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Abstract

For a character χ of a finite group G, the co-degree of χ is χc(1) = [G : kerχ]/χ(1). We study finite groups
whose co-degrees of nonprincipal (complex) irreducible characters are divisible by a given prime p.
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1. Introduction and preliminaries

In this paper, G is a finite group and p is a prime number. Let Irr(G) denote the set of
(complex) irreducible characters of G. For a normal subgroup N of G and θ ∈ Irr(N),
let IG(θ) denote the inertia group of θ in G and let Irr(G|θ) be the set of the irreducible
constituents of the induced character θG. If n is a positive integer, np denotes the p-part
of n. For a character χ of G, the number χc(1) = [G : kerχ]/χ(1) is called the co-degree
of χ (see [11]). Set Codeg(G) = {χc(1) : χ ∈ Irr(G)}. In [1, 4, 11], some properties of
the co-degrees of irreducible characters of finite groups have been studied. In 1970,
Thompson [14] proved that if the degree of every nonlinear irreducible character of G
is divisible by p, then G has a normal p-complement. Our first result is the following
theorem.

Theorem 1.1. Suppose that p is neither 2 nor a Mersenne prime. Let G be p-solvable.
Then p | χc(1) for every nonprincipal character χ ∈ Irr(G) if and only if G is a p-group.

In Examples 2.4, 2.5 and 2.6, we show that the hypotheses ‘p-solvability of G’ and
‘p is neither 2 nor a Mersenne prime’ in Theorem 1.1 are essential. We also prove a
second result.

Theorem 1.2. Let e be a positive integer. Then χc(1)p = pe for every nonprincipal
irreducible character χ of G if and only if e = 1 and G is an elementary abelian p-
group.
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2. Proofs of the main results

We first state a lemma that will be used frequently in the proofs of the main results
without explicit reference.

Lemma 2.1 [11, Lemma 2.1]. Let N be a normal subgroup of G. Then Codeg(G/N) ⊆
Codeg(G). Also, if ψ ∈ Irr(N), then ψc(1) | χc(1) for every χ ∈ Irr(G|ψ).

Lemma 2.2. Let N = S 1 × · · · × S t be a minimal normal subgroup of G, where S i � S
is a nonabelian simple group. Then there exists ϕ ∈ Irr(N) that extends to G and
kerϕ = {1}.

Proof. Lemma 2.2 follows immediately from [12, 13] and [2, Theorems 3–4 and
Lemma 5]. �

Proposition 2.3. Let G be a p-solvable group. If p | χc(1) for every nonprincipal
character χ ∈ Irr(G), then G is solvable.

Proof. Since every 2-solvable group is solvable, from now on we can assume that
p , 2. Assume by contradiction that G is nonsolvable. Let M be a normal subgroup
of G of maximal order such that G/M is nonsolvable. Set Ḡ = G/M and, for every
x ∈ G, let x̄ be the image of x in Ḡ. Since Codeg(Ḡ) ⊆ Codeg(G), p divides the
nontrivial elements of Codeg(Ḡ). Consequently, p | |Ḡ|. Let N̄ = N/M be a minimal
normal subgroup of Ḡ. Note that Ḡ/L̄ � G/L for every nontrivial normal subgroup
L̄ = L/M of Ḡ, so by our assumption on M, Ḡ/L̄ is solvable. Since N̄/(N̄ ∩ L̄) . Ḡ/L̄,
our assumption on M forces N̄ to be the unique minimal normal subgroup of Ḡ.
Also, Ḡ/N̄ � G/N is solvable and N̄ = S 1 × · · · × S t, where S 1, . . . , S t are isomorphic
nonabelian simple groups. Therefore, CḠ(N̄) = {1} and N̄ E Ḡ . Aut(N̄).

Suppose that t = 1. Since Ḡ is p-solvable and p | |Ḡ|, it follows that p - |N̄|
and p | |Ḡ/N̄|. Thus, there exists a nonprincipal character θ ∈ Irr(N̄) such that IḠ(θ)
is a p′-group, by [10, Corollary 2.3]. Let ϕ ∈ Irr(Ḡ|θ). By Clifford’s theorem,
[Ḡ : IḠ(θ)] | ϕ(1). Therefore, ϕc(1) | |IḠ(θ)| and, consequently, p - ϕc(1), which is a
contradiction.

Next suppose that t ≥ 2. Then Ḡ acts transitively on the set Ω = {S 1, . . . , S t}. Let
K̄ be the kernel of the action of Ḡ on Ω. Note that N̄ ≤ K̄, so Ḡ/K̄ is solvable.
By [3, Corollary 4], there are disjoint (possibly empty) subsets Ω1 and Ω2 of Ω

such that StabḠ/K̄(Ω1,Ω2) (the subgroup of Ḡ/K̄ containing all elements of Ḡ/K̄
that fix the sets Ω1 and Ω2, setwise) is a 2-group. By [10, Corollary 2.3], for
i ∈ {1, . . . , t}, there exist nonprincipal characters θi, ϕi ∈ Irr(S i) of different degrees
such that p - |IAut(S i)(θi)|, |IAut(S i)(ϕi)|. Thus, IK̄(θi)/CK̄(S i) and IK̄(ϕi)/CK̄(S i) are p′-
groups. It follows that CK̄(S i) contains the Sylow p-subgroups of IK̄(θi) and IK̄(ϕi)
for every i ∈ {1, . . . , t}. Set ψ = ΠS i∈Ω1θiΠS i∈Ω2ϕi. Then ψ ∈ Irr(N̄), kerψ = {1} and
IK̄(ψ) = (

⋂
S i∈Ω1

IK̄(θi)) ∩ (
⋂

S i∈Ω2
IK̄(ϕi)). This shows that the Sylow p-subgroups of

IK̄(ψ) are subgroups of
⋂t

i=1 CK̄(S i) ≤ CḠ(N̄) = {1}. Therefore, IK̄(ψ) is a p′-group.
Also, θi(1) , ϕ j(1) for i, j ∈ {1, . . . , t}. It follows that IḠ(ψ)K̄/K̄ ≤ StabḠ/K̄(Ω1,Ω2).
So, IḠ(ψ)K̄/K̄ � IḠ(ψ)/IK̄(ψ) is a 2-group and so IḠ(ψ) is a p′-group, because p , 2.
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Let χ ∈ Irr(Ḡ|ψ). By Clifford’s theorem, [Ḡ : IḠ(ψ)] | χ(1). Thus, χc(1) | |IḠ(ψ)|, so
p - χc(1), which is a contradiction. Therefore, G is solvable. �

Proof of Theorem 1.1. If G is a p-group, then clearly p | χc(1) for every nonprincipal
character χ ∈ Irr(G), as desired.

Now suppose that p | χc(1) for every nonprincipal character χ ∈ Irr(G). Then G is
solvable, by Proposition 2.3. Working towards a contradiction, suppose that G is not
a p-group. Let M be a normal subgroup of G of the maximal order such that G/M
is not a p-group. Set Ḡ = G/M and, for x ∈ G, let x̄ be the image of x in Ḡ. Since
Codeg(Ḡ) ⊆ Codeg(G), for every nonprincipal character χ ∈ Irr(Ḡ), we have p | χc(1)
and so p | |Ḡ|. Let N̄ = N/M be a minimal normal subgroup of Ḡ. Note that Ḡ/L̄ �G/L
for every nontrivial normal subgroup L̄ = L/M of Ḡ, so by our assumption on M, Ḡ/L̄
is a p-group (possibly trivial). Since N̄/(N̄ ∩ L̄) . Ḡ/L̄, our assumption on M forces
N̄ to be the unique minimal normal subgroup of Ḡ, which is an elementary abelian
r-group for some prime r with r , p. Since p | |Ḡ|, it follows that Ḡ/N̄ is a nontrivial
p-group. Moreover, Ḡ/N̄ acts faithfully and irreducibly on N̄. By [9, Theorem 1.1],
there exists x̄ ∈ N̄ such that StabḠ/N̄(x̄) = {1}, where StabḠ/N̄(x̄) denotes the stabiliser of
x̄ in Ḡ/N̄ under the relevant action. However, gcd(|N̄|, |Ḡ/N̄|) = 1 and hence the actions
of Ḡ/N̄ on Irr(N̄) and on the conjugacy classes of N̄ are permutation isomorphic. So,
there exists θ ∈ Irr(N̄) such that IḠ(θ) = N̄. Let χ ∈ Irr(Ḡ|θ). By Clifford’s theorem,
[Ḡ : IḠ(θ)] | χ(1). Therefore, χc(1) | |IḠ(θ)|, so p - χc(1), which is a contradiction. This
shows that G is a p-group, as desired. �

In Examples 2.4, 2.5 and 2.6, we show that the hypotheses ‘p-solvability of G’ and
‘p is neither 2 nor a Mersenne prime’ in Theorem 1.1 are essential.

Example 2.4. Let G be a finite simple group and suppose that χ ∈ Irr(G) − {1G}. Then
p | χc(1) if and only if χ(1)p < |G|p, that is, G has no irreducible character of p-defect
zero (a character of degree divisible by |G|p). By [5, Corollary 2], the co-degrees of
nonprincipal irreducible characters of G are divisible by p if and only if either p = 2
and (up to isomorphism) G ∈ {M12,M22,M24, J2,HS,Suz,Ru, co1,Co3,BM,Altn} (for
some particular integer n) or p = 3 and (up to isomorphism) G ∈ {Co3, Suz,Altn} (for
some particular integer n).

Example 2.5. Let S be a simple group of Lie type over a field with pk elements such
that p | k. Then there exists an almost simple group G with socle S such that |G/S | = p.
Let χ be a nonprincipal element of Irr(G). If χ ∈ Irr(G/S ), then obviously p | χc(1).
Otherwise, kerχ = {1} and there exists a nonprincipal constituent θ ∈ Irr(S ) of χS .
By [8, Theorem 1.1], either p | θc(1) or θ is the Steinberg character of S . In the former
case, p | χc(1) and, in the latter one, χS = θ. Thus, p = |G/S | | χc(1). This shows
that there are many finite almost simple groups whose co-degrees of nonprincipal
irreducible characters are divisible by p.

Example 2.6. By [9, Theorem 2.1(i)], there exists a finite group G of order 72 with
the unique minimal normal subgroup N whose order is nine and the action of G/N on
N has no regular orbit (G = SmallGroup(72, 40) in the GAP library of small groups).
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Let χ ∈ Irr(G) − {1G} and p = 2. If χ ∈ Irr(G/N), then p | χc(1), because G/N is a
nontrivial p-group. Otherwise, kerχ = 1 and there exists a nonprincipal constituent
θ ∈ Irr(N) of χN . Since gcd(|N|, |G/N|) = 1, the actions of G/N on Irr(N) and on the
conjugacy classes of N are permutation isomorphic. Hence, p | |IG(θ)|. By Clifford’s
theorem, χ(1) = [G : IG(θ)]e, where e2 ≤ |IG(θ) : N|, so p | χc(1). Now let p = 2a − 1
be a Mersenne prime. By [9, Theorem 2.1(ii)], there exists a finite group G of order
2ap pp+1 with a unique minimal normal subgroup N whose order is 2ap and the action
of G/N on N has no regular orbit. Now applying the same argument given for p = 2
shows that p | χc(1) for every χ ∈ Irr(G) − {1G}. Thus, if either p = 2 or p is a Mersenne
prime, then there exists a non-nilpotent solvable group G such that p | χc(1) for every
nonprincipal character χ ∈ Irr(G).

Proof of Theorem 1.2. If G is an elementary abelian p-group, then [4, Lemma 2.4]
shows that Codeg(G) = {1, p}, as desired. From now on, we suppose that χc(1)p = pe

for every nonprincipal irreducible character χ of G. We are going to prove that e = 1
and G is an elementary abelian p-group.

First, let G be a p-group. By the assumption of the theorem, Codeg(G) = {1, pe}.
Now [1, Lemma 3.1] and [4, Lemma 2.4] force G to be an elementary abelian p-group
and e = 1. So, in order to complete the proof, it is enough to show that G is a p-group.

Assume by contradiction that G is not a p-group. Let M be a normal subgroup of
G of the maximal order such that G/M is not a p-group. Set Ḡ = G/M and let x̄ be the
image of x ∈ G in Ḡ. By the argument used in the proof of Theorem 1.1, p | |Ḡ| and Ḡ
has a unique minimal normal subgroup N̄. In particular, Ḡ/N̄ is a p-group (possibly
trivial). We claim that Ḡ is p-solvable. Working towards a contradiction, suppose
that Ḡ is not p-solvable. Thus, N̄ = S 1 × · · · × S t, where S 1, . . . , S t are isomorphic
nonabelian simple groups with orders divisible by p. Then, for 1 ≤ i ≤ t, there exist
θi, φi ∈ Irr(S i) − {1S i} such that p | θi(1) and p - φi(1). Set ψ1 = θ1 × φ2 × · · · × φt and
ψ2 = φ1 × φ2 × · · · × φt. Hence, ψ1, ψ2 ∈ Irr(N̄) − {1N̄} and kerψ1 = kerψ2 = {1}. If
|Ḡ/N̄| = 1, then ψc

1(1)p = |Ḡ|p/θ1(1)p , |Ḡ|p = ψc
2(1)p, which is a contradiction. Next

let |Ḡ/N̄| , 1. For every χ ∈ Irr(Ḡ|ψ2), we have ψc
2(1) | χc(1) and so

(|S 1|p)t = ψc
2(1)p ≤ χ

c(1)p = pe. (2.1)

On the other hand, since Ḡ/N̄ is a p-group and Codeg(Ḡ/N̄) ⊆ Codeg(G), we have
Codeg(Ḡ/N̄) = {1, pe}. Thus, e = 1 and p , 2, by [1, Lemma 3.1] and [4, Lemma
2.4]. Hence, (2.1) forces t = 1 and |S 1|p = p. So, N̄ is a simple group, which is the
unique minimal normal subgroup of Ḡ. Thus, we can easily check that CḠ(N̄) = {1}
and consequently N̄ E Ḡ . Aut(N̄). Hence, by Lemma 2.2, there exists ψ ∈ Irr(N̄) such
that kerψ = {1} and ψ extends to Ḡ, that is, there exists χ ∈ Irr(Ḡ) such that χN̄ = ψ. It is
obvious that kerχ = {1} and so |Ḡ/N̄| | χc(1). Hence, |Ḡ/N̄| = p. This forces |Ḡ|p = p2.
Also, |Ḡ|p/|kerχ|pχ(1)p = χc(1)p = p for every χ ∈ Irr(Ḡ) − Irr(Ḡ/N̄). Thus, χ(1)p ≤ p
and, by [7, Lemma 3.2], N̄ ' Alt7 and p = 3. Therefore, |Ḡ/N̄| | |Out(Alt7)|. It follows
that p = 3 | |Out(Alt7)| = 2, which is a contradiction. This shows that p - |N̄|.

Consequently, Ḡ is p-solvable and p | |Ḡ/N̄|. Now Proposition 2.3 guarantees
that Ḡ is solvable. Also, since Ḡ/N̄ is a p-group, Codeg(Ḡ/N̄) = {1, pe}. Thus, [1,
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Lemma 3.1] forces Ḡ/N̄ to be abelian. Therefore, (Ḡ)′ = N̄ is the unique minimal
normal subgroup of Ḡ. Hence, [6, Lemma 12.3] implies that Ḡ is a Frobenius
group with the Frobenius kernel N̄. So, there exists χ ∈ Irr(Ḡ) such that χc(1) = |N̄|
and p - χc(1). However, this contradicts the assumption of the theorem, because
Codeg(Ḡ) ⊆ Codeg(G). Therefore, G must be an elementary abelian p-group. �

References
[1] F. Alizadeh, H. Behravesh, M. Gaffarzadeh, M. Ghasemi and S. Hekmatara, ‘Groups with few

co-degrees of irreducible characters’, Comm. Algebra 47 (2019), 1147–1152.
[2] M. Bianchi, D. Chillag, M. L. Lewis and E. Pacifici, ‘Character degree graphs that are complete

graphs’, Proc. Amer. Math. Soc. 135(3) (2007), 671–676.
[3] S. Dolfi, ‘Orbits of permutation groups on the power set’, Arch. Math. 75 (2000), 321–327.
[4] N. Du and M. L. Lewis, ‘Codegrees and nilpotence class of p-groups’, J. Group Theory 19(4)

(2016), 561–568.
[5] A. Granville and K. Ono, ‘Defect zero p-blocks for finite simple groups’, Trans. Amer. Math. Soc.

348 (1996), 331–347.
[6] I. M. Isaacs, Character Theory of Finite Groups (Dover, New York, 1994).
[7] M. L. Lewis, G. Navarro, P. H. Tiep and H. P. Tong-Viet, ‘p-Parts of character degrees’, J. Lond.

Math. Soc. (2) 92(2) (2015), 483–497.
[8] G. Malle and A. Zalesski, ‘Prime power degree representations of quasi-simple groups’, Arch.

Math. 77(6) (2001), 461–468.
[9] D. S. Passman, ‘Groups with normal solvable Hall p′-subgroups’, Trans. Amer. Math. Soc. 123

(1966), 99–111.
[10] G. Qian, ‘A note on p-parts of character degrees’, Bull. Lond. Math. Soc. 50(4) (2018), 663–666.
[11] G. Qian, Y. Wang and H. Wei, ‘Co-degrees of irreducible characters in finite groups’, J. Algebra

312 (2007), 946–955.
[12] P. Schmid, ‘Rational matrix groups of a special type’, Linear Algebra Appl. 71 (1985), 289–293.
[13] P. Schmid, ‘Extending the Steinberg representation’, J. Algebra Appl. 150 (1992), 254–256.
[14] J. Thompson, ‘Normal p-complements and irreducible characters’, J. Algebra 14 (1970),

129–134.

ROYA BAHRAMIAN, Department of Pure Mathematics,
Faculty of Mathematical Sciences, Shahrekord University,
P.O. Box 115, Shahrekord, Iran
e-mail: roya.bahramian98@gmail.com

NEDA AHANJIDEH, Department of Pure Mathematics,
Faculty of Mathematical Sciences, Shahrekord University,
P.O. Box 115, Shahrekord, Iran
e-mail: ahanjideh.neda@sci.sku.ac.ir

https://doi.org/10.1017/S0004972720000295 Published online by Cambridge University Press

https://orcid.org/0000-0001-8707-224X
mailto:roya.bahramian98@gmail.com
https://orcid.org/0000-0002-0867-5526
mailto:ahanjideh.neda@sci.sku.ac.ir
https://doi.org/10.1017/S0004972720000295

	Introduction and preliminaries
	Proofs of the main results
	References

