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Ice ripple formation at large Reynolds numbers
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A free-surface-induced morphological instability is studied in the laminar regime
at large Reynolds numbers (Re = 1–103) and on sub-horizontal walls (ϑ < 30◦).
We analytically and numerically develop the stability analysis of an inclined
melting–freezing interface bounding a free-surface laminar flow. The complete solution
of both the linearized flow field and the heat conservation equations allows the exact
derivation of the upper and lower temperature gradients at the interface, as required
by the Stefan condition, from which the dispersion relationship is obtained. The
eigenstructure is obtained and discussed. Free-surface dynamics appears to be crucial
for the triggering of upstream propagating ice ripples, which grow at the liquid–solid
interface. The kinematic and the dynamic conditions play a key role in controlling the
formation of the free-surface fluctuations; these latter induce a streamline distortion
with an increment of the wall-normal velocities and a destabilizing phase shift in the
net heat transfer to the interface. Three-dimensional effects appear to be crucial at
high Reynolds numbers. The role of inertia forces, vorticity, and thermal boundary
conditions are also discussed.
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1. Introduction
This study investigates the morphological instability of a liquid–solid interface

bounding a laminar open-channel flow at large Reynolds numbers. The onset of
turbulence is the most celebrated kind of instability in shear flows at high Reynolds
numbers, and motivated the earliest theoretical investigations through the use of
normal (Drazin & Reid 1981) and non-normal (Schmid & Henningson 2001) temporal
modes. As this hydrodynamic instability is the typical evidence of the unstable
character of Navier–Stokes equations, one could conjecture that any other form of
flow-driven instability should be subordinate to the turbulence occurrence. This is
instead not always true: e.g. it is well known that, in free-surface flows, unstable
surface waves also develop in laminar conditions (e.g. Benjamin 1957; Yih 1963;
Wierschem & Aksel 2003). However, in the context of morphodynamic instabilities,
where a shear flow mutually interacts with a deformable wall, the above conjecture has
found wide consensus in the past.

For instance, the instability developed on soluble surfaces has been found to support
the hypothesis that scalloping is due to the imprint of coherent structures typical of
wall turbulence (Blumberg & Curl 1974). The analysis by Thomas (1979) extended
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226 C. Camporeale and L. Ridolfi

such a wall-similarity hypothesis to other geophysical and industrial flows (such as
interactions with granular beds, colloidal particles, dissolution patterns and phase
change processes). This empirical evidence has implicitly reinforced the conjecture
that no instabilities form on deformable walls that are bounded by a laminar flow,
in particular in two branches of morphodynamics that are very close to each other:
Exner-like and Stefan-like problems.

In Exner-like problems, the deformable wall is represented by a non-cohesive
granular bed and the interfacial boundary equation is a continuity equation for
the sediment phase, called the Exner equation (Exner 1925). In this context, the
assumption that ripples and dunes can form only with a turbulent flow has been
controverted only recently both by experiments (Coleman & Edling 2000) and by
theoretical analyses (Devauchelle et al. 2010), where sand wavelet formation was
revealed beneath a sub-critical laminar open-channel flow.

In Stefan-like problems, the deformable wall is a freezing–melting interface
governed by the heat-flow conservation equation, namely the Stefan condition (Stefan
1891). These problems find several applications, such as the formation and growth
of river and sea ice covers (Ashton & Kennedy 1972; Feltham & Worster 1999),
supra-glacial melting, freezing in a water pipe flow (Gilpin 1981), solidification of
binary alloys in the production of semi-conducting crystals (Worster 2000), icicle
formation (Ueno 2003; Neufeld, Goldstein & Worster 2010; Ueno et al. 2010).
The experiments by Gilpin and co-workers (Gilpin, Hirata & Cheng 1980; Gilpin
1981) and the theoretical model developed by Thorsness & Hanratty (1979) have, in
particular, emphasized that the essential mechanism for the formation of an ice-band
structure (i.e. the occurrence of a flow-induced wall instability) is the effect of flow
acceleration on turbulence structure.

However, the assumptions that turbulence is an essential requisite of instability for
Stefan-like problems was controverted by the seminal works by Ogawa & Furukawa
(2002) and Ueno (2003), where icicle instability was investigated in the Stokes regime
(Re < 1) for near-vertical walls. Most recently, Short, Baygents & Goldstein (2006)
and Neufeld et al. (2010) have emphasized that this latter kind of instability is
regulated by the convective boundary layer in the air surrounding icicles, rather than
heat transport in the liquid film.

As far as sub-horizontal walls are concerned, Feltham & Worster (1999) showed that
a laminar liquid flow in a semi-infinite region induces an instability of a mush-melt
interface; however, they found that the liquid–solid interface is stable if the mushy
layer is absent. To date, no theoretical analysis has been formulated yet for the
stability of a freezing–melting interface that bounds a laminar open-channel flow at
large Reynolds numbers (say, Re = 1–103), where inertial effects are not negligible.
This is the reason for the present work, where we will limit the case to sub-horizontal
walls (i.e. the slope ϑ < 30◦), in order to neglect the natural convection of air.

Due to measurement requirements, the experiments by Gilpin et al. (1980) were
conducted with the presence of a free surface, but back-water effects were not
negligible, and the authors focused their analysis on the turbulent regime. Indeed, it
should also be noticed that a Stefan-like experimental study, involving a laminar open-
channel flow, would entail even more practical problems than the Exner counterpart.
This is because of the difficulty involved in achieving an initial equilibrium condition
at the basic state (i.e. a stable flat solid–liquid interface). A fully analytical stability
analysis is instead more likely to be successful with respect to Exner-like problems.
In fact, while in this latter case the grain–flow interaction adds complexity and
usually requires empirical closures, the liquid–solid interface instability is driven by
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Ice ripple formation at large Re 227

a convective–diffusive heat flux that can be studied through exact conservation laws
(Hutter 1983).

We will show that, under well-defined flow conditions, unstable ice waves (which
we will name ice ripples) develop on the liquid–solid interface, in an apparently
similar way to the classical ripple formation occurring on sand beds. The key
mechanism is found to be related to the kinematic distortion of the heat flux caused by
the free surface fluctuations. In particular, the free surface seems to be the necessary
element for instability to occur, even for walls of very low slopes and without any
mushy layer. This is due to the fact that the upper and lower boundaries (namely the
free surface and the liquid–solid interface) mutually interact with the hydrodynamic
and thermodynamic structure of the flow, by means of suitable boundary conditions. In
this sense, we connect the consolidated knowledge of gravity-driven flows of a viscous
film (e.g. Wang 1981; Luo & Pozrikidis 2006) with the above illustrated Stefan-like
problems. Furthermore, we show that Squire’s theorem cannot be extended to the
present problem, since at large Reynolds number three-dimensional patterns become
more unstable than their two-dimensional counterparts.

The above thermo-fluid-dynamic problem finds an interesting application in glacier
hydrology. It is well known that post-1970 global warming is inducing a generalized
mass reduction of glaciers. Kaser et al. (2006) reported an average mass balance of
−283 ± 123 kg m−2 y−1 for 1961–2004, excluding peripheral ice bodies in Greenland
and Antarctica, and −510 ± 100 kg m−2 y−1 for 2001–2004 (corresponding to nearly
1 mm sea-level equivalent per year). During the melting season, snow cover is
therefore likely to be absent and ice is directly exposed to meltwater. If the surface
slope is small, so that the glacier has few crevasses, a complex and variegated set of
morphological patterns, induced by spatial gradients in freezing and melting, develop
on the ice surface. One of the best known of these structures is ‘bediers’, also
called supraglacial rivers, which convey most of the meltwater and usually develop
a meandering dynamics (e.g. Ferguson 1973; Parker 1975). In this way, the glacier
surface performs a kind of hydrologic network (another similarity between Stefan- and
Exner-like problems), whereby the whole balance of mass is greatly affected. Either
in the upper zone of the glacier, where the meltwater is not yet channelized and a
shallow (but non-vanishing) film of water is present, or on the bottom of bediers,
one can also observe the formation of ice ripples, where a well-selected wavelength
develops in the direction of the maximum slope of the bed. Figure 1 shows the pattern
of ice ripples left by the flow, as observed during field work on the Ciardoney glacier
(Italy) carried out in September 2006. It can be observed that the pattern is aligned
with the main slope of the surface, being the direction of the surface melt flow.

2. Problem formulation
2.1. Governing equations

We consider a single-component two-phase system, where a free-surface viscous liquid
flows over a base solid surface at the melting point, which, in the absence of
corrugations, is inclined at the angle ϑ (see figure 2). Let us introduce the right-
handed Cartesian reference frame, x̃≡ {x̃, ỹ, z̃}, where the x̃-axis is tangent to the base
plane (spanned by the vector x̃h ≡ {x̃, ỹ}) and parallel to the direction of the maximum
slope, and the z̃-axis is orthogonal to the base plane and points upwards. Accordingly,
ũ, ṽ and w̃ are the components of the velocity vector u(x̃, t̃). Henceforth, the tilde
refers to the dimensional variables, subscripts L and S mark the liquid and the solid
phase, and subscripts F, I and B refer to the liquid free surface, the liquid–solid
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(a) (b)

FIGURE 1. (Colour online available at journals.cambridge.org/flm) (a) Ice ripples on the
upper surface of the Ciardoney glacier (North Italy, 45◦31′N–7◦23′E; altitude: 3100 m). The
arrows indicate the slope of the bed. The 1 m rule gives the scale of the picture. (b) Close-
up of (a). Slope, ϑ = 5◦–10◦. Longitudinal and transversal wavelengths are ∼0.1 and 1 m,
respectively. Other data and pictures can be found on the website: http://www.nimbus.it/
ghiacciai/2006/060915ciardoney.htm.
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FIGURE 2. (Colour online) Sketch of the physical system. (a) Three-dimensional view;
(b) longitudinal section. Letters F, I and B refer to the liquid free surface, the liquid–solid
interface, and the bottom of the solid phase, respectively.

interface, and the bottom of the solid phase, respectively. If the variables are made
dimensionless using the surface velocity, ŨF, the stream depth, D̃0, in absence of
corrugations, a characteristic time scale of the interface evolution, τ (see below),
and the temperature difference, ∆ = T̃I − T̃B, one obtains the following dimensionless
quantities:

(h, η,D, S)= (h̃, η̃, D̃, S̃)

D̃0

, p= p̃

ρLŨ2
F

, θ = T̃ − T̃I

∆
, (2.1a–c)
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Re ϑ
(deg.)

θ ∆
(K)

Fr St χ EcRe−1 J Ar

MIN 1 0.5 0.01 0.1 0.1 5× 10−4 10−8 10−10 10−7 10−7

MAX 103 30 1 50 20 0.3 0.015 10−6 10−6 10−5

TABLE 1. Range of the pure numbers, being Re, ϑ , θ and ∆ the independent parameters.

Re= ŨFD̃0

ν
, Fr = ŨF√

gD̃0

, We= ŨF

√
ρLD̃0

σ
, Ar = ςθ

F∆

Fr2 , (2.2a–c)

Pe= ŨFD̃0

γL
, Ec= Ũ2

F

cL∆
, St = cS∆

λ
, rκ = κL

κS
, rγ = γL

γS
, (2.3a–e)

where η̃(x̃h, t̃) is the two-dimensional corrugation of the liquid–solid interface while
h̃(x̃h, t̃), D̃(x̃h, t̃) and S̃(x̃h, t̃) are the free-surface elevation, the liquid and the solid
depths, respectively; ρ is the density, p̃ (x̃, t̃) is the pressure, T̃(x̃, t̃) is the temperature,
ν is the kinematic viscosity of the liquid phase, g ≡ g(sinϑ, 0,− cosϑ) is the gravity
vector, κ is the thermal conductivity, σ is the surface tension, ς is the volumetric
thermal expansion coefficient of the liquid, c is the specific heat capacity, λ is the
latent heat of melting, and γ = κ/ρc is the thermal diffusivity. The dimensionless
temperature ratio θ quantifies the relative difference between the actual temperature
and the melting point, so that θI = 0 at the basic state (see below) and θB = −1.
Finally, Re, Fr, We, Ar, Pe, Ec and St are the Reynolds, Froude, Weber, Archimedes,
Péclet, Eckert and Stefan numbers, respectively.

The following assumptions are assumed. (i) The fluid is incompressible. (ii) The
flow is in laminar regime, namely Re < 750. (iii) Gravity is the only external
force. (iv) Buoyancy effects are neglected (i.e. Ar � 1; see also table 1) and fluid
characteristics are considered as constants (e.g. Worster 1992). (v) The liquid–solid
interface is at dynamical thermal equilibrium, which means that the spatially averaged
displacement, η, of the liquid–solid interface from the plane z = 0 is zero. (vi) The
fluid-dynamic response of the gas phase over the liquid free surface is neglected.

Assumption (iii) implies that the basic flow at the free surface is the vector
{ŨF, 0, 0} (i.e. parallel to the x-axis), where ŨF follows the Nusselt solution,
ŨF = g sinϑD̃2

0/2ν. Hypothesis (iv) requires that the temperature difference between
the free surface and the liquid–solid interface does not exceed a few degrees. From
hypothesis (v)–(vi) it follows that, in the absence of bed corrugations, a fixed
time-invariant relationship between the basic solid depth, S0 = S − η, and the basic
free-surface temperature, θF

0 , exists, namely S0 = S0(θ
F
0 ) (see (2.15a)). These last

two assumptions – along with the range of Reynolds numbers under consideration
– preclude the study of icicles.

The liquid–solid interface is a surface of phase transition that is defined by equation
I (x̃, t̃)= z̃− η̃(x̃h, t̃)= 0 (likewise, the free surface will be indicated with the notation
F (x̃, t̃)). The accumulation (or the release) of the latent heat at the liquid–solid
interface is caused by the net difference between the incoming and the outgoing
heat flux and it is converted into melting (growing) of the liquid–solid interface.
This thermal energy balance equation (i.e. the so-called Stefan condition) is given
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by ρSλξ = [q̃ ·nI]LS , where ξ = x̃,t̃ · nI is the displacement velocity of the surface
I (the comma notation refers to the partial derivative), nI = ∇I /|∇I | is the unit
normal vector pointing into the liquid film, and q̃ = −κ∇T̃ is the Fourier heat flux
vector. After straightforward algebraic manipulations, the dimensionless form of the
Stefan condition reads

ρSλD̃2
0

τκS∆
η,t = [∇θ |η− −rκ∇θ |η+] ·∇I . (2.4)

Since (2.4) describes the spatio-temporal dynamics of the morphological instability,
without any loss of generality we can assume the left-hand side to be of order one and,
hence, τ = D̃2

0 (γSSt)
−1.

The thermo-fluid-dynamic behaviour of the two-phase system under consideration
is described by the conservation equations of mass (continuity equation), momentum
(Navier–Stokes equations) and heat for the liquid and solid phase: namely,

∇ ·u= 0,
(
χ
∂

∂t
+ u ·∇ − ∇

2

Re

)
u=−∇p+ δ, (η 6 z 6 η + D), (2.5)[

χ

(
∂

∂t
+ s

∂η

∂t

∂

∂z

)
+ u ·∇ − ∇

2

Pe

]
θ = Ec

Re
Φd, (η 6 z 6 η + D), (2.6)(

St
∂

∂t
−∇2

)
θ = 0, (−S 6 z< η), (2.7)

where δ = Fr−2(sinϑ, 0,− cosϑ), χ = St (rγPe)
−1 characterizes the importance of

hydrodynamic unsteadiness, Φd is the dissipation function due to the internal viscous
stresses, and the term sη,tθ,z in (2.6) represents the expenditure of expansion work due
to the density difference between the liquid and solid phase, with s = 1 − ρS/ρL (e.g.
Lock 1990). The following boundary conditions complete the mathematical problem:

DF

Dt
= DI

Dt
= 0, (n · T · t)F = 0, (n · T ·n)F +

Re

We2 KF = 0, (2.8a–d)

(t ·u)I = 0, θI =−JKI, η,t = [1− θ,xη,x − θ,yη,y]η− −rκ [1− θ,xη,x − θ,yη,y]η+,
(2.9a–c)

[n ·∇θ ]η− = rκ [n ·∇θ ]η+, [θ,z]B = rκ [n ·∇θ ]F = S−1
0 (2.10a,b)

where n and t are the unit normal and tangent vectors to a generic surface,
respectively, T = pRe I − 2D is the dimensionless Newtonian stress tensor (with
I and D the identity matrix and the rate-of-strain tensor, respectively), KF =
(1/2)[(I − nFnF) · ∇] · nF is the local mean curvature of the free surface (while
KI is the corresponding value at the interface).

Equations (2.8a–b) are the kinematic condition for the free surface and liquid–solid
interface, respectively, and force the two surfaces to be the upper and the lower border
of the fluid domain. Equations (2.8c–d) state the tangential and normal components
of momentum conservation at the free surface, i.e. the so-called dynamic conditions.
We emphasize that the last term in (2.8c) takes into account the effect of the surface
tension.

Equation (2.9a) stands for the no-slip condition, since the liquid is pure and
there is no mushy layer (see instead Feltham & Worster 1999 for the case with a
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mushy layer induced by a colloid but without a free surface). Equation (2.9b) is
the Gibbs–Thomson formula, which states that the surface forces change the phase
equilibria, causing the equilibrium freezing temperature to be depressed when the
interface is convex towards the liquid (e.g. Worster 2000). It is straightforward to show
that J = rρrcrTEcStWe−2 (where rρ = ρL/ρS, rc = cL/cS, rT = 1 − θB). Equation (2.9c)
is the Stefan boundary condition. Finally, (2.10a) states the heat flux continuity at the
liquid–solid interface whereas (2.10b) states that the domain is entirely crossed by a
constant heat flux, which in turn is not affected by the perturbed field. Despite the
apparent arbitrariness of this latter condition, we will show at the end of § 5 that other
choices do not change the results.

The above equations can be somewhat simplified by the order of magnitude analysis
summarized in table 1 (corresponding to the case of an ice–water system), from
which two considerations follow. First, the internal dissipation and the Gibbs–Thomson
effect can always be neglected. Thus (2.9b) reduces to the standard Dirichlet boundary
condition. Although the Gibbs–Thomson effect is the key mechanism that induces
the wavenumber selection in the static morphological instability of the classic Stefan
problem, it does not have any particular relevance in the hydrodynamic case.

Second, from the mathematical problem (2.5)–(2.10) different types of unsteadiness
emerge, which we expect to be related to three sources of temporal instabilities:
(i) the above-mentioned morphological mode (i.e. the main focus of the present
analysis), which is driven by the Stefan equation and develops with a unitary time
scale, if dimensionalized with τ ; (ii) the (coupled) hydrodynamic and fluid-induced
thermodynamic modes, driven by (2.5)–(2.6), respectively, with a time scale of
order χ ; (iii) the solid-induced thermodynamic mode, driven by the heat conservation
in the solid phase, with a time scale of order St . Basically, type (i) is generally
slower than types (ii) and (iii), so it is customary to assume that the flow field and
temperature distribution quickly adjust to the slowly time-dependent configuration of
the bottom. This is indeed a very common condition in morphodynamic problems (the
so-called ‘quasi-steady approximation’): for instance, in river dynamics, time evolution
of sediment dunes, bars or meanders is much slower than the flow field evolution (e.g.
Colombini & Stocchino 2005; Camporeale et al. 2007; Seminara 2010). Nonetheless,
the upper bounds in the estimate of χ and St suggest that, under particular conditions,
one could expect a contribution even from the unsteadiness of types (ii) and (iii). The
fully numerical solution developed in § 3.2 will elucidate this aspect.

Finally, according to Yih (1963), when Re > 1.25 cotϑ the base flow becomes wavy
because of the growth of a linear surface instability. This is indeed a fourth type
of instability related to boundary conditions on the free surface, even though, in the
linear approximation, the stability analysis of the liquid–solid interface is expected
to be unaffected by surface instabilities, since the two phenomena are independent
(Bontozoglou & Papapolymerou 1997).

2.2. The eigenvalue problem

The transformation of variables,

ζ =


z− η(xh, t)

D(xh, t)
,

z− η(xh, t)

S(xh, t)
,

(2.11a,b)
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θ =
{
θL (z > η),

θ S (z< η),
(2.11c,d)

permits the domains [−S, η] and [η, η+D] to be mapped into two rectangular domains
for the liquid (ζ ∈ [0, 1]) and solid phases (ζ ∈ [−1, 0]), respectively (see figure 2).

A linear stability analysis of the system in the three-dimensional domain, which
takes into account the symmetry with respect to the x-axes (due to assumption (iii)),
requires the system to be forced with a generic two-dimensional harmonic disturbance,

η = ε̂η1 eωr t cos(αx+ ωit) cos(βy), (2.12)

where ε̂ is the (small) amplitude of the corrugations of the surface I , ω = ωr + iωi is
the temporal growth rate, and α and β are the dimensionless streamwise and spanwise
wavenumbers. The response of the governing equations to disturbance (2.12) is found
with the following normal-mode ansatz:

{u, v,w, p, θL, θ S,D} = {u0, 0, 0, p0(ζ ), θ
L
0 (ζ ), θ

S
0 (ζ ), 1}

+ εfc

{
u1(ζ ),

fs

fc
v1(ζ ),w1, p1(ζ ), θ

L
1 (ζ ), θ

S
1 (ζ ), d1

}
eωt (2.13)

(plus complex conjugate), where ε = ε̂/2, fc = eiαx cos(βy) and fs = ieiαx sin(βy). In
addition, we use Squire’s transformations, k2 = α2+β2 and kU1 = αu1+βv1, to reduce
the three-dimensional problem to an equivalent two-dimensional problem (e.g. Drazin
& Reid 1981), whereas the use of a modified Lagrange function, φ, which satisfies the
continuity equation at the order O(ε), and which is defined by

U1 = φ ′ + αk u′0(η1 + d1ζ ), w1 =−ikφ, (2.14a,b)

reduces the flow field problem to a modified Orr–Sommerfeld problem (prime refers to
the ζ -derivative).

By introducing (2.11)–(2.14) into the governing equations (2.5)–(2.10) at the leading
order O(1), we obtain the basic state solutions

S0 = (rκθF
0 )
−1
, u0 = 2ζ − ζ 2, p0 = cosϑ

Fr2 (1− ζ ), (2.15a–c)

θL
0 = ζθF

0 , θ S
0 = ζ. (2.16a,b)

At order O(ε), a linearized ordinary differential equation system is instead obtained,

(A − ωB)q= 0, (2.17)

namely a differential generalized eigenvalue problem, where q = {φ, θL
1 , θ

S
1 , h1, η1}T is

a set of eigenfunctions and eigenvectors, h1 = η1 + d1 quantifies the fluctuations of the
free surface, and A and B are differential operators that read

A =


D2 − Γ (u0D + 2) 0 0 0 0

rγΛk/α
rγ
θF

0

(D −Λu0) 0 σ0ζ σ0

0 0 DS 0 k2(1+ ζ )S0

 , (2.18)
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B = St


St−1χD 0 0 0 0

1 1/θF
0 0 −ζ σ1

0 0 1 0 σ2

 , (2.19)

with D = ∂ζ ζ − k2, DS = ∂ζ ζ − (S0k)2, Γ = iαRe, Λ = iαPe and σi are ζ -dependent
functions, given in appendix A. Finally, the boundary conditions (2.8)–(2.10) read

φ′ =−2α
k
η1, φ = iωχ

k
η1, θL

1 = θ S
1 = 0 (ζ = 0), (2.20a–c)

rγ S0θ
L
1,ζ − θ S

1,ζ +
1+ S0

S0
η1 − h1 =−ωη1 (ζ = 0), (2.21)

kφ + αh1 = iωχh1, kφ′′ − αh1

(
2+ k2

)= 0 (ζ = 1), (2.22a,b)

φ′′′ − (3k + Γ )φ′ −Ωh1 = ωχReφ′ (ζ = 1), (2.23)

θL
1,ζ =

d1

S0rκ
(ζ = 1), θ S

1,ζ =
η1

S0
(ζ =−1), (2.24a,b)

where the term Ω = kΓ α−1(δ + k2We−2) accounts for the effects of the bed
inclination and surface tension. Equations (2.17)–(2.24) summarize the physical
problem described and solved below.

3. Solutions of the eigenvalue problem
The first equation of the eigenvalue problem (corresponding to the first row

of system (2.18), which is the well-known Orr–Sommerfeld equation (henceforth
abbreviated to OS), represents the main difficulty of our problem. We have a set
of boundary conditions for the free-surface problem (i.e. (2.20a,b), (2.22)–(2.23)) and,
compared with the classical instability problem (e.g. Drazin & Reid 1981; Godreche
& Manneville 1998), free-surface problems have in fact attracted less attention. The
stability of a viscous film with a non-zero Reynolds number flowing on a rigid
plane bed has only recently been solved numerically by Luo & Pozrikidis (2006) in
the quasi-steady case, using a Chebyshev tau-QZ algorithm method, whereas its non-
normal character has been investigated with the aid of a collocation scheme by Olsson
& Henningson (1995). In the following sections, two original solutions (analytical
and numerical) of the present thermo-fluid-dynamic problem with a free surface are
developed, in order to subsequently study the interfacial instability induced by the
differences in the temperature gradients at the liquid–solid interface, the temperature
distribution being driven by the near-wall flow field.

3.1. Quasi-steady approximation: analytical solution
The quasi-steady approximation implies St = χ = 0. Under this condition, we are able
to analytically derive the dispersion relation of the morphological eigenvalue in three
steps. Firstly, the eigen-set q is rescaled so that η1 = 1.

We first seek an analytical solution of the flow field, governed by the
Orr–Sommerfeld-like problem [D2−Γ (u0D+2)]φ = 0, which has the general solution
in the form φ = c1φ

(1)+c2φ
(2)+c3φ

(3)+c4φ
(4). According to the standard nomenclature
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234 C. Camporeale and L. Ridolfi

(Bender & Orszag 1978), the above equation has an ordinary point, ζ0 = 0, at the
liquid–solid interface and thus, by the Fuchs theorem, each particular solution φ(j) can
be expanded in Taylor series about ζ0 as

φ(j) =
∞∑

i=1

aj,iζ
i−1 (with j= 1, 4), (3.1)

with an infinite radius of convergence (because of the lack of singular points in the
problem). The Frobenius method requires us to plug (3.1) back into the OS equation
and group the coefficients by power, obtaining a recursive relation for the ith term of
series (3.1):

aj,i = Γ

I1I3

[
2k2

Γ
I3aj,i−2 + 2I4aj,i−3 +

(
2− k4

Γ
− I5

)
aj,i−4 + k2(aj,i−6 − 2aj,i−5)

]
(3.2)

where Ip = (i− p)(i− p− 1).
Using the boundary conditions at ζ = 0, namely (2.20a,b), we can set c3 = 1 and

c4 = 0, so that the solution reduces to the form φ = c1φ
(1) + c2φ

(2) + φ(3) and the first
four terms, aj,i, of the Taylor series for φ(1), φ(2), φ(3) (namely j= 1, 3 and i= 1, 4) are
all zero except for a1,3 = a2,4 = 1 and a3,4 =−2α/k.

The remaining unknowns, c1, c2 and h1, are obtained using the kinematic and
dynamic conditions on the free surface, which impose

kL10 kL20 α

kL12 kL22 −α (2+ k2
)

QL11 − L13 QL21 − L23 Ω




c1

c2

h1

=−


kL30

kL32

QL31 − L33

 , (3.3)

where Q= 3k2 + Γ and

Lp0 =
i=∞∑
i=1

ap,i, Lpq =
i=∞∑
i=1

[
r=q∏
r=1

(i− r)

]
ap,i. (3.4a,b)

Theoretically, a first requisite for the series representation (3.1) concerns uniform
convergence. From Abel’s uniform convergence test and the absolute convergence
theorem, it follows that the series of functions (3.1) is uniformly convergent in
ζ ∈ [0, 1] if the numerical series

∑∞
i=1|Re[aj,i]| and

∑∞
i=1|Im[aj,i]| are convergent.

These latter conditions can be verified using the root test, as it is possible to
demonstrate numerically that the limits of |Re[aj,i]|1/(i−1) and |Im[aj,i]|1/(i−1) with
i→∞ are smaller than unity.

Another requisite concerns the accuracy of the solutions consequent to the truncation
of the series involved in the solutions (3.1)–(3.4). We have verified it by comparing
our prediction of h1 with the results of the numerical solution based on the tau-
QZ algorithm developed by Luo & Pozrikidis (2006). If around one hundred terms
are adopted in the series, both the magnitude and the phase response agree, in an
excellent way, with the numerical predictions (see figure 2). For large values of the
parameter Γ = iαRe, it is necessary to include many terms in the series. Moreover, for
|Γ | & 103 the linear system (3.3) becomes ill-conditioned, thus a numerical procedure
is required. However, the latter difficulties do not apply to the present problem, where
the investigations are limited to Re< 103 and (α, β) < 1.
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FIGURE 3. Comparison between the present analytical solution (solid lines), and the solution
of Luo & Pozrikidis (2006) (dotted lines) for the free-surface fluctuation, h1, of a water film,
in the presence of two different bed corrugation wavelengths: L1 = 2 mm and L2 = 5 mm. The
bed inclination is ϑ = 30◦.

At the second step, the heat conservation equation in the liquid phase is considered
(second row of system (2.18)) which, under the quasi-steady approximation, reads

θ ′′L1 − (Λu0 + k2)θL
1 = θF

0 [(1+ d1ζ )(Λu0 − k)− ikPeφ] . (3.5)

Equation (3.5) is a forced parabolic cylinder equation (Abramowitz & Stegun 1965),
so its general solution is θL

1 = C1Θ1(ζ )+C2Θ2(ζ )+Θp(ζ ), with Θ1 and Θ2 having the
form

Θ1 = eiζ(ζ−2)
√
Λ/2H$ [(ζ − 1) (−Λ)1/4],

Θ2 = eiζ(ζ−2)
√
Λ/2

1F1

[
−$

2
,

1
2
, i (ζ − 1)2

√
Λ

]
,

 (3.6a,b)

where H$ [ ] is the Hermite function, with the parameter $ given in appendix B, while
1F1[ ] is the Kummer confluent hypergeometric function. Using the method of variation
of parameters, we obtain the particular solution

Θp =−θF
0 Θ1(ζ )

∫ ζ f (t)Θ2(t)

W(t)
dt + θF

0 Θ2(ζ )

∫ ζ f (t)Θ1(t)

W(t)
dt, (3.7)

where the function f (ζ ) is the term in the square brackets on the right-hand side
of (3.5) while W[ζ ] ≡ W[Θ1,Θ2] is the Wronskian. Furthermore, by using the
Liouville–Ostrogradski formula one observes that W(ζ ) =W[Θ1(0),Θ2(0)] ≡W(0) ≡
W0, hence the final form of the complete solution reads

θL
1 =

(
C1 − θ

F
0 I2(ζ )

W0

)
Θ1(ζ )+

(
C2 + θ

F
0 I1(ζ )

W0

)
Θ2(ζ ), (3.8)

with Ij(ζ ) =
∫ ζ

0 f (t)Θj(t) dt. If (3.6)–(3.8) are substituted in the boundary conditions
(2.20c), (2.24a), the constants C1 and C2 can be easily determined.

For the stability analysis, we are interested in the computation of the ζ -derivative of
θL

1 at ζ = 0±, as required by the Stefan equation (2.21). After some algebra we obtain

∂θL
1

∂ζ

∣∣∣∣
ζ=0+
= −I2(1)+F2d1

F1
θF

0 , (3.9)
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where F1 and F2 have a cumbersome form, given in appendix B. It suffices to notice
here that the second term in the numerator of (3.9) is usually much smaller than the
first term, since θF

0 is small, according to assumption (iv).
From the above solution, it turns out that the computation of the integral I2(1)

is crucial for the closure of the stability problem. A close analytical form can be
achieved by a series representation of the solution Θ2, so that

I2(1)=
∫ 1

0

( ∞∑
i=0

fiζ
i

)( ∞∑
p=0

Λp/2ip

p!2p
(2− ζ )p ζ p

)( ∞∑
q=0

iqΛk/2
(−$

2

)
q

q!( 1
2

)
q

(ζ − 1)2q

)
dζ

(3.10)

where (.)q is the Pochhammer symbol (cf. Abramowitz & Stegun 1965), while fi is
derived from the ith Taylor coefficient of the function f (ζ ), and reads

f0 =−(g0 + k2), f1 =−(g1 + d1k2 + 2Λ), (3.11)
f2 =−[g2 +Λ(2d1 − 1)], f3 = d1Λ− g3, fi =−gi (i= 4,∞), (3.12)

gi =
[

kΛ

α
(c1a1,i+1 + c2a2,i+1 + a3,i+1)

]
. (3.13)

Collecting the ζ -dependent terms and using the binomial theorem, we obtain∫ 1

0
(2− ζ )p ζ p+i (ζ − 1)2q dζ =

p∑
r=0

2q∑
s=0

(
p
r

) (
2q
s

)
2r (−1)p−r−s

1+ i+ 2p+ s− r

= (−1)p(2q)!(i+ 2p)!
(i+ 2q+ 2p+ 1)! Fipq, (3.14)

where the third-order tensor Fipq = 2F1[−1− i− 2q− 2p,−p,−i− 2p, 2]. Hence, using
(3.14) in (3.10), we finally obtain

I2(1)=
∞∑

i=0

∞∑
p=0

∞∑
q=0

fi

(
−$

2

)
q
iq+pΛ

p+q
2 (−1)p(2q)!(i+ 2p)!

2p

(
1
2

)
q

p!q!(i+ 2q+ 2p+ 1)!
Fipq. (3.15)

It is worth observing that, for large values of Pe, the series (3.15) requires a high
truncation value of the index p and q, thus the calculation of I2 could be quite
cumbersome. In this case, an alternative recursive form can be achieved by applying
the Frobenius method in a similar manner to the OS problem. In this way, one obtains
θL

1 |ζ=0+ =−T21/T11 + θF
0 d1/T11, where Tj1 =

∑N
i=1(i− 1)tj,i, with (j= 1, 2) and

tj,i = 1
(j− 1)(j− 2)

[
k2tj,i−2 + 2Λtj,i−3 −Λtj,i−4 + Gj,i−2

]
, (3.16)

t1,1 = t2,1 = t2,2 = G1,i = 0, t1,2 = 1, G2,i = fi. (3.17a–f )

The third step of this analysis is the solution of the heat equation in the solid phase
(third row of system (2.18)), which reads DSθ

S
1+k2(1+ζ )S0 = 0. Considering boundary

conditions (2.20c, 2.24b), the solution is

θ S
1 =

1+ ζ − e−kS0ζ + e2kS0(1+ ζ − ekS0ζ )

S0(1+ e2kS0)
, (3.18)
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from which we obtain θ ′S1 |ζ=0− = S−1
0 − k tanh(kS0). A crude analysis of the latter result

suggests that θ ′S1 |ζ=0− ∼ S−1
0 − k2S0, provided k is not too large, so the thermal gradient

in the solid phase changes from being a destabilizing to a stabilizing process at a
critical wavenumber kc ∼ S−1

0 , namely when the wavelength perturbation is comparable
to the solid depth. Through (2.15a), we observe that for θF

0 = 0.05 one obtains
kc ∼ 0.035, which is comparable to the values that affect the morphological instability,
as will be shown in § 4 (see figure 5). It appears that, although the dynamic response
of the solid phase has never been accounted for in previous work, it appears to be
significant for the correct computation of the growth factor.

If solutions for θ ′S1 |ζ=0− and θ ′L1 |ζ=0+ are substituted in the Stefan condition (2.21),
we finally come to the claimed dispersion relation

ω = rκθ
F
0

[
I2(1)
F1
+ d1

(
1− F2

F1

)
− k tanh

(
k

rκθF
0

)]
. (3.19)

To summarize, we emphasize the main novelties encompassed in (3.19): (i) it is an
analytical solution; (ii) it accounts for the morphological instability of a liquid–solid
interface with a laminar open-channel flow without any other restrictions on the
Reynolds number; (ii) the perturbative response of the solid thermodynamics is also
considered, as testified by the last term in (3.19).

3.2. Numerical solution
The solution given in the previous section needs to be tested using a fully unsteady
numerical solver, in order to test the validity of the quasi-steady approximation, as
well as the accuracy of the analytical method. To this end, we adopt a spectral-
Galerkin method based on the analysis by Giannakis, Fischer & Rosner (2009) and
Camporeale, Canuto & Ridolfi (2011), to which the reader can refer for further details.
This tool will also be used in § 4 to obtain the whole spectrum of eigenvalues.

In order to recast the differential eigenvalue problem introduced in § 2 (i.e. (2.17))
in the algebraic form Aw = ωBw , we discretize the problem using a spectral Galerkin
technique which prevents the onset of spurious eigenvalues (e.g. Canuto et al. 2006).
Even this technique consists of three main steps. First, a modal representation of the
solution is adopted, where the eigenfunctions {φ, θL

1 , θ
S
1 } appearing in q are expanded

in the (truncated) spectral form

φ =
N∑

i=−3

φiΦ
φ
i (y), θL

1 =
N∑

i=−1

θL
i Φ

L
i (y), θ S

1 =
N∑

i=−1

θ S
i Φ

L
i (y), (3.20)

{Φφ
i , Φ

L
i , Φ

S
i } being three sets of trial functions, whilst {φi, θ

L
i , θ

S
i , η1, h1} =: w

represents the unknown complex eigenvector. For numerical convenience, the vertical
coordinate is further mapped to the range y ∈ [−1, 1] for both phases, using y= 2ζ − 1
(for ζ > 0) and y= 2ζ + 1 (for ζ < 0).

Second, the original eigenvalue problem is multiplied by a set of test functions,

V = {v ∈ C2([−1, 1]) : v(−1)= v′(−1)= 0, v(1)= 0}, (3.21)

and integrated over the domain [−1, 1]. The repeated use of integration by parts allows
the fourth and third derivatives to be reduced to second-order derivatives; in addition,
the normal component of the dynamic boundary condition (2.23) is incorporated in the
mass and stiffness operators in the so-called weak form (Canuto et al. 2006), through
the boundary term that arises from the integration by parts.
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Third, the correct choice of the trial and test functions enables the use of the
remaining boundary conditions to be set in a strong form, that is, as additional rows
in the ultimate algebraic system. Inspired by Shen (1994), we consider the set of
polynomials

ϕi =
√

i+ 3
2

(
Li+3 − Li+1

(2i+ 3)(2i+ 5)
− Li+1 − Li−1

(2i+ 1)(2i+ 3)

)
, i ∈ [1,N − 3], (3.22)

where Li(y) denotes the ith Legendre polynomial. These functions are obtained by
integrating each Legendre polynomial twice, while enforcing zero boundary conditions
at y = ±1 for the function and its first derivative. The set of functions in (3.22)
completes the set of solutions of the classical OS problem, where the boundary
conditions are all homogeneous. Here, instead, we need to add six low-degree
polynomials, in order to accommodate non-vanishing boundary conditions, which are

ϕ−3 = 1
4
(y+ 1)2 ϕ−2 = 1

4
(3− y2 − 2y), ϕ−1 = 1

1
(1− y2), (3.23)

ϕ
φ

0 =
1
2
+ 3

4
y− 1

4
y3, ϕL

0 =
1+ y

2
, ϕL

0 =
1− y

2
. (3.24)

It is straightforward to verify that the trial and test spaces for the present problem are
arranged as

Φ
φ
i = {ϕ−3, ϕ−2, ϕ−1, ϕ

φ

0 , ϕi}, ΦL
i =

{
−2ϕ−1, ϕ

L
0 ,

dϕi

dy

}
, (3.25)

ΦS
i =

{
−2ϕ−1, ϕ

S
0 ,

dϕi

dy

}
, V =

{
ϕ
φ

0 , ϕi, ϕ
L
0 ,

dϕi

dy
, ϕS

0 ,
dϕi

dy

}
, (3.26)

where, with the aid of the proprieties of Legendre polynomials, we can use the
following formula for the y-derivatives:

dϕi

dy
= Li+2 − Li√

2(2i+ 3)
. (3.27)

We recall that the use of Lagrange polynomials allows the fourth-order derivative
term in the OS equation (i.e. the most critical from a computational view)
to be transformed into a unitary matrix (after twice integrating by parts, one
in fact obtains

∫ 1
−1 ϕ

′′
i ϕ
′′
j dy = δij), thus reducing the risk of roundoff, typical in

collocation schemes. The given algebraic problem is easily solved by means of the
QZ algorithm. We emphasize that the above technique has three fundamental
advantages: (i) it ensures high spectral accuracy and convergence in the solution
provided the truncation number N is of order O(102); (ii) it avoids spurious
eigenvalues; (iii) it provides the entire spectrum and related eigenfunctions.

3.3. Validation of the quasi-steady approximation
We finally provide an evaluation of the accuracy of the main outcome of the analytical
solution, namely the eigenvalue ω obtained under the quasi-steady approximation.
Figure 4 shows a comparison between the spectral solution of the morphological
eigenvalue and solution (3.19) for a fixed set of {α, θF

0 , ϑ}. We recall that the quasi-
steady approximation is equivalent to setting St = 0 in the numerical scheme. The
behaviours of the growth factor, ωr := Re(ω), and the phase velocity, cp = −Im(ω)/α,
versus the quantity αRe are given in figure 4(a,b), respectively, where the numerical
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FIGURE 4. Comparison between analytical and numerical solution of the morphological
mode. (a) Growth factor, (b) phase velocity: numerical (solid line), analytical (dashed line)
in the case St = 0. The curves practically coincide till the boundary of validity of our
formulation. (c) Relative error of |ω|. α = k = 0.2, θF

0 = 0.05, ϑ = π/360, Pr = 13, water
case.

solution with St = 0 (solid line) is compared with the analytical solution (dashed
line). It is evident that up to αRe ∼ 400, analytical and numerical solutions are
indistinguishable. Figure 4(c) shows the relative error of |ω| between analytical and
numerical prediction for different Stefan numbers (St = 0, 10−3, 10−2, 10−1). At St = 0
the agreement is remarkable, being the relative difference close to the numerical
precision for low Reynolds number and increasing with a very low rate (notice
the log-scale). For non-vanishing Stefan numbers, the relative errors are almost
independent of the Reynolds number, increasing with St , but small nevertheless. Even
at the uppermost condition (St = O(10−1)), the effects of unsteadiness are practically
negligible, thus the quasi-steady approximation is always acceptable.

4. Results
We investigate the case of pure water at standard conditions, i.e. Pr = Pe/Re = 13,

rκ = 0.68, ρL = 999 kg m−3, ν = 1.751 × 10−6 m2 s−1 and σ = 0.727 N m−1. The
independent parameters governing the dispersion relation (3.19) reduce to Re, k, α, ϑ ,
θF

0 . Notice that the Froude number is linked to the previous ones, with the aid of the
Nusselt solution, through the relationship 2Fr2 cosϑ = Re.

We first focus on two-dimensional perturbations, namely k = α. Figure 5 shows
the stability analysis for five different values of the bed inclination ϑ , spanning the
ranges Re ∈ [1–103] and α ∈ [0–0.4]. Some results are immediately evident. First, the
water–ice system exhibits well-defined domains of morphological instability for all the
values of bed inclination, in the range 0.5–30◦. Second, the domain of instability, as
well as the maximum value of the temporal growth rate, decrease with the increase
in the bed inclination. The magnitude of ωmax := max(ωr) in fact decreases from
5× 10−3, for ϑ = π/360, to 8× 10−4, for ϑ = π/50 and 7× 10−6, for ϑ = π/6. Third,
the unstable waves migrate upstream (i.e. cp < 0). Finally, the free-surface fluctuation
h1 is almost in phase with the bed surface shape, in the region of instability; it is
also interesting to observe that the occurrence of the maximum instability does not
coincide with the maximum amplitude of the free-surface fluctuation. As the surface
temperature θF

0 increases, the instability domain slightly moves towards lower values
of Re (for small k, ω is in fact proportional to θF

0 : see (3.19)), but the previous picture
does not change in a qualitative way.
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FIGURE 5. The instability domain in the plane (α,Re), for five different values of the bed
inclination, ϑ : (a) temporal growth rate (black zone indicates ωr > 0); (b) phase velocity;
(c) magnitude of the free-surface fluctuation; (d) phase lag of the free-surface fluctuation
(θF

0 = 0.05, water case). The red lines mark the marginal stability curves.

A useful indication of the onset of morphodynamic instability is given by the
smallest values of the Reynolds number, such that ωr > 0, expressed as a function of
the bed inclination and the surface temperature (but regardless of the wavenumber).
This critical value, Rec, corresponds to the lower limit of the marginal stability curves
(red lines) reported in figure 5, and its behaviour is depicted in figure 6 for values
of θF

0 = [0.05–0.55]. Greater values for the dimensionless surface temperature are not
considered because of the constraints imposed by the assumption (iv), as noted in § 2.
It can be observed that Rec exhibits a minimum at intermediate values of the bed
inclination ranging between 4 and 10 degrees. Note, incidentally, that such slopes are
frequently encountered in non-crevassed glaciers. It also appears that the instability
domain increases with θF

0 , and the values of Rec tend to be less dependent on the
slope with the increase in surface temperature. In the same figure, a comparison with
the marginal curve for the surface instability (dashed curve), makes it evident that
the latter occurs at smaller Reynolds numbers than the morphological one. While
evaluating the dashed curve, we observed excellent agreement (error <1 %) between
the theoretical formula Rec = 1.25 cotϑ and our spectral method, thus providing a
numerical validation of the theory of Yih (1963).

Taking advantage of the computational technique introduced in the previous section,
we are also able to investigate the whole spectrum of the eigenvalue problem (2.17)
and the physical meaning of its branches. The interest in solving an eigenvalue
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FIGURE 6. The behaviour of the critical Reynolds number Rec versus the bed inclination ϑ
and the basic free-surface temperature (θF

0 = [0.05−0.55]). The dashed line marks the surface
mode.

problem lies in two ways of investigating the instability itself, namely the modal and
non-modal approach or, equivalently, in the two ways of considering the instability,
asymptotically or transiently. In the former approach, one is only interested in the
least stable eigenvalue in order to understand whether the system is asymptotically
unstable in time and, if it is, what kind of instability develops. In the latter, the
transient instabilities are also an object of investigation; thus, one is interested in the
computation of the whole spectrum of eigenvalues and the associated eigenfunctions
in order to tackle the initial value problem as well (Schmid 2007). This last kind of
analysis has received a great impetus in recent years (e.g. Trefethen & Embree 2005),
because of its physical consequences, and because it does not exclude but embeds the
results of the modal approach.

The study of transient behaviour will be the subject of future work, but it is
instructive to comment on the eigenvalue distribution in the complex plane displayed
in figure 7 (the corresponding eigenfunctions can also be shown but are not given for
the sake of space). We recall that the real part of the eigenvalues represents the growth
rate while the imaginary part is related to the phase velocity by cp = −ωi/k. The
computation has been made for a fixed set of parameters, corresponding to unstable
conditions. The different physical nature of the eigenvalues has been identified as
follows. Since the diagonalization in Jordan form of the matrices A and B is precluded
in practice, a distinct separation of eigenvalues is a hard task. However, we have
recognized the physical origin of each branch by developing separate analyses for the
different sub-problems. For example, the hydrodynamic modes were identified by the
solution of the OS problem alone, and so on. The result of this identification analysis
is given in figure 7.

Two principal branches are evident: an upper and a lower one. The upper one, with
phase velocity close to zero and real part invariably negative, reflects the presence
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FIGURE 7. Spectrum in the complex plane. (a) Full portrait of the first 100 eigenvalues;
(b) close-up of box B; (c) close-up of box C. Re= 400, α = 0.02, β = 0, θF

0 = 0.05, ϑ = 3.6◦,
St = 10−3.

of the solid phase (i.e. solid-induced thermodynamic modes). At the rightmost bound
of this branch, one can find the morphological mode (see box B) that is instead
unstable (ωr > 0) and upstream-migrating (ωi > 0, cp < 0). The lower branch is instead
associated to the fluid phase. In particular, one can distinguish the hydrodynamic
modes and the (fluid-induced) thermodynamic modes. The hydrodynamic modes are
invariably stable, turbulent instabilities are in fact damped and are represented by a
horizontal row of points. This set of points is exactly the so-called S-branch of the
spectrum of the classical OS equation, which is associated to the modes transported
with the mean bulk velocity, equal to two-thirds of the surface velocity (Grosch
& Salwen 1968). Our results are in full agreement with this prediction, in fact:
−χωi/k = 0.66. The fluid-induced thermodynamic modes are marked in box C, where
it is evident that they follow a curved branch, with variable phase velocity, which
asymptotically merges the hydrodynamic modes moving leftwards. Finally, the surface
mode, induced by the open-channel boundary conditions, is evident in the bottom right
corner. It is the most unstable one, as expected.

We conclude this section with a brief analysis of tri-dimensional effects. It suffices
to focus on the morphological mode only, thus the quasi-steady approximation is
again adopted. Squire’s theorem, a classical result of hydrodynamic instability theory,
states that waves with the maximum growth rate are invariably two-dimensional. In
the analysis of the OS problem it is therefore sufficient to study two-dimensional
perturbations (e.g. Drazin & Reid 1981). It is interesting to observe that, although
the present problem has some resemblances to the classical Orr–Sommerfeld problem,
its open-channel nature and the coupling with the thermo-morphodynamic processes
preclude one from extending the validity of Squire’s theorem to the present
morphological instability. This point is elucidated in figure 8, where the contour
plots of the growth rate are reported in the plane (α, β) for different values of Re
and ϑ . A remarkable result is that the most unstable waveforms, marked by crosses in
the figure, are two-dimensional (β ∼ 0) only at very low values of Reynolds number
and slope. With the increase in Re and ϑ , three-dimensionality of the most unstable
waveforms increases greatly. This effect is due to the inertial terms in the equations
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FIGURE 8. Contour plot of the growth rate in the plane (α, β), for Re = {200, 400, 600}
and θF

0 = 0.05. (a)–(c) ϑ = 1◦; (d)–(f ) ϑ = 3.6◦. Crosses mark the maximum values. (a,d)
Re= 200; (b,e) Re= 400; (c,f ) Re= 600.

which trigger spanwise gradients in the flow field induced by the free surface. At high
Reynolds numbers, three-dimensionality appears so important that, for some values
of the longitudinal wavenumber, α, only three-dimensional waveforms are unstable
(e.g. figure 8f, at α = 10−1). Again, it is remarkable to notice that this picture is in
agreement with the patterns performed by ice ripples observed on glaciers, where a
dominant longitudinal wavelength usually combines with a longer transversal structure.

5. Discussion
A quantitative description of the instability phenomena has been given in the

previous section. Now, we investigate the physical processes that contribute to the
onset of morphodynamic instability. For this purpose, we remove some key elements
from the complete dynamics one by one, in order to study their effect on the
instability. In particular we focus on (i) the role of inertial forces, (ii) the dynamics
of the free surface at the liquid–gas interface, and (iii) the boundary condition of
conservation of the heat flux. The study of point (i) requires the structure of the fluid
dynamic equations to be changed, whereas we only use the boundary conditions to
investigate points (ii) and (iii).

5.1. The role of the inertial forces
Neglecting the inertial forces in the Navier–Stokes equation for a generic two-
dimensional flow (namely the Stokes approximation) leads to a biharmonic equation
for the stream-function (Batchelor 2000, p. 224). In the present framework, the
Orr–Sommerfeld equation therefore reduces to a differential equation with constant
coefficients

φiv − 2k2φ′′ + k4φ = 0, (5.1)
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FIGURE 9. (Colour online) Distribution of the growth rate (grey shades) and the magnitude
of the free-surface fluctuations (dashed lines) in the plane (α,Re) (the solid line marks
the instability area). (a) Complete solution (max[ωr] = 0.0029); (b) Stokes approximation
(max[ωr] = 0.069).

the boundary conditions being the same as those of the complete problem. After some
algebra, one can obtain the solution of (5.1) which, for the sake of space, we do not
give here (but see Wang 1981). The solution of the free-surface fluctuation reads

h1 = −2ekkα(3k + k3 + Γ + kΓ )+ k [3+ (k − 6)k − Γ ]+ Γ
αΥ − 2k3Ω + α (3k − 3k2 − 2k4 + Γ ) cosh(2k)+ k2Ω sinh(2k)

, (5.2)

where Υ = 3(k + k2 − 2k3 − 2k5 + k6)− Γ (1+ 2k2 + 2k4).
With the aim of understanding the role of the inertial forces in the onset of

instability, we have forced the Stokes solution for non-negligible values of the
Reynolds number in order to make a qualitative comparison of the instability response
with the complete solution, as shown in figure 9. From these results, it is evident
that the inertial terms are not necessary for instability, even though neglecting them
leads to an overestimate of ωr, the wrong localization of the domain of the most
unstable waves and an underestimate of the critical Reynolds number. A comparison
of the free-surface fluctuations confirms that the complete solution coincides with the
Stokes approximation (i.e. (5.2)) for very low Reynolds numbers only (i.e. Re' O(1)).
Figure 9(b) also shows the existence of a strong correlation between the growth rate
distribution and the free-surface behaviour when inertial forces are neglected. This is
in contrast with the complete solution, where the maximum values of ωr and |h1| are
located at different parts of the plane (α,Re). This discrepancy can be related to the
higher value of |h1|, in the Stokes approximation, owing to the loss of the advective
terms, as is better explained in the next section.

In the most recent literature on viscous film dynamics (Bontozoglou &
Papapolymerou 1997; Luo & Pozrikidis 2006), the inertial forces have been
emphasized to be crucial for a correct description of the phenomenon of a kind of
‘resonance’, namely the strong amplification of the free-surface fluctuations detectable
for suitable wavenumbers of the wall corrugation. This phenomenon was also expected
to have important implications on heat and mass transfer processes. From the present
analysis, it instead emerges that resonance is not essential for morphological interface
instability. In fact, although the resonance phenomenon can be recognized through
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the inspection of the dashed lines in figure 3(a) (i.e. |h1| > 1 if α > 0.1 and
100 < Re < 500), the lack of correlation between max(ωr) and max |h1| implies that
resonance does not play a fundamental role in the onset of morphodynamic instability.

5.2. The role of free-surface dynamics and heat conservation at the boundaries
In order to understand the mechanism that is responsible for morphological instability,
it is useful to depict the spatial behaviour of some key variables on the physical plane
{x, z}, using transformations (2.11). In particular, we concentrate on the perturbed
parts of the flow field, u1, temperature distribution, θ1, and vorticity distribution, ϕ1.
Notice that, in the two-dimensional case, vorticity reduces to the vector ∇ × u =
(0, Ψ (x, ζ ), 0), where Ψ is described by an advection–diffusion equation which
– under the usual structure of perturbation (i.e. Ψ = ϕ0(ζ ) + εeωr tϕ1(ζ ) cos(αx + ωit))
– gives the fluctuating part of the vorticity at O(ε), ϕ1, to be modelled by an equation
that is very similar to (3.5). Hence, vorticity and temperature are subjected to the same
diffusion and convection mechanisms, even though they are constrained by different
boundary conditions (e.g. Batchelor 2000). The computation of vorticity fluctuation is
therefore straightforward and, using the Lagrange function, it reads

ϕ1 = φ′′ − k2φ + 4d1u′0 + (1+ d1ζ )u
′′
0. (5.3)

Figure 10(a) shows the behaviour of the variables u1, θ1, ϕ1 along a wavelength
for the complete problem solved in § 3. First, we distinguish the presence of two
contour-rotating cells of vorticity, which are generated at the liquid–solid interface and
then diffused and convected in the upstream direction. The temperature and vorticity
patterns are almost aligned with each other, even though the temperature exhibits a
more pronounced symmetry because of the absence of the wall-generation mechanism.
The phase shift of the warmest and coldest regions, with respect to the wall, is
consistent with the destabilizing condition, which needs a net flux heat so that ridges
grow and troughs melt (e.g. Thorsness & Hanratty 1979). Moreover, the localization
of the warmest (coldest) region downstream (upstream) of the trough explains the
upstream phase velocity of instability, as recognized in the previous section. Finally,
we can note the presence of relatively strong vertical components of the perturbed
velocity.

In order to clarify the links between the flow field and the temperature distribution
and the role played by the free surface in the onset of instability, let us study three
modifications of the problem investigated so far: (i) the free surface is virtually
replaced by a flat rigid wall (problem Fw); (ii) the free surface is replaced by
a corrugated rigid wall parallel to the liquid–surface interface (problem Cw); (iii)
the free-surface fluctuations are completely neglected and, therefore, the free surface
remains flat, as observable at the basic state (problem Fn). Problem Fw reproduces the
conditions inside a closed-channel flow where the flat upper wall warms the fluid and
the lower wall freezes it. In problem Cw the free-surface dynamics is also completely
removed, but an undulating streamline distortion is maintained due to the presence of a
fictitious moving corrugated upper wall. Finally, in problem Fn, the presence of a free
surface is maintained, but it is unperturbed, so the streamline patterns are more similar
to the closed channel.

It is evident that problem Fw is the only physically realistic case but, in spite of
their artificiality, the other two are also useful in shedding light on the influence of
the upper boundary conditions. In fact, for all three new problems, the differential
model is the same as in the original problem, and only the kinematic and dynamical
conditions change, leading the basic flow of problems Fw and Cw to be modified
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FIGURE 10. (Colour online) A comparison of the perturbed values of the flow field (arrows),
temperature distribution (warmer in white, colder in black), and vorticity (lines, the symbols
+ and − refer to the sign) between the original problem (a) and problems Fw (b), Cw (c),
and Fn (d). The scale factor for the velocities differs between the panels. Re= 300, α = 0.07,
ϑ = π/90, θF

0 = 0.05, ε = 0.025.

to u0 = 4(ζ − ζ 2), whereas the values at order O(ε) are

problem Fw: h1 = 0, φ(1)= 0 φ′(1)= 0, (5.4)
problem Cw: h1 = 1, φ(1)= 0 φ′(1)= 0, (5.5)
problem Fn: h1 = 0, φ(1)= 0 φ′′(1)= 0. (5.6)
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If the stability analysis is developed for the three new problems, it demonstrates
that the liquid–solid interface is stable in all cases. This is a key point, because it
implies that the free surface – correctly modelled by the original problem – plays
an essential role in the instability process, which is absent in the three variations.
Similarly to figure 10(a), figure 10(b–d) shows the perturbed parts of the flow field,
temperature distribution, and vorticity distribution, for the problems (Fw, Cw, and Fn).
It is possible to see that the correlation between vorticity and temperature is also
performed to some extent in the modified problems; however, in these cases, the cells
are more in phase with the bed corrugation. Furthermore, we observe that for problems
Fw and Cw (i.e. figure 10b,c) the upstream convection and upward diffusion of the
vorticity generated at the liquid–solid interface is precluded by the effect of the upper
wall, which generates new vorticity that diffuses downwards. Generally, the phase lag
of the flow field structure, with respect to the bed corrugation, appears to be damped if
the boundary conditions acquire some symmetry in the coordinate ζ .

If the flow field is focused on, one observes that the only unstable problem (i.e. the
original one) is characterized by a relatively high vertical component of the perturbed
velocity (figure 10a) whereas, in all the other cases, the horizontal component is
usually predominant. This important difference can easily be explained. In the original
problem, the free-surface fluctuations, combined with the bed corrugation, induce a
strong distortion of the streamlines, but do not significantly alter the profile of the base
longitudinal flow, u0(ζ ); therefore, the perturbation of the velocity vector is mostly
directed in the vertical direction. On the other hand, the presence of a flat upper
boundary (problems Fw and Fn) and/or the constraint of a null velocity at the upper
boundary (problems Fw and Cw) inhibit the formation of a sufficiently large vertical
component of the velocity. In addition, for the case of the closed-channel problem Fw
(panel b), the high long-stream variations in the cross-section are balanced by high
variations in U1, because of the continuity of the flux.

From the above analysis it emerges that free-surface dynamics plays a fundamental
role in the onset of instability, the mechanisms thereof being explained as follows.
The kinematic and dynamic conditions induce a surface fluctuation and a consequent
streamline distortion with a dramatic increase in the vertical component of velocity.
This kinematic structure favours the heat transport between the warmer free surface
and the colder liquid–solid interface, with a phase shift that is forced by the ζ -
asymmetry in the boundary conditions. Finally, the phase shift in the heat flux
provides the destabilizing condition, as previously mentioned. The importance of
the vertical velocity on the heat transport is also visible in the linearized governing
equations: in heat conservation equation (3.5), the effect of the perturbed flow field
is only felt through the terms d1 and w1 = −ikφ, which are contained in the non-
homogeneous forcing part, whereas the component U1 gives no contribution.

In the previous section, we observed that, in the region of instability, 0 < arg(h1) <

π/2 and, generally, arg(h1) decreases with the increase in the Reynolds number (see
figure 5, last row of panels). It follows that the phase response of the free surface
is a stabilizing factor while, as previously described, its amplitude response is a
destabilizing factor (see also the term proportional to d1 in (3.19)). This is consistent
with three other results: (i) the existence of a particular physical condition, described
by the curve of marginal stability, where two mechanisms are in equilibrium; (ii) the
evidence of a stronger correlation between the contour plots of ωr and |h1| in the case
of the Stokes approximation, i.e. the loss of inertial forces induces an increase in the
amplitude response of the free surface with a further steepening of the streamlines; (iii)
a negative temporal growth rate, if the free-surface phase response is neglected.
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We conclude the present discussion with a comment about the approximations
made on the thermal boundary conditions at ζ = ±1. A rigorous application of the
heat conservation law at the free surface would also require the gas response to
also be modelled. In that case, the correct linearized boundary condition would be
equivalent to a linear combination of the Dirichlet and Neumann conditions (i.e. a
Robin condition), rather than only a Neumann condition as used here. A similar
argument could also be applied to the boundary condition at the solid bottom
(ζ = −1). However, we have observed that if conditions (2.24) are replaced by
Dirichlet conditions, no significant differences in the numerical value of the dispersion
relations emerge and, due to linearity, neither does the correct Robin boundary
condition. It follows that our assumption of the Neumann boundary condition for
the temperature field (the only approximation in the present theory that is not based on
scaling considerations) does not have any significant impact on the obtained results.

6. Conclusions

The present work elucidates the significance of free-surface dynamics on the onset
of morphodynamic instability of a liquid–solid interface bounding a laminar open-
channel flow at large Reynolds numbers. In order to show the key role played by
the free surface, the analytical solution of both the Orr–Sommerfeld equation, for
the open-channel problem with Re = 1–103, and of the linearized heat conservation
equations, for the liquid and solid phase, are obtained. The flow field solution has been
successfully validated through a comparison with the numerical solution developed
by Luo & Pozrikidis (2006). No approximations have been made for the flow and
heat fields, the only exception being (i) to consider, in the analytical solution, the
fluid dynamics and thermodynamics to quickly adjust to the bed configuration, (ii)
to assume a dynamical equilibrium between solid and liquid at the steady state, and
(iii) to neglect the thermodynamics of the upper gas layer. The first approximation is
justified provided St � 1, the latter two if the thickness of the solid layer is not too
small and the surface temperature of the liquid is not too high. We also developed a
fully numerical solution with a spectral Galerkin method, which permitted us to test
the validity of the analytical theory and to analyse the physical meaning of the whole
eigenvalue portrait. We developed our theory taking water as an example, but it is also
extendable to other incompressible Newtonian fluids.

As noted, free-surface dynamics has been found to be the essential ingredient that
induces the formation of unstable wavelets on a liquid–solid interface. In this sense,
the result is consistent with the analysis by Feltham & Worster (1999), where no
instabilities occurred when the free surface was removed. A quantitative comparison
with other simplified problems has also suggested that the key mechanism lies in the
distortion of the streamlines induced by the free-surface dynamics. In particular, its
amplitude response is a destabilizing factor while its phase response is a stabilizing
factor. In contrast, the inertia forces do not appear to be crucial for the onset of
instability, but are instead crucial for the correct localization of the marginal stability
curve.

The features of the unstable ‘ice waves’ depend on the bed inclination, Reynolds
number and the basic free-surface temperature. The results show that single wavelets
migrate upstream, in a similar manner to the instabilities observed by Gilpin (1981)
in pipes under a transition regime. The critical Reynolds number decreases with an
increase in the surface temperature with minimum values when the bed inclination is
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in the range 5–15◦. Three-dimensional effects appear to be relevant with increasing
Reynolds number.

All these findings have good correspondence in the formation of ice ripples on
glacier surfaces, induced by flow of meltwater. Coming back to figure 1, we can
now attempt a theoretical estimate of the selected pattern. Assuming average summer
conditions at the surface of the Ciardoney glacier (solar radiation 1200 W m−2, ice
albedo 0.75) and a roughly simplified energy balance at the liquid–solid interface, just
involving radiation and ice latent heat (λ = 3.34 × 105 J kg−1), it follows that an ice
surface 250 m long on a 4 % slope generates a melt ‘Nusselt’ film with Re = 150.
If heat conduction in the liquid and lateral self-radiation of the glacier were also
accounted for, the same flow would be obtained by a shorter surface (up to −50 %),
as observed during our field measurements. If we also set θF

0 = 0.01 (estimated by
our field measurements), the dispersion relation (3.19) provides that the most unstable
pattern is characterized by Lx ∼ 9 cm and Ly ∼ 1 m, in good agreement with data
reported in figure 1. Despite the high uncertainty in the above crude estimate, it
is remarkable that the present theory is able to correctly reproduce the order of
magnitude of the pattern instability of ice ripples. Although one could guess that
similar patterns are also induced by sublimation, through air katabatic flows, both
processes are more likely to cooperate in inducing instability. However, given the
pattern alignment with the micro-relief structure of the surface, meltwater probably
dominates. This point surely deserves further investigation.

Further improvements in the present analysis would be welcomed. Two issues
deserve particular attention: to understand the role of air dynamics at large Reynolds
numbers (i.e. relaxing assumption (iii)) and to develop a non-modal analysis in the
spirit of Schmid (2007) and Camporeale & Ridolfi (2011), in order to investigate
possible transient behaviours and their effects on two- and three-dimensional
instabilities.
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Appendix A. Coefficients of systems (2.18), (2.19)

σ0 = rγ (k −Λu0), σ1 = 1− ζ − s, σ2 =−(1+ ζ )/S0. (A 1)

Appendix B. Expression for the function F1, F2 and $ reported in § 3.1

F1=1F1

[
−$

2
,

1
2
, i
√
Λ

]
, F2 =

[
F4 −F3F5

(
k2 + i

√
Λ+Λ

2

)]
e−(i
√
Λ)/2, (B 1)

with

F3=1F1

[
$3,

3
2
, i
√
Λ

]
, F4 =F1·1F1

[
$3,

1
2
, i
√
Λ

]
, F5=1F1

[
$5,

3
2
, i
√
Λ

]
,

(B 2)
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and

$a =− i(k2 + ai
√
Λ+Λ)

4
√
Λ

, $ =−2$1. (B 3)
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