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In previous work, we estimated a dynamic model of the Italian economy, showing that its
weakness in the past two decades is mainly due to the slowdown in total factor
productivity growth. In those models, two parameters play a key role: technological
progress and the elasticity of substitution. Recent estimates of those parameters are
affected, in our opinion, by a specification problem: technological parameters are
inherently long-run but their estimates are based on short-run data. Looking deeply into
the estimation procedure, we show that the misspecification issue present in the estimates
gives rise to a spurious regression bias (high R2, low DW), because the standard approach
does not incorporate frictions and rigidities. Our modeling strategy takes account of them.
Although we cannot in general say that our framework gets rid of the serial correlation
problem, the statistics for our model do show that residuals are not serially correlated.
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1. INTRODUCTION

In Saltari et al. (2012, 2013), we estimated a dynamic disequilibrium model of
the Italian economy. The main result of those papers is that the weakness of the
Italian economy in the past two decades has been the total factor productivity
(TFP) slowdown. To investigate the roots of this productivity decline, we drew
attention to the decreasing pace of capital accumulation. The modeling strategy in
both papers is based on the distinction between traditional and innovative capital.
In a nutshell, our main finding shows that there exists a structural and persistent
gap between “optimal” and observed output, which, moreover, increased in the
latter part of the sample period.
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In those models, two parameters play a crucial role. The first is the information
and communication technologies (ICT)1 capital stock in boosting the efficiency of
both traditional capital and labor, and hence of the whole economy. Formally, the
ICT efficiency contribution is captured in a multiplicative way through a weighting
factor. The other key parameter to explain the Italian productivity decline is the
elasticity of substitution. Since the introduction in the economic analysis by Hicks
(1932) and its reformulation by Robinson (1933), the elasticity of substitution
has attracted interest by both theoretical and empirical researchers for its central
role in many fields, such as economic growth, fiscal policy, and development ac-
counting. Recent analysis provides estimates consistently below 1—thus rejecting
the traditional Cobb–Douglas production function—though there is no particular
value on which the consensus converged.

The estimation of these two parameters is, however, tricky. This is because
they are long-run in nature but their estimation is based on short-run data. In our
opinion, the real issue is to bridge this gap. To get a satisfactory solution, it is
crucial to focus on theoretical aspects underlying the modeling strategy.

Economic literature has addressed this problem in two ways. The first is based
on statistical tools (such as cointegration, filtering, or simply assuming away the
existence of the divergence) to recover long-run technological parameters from the
short-run data. The second is to recognize the existence of short-run adjustment
problems and to model them either explicitly, e.g., as in the Tobin’s q framework,
or implicitly, using ad hoc distributed lag processes not motivated by any form of
optimization behavior [see Chirinko (2008) for a comprehensive survey of both
lines of research]. However, both methods are in some sense inappropriate in that
they do not explicitly incorporate the dynamic effect of these costs on the factor
inputs in estimating the elasticity of substitution.

Our aim is to look deeply into the estimation procedure of these two technolog-
ical parameters, the elasticity of substitution and the weight of ICT for the Italian
economy. We proceed in two steps.

In the first, we stay within the standard framework and run a number of estimates,
using both single- and system-equation approaches. The estimation procedure
employs normalization as an instrument that allows us to properly identify the
deep technological parameters through a suitable choice of a baseline point. Results
show that single-equation approaches are largely unsuitable for jointly uncovering
the elasticity of substitution and the weight of ICT.

We then build a system of two equations, the production function and the income
share ratio derived from the two first-order conditions of factor inputs.

This is the most popular estimation method. It is an approach based on two
assumptions: there is instantaneous adjustment of the marginal products to their
user costs; it does not consider interactions with other markets. Within this frame-
work, we get estimates for the elasticity of substitution and the weight of ICT.
However, estimation results present a common fundamental feature in that the
error term is serially correlated so the standard errors will be underestimated (i.e.,
biased downward). At the root of this result there is a specification problem:
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the estimated models are static in nature and do not incorporate frictions and
rigidities. Thus, for instance, the production function is estimated without any
correction for the costs of rigidities [see, for instance, Mallick (2012)]. The same
holds for the estimate of income share ratio, because it implicitly hypothesizes
instantaneous adjustment between marginal products and input prices [as in Antras
(2004)].

Our framework overcomes these difficulties by explicitly incorporating these
costs into the theoretical model. The second step compares the results of our
framework with those obtained using the standard estimation procedure.

Comparison suggests that the more popular approach of using a system with
instantaneous adjustment is biased: for example, the weight of ICT appears to be
underestimated. Our model is based on the idea that firms optimize their intertem-
poral profits subject to the production function; however, in the optimization
process, firms are hindered by the presence of rigidities, adjustment costs, and
other frictions. This gives rise to a dynamic model that enables the true parameters
of the production function to be separated from the costs of adjustment, thus
eliminating the autocorrelation in the residuals. As a consequence, the parameters
are not biased by those costs. When we take account of these costs, we find an
estimated elasticity well below unity, of about two-thirds.

A recent strand of literature [beginning from Solow (1987), Blanchard (1997),
and McAdam and Willman (2013)] emphasizes a medium-run representation capa-
ble of explaining and reconciling protracted departures from the balanced growth
path. Our disequilibrium approach is not too far from this representation. Indeed,
both capture deviations from balanced growth and nest balanced growth as a
special case. Moreover, both account for deviations introducing dynamics through
factor adjustment costs. The difference resides in how these costs are modeled. In
the medium-run approach a variety of adjustment mechanism is introduced that
reflects structural frictions. In our disequilibrium framework the adjustment costs
are embedded in a system of stochastic differential equations representing partial
adjustment to long-run equilibrium, given a discrepancy between the long-run and
actual value of a variable [Wymer (1996, 1997)].

The organization of the paper is as follows. The next section provides a brief
literature review. Section 3 contains a short description of two issues related to
the estimation of technological parameters. Section 4 gives the main empirical
findings of our model. Section 5 reports the results of the traditional approach
to the estimation of the technological parameters. Sections 6 and 7 compare our
estimation procedure with the standard one, offering some insights for the solution
of the misspecification issue. Section 8 concludes. Finally, the Online Appendix
contains a short description of our model, data, and normalization procedure.

2. RELATED LITERATURE

Our paper is related to the modern growth literature [e.g., Acemoglu (2008),
La Grandville (2009), Aghion and Howitt (2009)] that emphasizes the power of
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the CES production function. In recent years, the CES production technology
has returned to the center of growth theory and increasingly empirical evidence
shows that the nonunit elasticity of substitution allows recognizing the existence
of biased technical change [see Chirinko et al. (1999), Klump et al. (2008), León-
Ledesma et al. (2010)]. The wider use of CES technologies opens the door to a
deeper understanding of the effects of variation in the elasticity of substitution on
economic growth [Turnovsky (2002)].

As pointed out by Nelson (1965), the elasticity of substitution can be interpreted
as an index of the rate at which diminishing marginal returns set in as one factor is
increased with respect to the other. If the elasticity of substitution is high, then it
is easy to substitute one factor for the other. Therefore, the higher the elasticity of
substitution, the lower the drag caused by diminishing returns. From this interpre-
tation, it is straightforward to notice that the elasticity of substitution will affect the
growth rate of output when factors of production are increasing at different rates,
so that their ratio is changing. The use of a Cobb–Douglas production function,
as in most cases in the literature, is a misleading approximation for the behavior
of the aggregate economy and hides the role of the elasticity of substitution not
only as a source of increase in output but also as a source of technical change. If
the elasticity of substitution in production is a measure of how easy it is to shift
between factor inputs, typically labor and capital, it provides a powerful tool to
answer questions about the distribution of national income between capital and
labor.

The relevance of the elasticity of substitution and its relationship to economic
growth and technical change has been established since Hicks (1932) and Solow
(1957). However, it was after Arrow et al. (1961) that there was a boost to the
theoretical and empirical issues involving the elasticity of substitution. More
recently, La Grandville (1989) gave proof of the positive relationship between the
elasticity of substitution and the output level.

Although the CES production technology seems relatively straightforward, its
mathematical simplicity can be misleading. La Grandville (1989), Klump and
La Grandville (2000), Klump and Preissler (2000), and Klump et al. (2008)
have emphasized that the economic interpretation of the CES production tech-
nology requires attention, and they advocate the use of a normalized produc-
tion function when analyzing the consequences of variation in the elasticity
of substitution. To properly identify the elasticity of substitution, we employ
normalization, which defines a family of CES functions whose members are
distinguished only by different elasticities of substitution. Because the elastic-
ity of substitution is originally defined as a point elasticity, one needs to fix
benchmark values for the level of production, factor inputs, and the marginal
rate of substitution, or equivalently for per capita production, capital deepening,
and factor income shares. Normalization increases the usefulness of CES pro-
duction functions for growth theorists, and this has led to its use in subsequent
work such as Miyagiwa and Papageorgiou (2007) and Papageorgiou and Saam
(2008).
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3. TWO RELEVANT ISSUES

Before addressing the technical aspects, we deem it necessary to bring to the
attention of the reader two far-reaching features of the economic environment’s
recent evolution in the main industrialized countries, which are relevant not only
by themselves but also because they affect the estimation’s robustness. This section
discusses the role of ICT and the decline of labor’s share.

Several recent studies have stressed the importance of ICT as a key factor behind
the upsurge in U.S. productivity after 1995 [see, among others, Colecchia and
Schreyer (2001); Stiroh (2002); Jorgenson et al. (2004)]. With regard to Europe,
EU countries fall well below the United States in terms of ICT penetration [Timmer
and van Ark (2005)]. Whereas there exists a huge literature for the U.S. economy,
the literature is relatively scarce for Italy [see European Commission (2013)]. By
now, it is an accepted fact that the setback of Italian labor productivity in the past
twenty years is explained by two factors: a marked slowdown of capital deepening
accompanied by a striking negative contribution of TFP.

To go a step further, notice that these two phenomena go hand in hand and
are both relevant to explaining the standstill of labor productivity. Capital accu-
mulation is important, at least since Solow (1957). In fact, what the data about
capital deepening show is that in the Italian economy during the past twenty
years there occurred a shift toward less capital-intensive techniques, thus reduc-
ing the efficiency of employment. This shift and the lack of adoption of new
technologies, especially of the ICT variety, have been favored by the particular
structure of the Italian specialization, skewed toward traditional sectors with low
technological content and less skilled workers. That is, not only did the pace
of investment decrease in the past 15 years, but also it was redirected toward
traditional sectors rather than innovative ones. This change in capital accumu-
lation mix explains why TFP and capital intensity rates decreased at the same
time.

The last point is confirmed by the trend of capital accumulation in Italy, which
is characterized by two main aspects. The first is that the dynamics of total capital
accumulation mostly follows that of capital accumulation in the traditional (non-
ICT) sector. The second is that the investment rate in the ICT sector accelerates
up to the end of the 1980s, and then slows down, albeit with a recovery in the
mid-1990s. It becomes negative in the most recent years.

The contribution of the ICT sector to productivity dynamics has not been
modeled. The bulk of the literature assumes that technical progress occurs at
a constant rate without giving a specific structure within which the ICT plays
any role [a partial exception is Klump et al. (2008)]. In our model we take a
stance about how ICT impacts technical progress: in particular, we assume that
the productivity of the traditional capital stock is augmented by the ICT capital
stock. This makes a difference with respect to the traditional approach in that
the effect of ICT is not constant but reflects the pace of investment in innovative
technologies.
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Regarding the decline of labor share, evidence shows that since the 1980s the
labor share has dramatically changed its behavior. Differently from the “stylized
fact” of aggregate factor share constancy, the past three decades have seen a
continuous decline of the labor share, thus casting doubt on share invariance. The
decline of labor share is not limited to Italy but occurred in the large majority
of industrialized countries [see Elsby et al. (2013); Karabarbounis and Neiman
(2014)]. Empirically, this is a problem, for it implies nonstationarity in income
shares, an issue difficult to deal with. The stability of the income share of labor
is a key foundation in most macroeconomic models, taken for granted until very
recently.

The dynamics of aggregate labor share in Italy, France, Germany, and the
United States until the 1970s was approximately constant in all these countries,
thus confirming one of the stylized facts highlighted by Kaldor (1961). Starting
from the following decade, the decline of labor share becomes evident. In the
period 1980–2011, the reduction was 11 percent for Italy and France, 8 percent in
Germany, and 6 percent in the United States. Obviously, this downward trend will
not last forever. It seems that in the past thirty years the income shares dynamics
has been (at least locally) nonstationary; in other words, it is likely that this process
will come to a halt. The local nonstationarity will create problems because it is
an independent source of serial correlation. This is a critical issue often neglected
in the estimation of the technological parameters of the production function, and
especially in that of the elasticity of substitution. Though this is a relevant question,
it is not clear which way out can be adopted.

4. THE MODEL

We assume that the Italian economy can be described by behavioral functions
derived by the intertemporal optimization of the objective (profit) function. In-
stitutional and market structures are incorporated into the model as constraints.
These constraints represent the adjustment costs that hamper the instantaneous
equality between factor marginal products and their prices. For instance, differ-
ently from the traditional approach, the capital stocks adjust more slowly to their
marginal products. These rates of adjustment reflect the costs and risks of firms
changing their capital stocks. Analogously, it is not assumed that the labor market
instantaneously clears but rather that there are imperfections and frictions.2

To understand our methodology, let us have a look at the second-order (time)
derivative of the log of traditional capital, which implicitly defines the investment
equation in our model:

k̇ = α1

[
α2

(
∂f

∂K
− (r − β7 D ln p + β8)

)
− (k − μK)

]
, (1)

where k = D ln (K) , k̇ = D2 ln (K) , D denotes the operator d/dt , and μK is
the growth rate of labor efficiency. Inside the parentheses, we model the short-run
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adjustment of the capital marginal product to its user cost, defined by the real
interest rate (r − β7 D ln p) plus a risk premium (β8). The speed at which firms
make this adjustment is given by α2 or, in terms of its reciprocal, how long it
takes to adjust the existing capital stock to its desired level. As time goes by,
however, the desired level of capital stock changes at the velocity μK. Inside
the square brackets we find the long-run adjustment process, which runs at α1,
the speed of the accumulation process. Of course, as the estimates in Saltari
et al. (2012) confirm, the first adjustment takes a much shorter time than the
second.

All the other equations in our model are specified in a similar manner, i.e.,
as dynamic equations (the basic model equations are summarized in the Online
Appendix). This implies that the model is recursive, in the sense that it is expressed
as a system of differential equations in which the derivative of each endogenous
variable depends on the levels of all the other variables.3

Formally, these assumptions give rise to a system of stochastic differential
equations that is estimated by the full-information maximum likelihood method
(FIML). It is important to note that the parameters of the production function
occur throughout the model under the various marginal product conditions that
arise from cost minimization. The way in which they occur varies with the specific
marginal functions.4

The aggregate production function is given by

Yt = f (Ct ,K t , Lst , Lut )

= β3

[
(Ct

γ1K t )
−β 1 + (

β2 eμ K t Lst
γs Lut

γu
)−β 1

]− 1/β1

. (2)

In equation (2), μK = λK + γ1 λC is the labor efficiency growth rate, whereas
λK and λC are the rates of technical progress in the use of traditional capital
stock K and innovative capital C. These parameters may be interpreted as an
indication of the expected long-run term rates of growth, provided the system is
stable. The coefficient β2 is the labor-augmenting technical progress, whereas β3

is a measure of the total factor productivity. The efficiency of traditional capital
stock is augmented by ICT capital, C, with a weighting factor equal to γ1. The
elasticity of substitution is given by σ1 = 1

1+β1
. Finally, Ls is skilled labor and Lu

is unskilled labor.
Defining total employment as a Cobb–Douglas function of the skilled and

unskilled labor components, L = Ls
γs Lγu

u , the production function can be written
as5

Yt = β3

[
(Ct

γ1K t )
−β 1 + (

β2 eμ K t Lt

)−β 1
]−1/β1

. (3)

Two features of the production function (3) are worth noting. First, as emphasized
earlier, the specification of factor-augmenting technical progress is based on the
key role played by ICT on the productivity dynamics in industrialized countries
since the 1990s. ICT is particularly relevant for Italy, although in a negative sense.
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TABLE 1. Parameter estimates (asymptotic standard errors in parentheses)

β1 σ1 β2 β3 γ1 γS γU λK λC

0.519
(0.0045)

0.658
(0.020)

27.075
(3.598)

0.869
(0.031)

0.048
(0.013)

0.027
(0.005)

0.971
(0.010)

0.001
(0.001)

0.036
(0.005)

However, as demonstrated in Diamond et al. (1978), it is impossible to identify
this role separately from that of the elasticity of substitution unless one imposes
a specific structure of technical change. In defining this structure, we abandon
the traditional specification of technical progress as growing at a constant rate.
This is the second feature of the production function. Our model assumes that the
efficiency of traditional capital stock is augmented by ICT capital according to γ1.

Because the labor-augmenting index is defined as μK = λK + γ1 λC, the same
factor also increases the labor efficiency. In this way, we are assuming that ICT
investment improves labor productivity as well. Hence, we explicitly introduce
the ICT capital stock as a capital-augmenting efficiency factor which also affects
the efficiency of labor. To our knowledge, this specification of technical progress
was first introduced in the growth model of Kaldor (1957).6

In our model, parameters of the production function are not the result of single-
equation estimation, as of equation (3). Rather, they are obtained by the esti-
mation of a structural dynamic model of general and ICT investment functions,
skilled and unskilled labor sectors, and price determination under imperfect com-
petition.7 The parameters’ estimates of the production functions are reported in
Table 1.

The estimated Italian net domestic product (NDP) for the period 1980:Q2–
2005:Q1, a total of 100 quarters,8 is reproduced, together with the actual NDP, in
Figure 1.

The whole system of nonlinear stochastic differential equations allows us to
estimate the production function (or production frontier) subject to all the con-
straints mentioned in the preceding. The estimated parameters of the production
function give the output at any given level of inputs. This is the amount of output
that would be achieved at equilibrium, if inputs were used efficiently on the
production frontier.

A visual inspection of the figure reveals that the model replicates fairly well
what happened in Italy in the period under observation (the correlation coefficient
is 0.99). However, a persistent gap exists between the estimated and observed
dynamics of the Italian NDP, which tends to widen toward the end of the sample
period after the burst of the dot-com bubble; in contrast, at the beginning of the
80s the estimated output falls, and thus the gap narrows, because of the crisis of
the industrial system. On the average over the sample period, the gap between the
estimated and observed NDP is about 3 percent.

Our estimation of the elasticity of substitution (σ1 = 0.658) is confirmed
by latest econometric studies. These contributions find values of σ1 that are
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FIGURE 1. The dynamics of estimated and observed NDP in the Italian economy.

consistently below unity, but a great deal of variation in the results persists. Pereira
(2003) surveyed major papers in the field from the past 40 years and found that,
in general, elasticity values were below unity. Chirinko (2008) surveyed recent
studies on the elasticity parameter and found considerable variation in cross-study
results. However, the weight of the evidence suggests a range of σ1 between 0.4
and 0.6, with the assumption of Cobb–Douglas being strongly rejected. Klump
et al. (2008) estimated a long-run supply model for the euro area over the period
1970–2005 and found an aggregate elasticity of substitution below unity (around
0.7). Mallick (2012) obtained the elasticity parameters for 90 countries by esti-
mating the CES production function for each country separately using time series
spanning the period 1950–2000. The mean value for all 90 countries is 0.338.
For the OECD countries the mean is 0.340. One problem with interpreting these
cross-study results is that the various analyses are not all measuring the same thing:
the results found are generally sensitive to sample size and estimation techniques.
La Grandville (1989) and Klump and La Grandville (2000) emphasize the role of
normalization of the CES production function because it makes more consistent
cross-study estimates of the elasticity parameter.

In the following sections we compare the estimates of technological parameters
σ1 and γ1 reported in Table 1 with those obtained employing the most frequently
approaches: single-equation and two- and three-equation systems. Single-equation
estimates concentrate either on the production function or on the first-order con-
ditions, whereas the system approach combines them, exploiting cross-equation
restrictions.
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5. ESTIMATION RESULTS

5.1. Single-Equation Approach

The single-equation approach has been used for parameter estimation following
two alternative routes: the production function and the optimizing behavior im-
plicit in the equations of the income shares. These estimates are discussed in the
following subsections.9

Technology. Let us begin with the estimation of the production function. After
normalization, the production function in log form is

ln (yt ) = − 1

β̂1
ln

[
π0kit

−β̂1
t + (1 − π0) eμK (t−t0)l

−β̂1
t

]
, (4)

where β̂1 is the estimated parameter and small capital letters indicate capital
expressed in efficiency units and labor in index number form kitt= KITt

KIT0
= Kt C

γ1
t

K0C
γ1
0

and

lt = Lt
L0

(see the Online Appendix for details).
We first estimate only β1, setting the other parameters (γ1, λK, λC) at their values

in Table 1, with nonlinear least squares. This produces an estimate of β̂1 equal to
8.9. The implied value of the elasticity of substitution is σ̂1 = 1

1+β̂1
= 0.1, with

an R2 equal to 0.98 and a standard error of 0.026 (see Table 2). Notwithstanding
the high significance level and the good fit, the estimate presents at least two
problems. First, the implied level of σ1 is quite low and “unrealistic.” Second,
and more importantly, the Durbin–Watson statistic is very low (DW = 0.19),
indicating the existence of positive serial correlation in the residuals.10 The strong
residual autocorrelation affects the β̂1 estimate in that the estimate is unbiased but
its standard error is biased downward. In other words, there is a loss of efficiency.

As we saw in the preceding, ICT played a key role in explaining the Italian
economic dynamics. Hence, we try to fix the specification problem by extending
the estimation to the weight of ICT, γ1. Consequently, we jointly estimate the
elasticity of substitution and the weight of ICT, obtaining β̂1 = 11.6 and γ̂1 =
0.037, with an R2 equal to 0.98 for each. This slightly increases the estimate of
β̂1—the elasticity of substitution becomes σ̂1 = 0.08—but the serial correlation
remains high.

Up to now we have estimated the parameters using observed variables, without
taking into account that the estimation refers to long-run relations. One of the
methods frequently used in the literature to recover “desired” or long-run values
is to filter the time series (filtering results in a reduction of the sample period to
1984Q4–2002Q3). The adopted procedure transforms variables in the frequency
domain, excluding medium and high frequencies, keeping only low frequencies. In
the time domain this allows us to get back long-run values. So what do we get from
filtering? We tried several filters—the Baxter–King and Christiano–Fitzgerald
versions, with different hypotheses about the trend—but results seem insensitive
to these transformations. These are β̂1 = 49.3 (σ̂1 = 0.02) and γ̂1 = −0.027.
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TABLE 2. Single equation estimation: Technology

Nonfiltered Filtered

σ̂1 0.1
(0.026)

0.08
(0.014)

0.02
(0.002)

γ̂1 Calibrated 0.037
(0.004)

∗∗ −0.027
(0.008)

∗∗

R2 0.98 0.98 0.98
DW 0.19 0.24 0.39

Note: Robust standard errors in parentheses; standard errors of σ̂ com-
puted by the delta method.
∗∗ Significant at 1%.

However, the ICT weight has an implausible negative sign,11 and, above all, the
residuals are still serially correlated.12

It is worth noticing that all these regressions have a common feature: they
present a combination of a low DW and a high R2. This combination, which
will recur in all the subsequent regressions, seems to suggest a spurious relation
between variables.

The problem with estimating a production function as a single equation is that it
assumes that output is on the production frontier. It may also have a simultaneous
equation bias because it assumes that, throughout the sample, output is determined
by the supply side only. However, it is likely that the past few years have shown
that output is demand-driven. If so, however, it is yt that is causing kitt and lt , not
vice versa. Besides, although the representation and estimation of a production
function are important, on its own it is a purely technical relation.

In addition, the approach of trying to adjust the explanatory variables, kitt and
lt , with filtering techniques loses information and may leave one not knowing what
is really being lost. Also, the standard errors of the parameters of the estimated
production function are usually incorrect, as they are based on the adjusted or
filtered values of kitt and lt , not the actual ones.

Income shares. Let us now turn to the estimation of the first-order conditions
related to firm’s optimizing behavior. We use the income share equations that
embody first-order conditions. In writing the production function in index form,
we employed the mid-sample as a reference period. Income shares at the baseline
value were determined as follows:

1 − π0 = (β3)
−β1

(
Y0

β2L0

)β1

.

More generally, the labor share in period t can be written as

1 − πt = (β3)
−β1

[
Yt

β2eμK(t−t0)Lt

]β1

,
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where μK = λK + γ1λC. Dividing the last two equations side by side, we obtain

1 − πt = (1 − π0)

[
yt

eμK(t−t0)lt

]β1

.

This equation has a straightforward economic interpretation: the labor income
share is directly related, via β1 and thus the elasticity of substitution, to the
productivity of labor expressed in efficiency units.

Taking logs, we get

ln (1 − πt) = ln (1 − π0) + β1 ln

[
yt

eμK(t−t0)lt

]
. (5)

As in the case of production function estimation, we set the lambdas at the values
specified in Table 1 and estimate the two deep parameters γ1 and σ1. Using both
observed and filtered data for the variables involved in the previous equation, we
get almost the same values for β1, equal to 0.2 (σ̂1 = 0.83), whereas the weight
of ICT is 0.39 for unfiltered data and 0.42 for the filtered ones. What remains
unchanged is the high serial correlation in the residuals.

An analogous estimation can be done for the capital income share. The equation
estimated in log form is

ln (πt ) = ln (π0) + β1 ln

(
yt

kt c
γ1
t

)
. (6)

As in the case of labor, the capital income share is directly linked to the productivity
of capital, expressed in efficiency units through the ICT capital contribution.
Estimating this equation as before with observed and “long-run” data, we obtain
β̂1 = 3.81 (σ̂1 = 0.21) and β̂1 = 1.14 (σ̂1 = 0.47), respectively. As before,
what appears counterintuitive in both cases is the negative sign of the estimated
γ1. However, such a finding is not uncommon in the literature [see, for instance,
Antras (2004)]. The estimate of the elasticity of substitution based on the labor
income share is higher than that based on the capital income share, an empirical
regularity confirmed also in other studies.

Finally, we estimate the ratio of income shares, which in log form is

ln

(
πt

1 − πt

)
= ln

(
π0

1 − π0

)
+ β1 ln

[
eμK (t−t0)lt

kt c
γ1
t

]
. (7)

In words, the ratio of capital to labor income share is inversely related to the
labor–capital ratio, both expressed in efficiency units.

In the period considered, income shares are not stationary, in contrast with an
accepted stylized fact in the economics literature. This stylized fact is negated,
as there has been a continuous decrease in the labor share—not only in Italy but
also for most industrialized countries, as already discussed. Even if the labor share
seems to be stabilized at a new lower level in recent years, it creates an estimation
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TABLE 3. Single equation estimation: Income shares

Labor income share Capital income share Income share ratio

Nonfiltered Filtered Nonfiltered Filtered Nonfiltered Filtered

σ̂1 0.83
(0.1)

0.83
(0.015)

∗ 0.21
(0.056)

∗∗ 0.47
(0.131)

∗∗ 1.33
(0.65)

0.58
(0.02)

∗∗

γ̂1 0.39
(0.24)

0.42∗∗
(0.05)

−0.16
(0.028)

∗∗ −0.53
(0.14)

∗∗ 0.46∗∗
(0.12)

0.61
(0.04)

∗∗

R2 0.74 0.94 0.66 0.80 0.88 0.95
DW 0.01 0.03 0.07 0.02 0.03 0.03

Note: Robust standard errors in parentheses; standard errors of σ̂ computed by the delta method.
∗∗ Significant at 1%.
∗ Significant at 5%.

problem not easy to solve, because the nonstationarity is a potential cause of serial
correlation (as shown by the results in Table 3). Indeed, we made attempts, both
with raw and filtered data, without obtaining satisfactory results: for instance, the
estimated weight of ICT is implausibly high (above 40%), whereas the actual
weight of the ICT capital stock in the total capital stock is in the range of 3–6%.
Moreover, residuals remain serially correlated.

To sum up the results discussed so far, the estimates computed in the single-
equation approaches are all potentially subject to a spurious regression bias, as
they present a low DW and a high R2.

As is well known, in this case the estimates are consistent only if there exists
a cointegrating relationship. In all the previous regressions we tested for this
possibility—using different hypotheses on trend and constant specifications.13 We
were not able to obtain unambiguous results, because the presence of a cointegrat-
ing relation very much depends on the number of lags included. In our opinion,
these findings suggest a misspecification issue.

The problem behind the one-equation approach—such as Y = f (K,L) alone—
is that it assumes the observations are taken from a static economy at equilibrium.
We can see no way that can hold. These three variables are perhaps the most heavily
interrelated in theory: both K and L will be functions of demand, and demand (for
given prices and wages) must be met from domestic output, imports, or variations
in stocks. K will depend on some investment function, which alone will lead
to lags. L will depend almost certainly on demand and the current (installed)
production frontier, so even leaving aside simultaneous equation bias, there will
be some form of serial correlation (probably moving average disturbances) within
the model. Similar problems arise in the context of income share estimation.

5.2. System Approach

Because the single-equation approach seems unsuitable for jointly estimating the
two technical parameters of interest, we turn our attention to the system approach,
which is also the most frequently used in the literature.
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TABLE 4. System estimation

System 1 System 2

σ̂1 — 0.384∗∗
(0.056)

γ̂1 0.05∗∗
(0.004)

0.075∗∗
(0.017)

R2 DW R2 DW

Production function 0.990 1.04 0.994 1.24
Income share ratio 0.998 0.17 0.998 1.30

Q-statistic 132.87 > χ2
(0.95,98) 89.38 < χ 2

(0.95,98)

Note: Robust standard errors in parentheses; standard errors of σ̂ computed by the delta
method.
∗∗ Significant at 1%.

The system estimated is composed of two equations: (4) and (7). It is estimated
using nonlinear SUR. The estimation gives wrong signs for both parameters and
strongly indicates the presence of serial correlation (the DW is close to 0). The
residual autocorrelation is confirmed by the multivariate Box–Pierce/Ljung–Box
Q-statistics. To correct for this problem, we decide to add autoregressive com-
ponents. We run unit root tests both for the NDP and for the income share ratio,
which indicate that the former is I (1), whereas the latter is I (2) . This leads us to
include in the system (indicated in Table 4 as System 1) one autoregressive term in
the first equation and two in the second equation. This procedure reduces, but does
not solve, the serial correlation problem; furthermore, it gives us a wrong sign
in the β̂1 estimate.14 A visual inspection of the residual correlogram leads us to
increase the number of autoregressive terms in the equation for the income share
ratio. Increasing the order of the autoregressive process of the system (indicated
in Table 4 as System 2) seems to solve the serial correlation problem, because the
Q-statistic is lower than the value of the critical χ2 distribution with 98 degrees of
freedom at the 5 percent level, which is equal to 122.1. However, in our opinion
the economic content of this econometric manipulation has very limited value.15

Moreover, econometric theory tells us that if the original system was well
specified, then correcting for serial correlation should change the standard errors,
but the estimated coefficients should not change very much (because both the
original and corrected results are unbiased). However, they went from negative to
positive. This could be interpreted as an informal signal that the system was not
well specified in the original estimate.

6. THE THEORETICAL ROOTS OF THE ESTIMATION PROBLEM

As seen in the preceding, the traditional approach has some weaknesses. Indeed,
a key issue arises in estimating the technological parameters. To see the problem
at hand in the simplest way, suppose that the production function underlying
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the economy may be represented as y = f (K,L, θ), where θ is a vector of
parameters. These are technological parameters indicating the way in which factors
of production are brought together to produce output.

If the economy has frictions, rigidities, etc., that reduce the efficiency of produc-
tion, these rigidities must be taken into account in the estimation of the parameters
of the production function, for otherwise, the standard errors of the estimates will
be biased. Some rigidities will be unavoidable; it takes time to install capital,
build a new plant, etc., but it can be assumed that firms will take whatever steps
they can to minimize costs associated with those rigidities. The same will apply
to regulations; although firms are assumed to minimize costs by choosing the
optimal point on the production frontier, depending on factor costs, rigidities
will encourage or force the firm to operate at some other, suboptimal point. This
suboptimal point may be at a different point on the same “isotechnology” frontier,
or the whole frontier may be suboptimal.

If data on costs were available, it might be possible to build them into the
production function, but generally that is not the case, at the aggregate level
anyway. Also, to the extent that firms take steps to reach the optimal position from
their current suboptimal position, estimation of the production function is likely
to result in autocorrelated errors.16

The divergence between suboptimal and optimal variables is often cast in terms
of the difference between observable short-run data and their long-run values.
Observable data do not include adjustment costs, whereas the long-run values—on
which the estimates should be based—are already cost-adjusted but unobservable.

The divergence between optimal and suboptimal positions is a problem with
time-series analysis; autocorrelated errors are often eliminated statistically, but
if they have an economic cause originating from a misspecification problem, the
model should be respecified accordingly.

Our model is based on the idea that firms optimize their intertemporal profits
subject to the production function, but taking account of adjustment costs and
other frictions. This produces the dynamic model, which allows us to separate
the true parameters of the production function from the costs of adjustment. The
parameters θ then are not biased by those costs.

Once the model specified to include these costs has been estimated, the parame-
ters will be unbiased and the partial equilibrium of the economy may be calculated
under the assumption that costs of rigidities are zero. It is worthwhile to notice
that the calculated values from the unbiased estimates exclude these costs, so that
estimated output will be higher than observed (as in Figure 1).

A more formal way of looking at this issue from a general point of view is to
think of a theoretical function such as

ỹ(t) = f [x(t), θ ] + u(t), (8)

where the u(t) are a set of errors that would arise if this relationship, and in
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particular ỹ(t), could be observed. It could then be estimated directly. If this
relationship is subject to adjustment costs, rigidities, frictions, etc., the preceding
function could be considered as embedded in a more general relationship, as, for
instance,

y(t) = g{f [x(t), θ ], z(t), ω} + ξ (t) . (9)

Function (9) may depend on other variables z(t) and parameters ω, thus giving a
better representation of the economy. Hence, y(t) is the variable that is observed.
In that case, it is equation (9) that should be estimated for all of the parameters θ

and ω. If this equation is the correct specification of the model that produces the
observed y(t), estimating the first equation on the assumption that ỹ(t) = y(t)

would produce biased estimates of the parameters vector θ .
If (9) were the true model but (8) is estimated using the observed values of

y(t), it is likely that residuals in (8) will be serially correlated because of model
misspecification. Take, for instance, the behavior of factor markets. These are
very often characterized by frictions and rigidities arising from many sources
that affect the adjustment process. In many countries, the employment protection
legislation is evidence of the existence of institutional factors that delay or hinder
the achievement of equilibrium in the labor market; at the same time, they make
the wage unresponsive to the excess of demand or supply. Similarly, the optimal
or “desired” capital stock cannot be instantaneously obtained given a variety of
adjustment costs. Some scholars [see, for example, Antras (2004), Leon-Ledesma
et al. (2010)] do not consider the presence of those frictions and rigidities, assuming
that the economic system is in equilibrium at any point in time. Although this
assumption may be convenient for theoretical work, it causes an error in the
specification of the structure underlying the model, thus giving rise to serially
correlated residuals.

As this has an economic cause, that is it is due to a misspecification of us-
ing y(t) with (8) rather than (9), it should be eliminated by using the correct
specification rather than by some statistical means. Because of the dynamics in
the true model, if we wished to use values calculated from (9) to reestimate (8)
directly, we would need to calculate “observations” of these variables from (9)
first, but such estimates would almost certainly be inconsistent.17 In the follow-
ing we will see that the standard approach suffers from such a misspecification
problem.

7. DEALING WITH THE MISSPECIFICATION PROBLEM

Our model is formulated as a dynamic disequilibrium system in continuous time.
The model is based on the idea that firms optimize their intertemporal prof-
its subject to the production function but are hindered by rigidities, adjustment
costs, and other frictions. Hence, firms cannot optimize instantaneously, as in
the traditional approach, but only at a finite speed—formally represented by the
alphas, as in equation (1). This produces the dynamic model, which, at least to
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an approximation,18 enables the true parameters of the production function to be
separated from the costs of adjustment. The parameters then are not biased by those
costs.

These particular features may help, at least in principle, in solving the residual
correlation and misspecification problems. As the reader may recall, the mis-
specification derives from the “fundamental tension,” as Chirinko (2008) dubs it,
between the short-run observable data and the long-run nature of the elasticity
of substitution. As the estimation results showed, the ways out of this problem
proposed in the literature have not been useful. As said earlier, our modeling
strategy takes into account, though implicitly through the alphas, a variety of
adjustment costs without leaving out the optimization hypothesis. The standard
procedure assumes instead that there are no lags or frictions hampering the equal-
ity between input prices and their marginal products in estimating the technical
parameters.

One may ask what results would be obtained following the standard proce-
dure. There are two main points characterizing the traditional methodology of
estimating the elasticity of substitution and technical change. First, because of
the impossibility of identifying the parameters separately, a specific structure is
imposed on technical progress: it is assumed that the factor input efficiency grows
at a constant rate. Second, it is assumed that the adjustment speed of the factor
marginal productivities at their rental prices tends to infinity. Antras (2004) is
perhaps one of the best recent papers that exemplify the standard approach for the
U.S. economy. His main result is that the elasticity of substitution is well below 1,
and hence the aggregate production function is not of Cobb–Douglas type. How-
ever, from the very beginning, he has to deal with the same problem emphasized
in the preceding, i.e., a combination of high R2 and low Durbin–Watson statistics
pointing toward a spurious regression bias. To solve this problem, he employs a
number of econometric techniques (besides OLS, FGLS, GIV, and cointegration)
without substantial improvements.

Assuming finite adjustment speed and a different form of technical change, in
our opinion, provides a better representation of the economic system. Although
our framework cannot always guarantee the solution to the specification problem,
in this case it turns out that residuals are not serially correlated. The multivariate
Ljung–Box Q test is equal to 101.4 for the first two autocorrelations.19 As a
consequence, the null hypothesis that the residuals are not serially correlated
cannot be rejected because the Q-statistic is below the critical value in the region of
the upper tail.20 This is not a surprising result, because a second-order differential
equation model gives rise to a second-order moving-average error process that
is taken into account explicitly in the estimation procedure. To the extent that
observations generated by a second-order system inherently incorporate a first-
or second-order moving average process, depending on whether the variables are
stocks or flows, at least in a linear model and to an approximation in a nonlinear
model, that too can be taken into account and variables transformed to remove the
serial correlation—see Wymer (1972).
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8. CONCLUSIONS

A growing number of papers have shown that the elasticity of substitution is a
key technological parameter for boosting economic efficiency. Perhaps the most
innovative and interesting result of this literature is that the elasticity of substitution
is well below 1, i.e., the Cobb–Douglas assumption is biased upward.

However, in our opinion, these new estimates are affected by a theoretical
weakness. The elasticity of substitution is a long-run technological parameter
whose estimation is constrained by the availability of short-run data. This problem
has been solved by employing two different econometric strategies: on one hand,
making use of a theoretical framework to account for the delayed adjustment to
long-run optimizing relationships; on the other, filtering the data in such a way as
to retain only long-run components.

This paper has emphasized that these estimates have a serial correlation problem
deriving from unsolved theoretical issues: it is difficult to explicitly specify the
appropriate adjustment costs, and data filtering is subject to the usual ad hoc
criticism. The model we proposed is a tentative solution to these problems in that
it incorporates frictions and, as a disequilibrium model, it is intrinsically dynamic.
The test results seem to confirm that the strategy is effective.

A distinctive feature of our model is the capital-augmenting technical progress
which gives a key role to the ICT capital stock, differently from the existing
literature, where it is generally assumed to be constant. The next step of our
research project is to extend the model by endogenizing the ICT sector. We also
believe that a deeper understanding of the issues we have been examining can come
from the introduction of a variable elasticity of substitution to the specification of
technology (which will be more responsive to price changes).

NOTES

1. By ICT we refer to ICT-producing sectors: hardware, software, and office equipment.
2. The adjustment process may take two forms. The first-order process assumes that the variable

under consideration adjusts to its partial equilibrium level in the following way:

Dy (t) = α [ŷ (t) − y (t)] ,

where ŷ (t) is the equilibrium or desired level, α is the speed of adjustment, and D is the operator
d/dt . The second-order adjustment assumes instead that it is the rate of change of the variable that
adjusts to its equilibrium level:

D2y (t) = α1 {α2 [ŷ (t) − y (t)] − Dy (t)} ,

where the first term in parentheses describes the adjustment of the variable to its desired level and
Dy (t) has a damping effect on the adjustment process.

3. More details on dynamic disequilibrium models can be found in Gandolfo (1981) and Wymer
(1996).

4. The FIML estimator used ensures that all of the cross-equation constraints implicit in these
functions are imposed in the estimation, and hence the parameter estimates are consistent across the
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model. This increases the (statistical) efficiency of the estimates; i.e., they have a lower asymptotic
standard error.

5. This production function can easily be transformed into the well-known form introduced into
the literature by Arrow et al. (1961):

Yt = q
[
w

(
Ct

γ1 K t

)−β 1 + (1 − w)
(
β2 eμ K t Lt

)−β 1
]−1/β1

,

where the “efficiency” parameter is defined as q = β3(
1+β

−β1
2

)1/β1
and the “distribution” parameter as

w = 1

1+β
−β1
2

.

6. Kaldor (1957) is explicit in affirming that one specific characteristic of his growth model is that
“it eschews any distinction between changes in techniques (and in productivity) which are induced
by changes in the supply of capital relative to labor and those induced by technical invention or
innovation—i.e., the introduction of new knowledge. The use of more capital per worker (whether
measured in terms of the value of capital at constant prices, in terms of tons of weight of the equipment,
mechanical power, etc.) inevitably entails the introduction of superior techniques” (p. 595).

7. The model assumes that the market environment is one of imperfect competition where firms have
similar production functions but different endowments and their products are sufficiently differentiated
so that they are monopolistic competitors in the short run, setting their own prices. Thus, they may set
prices according to their marginal costs plus some mark-up. As a consequence, each firm is assumed
to be a “quantity-taker” and aims to supply the amount demanded.

8. In our estimation period there are 100 quarters, but 4 have been discarded for estimation reasons.
9. The normalization used is described in the Online Appendix.

10. Here, and in what follows, we tested for residual correlation computing Q-statistics, ADF, and
Breusch–Godfrey statistics. The tests always confirm the DW results. For brevity, these tests are not
reported.

11. A negative sign for γ1 is economically meaningless, as it would imply technological regression
when ICT capital stock increased.

12. We also replicated the specification of Mallick (2012), who assumes Hicks-neutral technical
progress, obtaining very similar results for Italy (σ1 = 0.15). However, he does not address the serial
correlation problem.

13. We used Engle–Granger and Phillips–Ouliaris single-equation residual-based cointegration tests.
Results are available upon request from the authors.

14. The strategy of filtering data does not improve the results.
15. Specifically, we included autoregressive components at lags 1 up to 5, and at lags 9 and 10 for

the equation of income share ratio; for the production function, we add one autoregressive element.
16. For a theoretical discussion of “dynamic misspecification” in the context of dynamic program-

ming and how it can generate serial correlated errors, see Hansen and Sargent (2008, pp. 26–27).
17. As all the FIML or similar estimators are asymptotic, a vector of parameters is consistent if and

only if the probability limit of the estimate of the vector of parameters θ equals the true value of θ as the
sample size goes to infinity for the estimate to be consistent. This condition is roughly asymptotically
equivalent to—but not the same as—the condition in OLS that a parameter is unbiased if and only if
the expected value of its estimate is equal to the true value.

18. The approximation derives from the fact that, at a macro level, it is not possible to give an
analytic representation of rigidities, frictions, and adjustment costs.

19. The augmented Dickey–Fuller statistic may also be run for the single equations of the model.
Although these are not appropriate for a FIML estimator, the single-equation results, for what they are
worth, show no relevance to nonlinear differential equation systems.

20. Approximate critical values of the critical χ2 distribution with 98 degrees of freedom are at the
5 percent level equal to 122.1, whereas at the 1 percent level they are equal to 133.5.
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