parallel along the x axis with a velocity profile defined
as

2
uop(y) = ujexp (—20—2) , (GR))

where o = 1.1018 m, u; = Mjcj, cj=,/yRT;, Tj=600K, y = 1.4 and R=287 m?> s 2 K~
The mean density is defined using the Crocco—Busemann law:

0 Too (Too 1) up(y) v —1_,uo(y) ( uo(y))
o _ T [(Ix + M- 11— =), 5.2
po(y) T T; uj 2 uj ©2)

where T, = 300 K and p; = | /ypo/cf, with pg = 103 330 Pa. The jet flow Mach number

is set to M; = 0.9. Note that this mean flow is isentropic but not homentropic. Following
Dahl (2004), the sound source is defined as a source term in the energy equation of the
LEE written for the variables [p’, pou’, p']*. The source distribution is

2+
202 )’

qp(x,y) = og/eexp (— (5.3)

with oy = 0.1360. Corresponding source terms are derived for Goldstein’s and Pierce’s
equations.
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Figure 7. Real part of the pressure field for the hot jet problem at St = 0.5 obtained with (a) Goldstein’s
equation, (b) Pierce’s equation, and (c) the LEE. Levels between —10~Pa and 10~ Pa from blue to yellow.

The computational domain extends from —5¢ to 18¢ in the x direction, and from —3o
to 90 in the y direction, with the jet centreline at y = 0. At the external boundaries, a
PML region of thickness 20 and made of five layers is used to absorb outgoing waves.
Simulations are performed for Strouhal numbers St = 20 /u; in the range 0.5 < Sr < 3.

A triangular mesh is used for the finite element solution. The element size is 7 = ¢ /30
along the jet centreline to discretise the point source and the jet shear layers. It is increased
progressively to reach 7 = 0.60 at the external boundaries of the domain. For the FEM
simulations, the target error for the a priori error estimator is set to 1 %, resulting in FEM
polynomial orders varying between 1 and 8.

The real part of the pressure field computed with Goldstein’s, Pierce’s and the LEE
operators at S; = 0.5 is shown in figure 7. The real part of the pressure field obtained
along the line y = 60 is shown in figure 8(a). Some differences can be observed between
the three models, especially downstream of the source. Pierce’s equation follows more
closely the LEE compared to Goldstein’s equation. This is confirmed by computing a
relative error with respect to the LEE solution as a function of frequency from the pressure
field at y = 60. Results are presented in figure 8(b). Results from Goldstein’s equation
are consistently less accurate than with Pierce’s equation. Also significant in figure 8(b)
is the decrease of the relative error as the frequency increases, which is consistent with
the high-frequency analysis used by Pierce (1990). This is explained by the fact that the
assumptions needed for Goldstein’s equation are not satisfied: the mean flow is neither
homentropic nor irrotational. Pierce’s equation does not need these assumptions, but relies
instead on a high-frequency approximation.

Table 1 compares the computational costs of the different wave operators in terms
of number of degrees of freedom (DoF), memory footprint and solving time. For a
given mesh and accuracy, the use of the LEE leads to an increase by a factor 7 in the
execution time and by a factor 15 in the memory requirements of the linear solver when
compared to Pierce’s or Goldstein’s equations. This is consistent with the comparison for
three-dimensional calculations reported by Hamiche et al. (2019).

For completeness, figure 8(b) also includes results for the same case but with uniform
temperature 7p = 600 K. In this case, pp and cop are uniform, hence Goldstein’s and
Pierce’s equations are equivalent, which is confirmed by figure 8(b). The accuracy of
Goldstein’s equation is improved significantly compared to the non-isothermal-jet case
because the mean flow is now homentropic. The remaining error compared to the LEE is
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Figure 8. (a) Real part of the acoustic pressure at y = 60 for St = 0.5, and (b) corresponding relative error
€ (with LEE as reference) for an increasing Strouhal number. Here, solid line indicates LEE, blue dotted line
indicates Pierce’s equation, and red dashed line indicates Goldstein’s equation. Error levels for an isothermal
jet with Tp = 600 K are also reported: x indicates Pierce’s equation, and o indicates Goldstein’s equation.

Method Number of DoF Factorisation memory (Mb) Solving time (s)
Goldstein 270300 723 4
Pierce 270300 723 4
LEE 1081 100 10900 28

Table 1. Comparison of the computational costs of the different wave operators as reported by the MUMPS
linear solver (Amestoy et al. 2001), for the non-isothermal jet flow problem at St = 3.

due to the jet flow, which contradicts the irrotational flow assumption used for Goldstein’s
equation.

5.3.2. In-duct propagation

In this test case, a point mass source is located in a duct containing a hot sheared flow. The
definitions of the duct and the source are identical to those of the duct problem presented in
§ 5.2, except that no liner is considered. Inside the duct, a mean velocity profile is defined

as
) , 54

withn =3, Tj = 600K, y = 1.4 and R = 287m* s~2 K™ . The flow Mach number along
the duct centreline is M; = 0.5. The mean density is defined from the Crocco-Busemann
law (5.2) with To, = 300 K and pg = 103 330 Pa.

The direct problems based on either Pierce’s or Goldstein’s operator are solved with
the high-order FEM method, and the results are compared to the LEE solutions. All the
numerical simulations are carried out with f = 5 kHz using a mesh similar to that used
in §5.2. The a priori accuracy target is E7 = 1 %, resulting in polynomial orders prey
varying between 1 and 4.

The acoustic pressure in the duct computed from the three linearised operators is
shown in figure 9. While the overall pressure distributions are similar between the three
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Figure 9. Real part of pressure in the duct with sheared flow at f = 5 kHz, for (a) Goldstein’s equation, (b)
Pierce’s equation, and (c) the LEE. Levels between —7 Pa and +7 Pa from blue to yellow.
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Figure 10. (a) Real part and (b) imaginary part of the pressure field at f = 5 kHz along the duct top wall
(y = hg), Here, solid line indicates the LEE, blue dotted line indicates Pierce’s equation, and red dashed line
indicates Goldstein’s equation.

solutions, the details of the solution obtained with Pierce’s equation follow more closely
the reference solution.

The real and imaginary parts of the acoustic pressure along the duct top wall are shown
in figure 10 for the three propagation operators. The best agreement with the LEE reference
solution is clearly obtained with Pierce’s equation. The relative error with respect to the
LEE solution is 26.1 % using Pierce’s equation and 52.3 % using Goldstein’s equation.
The variation of the relative error from the LEE solution is shown in figure 11 for a range of
Helmholtz numbers wh,/c; varying between 5 and 40. The same trend is observed where
Pierce’s equation is consistently more accurate than Goldstein’s equation. These results
indicate that Pierce’s operator is more accurate when modelling acoustic propagation in
regions with mean temperature gradients. Note that the peaks of error seen in figure 11
are due to the cut-off frequencies of the duct modes. Whenever the frequency of interest
is close to the cut-off frequency of a duct mode, the models are very sensitive to any
numerical error, and large discrepancies can be observed between different propagation
models. This is discussed in more detail in § V.B. in Gabard (2014).
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Figure 11. Relative error with respect to the LEE solution for the acoustic pressure along the duct top wall
(y = hg). Here, blue dotted line indicates Pierce’s equation, and red dashed line indicates Goldstein’s
equation.

6. Summary and conclusions

In this paper, we have formulated a number of direct and adjoint problems for sound
propagation with flow. The scalar wave equations from Goldstein and Pierce have been
considered in a general setting, i.e. with a compressible mean flow, far-field radiation,
volume sources and lined and/or vibrating surfaces. The adjoint problems have been
devised to provide tailored Green’s functions that facilitate the computation of the direct
problem solution. While the two propagation operators considered here are self-adjoint,
the various boundary conditions are not self-adjoint. In particular, the adjoint Myers
impedance condition has been formulated for each propagation operator. This has been
done in a manner consistent with the formulation proposed by Eversman (2001a) for
the direct Myers condition for Goldstein’s equation. The inclusion in the variational
formulations of the far-field radiation condition with flow has also been revisited. By
reversing the flow, the adjoint problems for the tailored Green’s functions can be recast in
forms that are solved readily using existing solvers for the direct problems. Using a series
of test cases, the solutions obtained through the use of tailored adjoint Green’s functions
were found to be consistent with the direct problems, thus validating the formulation of
the adjoint problems.

The differences between the two propagation operators have been highlighted in cases
where the mean flow exhibits temperature gradients. In such cases, Pierce’s equation was
found to be more accurate and should be preferred when modelling sound propagation
through non-isothermal flows. As expected, the accuracy of the two wave equations
improves when the frequency increases.

The proposed adjoint problems and the associated tailored Green’s functions can be
useful in a wide range of applications, such as stochastic sound sources (e.g. aerodynamic
noise sources) and source localisation problems. In addition, the systematic analysis
presented could also be applied to other propagation operators, such as the acoustic
perturbation equations, or to other situations such as the presence of porous materials.
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Appendix A. Two-dimensional radiation condition

To derive the radiation condition in two-dimensions for Goldstein’s equation, we apply the
same reasoning as for the three-dimensional condition outlined in § 2.1.4. The sound field
radiated in a uniform mean flow by a generic source term g on the right-hand side of (2.1)
is given by (2.12). In two dimensions, the free-field Green’s function G(x|y) is defined as

G( . i ik 1Z1y) (2) kr
xly)—EeXp E(x—y)-g Hy 5) (A1)

where H(()z) is the zeroth-order Hankel function of the second kind. After some
developments, the following result is obtained:

up-n DoGGxly) _ 9G(xly) _ r Hy G/ B%)

s Dt on 7 H(()2) (k7/ B2)

G(xly), (A2)

where H 52) is the first-order Hankel function of the second kind. The derivatives on the
left-hand side of (A2) operate on the x coordinate. This result is exact and valid for any
value of r. When the observer is in the geometric far field (i.e. ||x]| > ||y|l), the distance
7 can be approximated by 7. From (2.12) and (A2), the velocity potential satisfies the
following radiation condition in the geometric far field:

@) 1.5 /02
un +x D 0 . 1 r H (kl" )
02 Dog _ 3¢ _ ikaopg + 0 =<5 ). =7 12—/'3, (A3a,b)
r Dt r r/ FH (k7/62)

when r — 4-00. The corresponding boundary integral in the variational formulation (2.3)
is written as

In. = / ikean o dT (A4)
It is interesting to note that when k7 is large, it is possible to show that arp =~ (r/F)[1 +
B2/(2ik#)] (for this purpose, use (10.17.6) in DLMF 2022), which is consistent with the
two-dimensional far-field boundary conditions derived by Bayliss & Turkel (1982).
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