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Motivated by the relevance of edge state solutions as mediators of transition, we use
direct numerical simulations to study the effect of spatially non-uniform viscosity on
their energy and stability in minimal channel flows. What we seek is a theoretical
support rooted in a fully nonlinear framework that explains the modified threshold
for transition to turbulence in flows with temperature-dependent viscosity. Consistently
over a range of subcritical Reynolds numbers, we find that decreasing viscosity away
from the walls weakens the streamwise streaks and the vortical structures responsible
for their regeneration. The entire self-sustained cycle of the edge state is maintained
on a lower kinetic energy level with a smaller driving force, compared to a flow with
constant viscosity. Increasing viscosity away from the walls has the opposite effect.
In both cases, the effect is proportional to the strength of the viscosity gradient. The
results presented highlight a local shift in the state space of the position of the edge
state relative to the laminar attractor with the consequent modulation of its basin of
attraction in the proximity of the edge state and of the surrounding manifold. The
implication is that the threshold for transition is reduced for perturbations evolving in
the neighbourhood of the edge state in the case that viscosity decreases away from
the walls, and vice versa.

Key words: nonlinear dynamical systems, nonlinear instability, transition to turbulence

1. Introduction
It is well known that transition from a laminar to a turbulent regime in wall-

bounded low speed flows is delayed if the viscosity of the fluid decreases near the
solid surfaces, while early transition results from the opposite variation of viscosity.
Experimental evidence was provided since the late 1940s by using heated plates in
boundary layer flows of air, for which the viscosity increases with temperature. In
such a flow configuration transition to turbulence occurs earlier, as compared to the
unheated case (Liepmann & Fila 1947). On the contrary, an increase of the critical
Reynolds number for transition of up to an order of magnitude was reported in flows
of water, for which the viscosity decreases with temperature, over heated surfaces of
various geometries (Strazisar, Reshotko & Prahl 1977; Strazisar & Reshotko 1978;
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Barker & Gile 1981; Lauchle & Gurney 1984). The physical interpretation often
invoked to explain this effect is that lower viscosity close to the wall results in a
fuller mean velocity profile, which is less susceptible to showing an inflectional point.

Linear stability analysis of the incompressible Navier–Stokes equations with
a non-uniform temperature field has been so far the main tool adopted to shed
light on how property variations influence transition to turbulence. Several authors
have focused on canonical flows, such as boundary layers or channel flows, and
demonstrated the strong stabilising effect of lower viscosity close to the wall on
the least damped eigenvalue, as compared to cases with constant properties at the
same Reynolds number (Schäfer & Herwig 1993; Wall & Wilson 1996, 1997).
Govindarajan, L’vov & Procaccia (2001) showed that the mechanism responsible
for the stabilisation of the laminar profile is a reduced intake of energy from the
mean flow by the perturbation velocity field, which reduces the production term in
the perturbation kinetic energy (PKE) balance. This effect is maximised when the
viscosity variation is localised at the critical layer.

The mentioned studies are based on eigenvalue analyses, thus they provide
information on the flow behaviour for long evolution times. However, transition to
turbulence can occur in a subcritical scenario at significantly lower Reynolds numbers
than the critical value predicted by the linear theory. Transient amplification of PKE
in linearly stable flows due to the non-normality of the linearised operator offers a
possible mechanism to trigger secondary instabilities and, eventually, transition to
turbulence (Schmid & Henningson 2001). Chikkadi, Sameen & Govindarajan (2005),
Sameen & Govindarajan (2007) have demonstrated that a non-uniform mean viscosity
distribution in the direction normal to the walls only marginally affects the maximum
transient growth in a plane channel. This conclusion was reversed by Nouar, Bottaro
& Brancher (2007), who accounted for the interaction between viscosity and velocity
fluctuations in studying the stability of shear-thinning fluids. They showed that a
viscosity contrast is, indeed, a viable solution to delay transition as the transient
energy growth of small perturbations is strongly reduced as the consequence of
the interaction between the fluctuating fields. Further discussion on instabilities of
viscosity stratified flows is reported in the review by Govindarajan & Sahu (2014).

Despite the relevance of the large potential for transient growth of perturbations in
wall-bounded shear flows, transition is a predominantly nonlinear phenomenon, whose
manifestation depends on the existence of attracting solutions of the Navier–Stokes
equations other than the laminar state (Waleffe 1995). In the last decade, new
momentum to understanding subcritical transition in linearly stable shear flows has
been given by approaching the problem from a fully nonlinear perspective rooted in
dynamical systems theory. In a state space representation the laminar flow regime is
an attractor while turbulence is generally understood as a saddle. Experimental and
numerical investigations of transition in pipe flows, which are linearly stable to any
small perturbations, showed that turbulence is only a transient phenomenon if the
Reynolds number is low. Localised patches of turbulence, also called puffs, eventually
decay towards a laminar state at a rate that decreases super-exponentially with the
Reynolds number (Hof et al. 2006; Eckhardt et al. 2007; Hof et al. 2008). Similar
observations were documented in Couette flow, where the lifetime of turbulent spots
increases with the Reynolds number, but remained finite (Schneider et al. 2010a). At
sufficiently high Reynolds numbers and in large domains puffs start to proliferate at
a rate which outpaces the decay rate of the single puff and quickly fill the domain
bringing the flow to a sustained turbulent state (Avila et al. 2011). This scenario
changes in small domains, such as the minimal flow unit object of the present study,
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where turbulent spots do not have enough space to split and expand. There, turbulence
is a saddle even at high Reynolds numbers, however the probability of relaminarisation
rapidly drops, becoming negligible as this parameter increases. Regardless of the
formal definition of turbulence, a stable manifold exists that separates flow trajectories
that relaminarise from the ones that become turbulent, which is commonly referred
to as the edge of chaos (Skufca, Yorke & Eckhardt 2006; Schneider, Eckhardt &
Yorke 2007). There is now ample evidence that attracting solutions embedded in the
manifold, so-called edge states, play a crucial role as mediators and harbingers of
transition. These solutions represent minimal self-sustained perturbations that never
decay nor become turbulent.

Extensive documentation of edge states is available for several canonical flows, see
for example Duguet, Pringle & Kerswell (2008a), Duguet, Willis & Kerswell (2008b)
for pipe; Cherubini et al. (2011), Duguet et al. (2012), Kreilos et al. (2013), Khapko
et al. (2013, 2016) for boundary layers; Schneider et al. (2008), Duguet, Schlatter
& Henningson (2009), Duguet et al. (2013) for Couette; and Toh & Itano (2003),
Zammert & Eckhardt (2014a,b) for channel flows. Edge states typically appear in
the form of travelling waves, relative periodic orbits or chaotic objects, and exhibit
low-dimensional dynamics of the fluctuating velocity field. A common feature to all
the known solutions is the strong three-dimensional spatial localisation in sufficiently
wide and long domains. On the other hand, in narrow and short domains, such as
the minimal flow unit, the localisation is only in the wall-normal direction, see for
example the asymmetric flow structures documented in Xi & Graham (2012), Zammert
& Eckhardt (2014a). In such domains, the fluctuating velocity field is reminiscent of
turbulence in minimal flow units, where the turbulent fluctuations can be transiently
confined to one half-channel only, leaving the other relatively undisturbed (Jiménez
& Moin 1991). Confining the flow to the minimal flow unit inevitably imposes
the spanwise wavelength of the structures and constrains their spatial extent in
the z–y plane. Exact coherent states calculated in wider and longer domains may
show different vertical localisation, possibly symmetric, as it is the case for the
lower-branch travelling waves and relative periodic orbits documented in Zammert &
Eckhardt (2014b). Despite the lack of localisation in the horizontal directions of edge
states in small domains, the active core is qualitatively the same as the one observed
in large flow units, see for example Khapko et al. (2013, 2016). It consists of flow
structures that evolve in a self-sustained cycle closely resembling the one advocated
in Hamilton, Kim & Waleffe (1995), Waleffe (1997) and the cycle of wall turbulence
(Jiménez & Pinelli 1999). Three main steps are identified, namely (i) formation of
streamwise low and high speed streaks; (ii) instability of the two-dimensional velocity
profile; (iii) streak breakup and formation of quasi-streamwise vortices responsible for
generating new streaks. This is exemplified in figures 1 and 2 for a nearly minimal
channel flow unit at the subcritical Reynolds number Re= 2608. In this configuration
the edge state is a relative periodic orbit with period T = 1660. Projections on the
time–energy and time–vorticity planes and snapshots of the perturbation velocity
with respect to the mean profile highlight the mentioned steps of the self-sustained
process. In particular, the time at which the streaks reach their maximum amplitude
is indicated by tB and the time at which the intensity of the quasi-streamwise vortices
is highest is indicated by tA. The time evolution of the streamwise and cross-flow
perturbation kinetic energy of the edge state regeneration cycle at Re = 2608 is
compared to a turbulent orbit at the same Reynolds number in figure 3. While the
intensity of the streamwise component is comparable between the two regimes, the
cross-flow energy of the edge state is on average 2 orders of magnitude smaller.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

92
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.921


382 E. Rinaldi, P. Schlatter and S. Bagheri

10–2

10–3

10–4

10–5

10–6

0 100 200 300 400 500
t

0 100 200 300 400 500
t

 0.1

0.2

 0.3

0.4

 0.6

 0.5

0.7

E

(a) (b)

FIGURE 1. (Colour online) Time evolution at Re= 2608 of (a) the streamwise and cross-
flow perturbation kinetic energy, Esw and Ecf , and of (b) the streamwise and wall-normal
vorticity, Ωx and Ωy; tA and tB indicate the times at which the highest peaks in Ecf and
Esw occur, respectively, and are the same in (a) and (b). At this Reynolds number, the
edge state is a relative periodic orbit with period T = 1660. The definitions of perturbation
kinetic energy and vorticity are given in § 2.

(a) (b)

FIGURE 2. (Colour online) Snapshots of the flow field at Re= 2608 at times (a) tA and
(b) tB as defined in figure 1. The edge state is asymmetric and localised in the vertical
direction, close to the lower wall, hence only the lower half of the channel is shown.
The solid wall is at the bottom and the streamwise flow direction enters the paper in both
images. Contours and lines indicate (a) red/blue ωx=±1, green λ2=−0.1 and black lines
the streamtracers of the in-plane velocity components, v and w; (b) red/blue u− umean =

±0.2 and black lines the streamwise velocity profile iso-contours spaced by 1u= 0.11.

Transitional flows have been repeatedly shown to approach edge states before
crossing the manifold and eventually becoming turbulent (Duguet et al. 2009;
Schneider & Eckhardt 2009; Schneider, Marinc & Eckhardt 2010b; Avila et al.
2013; Khapko et al. 2016), and on the path to relaminarisation from a turbulent state
(De Lozar et al. 2012; Park & Graham 2015). However, the latter scenario does not
constitute the only possible path for relaminarisation (Chantry & Schneider 2014).
Edge states can be regarded as critical nuclei for transition (Schneider et al. 2010b)
and, being low-branch states, are naturally associated with a threshold in perturbation
amplitude (Schneider et al. 2008). This conceptual framework was recently used to
model the spot nucleation in transitional boundary layers (Kreilos et al. 2016). Note
that, despite their low energy, edge states do not constitute the minimal possible
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FIGURE 3. (Colour online) Time evolution of the streamwise (a) and cross-flow
(b) perturbation kinetic energy of the edge state regeneration cycle and of a turbulent
trajectory at Re= 2608. The definition of Esw and Ecf is given in § 2. The energy of the
turbulent flow is calculated using the root-mean-square components of the velocity.

perturbation that triggers transition, also referred to as the minimal seed, which is
identified in the state space by the shortest distance between the laminar attractor and
the manifold (Pringle & Kerswell 2010). Nonetheless, edge states provide relevant
indications on the transition process for perturbations that evolve in their proximity in
the state space. These are not limited to small finite amplitude perturbations carefully
generated within a boundary layer, but additionally include a more general scenario
of boundary layer receptivity to random noise and spot nucleation (Khapko et al.
2016).

In this paper, we present theoretical arguments stemming from a fully nonlinear
framework that explain the known modified threshold for transition to turbulence
for fluid flows with temperature-dependent viscosity. As opposed to most previous
literature concerned with linearised flow models, we achieve our goal by investigating
the modulating effect of an imposed temperature-dependent viscosity profile on edge
states, specifically on the perturbation kinetic energy level of their flow structures and
on the recurrence of the self-sustained cycle. Our study follows a similar spirit as
Roland, Plaut & Nouar (2010), who showed that in shear-thinning fluids the critical
Reynolds number for the appearance of nonlinear travelling wave solutions in a
pipe is substantially increased, therefore indicating a stabilisation of the flow. The
relevance of our results is in a transition scenario where edge states act as mediators,
and hence excludes strong perturbations to the flow which possibly bypass their role.
There, a more relevant question is how variable viscosity affects the position and
characteristics of the turbulent saddle, which goes beyond the scope of this paper.
The flow configuration considered is the plane channel with a frozen wall-normal
symmetric temperature distribution in the absence of gravity, which allows us to
isolate the effect of viscosity on the flow. The validity of the frozen temperature
profile for the particular flow case under study is substantiated with a priori and a
posteriori arguments.

We anticipate the results discussed later by presenting a sketch of the modified state
space in figure 4. Smaller viscosity near the walls and larger viscosity at the centre
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FIGURE 4. (Colour online) Sketch of the state space for a channel flow with unitary non-
dimensional reference viscosity at the walls and viscosity at the centreline indicated by µc.
The variation of viscosity is monotonic towards the centreline according to the constitutive
relation given in § 2. The red and green arrows denote two flow trajectories that become
turbulent or relaminarise, respectively. The present results indicate that the position of the
edge state shifts away from the laminar attractor, if µc > 1, or towards it, if µc > 1. As a
consequence, the stable manifold in the vicinity of the edge state is modulated accordingly.
This study does not provide a characterisation of the effect of viscosity on the manifold
farther away from the edge state (dashed black line). The turbulent saddle is also affected
by viscosity.

of the channel, µc > 1 in the figure, result in a shift of the position of the edge
state away from the laminar attractor and, as a consequence, in a modulation of the
stable manifold in its vicinity. There, perturbations need to reach larger amplitudes to
overcome the local threshold for transition. The opposite results if viscosity is larger
at the walls and smaller at the centreline, µc < 1. The described effect is consistent
with the behaviour observed in experiments with wall heating or cooling, although it
should be noted that the transition scenario taking place in experiments might differ
from the one discussed here depending on the specific perturbations applied.

The structure of the paper is as follows. Section 2 describes the set-up of the
problem and the numerical method used in this study. The main features of edge
state solutions in minimal unit channels with constant viscosity are introduced in § 3.
The effect of viscosity is discussed in § 4. Conclusions are presented in § 5.

2. Flow configuration and numerical set-up
2.1. Navier–Stokes equations for a flow with non-uniform mean viscosity

The configuration studied in this paper is the incompressible flow of a variable
viscosity fluid with constant mass flux in a plane channel, for which the dynamics is
governed by the Navier–Stokes equations. In non-dimensional form they read

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
=−

∂p
∂xi
+

1
Re

∂

∂xj
(2µSij). (2.2)
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FIGURE 5. (Colour online) Exemplary temperature distributions and resulting viscosity,
velocity and velocity gradient profiles. Due to symmetry (only dUlam/dy is anti-symmetric),
only the upper half-channel is shown. The wall is located at y= 1 and the centreline at
y = 0. Lines correspond to µ = const., or µc = 1 (solid); µc = 0.75 (dash); µc = 1.25
(dash-dot). Line patterns are consistent in the four panels.

In the above expressions xi indicates the spatial coordinates (x streamwise; y wall
normal; z spanwise), ui is the ith component of the velocity (u streamwise; v wall
normal; w spanwise), p is the pressure and Sij= (1/2)(∂ui/∂xj+ ∂uj/∂xi) is the strain
rate tensor. The non-dimensional dynamic viscosity of the fluid is µ=µw +µd, with
µd=µd(y) indicating the local deviation from the value at the wall, µw. The Reynolds
number is defined as Re= ρ∗whUc/µ

∗

w, with Uc denoting the centreline velocity, h the
half-channel height and ρ∗w and µ∗w the dimensional density and viscosity reference
values, taken as the ones attained at the wall. Due to the choice of the reference
viscosity scale, µw = 1. The constitutive relation for the temperature-dependent
viscosity mimics that of a liquid, namely

µ(y)=
1

Θ(y)
. (2.3)

We impose a symmetric temperature profile that qualitatively resembles the one
resulting from a volumetric or wall heating/cooling of a laminar flow with constant
thermal conductivity

Θ(y)= 1+ (Θc − 1)(1− y2), (2.4)

with Θc the centreline value and y = [−1, 1]. Temperature is kept frozen in all
simulations, this corresponds to assuming that the interaction between the fluctuating
velocity field and the temperature fluctuations is negligible. This assumption is
discussed in more detail in § 2.2.

Equation (2.3) allows us to integrate analytically the streamwise momentum
equation and get the following non-dimensional laminar velocity

Ulam(y)=−
10

4Θc + 6

(
Θcy2
+

1−Θc

2
y4
−

1+Θc

2

)
, (2.5)

which was made non-dimensional using the centreline velocity at constant temperature
Uc=−(1/2)(dP/dx)h2 and where the factor (4Θc+ 6)/15 was used to transform bulk
to centreline units. Figure 5 shows some exemplary temperature, viscosity, laminar
velocity and velocity gradient profiles. The latter is denoted as dUlam/dy. Increasing
viscosity towards the centreline (dash-dot lines) results in a velocity profile that
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is fuller and linearly more stable as compared to the one of a fluid with constant
viscosity. This is confirmed by a larger (in magnitude) velocity gradient near the
walls and a smaller gradient in the central part of the channel. The opposite effect
results from decreasing viscosity towards the centreline (dash lines). Note that the
changes in viscosity reported in the figure and discussed throughout the paper can be
achieved with moderate heating or cooling in practical applications. For example, an
increase or decrease of viscosity of water by ±25 % from a reference condition of
Θref = 15 ◦C is obtained with a decrease or increase of temperature by 1Θ =−8.5 ◦C
or 1Θ = 12◦ C, respectively. Temperature gradients can be significantly larger in real
life problems, and so can the variations in viscosity.

In the proceeding of the paper, flow cases with different viscosity distributions,
which will be later identified by the centreline value µc only, will be compared at
constant Reynolds number based on (i) wall viscosity (Re); (ii) average viscosity
across the channel height

Re=
2∫ 1

−1
µ dy

ρ∗whUc

µ∗w
=

1
µav

Re. (2.6)

For a constant viscosity flow Re=Re and Uc=Uc. Definition (2.6) allows us to filter
out the bulk effect of having locally larger or smaller viscosity with respect to the
reference value at the walls (Wall & Wilson 1996; Sameen & Govindarajan 2007). On
the other hand, in the context of shear-thinning fluids, it has been shown by Nouar
et al. (2007) that the correct viscosity scale for the definition of the Reynolds number
is the one at the wall. Choosing a different reference value might yield qualitatively
wrong conclusions on the effect of viscosity on the stability of the flow. For this
reason, we will carry out comparisons using both Re and Re in order to confirm
that our discussion does not depend on the specific choice of the reference viscosity.
In the following, all quantities are made non-dimensional using the semi-channel
height, h, and the centreline velocity of the flow at constant viscosity, Uc. The ratio
between the centreline velocities for variable and constant viscosity cases when
compared at constant Re is given by Uc/Uc = Re/Re =

∫
µ dy/2. We introduce the

following definitions of volume averaged perturbation kinetic energy (PKE) based on
the streamwise and cross-flow components of the velocity field, Esw and Ecf , that will
be used in the discussion of the results

Esw =
1
2

1
LxLz

∫ Lz

0

∫ Lx

0

∫ 1

−1
(u(x, y, z)− umean( y))2 dy dx dz, (2.7)

Ecf =
1
2

1
LxLz

∫ Lz

0

∫ Lx

0

∫ 1

−1
v2(x, y, z)+w2(x, y, z) dy dx dz. (2.8)

The total perturbation energy is Etot = Esw + Ecf . Additionally, we define volume
averaged vorticity

Ωi =
1
2

1
LxLz

∫ Lz

0

∫ Lx

0

∫ 1

−1
|ωi| dy dx dz. (2.9)

2.2. Validity of the frozen temperature profile assumption
We assess the validity of assuming a frozen temperature profile by means of a priori
and a posteriori arguments. This assumption corresponds to entirely neglecting the
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FIGURE 6. (Colour online) Time evolution of transient energy growth function Gmax for
Pr= 7, β = 2, Re= 3000 (a) and Re= 3000 (b).

interaction between the fluctuating velocity and temperature, hence viscosity, fields.
Depending on the flow case under consideration, this can be a crude approximation
that has been shown to yield wrong conclusions in the context of the linear stability
of shear-thinning fluids (Nouar et al. 2007).

The a priori check is performed using the linearised Navier–Stokes and energy
equations for a fluid with temperature dependent viscosity. For the sake of brevity, the
equations are not reported here and the reader is referred to Wall & Wilson (1996),
Sameen & Govindarajan (2007) for details. Similarly to Nouar et al. (2007), we have
calculated the energy growth function, Gmax, which represents the maximum possible
linear amplification in time of small initial perturbations (Reddy & Henningson 1993),
and compared the results obtained including and neglecting the temperature fluctuation
terms in the momentum equations. The laminar velocity and temperature profiles
used for the linearisation are those of equations (2.5) and (2.4). Figure 6 displays the
calculated growth functions for Reynolds Re= 3000 and Re= 3000, Prandtl number
Pr=µ/ρκ=7 (water), where κ is the thermal diffusivity of the fluid. The perturbation
is assumed to be streamwise independent and to have a spanwise wavenumber β = 2.
Three viscosity profiles are considered, namely µ= const., µc = 0.75 and µc = 1.25.
Differently to what was found for shear-thinning fluids, results for a fluid with
temperature-dependent viscosity confirm that the error committed by excluding the
temperature fluctuation terms in the momentum equations is negligible.

The a posteriori verification of the validity of the assumption on the temperature
profile is based on the estimation of the time scales of the ‘turbulent mixing’, tt, and
of heat diffusion, th, namely

tt =
h

u∗ES
, th =

h2

κ
,

tt

th
=

1
uES Pr Re

, (2.10a−c)

with u∗ES and uES a characteristic velocity scale of the edge state fluctuating field in
dimensional and non-dimensional form, respectively, and Pr = 7. The ratio of time
scales for three Reynolds numbers, Re= 2608, 3000, 3618, is shown in figure 7. Four
reference velocity scales are considered. They are calculated as the square-root of the
maximum and minimum values of the kinetic energy over one period of the edge state.
The used values of Etot and Ecf are those reported in § 4, figure 15. Results show a
prominent separation of the time scales associated with the fluid dynamic mixing and
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FIGURE 7. (Colour online) Ratio of time scales between the ‘turbulent mixing’, tt, and
of heat diffusion, th. The values of the energy are taken from figure 15 and Pr= 7.

the diffusion of heat, which supports the assumption that changes in the temperature
profile are slow and cannot be seen by the fluctuating velocity field.

As a final note on the strength and role of viscosity fluctuations on the velocity
field, we refer to recent studies of heat transfer in turbulent channel flows in the
low Mach number limit with strong mean property variations (viscosity and density).
It has been found by Patel et al. (2015), Patel, Boersma & Pecnik (2016) that the
turbulent viscosity fluctuations are less than 10 % of the mean values, even when
the variation of the mean viscosity reaches a factor 2, and that the largest effect on
turbulent structures and statistics is due to the mean gradients.

2.3. Discretisation and edge state identification
All the simulations are performed using the spectral code SIMSON (Chevalier et al.
2007) on a nearly minimal box sized π× 2× 0.4π. The flow is driven by an adaptive
pressure gradient that ensures a constant laminar bulk Reynolds number. The velocity
components are expanded in Nx and Nz Fourier modes along the horizontal directions
and in Ny Chebyshev polynomials in the wall-normal direction. A resolution of Nx ×

Ny×Nz=48×97×48 was found sufficient to fully resolve the flow for each Reynolds
numbers considered. Dealiasing is performed using the 3/2 rule.

In order to track edge state solutions we apply a standard bisection algorithm
(Skufca et al. 2006) on the amplitude of the initial perturbation velocity field. The
flow is evolved in time and the integrated root-mean-square value of the wall-normal
velocity, vrms, is used to discern whether the flow is laminar or turbulent. The
simulation is stopped if vrms reaches predefined threshold values, typically set to
vrms,lam = 2 × 10−4 and vrms,tur = 2.5 × 10−2, respectively. The tolerance on the
scaling coefficient for the initial perturbation velocity field is set to 2 × 10−14. In
order to remain on the manifold and avoid departures due to numerical errors, the
bisection step is repeated at a constant interval 1t = 500. As a consequence, the
relative difference between the energies of the trajectories that relaminarise and
become turbulent changes at each restart. We have verified that relative values remain
small for all simulations. Typically, at restart 1Ecf = (Ecf ,tur − Ecf ,lam)/Ecf ,lam = 10−5;
occasional peak values reach 1Ecf = 10−3. For each combination of Reynolds
numbers and centreline viscosity the edge state is tracked in time for at least 30 000
non-dimensional time units, unless earlier convergence to a relative periodic orbit is
achieved.
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FIGURE 8. (Colour online) Bifurcation diagram of the inter-burst period T as function
of Re for channel flows with constant viscosity, µc = 1. Multiple symbols at a given Re
indicate that the state is aperiodic.

3. Edge states in minimal channels with constant viscosity
We start the discussion of the results by introducing the main features of edge

states solutions in minimal boxes for canonical channel flows with constant viscosity.
For such flow configuration edge states break the vertical symmetry of the channel
and localise close to one of the two walls, while extending in the streamwise and
spanwise directions (Xi & Graham 2012; Zammert & Eckhardt 2014a). Our main
reference in validating the results for µc = 1 is Zammert & Eckhardt (2014a), who
performed edge tracking on the same box size and in the same range of Reynolds
numbers. The typical time evolution of an edge state trajectory is shown in figure 1
in terms of cross-flow and streamwise energy (figure 1a) and streamwise and wall-
normal vorticity (figure 1b). Bursting events occurring at t = tA are responsible for
generating quasi-streamwise vortices that produce low and high speed streaks by the
lift-up mechanism. The streaks reach a maximum PKE at the subsequent time t =
tB, when the cross-flow motion has been dissipated. It is possible to look at this
two-step process in terms of vorticity. The bursting events correspond to peaks in
the volume averaged streamwise vorticity Ωx, which is a measure of the strength
of the quasi-streamwise vortices. The peaks in streaks intensity as measured by Esw
correspond to peaks in wall-normal vorticity Ωy, which reduces to the shear ∂u/∂z
when the streaks are streamwise independent. Snapshots of the bursting event at tA and
of the maximum amplitude streaks at tB are displayed in figure 2. The final step that
makes the edge state dynamics self-sustained is an instability of the two-dimensional
streaky profile of figure 2(b) that results in a new burst of the streaks.

Based on the features discussed in figures 1 and 2, we classify edge state orbits into
periodic and aperiodic ones using as measure of the periodicity the time between two
consecutive maximum peaks in the cross-flow kinetic energy, which will be indicated
as T . In the following we will use the terms aperiodic and chaotic interchangeably
when discussing the nature of the edge state orbit.

The bifurcation diagram of inter-burst time intervals T over a typical range of
Reynolds numbers at which subcritical transition occurs is presented in figure 8.
Periods are indicated by symbols at given Re; periodic orbits correspond to single
entries while for chaotic ones we report all the calculated periods over the total
integration time after discarding the initial transient up to t = 4000. Results are in
agreement with Zammert & Eckhardt (2014a) and show mostly periodic solutions

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

92
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.921


390 E. Rinaldi, P. Schlatter and S. Bagheri

2000 2500 3000 3500 4000 4500 5000

Re

10–4

10–5

10–1

10–2

10–3

FIGURE 9. (Colour online) Bifurcation diagram of the maximum total and cross-flow
energy, Etot and Ecf , over the edge state evolution for channel flows with constant viscosity,
µc = 1. Multiple symbols at a given Re indicate that the state is aperiodic.

in the range Re = [2600, 3100] and for Re > 4000. At intermediate Reynolds,
Re=[3100, 3600], orbits undergo bifurcations that result in chaotic states, for which T
largely fluctuates. In the range Re= [3100, 3300], we could not track the PO2 family
of periodic orbits documented by Zammert & Eckhardt (2014a) characterised by short
periods T ≈ 500. On the contrary, we find chaotic recurrence of bursts even after
extending the total tracking time of the states to twice that used by the mentioned
authors. The chaotic nature of the edge state recurrence depends on the properties of
the dynamic saddle and does not bear a specific physical meaning. Minute changes
to any flow parameter can affect significantly the recurrence of the edge state, as it
is the case for the relative periodic orbit documented by Khapko et al. (2013) in the
asymptotic suction boundary layer. Small changes resulted in a spanwise left-hopping,
right-hopping, left-right-hopping or erratic shifts. Despite this substantial difference,
the nature of the flow structures evolving in time remains the same between the
four cases. Similarly, the edge states reported in this paper are qualitatively the same
as in figures 1 and 2 for each Reynolds number considered, despite differences in
their period. The chaotic orbits of figure 8 and the ones described in § 4 can also
be explained by the fixed maximum observation time used in the simulations; it
cannot be excluded that extending this limit to sufficiently large times could result in
convergence to a constant time period.

The bifurcation diagrams of the maximum total and cross-flow energy during each
recurrence of the edge state regeneration cycle are shown in figure 9. They provide
an indication of the strength of the flow structures and on the minimal energy
needed to have self-sustained dynamics. They also represent a local threshold for
transition for perturbations evolving in the neighbourhood of the edge state. There,
the slightest deviation from the reported values will either result in relaminarisation
or in transition to the turbulent regime. Overall, both Etot and Ecf decrease as the
Reynolds number increases, meaning that smaller perturbations measured in centreline
velocity are needed to sustain the edge state dynamics. Several aperiodic edge states
are characterised by approximately constant values of Etot and Ecf at each regeneration
cycle. For example, at Re=3946 the period fluctuates between T=1340 and T=1770
while the energies vary by less than 0.2 % around the values Etot = 5.45× 10−3 and
Ecf = 3.19× 10−5. The physical interpretation of having same perturbation energy and
different periods is that, while the volume average energy of the streaks and vortices
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FIGURE 10. (Colour online) Portion of the time evolution of the volume averaged
streamwise and cross-flow kinetic energy, Esw and Ecf , for flow cases at Re= 2608. Line
patterns are the same in (a) and (b).

is repeatedly the same, the specific shape of the streaks changes, thereby modifying
their secondary stability and characteristic time scales of the sinuous instability.

4. Effect of viscosity
4.1. Energy level and local threshold of the edge

In this section we quantify the modification to the perturbation kinetic energy of the
edge state caused by variable viscosity. As discussed in § 1, an altered energy level
of the edge state means a shift of its location in the state space with respect to the
laminar attractor and turbulent saddle. Lower energy corresponds to an edge state
that is closer to the laminar state and to a modulation of the surrounding manifold
that restricts its basin of attraction. As a consequence, perturbations evolving near the
attracting region of the edge state have to exceed a lower energy threshold to evolve
into turbulence. The opposite results if the energy of the edge state increases.

We start characterising the effect of viscosity by looking at the time evolution of
the streamwise and cross-flow energy of the edge states at Re = 2608 displayed in
figure 10. Variable viscosity does not affect the qualitative trends but modulates the
energy levels of the edge state. If µc > 1, Esw is larger than for the constant viscosity
case at each step of the edge state evolution, while the opposite is true if µc < 1, see
figure 10(a). The same behaviour is followed by Ecf in figure 10(b). Weaker streaks
and weaker vortices are needed in case µc< 1 to self-sustain the edge state dynamics,
therefore the perturbation energy threshold for transition in that area of the state space
is smaller. This statement can also be assessed in terms of streamwise and wall-normal
vorticity. Figure 11(a) shows that Ωx increases for the µc= 1.25 case with respect to
µc= 1, thus confirming stronger streamwise vortical structures; Ωy also increases, see
figure 11(a), therefore the shear due to streaky structures at their highest amplitude
is larger. The same conclusions are drawn if results are compared at the same Re.
Figure 12 shows Esw and Ecf for flow cases with µc= 0.75, 1 and 1.25 at Re= 3000.

A complete picture on the whole edge state dynamics modification is given by the
projection of its orbit on the Esw−Ecf state space, see figure 13. Results are presented
for Re= 2608 only but are qualitatively the same at different Reynolds numbers. The
whole integrated history of the energy is plotted after the initial transient of 4000
non-dimensional time units. When the orbit is periodic the time trace collapses over
one single trajectory; this is the case for all the orbits displayed in figure 13(a).
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FIGURE 11. (Colour online) Portion of the time evolution of the volume averaged
streamwise and wall-normal vorticity, Ωx and Ωy, for flow cases at Re = 2608. Line
patterns are the same in (a) and (b).
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FIGURE 12. (Colour online) Portion of the time evolution of the volume averaged
streamwise and cross-flow kinetic energy, Esw and Ecf , for flow cases at Re= 3000. Line
patterns are the same in (a) and (b).
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FIGURE 13. (Colour online) State space projection of the edge state orbit at Re= 2608.
Rescaled simulations correspond to Re = 3000 in (a) and Re = 2233 in (b). Scattered
trajectories indicate that the state is aperiodic.
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FIGURE 14. (Colour online) State space projection of the edge state orbits at Re= 3000
and µc = 0.75, 1, 1.25.

On the other hand, aperiodic orbits follow slightly different trajectories over each
period thus resulting in a more scattered plot, as is the case for the rescaled Re=2233
in figure 13(b). Increasing viscosity away from the walls results in stronger streaks
that are generated by stronger vortices as compared to the µc = 1 case. It can be
then concluded that stronger perturbations are needed to trigger transition in flows
evolving near the edge state. The opposite results from decreasing viscosity towards
the centreline. In order to rule out that the observed effects can be reproduced by a
simple rescaling of the Reynolds number of constant viscosity cases when comparing
at constant Re, the figures additionally include results for µc=1 at Re=Re

∫
µ(y)dy/2.

Rescaling of constant viscosity simulations, when comparing at constant Re, based on
the average viscosity, can qualitatively predict the effect of viscosity on the strength
of streaks only, while it fails in describing the cross-flow motion and vortex intensity
as it predicts an opposite effect. The same modulating effect of viscosity on the edge
state energy is observed comparing flow cases at the same Reynolds number based
on the wall viscosity, as displayed in figure 14 for Re= 3000.

A more comprehensive view on the effect of viscosity on the edge state energy
is provided by figure 15, which shows at constant Re the bifurcation diagrams of
the maximum total and cross-flow energy at each regeneration cycle of the edge
state using µc as the bifurcation parameter. As in figure 13, results for the constant
property cases are included for comparison and rescaled by Re/Re. Smaller viscosity
at the centreline consistently results in lower Etot and Ecf , while the opposite occurs
if µc > 1. The rescaled values of constant viscosity edge states reasonably capture
the overall trend of Etot, that is predominantly contained in the streamwise streaks.
However, the quantitative values are not matched and discrepancies are observed
in terms of the periodic or chaotic nature of the edge state orbit. Rescaling of
constant viscosity results completely fails in predicting the trend of Ecf . If µc < 1 the
maximum kinetic energy of the cross-flow motion monotonically decreases while the
opposite occurs in constant viscosity flows at rescaled (higher) Reynolds numbers.
Bifurcation diagrams of maximum streamwise and wall-normal vorticity over the
period of the edge state (not included here) confirm what discussed in terms of
energy. The overall increase of maximum Ωx if µc > 1 and decrease if µc < 1 is
consistent with respectively stronger and weaker vortical structures and is opposite
to what a rescaling of constant viscosity cases would predict. The increase (µc > 1)
and decrease (µc < 1) of the maximum Ωy is a measure of the higher and lower
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FIGURE 15. (Colour online) Bifurcation diagrams of the maximum (a–c) total and (d–f )
cross-flow energy function of µc for three Reynolds numbers; Re= 2608 (a,d); Re= 3000
(b,e); Re= 3618 (c, f ). Symbols are the same as in figure 20. Small light symbols are the
edge states for constant viscosity at Reynolds number Re=Re

∫
µ dy/2; their periods are

rescaled by the factor Re/Re in order to be consistent with the normalisation used for the
variable viscosity cases.

shear induced by the strengthening and weakening of the streaks. Larger peak values
of Ωy when streaks are strongest and the flow is essentially two-dimensional (the
velocity profile is a function of the streamwise and wall-normal coordinates only
as in figure 2) indicate a more pronounced inflectional point from which a stronger
secondary instability evolves.

A final summary of the modified energy threshold of the edge state due to viscosity
gradients is given in figure 16 by means of average values of Esw and Ecf over the
integrated time history (excluding the initial transient up to t = 4000) for Re= 3000
and Re= 3000, and several values of the centreline viscosity. Regardless of the choice
of reference viscosity, the average energy decreases if µc < 1 and increases if µc > 1.

An alternative measure of the threshold needed to maintain the edge state on the
laminar/turbulent boundary is given by the streamwise pressure gradient, which on
average is directly related to the wall shear stress in non-dimensional form as

τw =−Re
dP
dx
. (4.1)
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FIGURE 16. (Colour online) Average values of Esw and Ecf over the integrated time
history of the edge states at Re = 3000 (a); Re = 3000 (b). Dashed lines indicate linear
fits of the results.
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FIGURE 17. (Colour online) Portion of the time history of the pressure gradient used to
drive the flow at Re=3000 for µc=0.75,1,1.25, while keeping the bulk velocity constant.

As discussed in § 2, dP/dx is adapted at each time step in order to keep a constant
Reynolds number based on the bulk velocity. Figure 17 reports the pressure gradient
calculated based on the average (in time and between upper and lower wall) wall
shear stress for flow cases with constant and variable viscosity at the same Re= 3000.
The relative increase of the pressure driving force averaged in time is quantified in
1(dP/dx) = 9.8 % if µc = 1.25 and 1(dP/dx) = −10.5 % if µc = 0.75. The energy
input required to sustain the edge state is thus smaller if viscosity decreases away
from the walls, in support to its smaller energy level and reduced threshold for
transition in its vicinity in the state space.

4.2. Perturbation kinetic energy budget
We define an evolution equation for the perturbation kinetic energy of a parallel flow
with variable viscosity as
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FIGURE 18. (Colour online) Perturbation kinetic energy production and dissipation over
one period of the edge state at Re= 2608. The wall is located at y= 1.
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, (4.2)

with the prime indicating the fluctuations with respect to the mean values calculated
by using the Reynolds average, indicated by the angle brackets. The perturbation
kinetic energy is expressed as 〈k〉 = (1/2)〈u′iu

′

i〉, Pk denotes the production and εk the
dissipation, see for example Zonta, Marchioli & Soldati (2012). In a fully developed
and statistically converged turbulent flow the balance of the right-hand-side terms
of (4.2) integrated across the channel height is null. Similarly, the budget of a periodic
orbit over t = [t0, t0 + T] is identically zero in order to satisfy Etot(t0) = Etot(t0 + T).
The terms written in divergence form are responsible for redistribution of energy,
while the leading contributions to the balance are given by Pk and εk. We studied the
production and dissipation balance for several periodic edge states at three different
Reynolds numbers, namely Re= 2608, 3000, 3618, and we found the same qualitative
trends. For the sake of conciseness, we limit our discussion to Re= 2608, as at this
Reynolds number all variable and constant viscosity solutions are periodic.

Figure 18 shows the perturbation kinetic energy production and dissipation profiles
as functions of the wall-normal location in the upper half of the channel, where the
edge state is localised. Due to the relatively large size of the flow structures recurring
in the edge state evolution and their distance from the wall, we use outer scaling to
visualise the results in a consistent fashion with the rest of the paper. If the viscosity
of the fluid increases towards the centreline, the PKE production peak increases and
moves closer to the wall. Dissipation also increases in magnitude in order to balance
the larger production and to keep the edge state at the same kinetic energy level at
the end of the period. The opposite modulation of Pk and εk occurs in case viscosity
decreases towards the centreline. The described behaviour is consistent with the higher
total energy in the edge state if µc > 1; the more energetic structures needed to stay
on the laminar/turbulent boundary require more PKE production to be sustained over
the periodic recurrence the edge state. The opposite holds if µc < 1.
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FIGURE 19. (Colour online) Local shear rate S= Pk/εk (a) over one period of the edge
state at Re= 2608 and (b) in a turbulent channel flow at Re= 5000. In (b), inner units
are calculated using the friction Reynolds number of the constant viscosity case Reτ = 208.
The wall is located at (a) y= 1 and (b) y+ = 0.

The production and dissipation terms can be combined to have an indication on the
degree of anisotropy of the fluctuating motions and on the formation of streaks by
defining the so-called local shear rate S = Pk/εk, which measures the local relative
importance of production over dissipation. A critical condition for the appearance of
streaks is S> 1 (Lam & Banerjee 1992); the larger the value of S, the more persistent
the streaks. Figure 19(a) shows the profiles of local shear rate in the upper half-
channel for µc= 0.75, 1, 1.25. In case µc > 1, the increase of S compared to the case
with constant viscosity is consistent with the formation of stronger streaks highlighted
in § 4.1. The extent of the region of the channel in wall-normal direction where streaks
form moves closer to the wall and shrinks with respect to the constant viscosity case.
The opposite effect is observed if µc < 1.

In order to assess whether the highlighted trend of local shear rate is not limited
to the transitional regime but, being a relative measure of production and dissipation
hence independent from their actual values, can be representative of a weakly turbulent
flow, we present in figure 19(b) data relative to direct numerical simulations (DNS) of
turbulent channels at Re= 5000. The same frozen viscosity distribution and Reynolds
number definition used in discussing edge states is adopted for the turbulent cases.
Simulations are performed on a π× 2×π/2 domain with a resolution of 64× 129×
64 Fourier–Chebyshev–Fourier modes. As for the simulations used to track the edge
states, the flow is driven by a pressure gradient that changes in time in order to keep
the bulk Reynolds number constant. This corresponds to a friction Reynolds number
Reτ = 208 for the constant viscosity case. Results for the turbulent channel show the
same modulating effect discussed for the edge states; the peak of S increases and
moves closer to the wall if µc > 1 and the opposite occurs for µc < 1. We can assess
to what extent the initial assumption of frozen viscosity distribution discussed in § 2
holds as the fluctuating field increases in intensity and reaches a turbulent state. A
comparison between figure 19(b) and the results presented by Zonta et al. (2012) for a
simultaneously heated and cooled channel flow of water at Reτ = 180 reveals the same
qualitative modulation of S in the near-wall region. Indeed, they find larger peak that
moves closer to the wall where it is heated (lower viscosity at the wall, corresponding
to µc > 1 in figure 19(b)) and the opposite effect on the cold wall.
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FIGURE 20. (Colour online) Bifurcation diagrams of the inter-burst period T function of
µc at (a) Re=2608; (b) Re=3000; (c) Re=3618. Dark symbols indicate variable viscosity
edge states, including the reference case µc = 1.

4.3. Temporal recurrence and stability of edge states
The effect of viscosity gradients on the recurrence of the self-sustained cycle is
calculated as the time interval between two consecutive burst events and is quantified
in figure 20, where the bifurcation parameter is the centreline viscosity, for three
different Reynolds numbers, namely Re= 2608, 3000, 3618. Viscosity acts as a time
modulator of the edge state dynamics and, in particular, of the development of the
streamwise instability of the streaks. We highlight three effects caused by viscosity,
namely (i) the orbit remains periodic with a modified frequency of streak break up,
see figure 20(a); (ii) a periodic state at constant viscosity can be disrupted and driven
to a chaotic one by bifurcations induced by viscosity gradients, see figure 20(b);
(iii) a chaotic state at constant viscosity can be stabilised into a periodic orbit, see
figure 20(c). As for § 4.1, the figures additionally include rescaled results of constant
viscosity flow cases. The period T is also rescaled by the factor Re/Re in order to
have the same normalisation in terms of reference velocity.

In the first scenario, see figure 20(a), increasing viscosity away from the walls
(µc>1) shortens the inter-burst period, while decreasing viscosity away from the walls
(µc< 1) results in the opposite effect. The bursting frequency only is modulated while
the stability of the µc = 1 edge state is preserved, namely all the orbits are periodic.
Comparison to constant viscosity simulations shows that, even though some overall
trend can be captured by rescaling T , see also figure 20(b,c), there are significant
quantitative as well as qualitative differences attributed to the effect of a wall-normal
viscosity gradient, e.g. the stability of the edge state at µc = 0.8 and µc = 0.88. The
physical interpretation of increased T is that the streaks instability takes more time
to develop and that the two-dimensional base profile is more stable. In support of
this statement, we performed a secondary stability analysis of the essentially two-
dimensional (z–y) velocity profile extracted when the streaks attain their maximum
amplitude, at tB (see figure 1). Equations were discretised in the wall-normal direction
with 97 Chebyshev modes. The fundamental secondary instability mode was expanded
in 8 spanwise Fourier modes. The streamwise wavenumber was set to α= 2 in order
to match the wavelength in the DNS box. Velocities were made non-dimensional using
the reference velocity at constant viscosity. The imaginary part of the unstable mode
for constant and variable viscosity cases at Re= 2608 is reported in table 1 and shows
that the linear growth of the instability is faster if µc > 1.
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FIGURE 21. (Colour online) First return maps of the inter-burst period for selected
variable viscosity cases at (a) Re= 3000; and (b) Re= 3618. The star symbol indicates
the first pair of periods calculated after discarding the initial transient; subsequent pairs
are indicated by the circles and connected by a dotted line. The dashed lines indicate
the threshold for stability T(n) = T(n + 1) and the slopes with which the edge states
approach it.

µc = 0.75 µc = 1 µc = 1.25

σi 7.77× 10−3 3.84× 10−2 4.74× 10−2

TABLE 1. Imaginary part of the unstable mode predicted by a linear secondary stability
calculation over the two-dimensional velocity profile at the maximum streaks amplitude tB.

Particularly interesting from a dynamical system standpoint are the latter two
scenarios as viscosity not only modulates the frequency of the edge state but
additionally acts on its stability. That is conveniently assessed by means of the
first return map in figure 21(a), in which every entry has on the horizontal axis
the period of the regeneration cycle n and on the vertical axis the period of the
subsequent cycle n + 1. The first pair of periods, n = 1 and n = 2, is indicated by
a star; the following pairs are circles connected by a dotted line. Edge states that
approach the T(n) = T(n + 1) line with a slope smaller than one are stable and
eventually converge to a relative periodic orbit with a constant period. On the other
hand, edge states characterised by a slope larger than one are linearly unstable and
aperiodic (Khapko et al. 2014). At Re= 3000, the edge state for the constant viscosity
flow is periodic with T ' 1400. Increasing viscosity towards the centreline results
in the loss of stability of the edge state that becomes chaotic, see figure 20(a) for
the µ= 1 and µc = 1.2 cases. At Re= 3618, edge tracking for a flow with constant
viscosity results in a chaotically bursting orbit, with periods fluctuating between
T = [750, 2100]. Decreasing the centreline viscosity reduces the range of attained T
and, for small enough µc, results in a linearly stable edge state orbit with constant
period for µc< 0.84, see figure 20(c). Figure 21(b) reports the cases µ= 1; µc= 0.87,
for which the edge state is chaotic as in case of constant viscosity; µc = 0.78 for
which the edge state has a constant period.
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5. Conclusions

We have assessed how mean viscosity gradients affect edge state solutions and how
the local threshold for transition to turbulence changes in the formers neighbourhood
of the state space. We performed direct numerical simulations of nearly minimal
flow units with a frozen symmetric viscosity profile and compared the perturbation
kinetic energy of the edge states to those calculated for canonical flows with constant
viscosity in the same domain. In order to exclude that our discussion is affected
by the arbitrary choice of the reference scale for viscosity, we compared flow cases
using two different definitions of the Reynolds number, respectively based on the
viscosity at the wall and on its average value across the channel.

Consistently over a range of subcritical Reynolds numbers, decreasing viscosity
away from the walls results in an edge state dynamics that is sustained on an
overall lower perturbation kinetic energy level with a smaller driving force quantified
in terms of streamwise pressure gradient, when compared to a flow with constant
viscosity. The perturbation kinetic energy budget over one period of the edge state
regeneration cycle shows that the production term becomes smaller and that the
local production-to-dissipation ratio reduces compared to a constant viscosity flow,
in support of the weaker velocity streaks found and in analogy with fully turbulent
flows at low Reynolds number. The documented results indicate a decreased nonlinear
stability limit for perturbations evolving in the proximity of the edge state. Opposite
conclusions in terms of perturbation kinetic energy modulation are drawn if viscosity
increases away from the walls. When comparing flows using a Reynolds number
based on the average viscosity, we have shown that the applicability of a rescaling of
the results of constant viscosity simulations qualitatively predicts the effect of variable
viscosity on the streamwise flow structures while fails in terms of cross-flow motion,
thereby highlighting the importance of fully accounting for the spatial non-uniformity
of viscosity.

The results discussed in this paper suggest that the effect of spatially varying
viscosity is a shift of the position of the edge state in the state space relative to the
laminar attractor and turbulent saddle. This is sketched in figure 4, where the edge
state moves closer to the laminar attractor in case viscosity decreases away from the
walls, and vice versa. As a consequence, the stable manifold in the vicinity of the
edge state is modulated accordingly (solid line). This state space modulation implies
a reduction of the basin of attraction of the laminar state in the proximity of the
edge state if viscosity is larger at the walls, and a reduced threshold for transition for
perturbations that evolve in the neighbourhood of the edge state. The interpretation
of the state space role of viscosity is the opposite for flows with lower viscosity
at the walls. Due to the limitation of the edge tracking algorithm in describing the
manifold away from its relative attractors (dashed line in figure 4), we can only
speculate that the effect of viscosity discussed here applies also far from the edge
state. In doing so, we base our intuition on previous results from linear stability
theory, which predicts a stabilisation or destabilisation of the laminar flow consistent
with the analysis presented (Wall & Wilson 1996; Sameen & Govindarajan 2007),
and on evidence of the increase of the Reynolds number at which nonlinear travelling
waves appear in pipe flow of shear-thinning fluids (Roland et al. 2010), although we
stress the fact that the interaction between velocity and viscosity fluctuations in the
latter case is substantially different from the one in a fluid where viscosity depends
on temperature only.
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