Bull. Aust. Math. Soc. **103** (2021), 78–82 doi:10.1017/S0004972720000295

p-DIVISIBILITY OF CO-DEGREES OF IRREDUCIBLE CHARACTERS

ROYA BAHRAMIAN[®] and NEDA AHANJIDEH[®]

(Received 1 February 2020; accepted 16 February 2020; first published online 7 April 2020)

Abstract

For a character χ of a finite group G, the co-degree of χ is $\chi^{c}(1) = [G : \ker \chi]/\chi(1)$. We study finite groups whose co-degrees of nonprincipal (complex) irreducible characters are divisible by a given prime p.

2010 *Mathematics subject classification*: primary 20C15; secondary 20D10. *Keywords and phrases*: co-degree of a character, co-prime action, *p*-solvable groups.

1. Introduction and preliminaries

In this paper, *G* is a finite group and *p* is a prime number. Let Irr(G) denote the set of (complex) irreducible characters of *G*. For a normal subgroup *N* of *G* and $\theta \in Irr(N)$, let $I_G(\theta)$ denote the inertia group of θ in *G* and let $Irr(G|\theta)$ be the set of the irreducible constituents of the induced character θ^G . If *n* is a positive integer, n_p denotes the *p*-part of *n*. For a character χ of *G*, the number $\chi^c(1) = [G : \ker \chi]/\chi(1)$ is called the co-degree of χ (see [11]). Set Codeg(*G*) = { $\chi^c(1) : \chi \in Irr(G)$ }. In [1, 4, 11], some properties of the co-degrees of irreducible characters of finite groups have been studied. In 1970, Thompson [14] proved that if the degree of every nonlinear irreducible character of *G* is divisible by *p*, then *G* has a normal *p*-complement. Our first result is the following theorem.

THEOREM 1.1. Suppose that p is neither 2 nor a Mersenne prime. Let G be p-solvable. Then $p \mid \chi^c(1)$ for every nonprincipal character $\chi \in Irr(G)$ if and only if G is a p-group.

In Examples 2.4, 2.5 and 2.6, we show that the hypotheses 'p-solvability of G' and 'p is neither 2 nor a Mersenne prime' in Theorem 1.1 are essential. We also prove a second result.

THEOREM 1.2. Let *e* be a positive integer. Then $\chi^c(1)_p = p^e$ for every nonprincipal irreducible character χ of *G* if and only if e = 1 and *G* is an elementary abelian *p*-group.

^{© 2020} Australian Mathematical Publishing Association Inc.

2. Proofs of the main results

We first state a lemma that will be used frequently in the proofs of the main results without explicit reference.

LEMMA 2.1 [11, Lemma 2.1]. Let N be a normal subgroup of G. Then $Codeg(G/N) \subseteq Codeg(G)$. Also, if $\psi \in Irr(N)$, then $\psi^c(1) | \chi^c(1)$ for every $\chi \in Irr(G|\psi)$.

LEMMA 2.2. Let $N = S_1 \times \cdots \times S_t$ be a minimal normal subgroup of G, where $S_i \cong S$ is a nonabelian simple group. Then there exists $\varphi \in Irr(N)$ that extends to G and $\ker \varphi = \{1\}$.

PROOF. Lemma 2.2 follows immediately from [12, 13] and [2, Theorems 3–4 and Lemma 5].

PROPOSITION 2.3. Let G be a p-solvable group. If $p \mid \chi^{c}(1)$ for every nonprincipal character $\chi \in Irr(G)$, then G is solvable.

PROOF. Since every 2-solvable group is solvable, from now on we can assume that $p \neq 2$. Assume by contradiction that *G* is nonsolvable. Let *M* be a normal subgroup of *G* of maximal order such that G/M is nonsolvable. Set $\overline{G} = G/M$ and, for every $x \in G$, let \overline{x} be the image of x in \overline{G} . Since $\text{Codeg}(\overline{G}) \subseteq \text{Codeg}(G)$, p divides the nontrivial elements of $\text{Codeg}(\overline{G})$. Consequently, $p \mid |\overline{G}|$. Let $\overline{N} = N/M$ be a minimal normal subgroup of \overline{G} . Note that $\overline{G}/\overline{L} \cong G/L$ for every nontrivial normal subgroup $\overline{L} = L/M$ of \overline{G} , so by our assumption on M, $\overline{G}/\overline{L}$ is solvable. Since $\overline{N}/(\overline{N} \cap \overline{L}) \leq \overline{G}/\overline{L}$, our assumption on M forces \overline{N} to be the unique minimal normal subgroup of \overline{G} . Also, $\overline{G}/\overline{N} \cong G/N$ is solvable and $\overline{N} = S_1 \times \cdots \times S_t$, where S_1, \ldots, S_t are isomorphic nonabelian simple groups. Therefore, $C_{\overline{G}}(\overline{N}) = \{1\}$ and $\overline{N} \leq \overline{G} \leq \text{Aut}(\overline{N})$.

Suppose that t = 1. Since \bar{G} is *p*-solvable and $p \mid |\bar{G}|$, it follows that $p \nmid |\bar{N}|$ and $p \mid |\bar{G}/\bar{N}|$. Thus, there exists a nonprincipal character $\theta \in \operatorname{Irr}(\bar{N})$ such that $I_{\bar{G}}(\theta)$ is a *p'*-group, by [10, Corollary 2.3]. Let $\varphi \in \operatorname{Irr}(\bar{G}|\theta)$. By Clifford's theorem, $[\bar{G} : I_{\bar{G}}(\theta)] \mid \varphi(1)$. Therefore, $\varphi^c(1) \mid |I_{\bar{G}}(\theta)|$ and, consequently, $p \nmid \varphi^c(1)$, which is a contradiction.

Next suppose that $t \ge 2$. Then \bar{G} acts transitively on the set $\Omega = \{S_1, \ldots, S_t\}$. Let \bar{K} be the kernel of the action of \bar{G} on Ω . Note that $\bar{N} \le \bar{K}$, so \bar{G}/\bar{K} is solvable. By [3, Corollary 4], there are disjoint (possibly empty) subsets Ω_1 and Ω_2 of Ω such that $\operatorname{Stab}_{\bar{G}/\bar{K}}(\Omega_1, \Omega_2)$ (the subgroup of \bar{G}/\bar{K} containing all elements of \bar{G}/\bar{K} that fix the sets Ω_1 and Ω_2 , setwise) is a 2-group. By [10, Corollary 2.3], for $i \in \{1, \ldots, t\}$, there exist nonprincipal characters $\theta_i, \varphi_i \in \operatorname{Irr}(S_i)$ of different degrees such that $p \nmid |I_{\operatorname{Aut}(S_i)}(\theta_i)|, |I_{\operatorname{Aut}(S_i)}(\varphi_i)|$. Thus, $I_{\bar{K}}(\theta_i)/C_{\bar{K}}(S_i)$ and $I_{\bar{K}}(\varphi_i)/C_{\bar{K}}(S_i)$ are p'-groups. It follows that $C_{\bar{K}}(S_i)$ contains the Sylow p-subgroups of $I_{\bar{K}}(\theta_i)$ and $I_{\bar{K}}(\varphi_i)$ for every $i \in \{1, \ldots, t\}$. Set $\psi = \prod_{S_i \in \Omega_1} \theta_i \prod_{S_i \in \Omega_2} \varphi_i$. Then $\psi \in \operatorname{Irr}(\bar{N})$, ker $\psi = \{1\}$ and $I_{\bar{K}}(\psi) = (\bigcap_{S_i \in \Omega_1} I_{\bar{K}}(\theta_i)) \cap (\bigcap_{S_i \in \Omega_2} I_{\bar{K}}(\varphi_i))$. This shows that the Sylow p-subgroups of $I_{\bar{K}}(\psi)$ are subgroups of $\bigcap_{i=1}^t C_{\bar{K}}(S_i) \le C_{\bar{G}}(\bar{N}) = \{1\}$. Therefore, $I_{\bar{K}}(\psi)$ is a p'-group. Also, $\theta_i(1) \neq \varphi_j(1)$ for $i, j \in \{1, \ldots, t\}$. It follows that $I_{\bar{G}}(\psi)\bar{K}/\bar{K} \le \operatorname{Stab}_{\bar{G}/\bar{K}}(\Omega_1, \Omega_2)$. So, $I_{\bar{G}}(\psi)\bar{K}/\bar{K} \cong I_{\bar{G}}(\psi)/I_{\bar{K}}(\psi)$ is a 2-group and so $I_{\bar{G}}(\psi)$ is a p'-group, because $p \neq 2$. Let $\chi \in \operatorname{Irr}(\bar{G}|\psi)$. By Clifford's theorem, $[\bar{G} : I_{\bar{G}}(\psi)] | \chi(1)$. Thus, $\chi^{c}(1) | |I_{\bar{G}}(\psi)|$, so $p \nmid \chi^{c}(1)$, which is a contradiction. Therefore, *G* is solvable.

PROOF OF THEOREM 1.1. If G is a p-group, then clearly $p \mid \chi^c(1)$ for every nonprincipal character $\chi \in Irr(G)$, as desired.

Now suppose that $p \mid \chi^{c}(1)$ for every nonprincipal character $\chi \in Irr(G)$. Then G is solvable, by Proposition 2.3. Working towards a contradiction, suppose that G is not a p-group. Let M be a normal subgroup of G of the maximal order such that G/Mis not a p-group. Set $\overline{G} = G/M$ and, for $x \in G$, let \overline{x} be the image of x in \overline{G} . Since $\operatorname{Codeg}(\overline{G}) \subseteq \operatorname{Codeg}(G)$, for every nonprincipal character $\chi \in \operatorname{Irr}(\overline{G})$, we have $p \mid \chi^c(1)$ and so $p \mid |\bar{G}|$. Let $\bar{N} = N/M$ be a minimal normal subgroup of \bar{G} . Note that $\bar{G}/\bar{L} \cong G/L$ for every nontrivial normal subgroup $\bar{L} = L/M$ of \bar{G} , so by our assumption on M, \bar{G}/\bar{L} is a *p*-group (possibly trivial). Since $\overline{N}/(\overline{N} \cap \overline{L}) \leq \overline{G}/\overline{L}$, our assumption on *M* forces \overline{N} to be the unique minimal normal subgroup of \overline{G} , which is an elementary abelian r-group for some prime r with $r \neq p$. Since $p \mid |\bar{G}|$, it follows that \bar{G}/\bar{N} is a nontrivial *p*-group. Moreover, $\overline{G}/\overline{N}$ acts faithfully and irreducibly on \overline{N} . By [9, Theorem 1.1], there exists $\bar{x} \in \bar{N}$ such that $\operatorname{Stab}_{\bar{G}/\bar{N}}(\bar{x}) = \{1\}$, where $\operatorname{Stab}_{\bar{G}/\bar{N}}(\bar{x})$ denotes the stabiliser of \bar{x} in \bar{G}/\bar{N} under the relevant action. However, $gcd(|\bar{N}|, |\bar{G}/\bar{N}|) = 1$ and hence the actions of $\overline{G}/\overline{N}$ on Irr(\overline{N}) and on the conjugacy classes of \overline{N} are permutation isomorphic. So, there exists $\theta \in \operatorname{Irr}(\bar{N})$ such that $I_{\bar{G}}(\theta) = \bar{N}$. Let $\chi \in \operatorname{Irr}(\bar{G}|\theta)$. By Clifford's theorem, $[\bar{G}: I_{\bar{G}}(\theta)] \mid \chi(1)$. Therefore, $\chi^{c}(1) \mid |I_{\bar{G}}(\theta)|$, so $p \nmid \chi^{c}(1)$, which is a contradiction. This shows that G is a p-group, as desired.

In Examples 2.4, 2.5 and 2.6, we show that the hypotheses '*p*-solvability of G' and '*p* is neither 2 nor a Mersenne prime' in Theorem 1.1 are essential.

EXAMPLE 2.4. Let *G* be a finite simple group and suppose that $\chi \in Irr(G) - \{1_G\}$. Then $p \mid \chi^c(1)$ if and only if $\chi(1)_p < |G|_p$, that is, *G* has no irreducible character of *p*-defect zero (a character of degree divisible by $|G|_p$). By [5, Corollary 2], the co-degrees of nonprincipal irreducible characters of *G* are divisible by *p* if and only if either p = 2 and (up to isomorphism) $G \in \{M_{12}, M_{22}, M_{24}, J_2, HS, Suz, Ru, co_1, Co_3, BM, Alt_n\}$ (for some particular integer *n*) or p = 3 and (up to isomorphism) $G \in \{Co_3, Suz, Alt_n\}$ (for some particular integer *n*).

EXAMPLE 2.5. Let *S* be a simple group of Lie type over a field with p^k elements such that $p \mid k$. Then there exists an almost simple group *G* with socle *S* such that |G/S| = p. Let χ be a nonprincipal element of Irr(*G*). If $\chi \in \text{Irr}(G/S)$, then obviously $p \mid \chi^c(1)$. Otherwise, ker $\chi = \{1\}$ and there exists a nonprincipal constituent $\theta \in \text{Irr}(S)$ of χ_S . By [8, Theorem 1.1], either $p \mid \theta^c(1)$ or θ is the Steinberg character of *S*. In the former case, $p \mid \chi^c(1)$ and, in the latter one, $\chi_S = \theta$. Thus, $p = |G/S| \mid \chi^c(1)$. This shows that there are many finite almost simple groups whose co-degrees of nonprincipal irreducible characters are divisible by p.

EXAMPLE 2.6. By [9, Theorem 2.1(i)], there exists a finite group G of order 72 with the unique minimal normal subgroup N whose order is nine and the action of G/N on N has no regular orbit (G = SmallGroup(72, 40) in the GAP library of small groups).

81

Let $\chi \in \operatorname{Irr}(G) - \{1_G\}$ and p = 2. If $\chi \in \operatorname{Irr}(G/N)$, then $p \mid \chi^c(1)$, because G/N is a nontrivial *p*-group. Otherwise, ker $\chi = 1$ and there exists a nonprincipal constituent $\theta \in \operatorname{Irr}(N)$ of χ_N . Since $\operatorname{gcd}(|N|, |G/N|) = 1$, the actions of G/N on $\operatorname{Irr}(N)$ and on the conjugacy classes of *N* are permutation isomorphic. Hence, $p \mid |I_G(\theta)|$. By Clifford's theorem, $\chi(1) = [G : I_G(\theta)]e$, where $e^2 \leq |I_G(\theta) : N|$, so $p \mid \chi^c(1)$. Now let $p = 2^a - 1$ be a Mersenne prime. By [9, Theorem 2.1(ii)], there exists a finite group *G* of order $2^{ap}p^{p+1}$ with a unique minimal normal subgroup *N* whose order is 2^{ap} and the action of G/N on *N* has no regular orbit. Now applying the same argument given for p = 2 shows that $p \mid \chi^c(1)$ for every $\chi \in \operatorname{Irr}(G) - \{1_G\}$. Thus, if either p = 2 or p is a Mersenne prime, then there exists a non-nilpotent solvable group *G* such that $p \mid \chi^c(1)$ for every nonprincipal character $\chi \in \operatorname{Irr}(G)$.

PROOF OF THEOREM 1.2. If *G* is an elementary abelian *p*-group, then [4, Lemma 2.4] shows that $Codeg(G) = \{1, p\}$, as desired. From now on, we suppose that $\chi^c(1)_p = p^e$ for every nonprincipal irreducible character χ of *G*. We are going to prove that e = 1 and *G* is an elementary abelian *p*-group.

First, let *G* be a *p*-group. By the assumption of the theorem, $Codeg(G) = \{1, p^e\}$. Now [1, Lemma 3.1] and [4, Lemma 2.4] force *G* to be an elementary abelian *p*-group and e = 1. So, in order to complete the proof, it is enough to show that *G* is a *p*-group.

Assume by contradiction that *G* is not a *p*-group. Let *M* be a normal subgroup of *G* of the maximal order such that *G*/*M* is not a *p*-group. Set $\overline{G} = G/M$ and let \overline{x} be the image of $x \in G$ in \overline{G} . By the argument used in the proof of Theorem 1.1, $p \mid |\overline{G}|$ and \overline{G} has a unique minimal normal subgroup \overline{N} . In particular, $\overline{G}/\overline{N}$ is a *p*-group (possibly trivial). We claim that \overline{G} is *p*-solvable. Working towards a contradiction, suppose that \overline{G} is not *p*-solvable. Thus, $\overline{N} = S_1 \times \cdots \times S_t$, where S_1, \ldots, S_t are isomorphic nonabelian simple groups with orders divisible by *p*. Then, for $1 \le i \le t$, there exist $\theta_i, \phi_i \in \operatorname{Irr}(S_i) - \{1_{S_i}\}$ such that $p \mid \theta_i(1)$ and $p \nmid \phi_i(1)$. Set $\psi_1 = \theta_1 \times \phi_2 \times \cdots \times \phi_t$ and $\psi_2 = \phi_1 \times \phi_2 \times \cdots \times \phi_t$. Hence, $\psi_1, \psi_2 \in \operatorname{Irr}(\overline{N}) - \{1_{\overline{N}}\}$ and ker $\psi_1 = \ker \psi_2 = \{1\}$. If $|\overline{G}/\overline{N}| = 1$, then $\psi_1^c(1)_p = |\overline{G}|_p/\theta_1(1)_p \neq |\overline{G}|_p = \psi_2^c(1)_p$, which is a contradiction. Next let $|\overline{G}/\overline{N}| \neq 1$. For every $\chi \in \operatorname{Irr}(\overline{G}|\psi_2)$, we have $\psi_2^c(1) \mid \chi^c(1)$ and so

$$(|S_1|_p)^t = \psi_2^c(1)_p \le \chi^c(1)_p = p^e.$$
(2.1)

On the other hand, since \bar{G}/\bar{N} is a *p*-group and $\operatorname{Codeg}(\bar{G}/\bar{N}) \subseteq \operatorname{Codeg}(G)$, we have $\operatorname{Codeg}(\bar{G}/\bar{N}) = \{1, p^e\}$. Thus, e = 1 and $p \neq 2$, by [1, Lemma 3.1] and [4, Lemma 2.4]. Hence, (2.1) forces t = 1 and $|S_1|_p = p$. So, \bar{N} is a simple group, which is the unique minimal normal subgroup of \bar{G} . Thus, we can easily check that $C_{\bar{G}}(\bar{N}) = \{1\}$ and consequently $\bar{N} \leq \bar{G} \leq \operatorname{Aut}(\bar{N})$. Hence, by Lemma 2.2, there exists $\psi \in \operatorname{Irr}(\bar{N})$ such that $\ker \psi = \{1\}$ and ψ extends to \bar{G} , that is, there exists $\chi \in \operatorname{Irr}(\bar{G})$ such that $\chi_{\bar{N}} = \psi$. It is obvious that $\ker \chi = \{1\}$ and so $|\bar{G}/\bar{N}| | \chi^c(1)$. Hence, $|\bar{G}/\bar{N}| = p$. This forces $|\bar{G}|_p = p^2$. Also, $|\bar{G}|_p / |\ker \chi|_p \chi(1)_p = \chi^c(1)_p = p$ for every $\chi \in \operatorname{Irr}(\bar{G}) - \operatorname{Irr}(\bar{G}/\bar{N})$. Thus, $\chi(1)_p \leq p$ and, by [7, Lemma 3.2], $\bar{N} \simeq \operatorname{Alt}_7$ and p = 3. Therefore, $|\bar{G}/\bar{N}| | |\operatorname{Out}(\operatorname{Alt}_7)|$. It follows that $p = 3 | |\operatorname{Out}(\operatorname{Alt}_7)| = 2$, which is a contradiction. This shows that $p \nmid |\bar{N}|$.

Consequently, \bar{G} is *p*-solvable and $p \mid |\bar{G}/\bar{N}|$. Now Proposition 2.3 guarantees that \bar{G} is solvable. Also, since \bar{G}/\bar{N} is a *p*-group, $\text{Codeg}(\bar{G}/\bar{N}) = \{1, p^e\}$. Thus, [1,

[4]

Lemma 3.1] forces \bar{G}/\bar{N} to be abelian. Therefore, $(\bar{G})' = \bar{N}$ is the unique minimal normal subgroup of \bar{G} . Hence, [6, Lemma 12.3] implies that \bar{G} is a Frobenius group with the Frobenius kernel \bar{N} . So, there exists $\chi \in \operatorname{Irr}(\bar{G})$ such that $\chi^c(1) = |\bar{N}|$ and $p \nmid \chi^c(1)$. However, this contradicts the assumption of the theorem, because $\operatorname{Codeg}(\bar{G}) \subseteq \operatorname{Codeg}(G)$. Therefore, G must be an elementary abelian p-group.

References

- [1] F. Alizadeh, H. Behravesh, M. Gaffarzadeh, M. Ghasemi and S. Hekmatara, 'Groups with few co-degrees of irreducible characters', *Comm. Algebra* **47** (2019), 1147–1152.
- [2] M. Bianchi, D. Chillag, M. L. Lewis and E. Pacifici, 'Character degree graphs that are complete graphs', *Proc. Amer. Math. Soc.* 135(3) (2007), 671–676.
- [3] S. Dolfi, 'Orbits of permutation groups on the power set', Arch. Math. 75 (2000), 321–327.
- [4] N. Du and M. L. Lewis, 'Codegrees and nilpotence class of *p*-groups', J. Group Theory 19(4) (2016), 561–568.
- [5] A. Granville and K. Ono, 'Defect zero *p*-blocks for finite simple groups', *Trans. Amer. Math. Soc.* 348 (1996), 331–347.
- [6] I. M. Isaacs, Character Theory of Finite Groups (Dover, New York, 1994).
- [7] M. L. Lewis, G. Navarro, P. H. Tiep and H. P. Tong-Viet, '*p*-Parts of character degrees', *J. Lond. Math. Soc.* (2) 92(2) (2015), 483–497.
- [8] G. Malle and A. Zalesski, 'Prime power degree representations of quasi-simple groups', Arch. Math. 77(6) (2001), 461–468.
- D. S. Passman, 'Groups with normal solvable Hall p'-subgroups', Trans. Amer. Math. Soc. 123 (1966), 99–111.
- [10] G. Qian, 'A note on *p*-parts of character degrees', Bull. Lond. Math. Soc. 50(4) (2018), 663–666.
- [11] G. Qian, Y. Wang and H. Wei, 'Co-degrees of irreducible characters in finite groups', J. Algebra 312 (2007), 946–955.
- [12] P. Schmid, 'Rational matrix groups of a special type', *Linear Algebra Appl.* 71 (1985), 289–293.
- [13] P. Schmid, 'Extending the Steinberg representation', J. Algebra Appl. 150 (1992), 254–256.
- [14] J. Thompson, 'Normal p-complements and irreducible characters', J. Algebra 14 (1970), 129–134.

ROYA BAHRAMIAN, Department of Pure Mathematics, Faculty of Mathematical Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran e-mail: roya.bahramian98@gmail.com

NEDA AHANJIDEH, Department of Pure Mathematics, Faculty of Mathematical Sciences, Shahrekord University, P.O. Box 115, Shahrekord, Iran e-mail: ahanjideh.neda@sci.sku.ac.ir