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Abstract

Detailed design is often a time-consuming and experience-dependent engineering process, where various detailed design
knowledge can be reused. This paper proposes a formal approach for modeling detailed design knowledge for effective re-
use. An extended structure–behavior–function model is developed for representing the structural, behavioral, and functional
information in various life cycle periods of a detailed design. Based on the extended structure–behavior–function model, an
issue- and solution-based approach is then developed to model the detailed knowledge of a mechanical design. The pro-
posed approach is implemented in a detailed design knowledge modeling system, with a fixture design knowledge model-
ing as a brief example.
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1. INTRODUCTION

Design knowledge reuse (DKR) is an effective approach for
design organizations to develop robust artifacts in short
time and with low cost. However, existing computer-aided
design (CAD) and product life cycle management software,
which are primarily developed for designers to manage geo-
metrical information, cannot provide effective support for
DKR. Therefore, DKR has attracted considerable attention
from the engineering design community in recent decades.
For example, Gero (1990) has developed the function–be-
havior–structure model for organizing the conceptual knowl-
edge about a design prototype; Szykman et al. (2000) have
developed a web-based approach for modeling the conceptual
knowledge of existing artifacts for reuse; Baxter et al. (2007)
have developed an integrated DKR framework for the early
design stage through bringing together best practice reuse, de-
sign rationale capture, and knowledge-based support; Goel
et al. (2009) have developed the structure–behavior–function
(SBF) model for representing conceptual design knowledge;
and Bracewell et al. (2009) have extended the issue-based in-
formation system for capturing design rationale in a more ef-
fective manner. Witherell et al. (2010) have developed a first-
order-logic-based approach to improve design knowledge

management. Our previous research has developed a knowl-
edge-based approach for reusing multidisciplinary principle
solutions through design synthesis (Chen, Liu, et al., 2012).

However, existing DKR research is primarily for modeling
and reusing early (e.g., conceptual) design knowledge, with
very little dealing with detailed design knowledge. Here, de-
tailed design primarily refers to a mechanical design process
for determining the forms and dimension of mechanical parts.
According to Pahl and Beitz (2007), detailed design should
consider not only the functional and embodiment require-
ments generated in upstream stages but also various life cycle
(e.g., manufacturing, assembling, transportation, mainte-
nance, etc.) requirements in downstream stages. Therefore,
it is a complex decision-making process that requires all life
cycle knowledge from both upstream and downstream stages.
In addition, since detailed design is often experience depen-
dent, much reusable knowledge often exists. Therefore, it is
of great value to study how to model and reuse detailed design
knowledge.

This paper will introduce a formal approach for modeling
detailed design knowledge, which is the cornerstone of our
DKR research. Section 2 introduces how the original SBF
model (Goel et al., 2009) is extended to represent detailed de-
sign information. Based on the extended SBF model, Section
3 then proposes a formal approach for modeling detailed de-
sign knowledge. With a fixture design case, Section 4 briefly
illustrates how the proposed design knowledge modeling
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approach is implemented. Finally, Section 5 concludes this
paper.

2. AN EXTENDED SBF MODEL

Engineering design researchers usually agree that a technical
artifact is primarily related to three basic concepts: function,
structure, and behavior. These three concepts and their rela-
tions can be used to model design knowledge. One of the rep-
resentative works is the original SBF model for representing
conceptual design knowledge (Goel et al., 2009). In this re-
search, we have extended the original SBF model for repre-
senting detailed design information, as shown in Figure 1.

2.1. Structure

Structure refers to the physical appearance of an artifact. The
structural representation here has both a composition represen-
tation and a form representation. The composition representa-
tion employs bills-of-materials to describe what entities (i.e.,
parts or assemblies) an artifact has, as well as the assembly re-
lationships among them. Each entity (part or assembly) in the
composition representation can be conceptualized as a binary
group, ,id_name, fattributesg., where id_name describes
the ID (identification) name of the entity, while attributes are
physical attributes, for example, density and rigidity.

To support detailed design, the original SBF model has
been extended to include the form representation, which
describes the geometrical forms and the related dimensions
of each part. Our form representation takes a descriptive fea-
ture-based approach, which employs geometrical features and

location relation parameters between those features to repre-
sent the geometrical information of a part. Each geometrical
feature is further represented with a set of parameters. Note
that the form representation of a part is also associated with
a parameterized CAD model to facilitate its integration with
commercial CAD software.

2.2. Behavior

The behavior of an entity refers to its own state change in its
life cycle periods—for example, the rotation of an axle or the
deforming of a spring. Unlike the original SBF model, which
usually deals with the causal behaviors for achieving a de-
sired function (Goel et al., 2009), the extended SBF model
also involves those behaviors in various life cycle (e.g., man-
ufacturing) periods of an entity, as well as some side behav-
iors that are unrelated to the entity’s functions. This is because
designers should also consider such life cycle behaviors in
detailed design.

A behavior here is quantitatively represented with a 5-ary
tuple, ,id_name, aff_entity, beh_param, caus_obj, remarks..
Here, id_name stands for the ID name of a behavior,
aff_entity refers to what entity (i.e., part or assembly) the be-
havior is affiliated to, beh_param is a quantitative parameter
for describing the degree of the state change, caus_obj
describes the objects that stimulate the current behavior,
and remarks are informal explanations. It is evident that the
behavioral representation here is different from that in the
original SBF model, where a behavior has been qualitatively
represented as a causal state transition.

2.3. Function

Based on our recent research (Chen, Huang, et al., 2012), a
function in the extended SBF model is defined as an intended
relation that one entity has (i.e., subject) with another (i.e.,
object) in any of its life cycle periods. The concept of function
here is therefore more like affordance, a novel design metho-
dology concept developed by Maier and Fadel (2009), rather
than that in the original SBF model, which primarily refers to
the input–output state transitions. This affordance feature also
makes our extended SBF model different from the CPM2
model (Fenves et al., 2008).

Functions can be classified as two types: internal functions
and external functions. An internal function means that both
its subject and its object belong to the artifact being designed.
Internal functions can be further classified as static functions
and dynamic functions. In a static function, the object is
usually regarded as a static entity. For example, when the
gearbox is said to have a function of containing gears, the
gears are regarded as static objects. A static function can be
conceptualized as a 5-ary tuple, ,sub, verb, objin, func_
param, remarks.. Here, sub denotes the subject, verb is a
verb describing the functional relation, objin refers to the in-
ternal object (i.e., a part) that is related to the subject, and
func_param is a functional parameter. A dynamic functionFig. 1. An extended structure–behavior–function model.

Y. Chen et al.416

https://doi.org/10.1017/S0890060413000164 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060413000164


is focused on the change of the object’s dynamic behavior. It
can be orally described as to do the behavior of something. A
behavior-focused function can be conceptualized as a 6-ary
tuple, ,sub, verb, objin, func_param, foc_behav, remarks..
Here, the symbol foc_behav refers to the object’s focused be-
havior to be processed by the function.

An external function means that its object is not a part of
the artifact being designed. Similar to an internal function,
an external function can be conceptualized as a 5-ary tuple,
,sub, verb, objex, f_param, remarks., where objex refers
to the external object that is acted on. Compared with existing
CAD or product life cycle management tools, modeling ex-
ternal functions has a major advantage, that is, the external
objects considered in various life cycle periods of an artifact
can be captured as functional information. Therefore, it can
help designers better understand a detailed design. For exam-
ple, various tools for machining parts and assembling them
(e.g., milling machines, wrenches, etc.) can also be modeled
in external functions, which enables designers to understand
how such tools influence the result of a detailed design.

3. MODELING DETAILED DESIGN
KNOWLEDGE

Detailed design is primarily aimed at assigning values to the
geometrical parameters of an entity. The knowledge that sup-
ports such decision-making processes is regarded as detailed
design knowledge, which can also be called tacit knowledge
in existing research (Haug, 2012). Just like design rationale,
detailed design knowledge can also be further classified as is-
sue knowledge and solution knowledge.

3.1. Modeling issue knowledge

It is acknowledged that issues considered during designing
are the most important contextual knowledge about a design
solution. They allow designers to understand and learn what
issues have been considered in a design solution. In this re-
search, detailed design issues are represented as three kinds
of design constraints: structural constraints, behavioral con-
straints, and functional constraints.

3.1.1. Modeling structural constraints

A structural constraint usually refers to a constraint on a
geometrical parameter of an entity. It may come from multi-
ple origins (e.g., external working environments, industrial
standards, and ergonomics). In addition, structural constraints
can be classified as simple constraints and complex con-
straints.

A simple structural constraint merely deals with an allow-
able value range of a geometrical parameter. It can be repre-
sented as a 5-ary tuple, fo(ps), vb, u, r, rmkg, where ps is the
related geometrical parameter, o the object to which the geo-
metrical parameter belongs, vb its boundary value, u its mea-
sure unit, r the relation between the parameter and the bound-
ary value, and rmk the informal remarks about the constraint.

For example, assume there is a structural constraint on a car,
that is, its width should be smaller than 3.5 m. This structural
constraint can be represented as, fCar(car_ feat(w)), 3500,
“mm”, “,”, . . .g. Here, the entity is Car, which has only
one complex feature, car_ feat, with a geometrical parameter,
w, for width.

A complex structural constraint often deals with a complex
constraining relation among multiple geometrical parameters
belonging to multiple entities. In this research, a complex
structural constraint is represented as, f[o( ps)i], vb, u, r,
rmkg, where [o( ps)i] refers to a polynomial composed of
the related geometrical parameters associated with their onto-
logical representations. How to represent a polynomial will
be illustrated later.

3.1.2. Modeling behavioral constraints

A behavioral constraint refers to a constraint on the dy-
namic behavior of an entity to be designed. For example, a de-
signer may impose a behavioral constraint on an economic
electrical car, that is, its maximal speed should be smaller
than 150 km/h. Similar to structural constraints, behavioral
constraints can also be classified as simple constraints and
complex constraints.

A simple behavioral constraint refers to the allowable value
range of the related behavioral parameter, which can be rep-
resented with a 5-ary tuple, fo(pb), vb, u, r, rmkg, where o
represents the subject of the behavior and pb the corresponding
behavioral parameter. For example, the behavioral constraint
mentioned above can be represented as, fCar(vmax), 150,
“km/h”, “,”, . . .g. A complex behavioral constraint refers
to the constraining relation among multiple behavioral param-
eters and can be represented as, f[o(pb)i], vb, u, r, rmkg,
where [o(pb)i] is a polynomial composed of multiple behav-
ioral parameters.

3.1.3. Modeling functional constraints

Although the engineering design community usually
agrees that engineering design is a function-centered activity,
the role of function in detailed design has not been clarified in
previous research. We have identified an axiom, the func-
tional constraint (FC) axiom, to help designers derive quanti-
tative constraints from functional descriptions (Chen, Huang,
et al., 2012). The FC axiom is the following:

If an entity S (subject) is said to have a function on an entity
O (object), then some design parameter(s) of S will be fully
or partially constrained by some design parameter(s) of O.

Here, design parameters can be functional, behavioral, or
structural. The FC axiom exists and holds in each successful
design case. For example, if a seat is designed to hold an
adult, then its geometrical parameter, width, will usually be
constrained by the average width of adults. Therefore, based
on the FC axiom, it is possible to derive many quantitative
constraints from the functional descriptions of an entity. A de-
tailed approach for deriving functional constraints from func-
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tional descriptions can be found in our recent research (Chen,
Huang, et al., 2012), and is therefore not elaborated here.

A functional constraint can be conceptualized as a 5-ary
tuple, fps, po, r, fs, rmkg, where ps stands for a design parameter
of a functional subject, po for a design parameter of a functional
object, and fs for the identifier(s) of the corresponding func-
tion(s). Based on the above representation, the aforementioned
functional constraint on the seat can then be represented as,
fSeat(seat_ feat(w), Adult(w), “.”, IDto�hold�an�adult, “. . .”g.
Note that a functional constraint must be associated with the cor-
responding function(s) in the above representation, which at
least has two advantages. One is that it can record the argument
for a functional constraint, which can make the constraint easily
understood by other designers. The other is that it can help a de-
signer judge whether a functional constraint should be reused or
not when the corresponding design solution has been reused.

3.2. Modeling solution knowledge

After the structural, behavioral, and functional constraints
have been modeled, a critical task then emerges as how to
solve these constraints to help designers determine the feasi-
ble value range of each design parameter. The constraints-
solving knowledge can be called solution knowledge and
can be classified as either model knowledge or computation
knowledge. Represented with informal remarks, the model
knowledge describes what physical model (i.e., principle)
can be used to solve a constraint (e.g., a cantilever model).

The computation knowledge is a formal representation that
manages the computation formulae for assigning values to
design parameters. The proposed model for representing a
formula is conceptualized as a 4-ary tuple, fpt, Pp; r, ocg.
Here, pt is a target (i.e., constrained) parameter, whose feasi-
ble value range should be determined; Pp represents a polyno-
mial including multiple constraining parameters; r refers to
the value relation between the target parameter and the poly-
nomial; and oc denotes the original constraint of the current
formula. The polynomial (Pp) is further represented with
the genetic programming approach (Koza, 1992), which
can be conceptualized as a triple, fnl, o, nrg. Here, nl and
nr represent the left-hand node and the right-hand node of a

subtree, respectively, which can be a variable, a constant, or
a mathematical operator, whereas o is the parent node of
the node, which can merely be a mathematical operator.
Note that each parameter in the genetic programming repre-
sentation is defined in the extended SBF model.

For example, assume the main shaft in a wind turbine has a
round cross section with two design parameters, that is, di-
ameter (d ) and length (l ). Due to the gravity of the turbine’s
blade assembly, the maximal deflection (vm) of the shaft
must be smaller than a prescribed value [vm]. With the canti-
lever-based solution model, this deflection constraint (a be-
havioral constraint) can be further transformed into a struc-
tural constraint on parameter d as in

d . Pp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64Gbl3

3pE[vm]

4

s
:

Here, E is the Young modulus and Gb is the weight of the
blade assembly. The above formula can be formally repre-
sented as fMainshaft(cylinder_ feat(d)), “.”, Pp, . . .g.
Here, Pp is a polynomial, which has a genetic programming
representation shown in Figure 2.

4. IMPLEMENTATION

With Microsoft Visual Studio and Microsoft SQL Server, the
proposed detailed design knowledge modeling approach has
been implemented as a detailed design knowledge modeling
system (DDKMS). A DDKMS is primarily composed of the
artifact information modeling subsystem for designers to
model an existing design with the extended SBF model and
the design knowledge modeling subsystem for designers to
model the issue knowledge and the solution knowledge. A
DDKMS has been deployed in a mechanical fixture design
group for test. A senior designer with about 10 years experi-
ence was invited to use a DDKMS to model the detailed de-
sign knowledge of a mechanical fixture. The primary process
was as below.

First, the designer developed the structural representation
for the fixture design, which primarily involved the part com-
position representation of the fixture and the form representa-
tion of its parts. As a result, a structural representation has
been built, which comprises 18 parts and about 90 geometri-
cal parameters. Figure 3 shows the part (composition) list and
a user interface for managing it.

Second, he defined the behavioral representation for each
part. As a result, he has collected some behavior(s) of the fix-
ture parts, for example, the translation and the rotation of the
double-head-bolt part, and the translation of a T-bolt part for
clamping the fixture to the drilling machine. Some side be-
haviors have also been identified, for example, the flexible
extension of the double-head-bolt part when clamping a tur-
bocharger shell and the deflection of the base-board ([BB])
part when it is drilled. Note that such side behaviors areFig. 2. A genetic programming representation case.
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usually not captured in the original SBF model because they
are unrelated to the functions of the part.

Third, the designer defined the functional information for
each part. About 60 functions have been defined, which in-
volve not only the internal functions but also the life cycle ex-
ternal functions. For example, the [BB] part not only has in-
ternal functions, such as supporting the shell-seat part and
fixing the position of the shell-seat part, but also has some ex-
ternal life cycle functions, such as holding the cutter of a mil-
ling machine and occupying the operating platform of a ma-
chine. Note that such life cycle functions also cannot be
captured in the original SBF model. The left part of Figure 4
shows some functions, while its right part is a user interface
for defining a function shown in the left.

Fourth, the designer modeled the issue knowledge of a fix-
ture. This process primarily involves building the structural,
behavioral, and functional constraints on the related entities.
For example, since the department standard prescribes that
the thickness, H, of the [BB] part should be equal to 30
mm, a geometrical constraint can then be modeled as
f[BB](BB_Feat(H)), 30, “mm,”¼, “Department Standard”g,
where BB_Feat refers to the geometrical feature of the [BB]
part; since the [BB] part should fulfill the functions of “semi-

containing a turbocharger shell (TS)” and “supporting pillar
shelf (PS)” at the same time, which are both related to the
width, B, of the [BB] part, then another issue knowledge
item can be modeled as: f[BB](BB_Feat(B)), [TS(width),
[PS](PS_Feat(width))], ., [F½TS�, F½PS�], “The [BB] part
should fulfill these two functions . . .”g, where “[TS(width),
[PS](PS_Feat(width))]” is a list of related design parameters,
TS(width) and [PS](PS_Feat(width)).

Fifth, the designer then modeled the solution knowledge
for the fixture design. Here, the most important work is to
model the computation knowledge. As a result, about 120
computational formulae have been obtained. For example, ac-
cording to the issue knowledge about the width of the [BB]
part mentioned before, a computation knowledge item can
then be modeled as, [BB](BB_Feat(B)) . (0.5� TS(width)
þ [PS](PS_Feat(width)))�2; because the [BB] part has an-
other function of occupying the operation platform of the ma-
chine, then another computation knowledge item can be mod-
eled as [BB](BB_Feat(B)) , operational platform(width).
Compared with the original SBF model, which does not
deal with quantitative constraints, such computation knowl-
edge is also a major extension for detailed design. Based on
these two constraints, a designer can then determine a suitable
value for the width parameter of the [BB] part. Figure 5 shows
some computation knowledge items and a user interface for
editing a computation knowledge item.

The results of the test are encouraging. With the aid of a
DDKMS, the designer can formally model various detailed
design knowledge (especially the life cycle design knowl-
edge) about a detailed design. For example, a designer can
use a DDKMS to model the knowledge about how the cutter
of a milling machine can impose a functional constraint on
the [BB] part, as explained before. Therefore, designers
now can not only employ CAD models to keep detailed de-
sign results but also use a DDKMS to store the detailed de-
sign knowledge hiding behind those results. An interview
with novice designers discloses that they are also content
with a DDKMS, because they can easily learn what issues
(especially those implicit issues) have been considered in

Fig. 4. (Color online) The function list and the related management user
interface.

Fig. 5. (Color online) The solution knowledge and the managing user
interface.

Fig. 3. (Color online) The part list and the user interface for managing it.
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a detailed design and how these issues are addressed with re-
lated solution models. This can largely shorten the time for a
novice designer to learn how to design a regular mechanical
fixture.

5. CONCLUSIONS

This paper attempts to develop a formal approach for model-
ing detailed design knowledge for effective reuse. The pri-
mary works are as follows.

First, the original SBF model has been extended to repre-
sent the structural, behavioral, and functional information in
detailed design. A notable feature of the extended SBF model
is that it allows designers to employ external functions to cap-
ture various life cycle objects that should be considered in a
detailed design.

Second, based on the extended SBF model, an issue- and so-
lution-based approach has been developed to model detailed
design knowledge. It enables designers to model the knowl-
edge about what issues (especially those implicit life cycle is-
sues) have been considered and the knowledge about how they
have been addressed with suitable solution models. This ap-
proach at least has two salient features. One is that it provides
a method to derive quantitative functional constraints from
qualitative function descriptions with the FC axiom. The other
is that a genetic programming-based approach has been em-
ployed to represent the computation knowledge so that design-
ers can input quantitative design constraints freely, rather than
rely on knowledge engineers to encode them. Since such de-
tailed design knowledge also belongs to tacit knowledge, the
proposed approach also demonstrates that tacit knowledge
can also be modeled in a structured manner.

Third, a DDKMS has been developed based on the pro-
posed approach, which has also been implemented in a fixture
design group for test. It is shown that a DDKMS allows a de-
signer to formally model structure-, behavior-, and function-
related detailed design knowledge, which usually remains im-
plicit behind the CAD models. Based on the modeled design
knowledge, it is also convenient for (novice) designers to un-
derstand how design results (i.e., CAD models) have been
achieved, that is, what issues have been considered and
how they are addressed, and to reuse them in an effective way.
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